Math 3D03
Short solutions to assignment #1

1.  Compute the Taylor, respectively Laurent series expansion and determine the region of con-
vergence of the following functions around the point z = 0:

(@) f“):;ilog(lw) (b) f(z)=—

1—1z

(a) 3 (log(1 +iz) — log(1 —iz)) = & 70 1( kkl( ) (12 )= 2k . L 2k— 1(= arctan(z)).

This Taylor series converges for |z| < 1.

(b) = (Zk 0 ' ) (X2 2") = Xnlianz™" +e 307 2", where ay, = > ion %

(by multiplying the two series and collecting terms). This Laurent series converges for 0 < |z| < 1.

2. Classify all the singular points and compute the residues at the poles of the following functions:

(a) f(z) =

Tz z 1 z

(b) f(z) = 5 sinh () f(z) =

sin(7z) 1—2z 1—2z

(a) The singular point at z = 0 is a removable singularity since lim, .o Z7= = 1.

The other singular points z; = k, where k # 0 is an integer, are all simple poles with residue given
k _ k

by 7rcos7(rk7r) - (_1>

(b) z = —1 is a simple poles with residue = —sinh(3). z = 1 is an essential singularity with residue

= +sinh(3)

Laurent series around the point z = 1:

Losinh({1) = 5 30, m(z —1)~(k+1) and = =3 (1 + Zﬁl(—l)l_lm) and so
the coefficient of zi—l in the Laurent expansion is ) 7, m = sinh(%)

Another way to compute the residue at z =1 is to compute the residue at oo which happens to be 0

(c) z = 0 is a removable singularity and z = ikw for k € Z, k # 0 are all simple poles with residues
= ikm.

3. Evaluate the following complex contour integrals:

dz eZdz 23 dz
(@) j{;l—i—z‘l (®) 740 1— 22 (©) 7{; (z+1)2(2244)

where C is the ellipse defined by: 322 + 4y? = 10'°

(a) 0
The residues at the four poles: & exp(£4) cancel i 1n pairs. The residue at z = exp('J) is § exp(=3T)
at z = —exp(F) is —Lexp(=2T) at exp(=F) is 1 exp(2F) at z = —exp(=E) is —%exp(?’”r)

an easier way to see this is to compute the residue at oo which happens to be 0



(b) 27 sin(1)
Simple poles at z = +1 with residues — 26 and —i—l ~% respectively

(c) 2mi
Simple poles at z = +2i with residues %(6 + 8i) and a double pole at z = —1 with residue = %

you can instead compute the residue at co which happens to be —1

4. Let a be a positive real number. Compute (using an appropriate contour)
o
/ cos(a :L'2) dx
0

This is Exercise 24.10 on page 868 in the text book. You can just follow the hints given there. We

evaluate ¢, ¢%*dz, where the contour C' is a T—sector (of radius R — o0) in the first quadrant.

There are no poles, since e is analytic everywhere on C. The integral along the ray z = re'1 is a

phase-shifted Gaussian integral given by —e'1 fo e dy = —e't \F The 1ntegral on the circular
arc fﬁ iR (cos20+isin20) g9 tends to zero as R — o0, since f04 R?sin20 g0 < f —R2(220) gp —
(1= e R ) — 0, using the elementary inequality sinx > %x for 0 <z < § (just look at the

graph of the sine function!). Therefore

/000 ‘do = e \F
sin(z?)dz = cos(z?)dx =
J e

/ sin(a:cQ)dx:/ cos(ax?)dr = =
0 0 8a

/ sin™ 0 df
0

The integral is obviously zero for odd n, since sin(6) = —sin(2w — ). For even n, we have, using
the binomial formula:

27 —1\ 2n 2n
— 1
/ (sin6)2" do :}’{ <H> d=_ 7{ (- 22z
0 |2]=1 21 iz (20)" Jy= iz
21 (2n
2n—2k—1
22n12n+1 Z% ( ) dz 22n < )

As n — oo, the integral goes to zero. This can be seen, for example, by using Stirling’s formula:
limy o V21N (£ )N 3 =1 or by looking at the graph of the function (sin§)*" for large n .

and hence

ool

A simple scaling gives:

5. Compute

What happens when n — oo?




6. (bonus question) Consider the n — 1 diagonals connecting one fixed vertex to all the other
vertices of a regular n-gon inscribed in a unit circle. Prove that the products of their lengths is

equal to n.
The n'* roots of unity 21, 22, ..., 2,1 which are # 1 satisfy the equation
n—1 n
2" —1
H(z—zk_): :zn_1+...+z+1
Pt z—1

Now put z =1 and take the modulus (absolute value).
LOL



