
Asymptotics of the Airy function

1. Definition:
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Changing variables: s = ik and choosing the right contour C to integrate, we can also write this
as:
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The contour C is chosen to lie in the left half of the complex plane and approach the two rays ±2π
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asymptotically (see textbook, p. 892)

2. Asymptotics:

(i) For z → −∞ on the real line we have:
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(ii) For z → +∞ on the real line we have:
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Proofs:

Case (i) z → −∞
Let φ(k) = (k

3

3 + z k). Then φ′(k) = k2 + z = 0 iff k = ±k0 where k0 =
√
−z where z < 0 and

φ′′(k0) = 2k0 and hence the Taylor expansions of φ near the two critical points are given by

φ(k) ≈
(
k30
3
− (−z)k0

)
+ k0(k − k0)2 = −2

3
(−z)

2
3 + k0(k − k0)2

and

φ(k) ≈ +
2

3
(−z)

2
3 − k0(k − k0)2

respectively.
By stationary phase approximation:∫
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near the critical point k = +k0 and similarly near the critical point k = −k0, we get the contribution:∫
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Adding up the two contributions we finally get:
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Case (ii) z → +∞
We use the contour integral representation and the “saddle point method”. Choose the contour
C so that it passes through the point −

√
z and is vertical (purely imaginary) The function φ is

now φ(s) = zs − s3

3 and the critical points of φ are at s = ±
√
z = ±s0 with φ′′(s) = −2s, which

is positive at −s0 = −
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z through which the contour runs. Near this “saddle point” the Taylor

approximation of φ is:
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So we have:
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Evaluating the Gaussian integral (with s− s0 = it):∫
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we finally obtain:
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as z → +∞
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