Math 3D03

Short solutions to assignment \#5

1. If X_{1}, X_{2}, X_{3} are independent and identically distributed exponential random variables with the same parameter $\lambda>0$, compute the probability

$$
\mathbb{P}\left\{\max \left(X_{1}+X_{2}, X_{3}\right) \leq 2\right\}
$$

$X_{1}+X_{2}$ is a Gamma distribution with $\alpha=2, \lambda=\lambda$. so the answer is

$$
\mathbb{P}\left\{X_{1}+X_{2} \leq 2\right\} \times \mathbb{P}\left\{X_{3} \leq 2\right\}=\int_{0}^{2} \lambda t e^{-\lambda t} \lambda d t \int_{0}^{2} e^{-\lambda t} \lambda d t=\left(1-(2 \lambda+1) e^{2 \lambda}\right)\left(1-e^{-2 \lambda}\right)
$$

2. Let X be a random variable having the χ^{2} distribution with n degrees of freedom and let Z be a standard normal variate. Assuming X and Z are independent, compute the probability density function of

$$
T=\frac{Z}{\sqrt{\frac{X}{n}}}
$$

medskip The joint pdf of X and Z is $f_{X, Z}(x, z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \frac{1}{\Gamma(n / 2) 2^{(n / 2)}} x^{(n-2) / 2} e^{-x / 2}$. Since $Z=\frac{T \sqrt{X}}{\sqrt{n}}$, we have by the change of variables formula:

$$
d x d z=\left|\frac{\partial(x, z)}{\partial(x, t)}\right| d x d t=\frac{\sqrt{X}}{\sqrt{n}} d x d t
$$

It follows that the joint pdf of X and T is

$$
\begin{aligned}
f_{X, T}(x, t) & =\frac{1}{\sqrt{2 \pi}} e^{-t^{2} x / 2 n} \frac{1}{\Gamma(n / 2) 2^{(n / 2)}} x^{(n-2) / 2} e^{-x / 2} \frac{\sqrt{x}}{\sqrt{n}} \\
& =\frac{1}{\sqrt{n \pi} \Gamma(n / 2) 2^{(n+1) / 2}} x^{(n-1) / 2} e^{-x\left(n+t^{2}\right) / 2 n}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} f_{X, T}(x, t) d x \\
& =\frac{1}{\sqrt{n \pi} \Gamma(n / 2) 2^{(n+1) / 2}} \int_{0}^{\infty} x^{\frac{n+1}{2}-1} e^{-x\left(n+t^{2}\right) / 2 n} d x \\
& =\frac{1}{\sqrt{n \pi} \Gamma(n / 2)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}} \int_{0}^{\infty} y^{\frac{n+1}{2}-1} e^{-y} d y \quad \text { where } y=\left(1+\frac{t^{2}}{n}\right) \frac{x}{2} \\
& =\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}}
\end{aligned}
$$

which is the student's t distribution.
3. For a positive parameter α, the Rayleigh distribution is defined by

$$
p(x ; \alpha)=\frac{x}{\alpha} e^{-\frac{x^{2}}{2 \alpha}} \quad \text { for } x \geq 0
$$

and 0 otherwise.
(i) Compute the mean: $\mu=\sqrt{\frac{\pi \alpha}{2}}$
(ii) Given a sample x_{1}, \ldots, x_{N}, compute the maximum likelihood estimator: $\widehat{\alpha}=\frac{1}{2 N} \sum_{i=1}^{N} x_{i}^{2}$
(iii) Show that the log-likelihood function has a local maximum at $\widehat{\alpha}: \frac{\partial^{2} l}{\partial \alpha^{2}}==\frac{N}{\alpha^{2}}<0$ at $\alpha=\widehat{\alpha}$.
4. Do problem 31.4 on page 1298 in the textbook. JUST DO IT
5. Do problem 31.15 on page 1301 in the textbook. JUST DO iT
6. (bonus question) Let r (the interest rate), σ (the volatility), K (strike price) and T (time to expiration) be positive constants. Suppose that the price of a stock at time t can be expressed as

$$
S(t)=S(0) \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma \sqrt{t} Z\right)
$$

where $S(0)$ (present value of the stock) is a positive number and Z is the standard normal.
Show that (Black-Scholes formula for a simple European Call Option):

$$
e^{-r T} \mathbb{E}\left[(S(T)-K)^{+}\right]=S(0) \Phi(\omega)-e^{-r T} K \Phi(\omega-\sigma \sqrt{T})
$$

where $x^{+}=\max (x, 0)=\frac{1}{2}(|x|+x)$ for any real number x.
Let I be the indicator variable for the event that $S(T) \geq K$ (to be in the money), i.e. $I=1$ if $S(T) \geq K$ and $I=0$ otherwise.

$$
S(T) \geq K \Longleftrightarrow Z \geq \frac{\log \frac{K}{S(0)}-\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}} \Longleftrightarrow Z \geq \sigma \sqrt{T}-\omega
$$

$$
\text { so } \mathbb{E}[I]=\Phi(\omega-\sigma \sqrt{T})
$$

$$
\begin{aligned}
\mathbb{E}[I S(T)] & =\frac{1}{\sqrt{2 \pi}} \int_{\sigma \sqrt{T}-\omega}^{\infty} S(T) \exp \left(-\frac{1}{2} z^{2}\right) d z \\
& =\frac{S(0)}{\sqrt{2 \pi}} e^{r T} \int_{\sigma \sqrt{T}-\omega}^{\infty} \exp \left(-\frac{1}{2}\left(\sigma^{2} T-2 \sigma \sqrt{T} z+z^{2}\right)\right) d z \\
& =\frac{S(0)}{\sqrt{2 \pi}} e^{r T} \int_{\sigma \sqrt{T}-\omega}^{\infty} \exp \left(-\frac{1}{2}(z-\sigma \sqrt{T})^{2}\right) d z \\
& =S(0) e^{r T} \Phi(\omega)
\end{aligned}
$$

and hence

$$
e^{-r T} \mathbb{E}\left[(S(T)-K)^{+}\right]=e^{-r T} \mathbb{E}[I(S(T)-K)]=e^{-r T} \mathbb{E}[I S(T)]-K \mathbb{E}[I]=S(0) \Phi(\omega)-e^{-r T} K \Phi(\omega-\sigma \sqrt{T})
$$

