Math 3D03

Short solutions to assignment \#2

1. Evaluate the following definite (real-valued) integrals:

$$
\begin{gathered}
\text { (i) } \int_{0}^{2 \pi}(\sin \theta)^{n} d \theta \quad \text { for } n \in \mathbb{N} \text {. What happens when } n \rightarrow \infty \text { ? } \\
\text { (ii) } \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x \quad \text { for } 0<a<1 \\
\text { (iii) } \int_{0}^{\infty} \frac{d x}{1+x^{n}} \quad \text { where } n \geq 2 \text { is an integer }
\end{gathered}
$$

(i) The integral is obviously zero for odd n, $\operatorname{since} \sin (\theta)=-\sin (2 \pi-\theta)$. For even n, we have using the binomial formula:

$$
\begin{gathered}
\int_{0}^{2 \pi}(\sin \theta)^{2 n} d \theta=\oint_{|z|=1}\left(\frac{z-z^{-1}}{2 i}\right)^{2 n} \frac{d z}{i z}=\frac{1}{(2 i)^{n}} \oint_{|z|=1} \frac{z^{2 n}}{i z}\left(1-z^{-2}\right)^{2 n} d z \\
=\frac{1}{2^{2 n} i^{2 n+1}} \sum_{k=0}^{2 n} \oint_{|z|=1}(-1)^{k}\binom{2 n}{k} z^{2 n-2 k-1} d z=\frac{2 \pi}{2^{2 n}} \frac{(2 n)!}{(n!)^{2}}
\end{gathered}
$$

As $n \rightarrow \infty$, the integral goes to zero. This can be seen, for example, by using Stirling's formula: $\lim _{N \rightarrow \infty} \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N} \frac{1}{N!}=1$ or by looking at the graph of the function $(\sin \theta)^{2 n}$ for large n.
(ii) Use a long horizontal strip $[-R,+R] \times[0,2 \pi]$ above the x-axis as your contour The integral on the two vertical lines $\rightarrow 0$, as $R \rightarrow \infty$ since the integrand is bounded from above in amplitude by $\frac{e^{a R}}{e^{R}}$ (on the right vertical line) and by $e^{-a R}$ (on the left vertical) and $0<a<1$. On the upper horizontal line the integral is a phase shift by $e^{i a 2 \pi}$ of the integral on the x-axis (in the opposite direction). There is exactly one simple pole at $i \pi$ within the strip with residue $=\frac{e^{i a \pi}}{e^{i \pi}}=-e^{i a \pi}$. Therefore $\left(1-e^{i 2 a \pi}\right) \int_{-\infty}^{\infty} \frac{e^{a x} d x}{1+e^{x}}=-2 \pi i e^{i a \pi}$ and hence the answer is

$$
\int_{-\infty}^{\infty} \frac{e^{a x} d x}{1+e^{x}}=\frac{\pi}{\sin (a \pi)}
$$

(iii) This is problem 24.18 in the textbook but here is how you can do it as I showed you in class: $\oint_{C} \frac{1}{1+z^{n}} d z$, where the contour C is the $\frac{2 \pi}{n}-$ sector (of radius $R \rightarrow \infty$) in the first quadrant. There is a single simple pole at $e^{i \frac{\pi}{n}}$ inside C with residue $=\frac{1}{n} e^{-i \frac{(n-1) \pi}{n}}=-\frac{1}{n} e^{i \frac{\pi}{n}}$. The integral along the ray $z=r e^{i \frac{2 \pi}{n}}$ is a phase shift by $e^{i \frac{2 \pi}{n}}$ of the integral on the x-axis (in the opposite direction). The integral on the circular arc tends to zero as $R \rightarrow \infty$, since $n \geq 2$. Therefore $\left(1-e^{i \frac{2 \pi}{n}}\right) \int_{0}^{\infty} \frac{d x}{1+x^{n}}=$ $-\frac{2 \pi i}{n} e^{i \frac{\pi}{n}}$ and hence

$$
\int_{0}^{\infty} \frac{d x}{1+x^{n}} d x=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right)
$$

2. Do problems 24.20 and 24.21 on page 869 in the text book.

Problem 24.20. Use a key hole contour around the origin with a cut along the positive real axis. There is exactly one simple pole at $z=\exp (i \pi)$ with residue $=i \pi \exp \left(-i \frac{3 \pi}{4}\right)$.
Both circular integrals (around the little circle around zero and the big circle around ∞) go to 0 when you let the radii go to zero and ∞ respectively. The integral along the cut (the positive real axis) undergoes a phase shift when it comes back from ∞ :

$$
\int_{\infty}^{0} \frac{\log (x)+2 \pi i}{\exp \left(i \frac{3 \pi}{2}\right) x^{\frac{3}{4}}(1+x)} d x=-i \int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x+2 \pi \int_{0}^{\infty} \frac{d x}{x^{\frac{3}{4}}(1+x)}
$$

Hence

$$
(1-i) \int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x+2 \pi \int_{0}^{\infty} \frac{d x}{x^{\frac{3}{4}}(1+x)}=-2 \pi^{2} \exp \left(-i \frac{3 \pi}{4}\right)=\pi^{2} \sqrt{2}(1+i)
$$

Therefore:

$$
\int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x=-\pi^{2} \sqrt{2} \quad \int_{0}^{\infty} \frac{d x}{x^{\frac{3}{4}}(1+x)}=\pi \sqrt{2}
$$

Problem 24.21. Use a large semicircle of radius R in the upper half plane and the real line with a small semicircular dent of radius ϵ around the origin. Log is well-defined there. There is a simple pole at $z=i$ inside ythe contour with residue $\frac{(\log (i))^{2}}{2 i}=i \frac{\pi^{2}}{8}$. The integrals on the semicircular pieces go to zero when $R \rightarrow \infty$ and $\epsilon \rightarrow 0$. On the left part of the real axis, the \log is phase-shifted: $\left(\log \left(x e^{i \pi}\right)\right)^{2}=(\log x)^{2}+2 i \pi \log x-\pi^{2}$, so we get:

$$
2 \int_{0}^{\infty} \frac{(\log (x))^{2}}{1+x^{2}} d x+2 \pi i \int_{0}^{\infty} \frac{\log (x)}{1+x^{2}} d x-\pi^{2} \int_{0}^{\infty} \frac{d x}{1+x^{2}}=-\frac{\pi^{3}}{4}
$$

Equating real and imaginary parts we get:

$$
\int_{0}^{\infty} \frac{(\log (x))^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8} \quad \int_{0}^{\infty} \frac{\log (x)}{1+x^{2}} d x=0
$$

3. Sum the following infinite series:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}$
(c) $\sum_{n=-\infty}^{\infty} \frac{n^{2}}{n^{4}-\pi^{4}}$
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}=-\frac{1}{2}\left(\operatorname{sum}\right.$ of residues $\left.\left(\frac{\pi \cot (\pi z) d z}{z^{2}+9} ; \pm 3 i\right)+\frac{1}{9}\right)=\frac{\pi}{6} \operatorname{coth}(3 \pi)-\frac{1}{18}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}=-\frac{1}{2} \operatorname{Res}\left(\frac{\pi \csc (\pi z) d z}{z^{4}} ; 0\right)=\frac{1}{2} \frac{(-1)^{3} 2\left(2^{3}-1\right) \pi^{4}}{4!} B_{4}=\frac{7 \pi^{4}}{720}$
(c) $\sum_{n=-\infty}^{\infty} \frac{n^{2}}{n^{4}-\pi^{4}}=$ sum of residues $\left(\frac{\pi \cot (\pi z) z^{2} d z}{z^{4}-\pi^{4}} ; \pm \pi, \pm i \pi\right)=\frac{1}{2}\left(\operatorname{coth}\left(\pi^{2}\right)-\cot \left(\pi^{2}\right)\right)$
4. How many zeros of the polynomial $z^{4}-5 z+1$ lie in the annulus $1 \leq|z| \leq 2$?
$|-5 z+1| \leq 5|z|+1=11<16=\left|z^{4}\right|$ on the outer circle $|z|=2$ and z^{4} has a quadruple zero at $z=0$. On the other hand, $|-5 z+1| \geq 5|z|-1=4>1=\left|z^{4}\right|$ on the inner circle $|z|=1$ and $-5 z+1$ has exactly one zero at $z=\frac{1}{5}$ inside the inner circle.

Therefore there are 3 roots of the given quartic inside the given annulus.
5.
(i) Suppose that $f(z)$ is a non-constant analytic function defined for all $z \in \mathbb{C}$. Show that for every $R>0$ and for every $M>0$ there exists a z such that $|z|>R$ and $|f(z)|>M$.
(ii) Suppose that $f(z)$ is a non-constant polynomial. Show that for every $M>0$ there exists an $R>0$, such that $|f(z)|>M$ for all $|z|>R$.
(iii) Show that there exists an $M>0$, such that for every $R>0$, there exists a z satisfying $|z|>R$ and $\left|e^{z}\right| \leq M$.
(i) Arguing by contradiction, let us assume that there exists $R>0$ and $M>0$ such that $f(z) \leq M$ for every $|z|>R$. Let $a \in \mathbb{C}$. By the Cauchy integral formula : $f^{\prime}(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)^{2}} d z$, where we choose C to be a circle of very large radius r (say $r=100(R+|a|)$). The integral is bounded from above in absolute value by the product of the length of that circle and the maximum absolute value of the integrand which is $\leq 2 \pi r \frac{M}{r^{2}}=\frac{2 \pi M}{r}$ and so $\left|f^{\prime}(a)\right| \leq \frac{M}{r}$ for any r sufficiently large. This proves that $f^{\prime}(a)=0$ for any a and hence f is a constant function.
(ii) By factoring out the top coefficient, we may assume that $p(z)=z^{n}+q(z)$, where $q(z)$ is a polynomial of degree $\leq n-1(n \geq 1)$. Since $\lim _{z \rightarrow \infty} \frac{q(z)}{z^{n}}=0$, we see that for $|z|$ sufficiently large $|q(z)|<0.1\left|z^{n}\right|$ and so $|p(z)| \geq 0.9|z|^{n} \geq 0.9 R^{n}$ for $|z| \geq R$.
So for any given $M>0$, we can find R such that $|p(z)|>M$ for every z with $|z|>R$.
(iii) For every $R>0, z=2 i R$ satisfies $|z|>R$ and $\left|e^{z}\right| \leq 1$.

