Math 3D03
 Short solutions to assignment \#3

1. Show that

$$
w=\tan (z)
$$

maps the vertical strip $|x|<\frac{\pi}{4}$ in the z-plane onto the unit disk $|w|<1$ in the w-plane.
Write $w=\tan (z)$ as a composition of two maps $W=i e^{2 i z}$ and $w=\frac{W-i}{W+i}$. The first transformation maps the vertical strip $|\operatorname{Re}(z)|<\frac{\pi}{4}$ bijectively onto the upper half-plane $R e(W)>0$ and the second Möbius transformation maps the upper half=plane bijectively onto the unit disk $|w|<1$.
2. The complex potential

$$
\Omega(z)=z+\frac{1}{z}-i \kappa \log (z)
$$

where κ is a positive real number, describes a fluid flow around a cylinder with circulation. Locate the stagnation points (as a function of κ) and sketch the streamlines of the flow, using computer software such as Matlab, for the following κ values: $\kappa=0.5,1.5,2,3$.

The stagnation points are obtained by solving the quadratic equation $\Omega^{\prime}(z)=1-\frac{1}{z^{2}}-i \kappa \frac{1}{z}=0$ with roots $\frac{1}{2}\left(i \kappa \pm \sqrt{4-\kappa^{2}}\right)$. (I owe the following pictures to L. Ambroszkiewicz)

3. Find the inverse Laplace transform of

$$
\frac{\cosh \left(x s^{\frac{1}{2}}\right)}{s^{\frac{1}{2}} \sinh \left(a s^{\frac{1}{2}}\right)}
$$

using a Bromwich contour integral.
We need to integrate $\frac{1}{2 \pi i} \oint_{C} e^{s t} \frac{\cosh (x \sqrt{s})}{\sqrt{s} \sinh (a \sqrt{s})} d s$, where C is a large Bromwich semicircle including the negative real axis as your contour. No branch cuts are needed since the function $\frac{\cosh (x z)}{z \sinh (a z)}$ is an even function of z. The poles are at $z_{k}=-\frac{\pi^{2}}{a^{2}} k^{2}$ for $k=0,1, \ldots$. These are all simple poles with residues given by $\frac{2 \cosh \left(x \sqrt{z_{k}}\right)}{a \cosh \left(a \sqrt{z_{k}}\right)} e^{z_{k} t}=(-1)^{k} \frac{2}{a} \exp \left(-\frac{\pi^{2} k^{2}}{a^{2}} t\right) \cos \left(\frac{\pi x}{a} k\right)$ for $k \neq 0$ and by $\frac{1}{a}$ for $k=0$. Therefore the inverse Laplace transform is given by the series:

$$
\frac{1}{a}+\frac{2}{a} \sum_{k=1}^{\infty}(-1)^{k} \exp \left(-\frac{\pi^{2} k^{2}}{a^{2}} t\right) \cos \left(\frac{\pi x}{a} k\right)
$$

4. Show that the Airy function:

$$
\psi(z)=A i(z)=\int_{-\infty}^{\infty} e^{i\left(\frac{1}{3} s^{3}+z s\right)} d s
$$

satisfies Stokes' equation:

$$
\frac{d^{2} \psi}{d z^{2}}-z \psi=0
$$

and apply the WKB approximation to obtain the following asymptotic expression for the Airy function as $x \rightarrow-\infty$ (x real)

$$
A i(x) \approx \frac{1}{\sqrt{2 \pi}} x^{-\frac{1}{4}} \sin \left(\frac{2}{3}|x|^{\frac{3}{2}}+\frac{\pi}{4}\right)
$$

Please refer to my notes or the textbook

