Math 3D03
 Assignment \#3

Due: Thursday, February 26th, 2015 in class
Note: You can use symbolic software to check your answers (for the integrals for example) but you are required to show your calculations

1. Show that

$$
w=\tan (z)
$$

maps the vertical strip $|x|<\frac{\pi}{4}$ in the z-plane onto the unit disk $|w|<1$ in the w-plane.
2. The complex potential

$$
\Omega(z)=z+\frac{1}{z}-i \kappa \log (z)
$$

where κ is a positive real number, describes a fluid flow around a cylinder with circulation. Locate the stagnation points (as a function of κ) and sketch the streamlines of the flow, using computer software such as Matlab, for the following κ values: $\kappa=0.5,1.5,2,3$.
3. Find the inverse Laplace transform of

$$
\frac{\cosh \left(x s^{\frac{1}{2}}\right)}{s^{\frac{1}{2}} \sinh \left(a s^{\frac{1}{2}}\right)}
$$

using a Bromwich contour integral.
4. Show that the Airy function:

$$
\psi(z)=A i(z)=\int_{-\infty}^{\infty} e^{i\left(\frac{1}{3} s^{3}+z s\right)} d s
$$

satisfies Stokes' equation:

$$
\frac{d^{2} \psi}{d z^{2}}-z \psi=0
$$

and apply the WKB approximation to obtain the following asymptotic expression for the Airy function as $x \rightarrow-\infty$ (x real)

$$
A i(x) \approx \frac{1}{\sqrt{2 \pi}} x^{-\frac{1}{4}} \sin \left(\frac{2}{3}|x|^{\frac{3}{2}}+\frac{\pi}{4}\right)
$$

