Asymptotics of the Airy function

1. Definition:
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Changing variables: s = ik and choosing the right contour C to integrate, we can also write this

as:
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The contour C' is chosen to lie in the left half of the complex plane and approach the two rays :t%“
asymptotically (see textbook, p. 892)

2. Asymptotics:

(i) For z — —oo on the real line we have:
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(ii) For z — 400 on the real line we have:

Proofs:

Case (i) z = —o0
Let ¢(k) = (% + zk). Then ¢'(k) = k? + z = 0 iff k = +ky where kg = \/—z where z < 0 and
¢" (ko) = 2ko and hence the Taylor expansions of ¢ near the two critical points are given by

o(k) ~ (lf - (—Z)ko) + ko(k — ko)* = —%(—z)% + ko(k — ko)?

and 0
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o(k) = +5(=2)3 — ko(k — ko)?

respectively.
By stationary phase approximation:
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near the critical point £ = +kg and similarly near the critical point k = —kg, we get the contribution:
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Adding up the two contributions we finally get:

Ai(z):;ﬂ/ 0 dk ~ \}( 1)1 cos <§(—z)§_z>

as z — —o0

Case (ii) z — +o0

We use the contour integral representation and the “saddle point method”. Choose the contour
C' so that it passes through the point —/z and is vertical (purely imaginary) The function ¢ is
now ¢(s) = zs — % and the critical points of ¢ are at s = +1/2 = +s¢ with ¢”(s) = —2s, which
is positive at —sg = —/z through which the contour runs. Near this “saddle point” the Taylor
approximation of ¢ is:

B(5) % B(=v/3) + V(s + V3 = —25% + VE(s + V2

So we have:
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Evaluating the Gaussian integral (with s — so = it):
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we finally obtain:
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as z = +o0



