Asymptotics of the Airy function

1. Definition:

$$
A i(z)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left(i\left(\frac{k^{3}}{3}+z k\right)\right) d k=\frac{1}{\pi} \int_{0}^{+\infty} \cos \left(\frac{k^{3}}{3}+z k\right) d k
$$

Changing variables: $s=i k$ and choosing the right contour C to integrate, we can also write this as:

$$
\left.A i(z)=\frac{1}{2 \pi i} \int_{C} \exp \left(-\frac{s^{3}}{3}+z s\right)\right) d s
$$

The contour C is chosen to lie in the left half of the complex plane and approach the two rays $\pm \frac{2 \pi}{3}$ asymptotically (see textbook, p. 892)

2. Asymptotics:

(i) For $z \rightarrow-\infty$ on the real line we have:

$$
A i(z) \approx \frac{1}{\sqrt{\pi}} \frac{1}{(-z)^{\frac{1}{4}}} \cos \left(\frac{2}{3}(-z)^{\frac{3}{2}}-\frac{\pi}{4}\right)=\frac{1}{\sqrt{\pi}} \frac{1}{(-z)^{\frac{1}{4}}} \sin \left(\frac{2}{3}(-z)^{\frac{3}{2}}+\frac{\pi}{4}\right)
$$

(ii) For $z \rightarrow+\infty$ on the real line we have:

$$
A i(z) \approx \frac{1}{2 \sqrt{\pi}} \frac{1}{z^{\frac{1}{4}}} e^{-\frac{2}{3} z^{\frac{3}{2}}}
$$

Proofs:

Case (i) $z \rightarrow-\infty$
Let $\phi(k)=\left(\frac{k^{3}}{3}+z k\right)$. Then $\phi^{\prime}(k)=k^{2}+z=0$ iff $k= \pm k_{0}$ where $k_{0}=\sqrt{-z}$ where $z<0$ and $\phi^{\prime \prime}\left(k_{0}\right)=2 k_{0}$ and hence the Taylor expansions of ϕ near the two critical points are given by

$$
\phi(k) \approx\left(\frac{k_{0}^{3}}{3}-(-z) k_{0}\right)+k_{0}\left(k-k_{0}\right)^{2}=-\frac{2}{3}(-z)^{\frac{2}{3}}+k_{0}\left(k-k_{0}\right)^{2}
$$

and

$$
\phi(k) \approx+\frac{2}{3}(-z)^{\frac{2}{3}}-k_{0}\left(k-k_{0}\right)^{2}
$$

respectively.
By stationary phase approximation:

$$
\int e^{i \phi(k)} d k \approx e^{-i \frac{2}{3}(-z)^{\frac{3}{2}}} \int_{-\infty}^{+\infty} e^{i k_{0}\left(k-k_{0}\right)^{2}} d k=e^{-i \frac{2}{3}(-z)^{\frac{3}{2}}} \sqrt{\frac{\pi}{-i k_{0}}}=\frac{\sqrt{\pi}}{(-z)^{\frac{1}{4}}} e^{-i\left(\frac{2}{3}(-z)^{\frac{3}{2}}-\frac{\pi}{4}\right)}
$$

near the critical point $k=+k_{0}$ and similarly near the critical point $k=-k_{0}$, we get the contribution:

$$
\int e^{i \phi(k)} d k \approx \frac{\sqrt{\pi}}{(-z)^{\frac{1}{4}}} e^{i\left(\frac{2}{3}(-z)^{\frac{3}{2}}-\frac{\pi}{4}\right)}
$$

Adding up the two contributions we finally get:

$$
A i(z)=\frac{1}{2 \pi} \int e^{i \phi(k)} d k \approx \frac{1}{\sqrt{\pi}} \frac{1}{(-z)^{\frac{1}{4}}} \cos \left(\frac{2}{3}(-z)^{\frac{3}{2}}-\frac{\pi}{4}\right)
$$

as $z \rightarrow-\infty$

Case (ii) $z \rightarrow+\infty$
We use the contour integral representation and the "saddle point method". Choose the contour C so that it passes through the point $-\sqrt{z}$ and is vertical (purely imaginary) The function ϕ is now $\phi(s)=z s-\frac{s^{3}}{3}$ and the critical points of ϕ are at $s= \pm \sqrt{z}= \pm s_{0}$ with $\phi^{\prime \prime}(s)=-2 s$, which is positive at $-s_{0}=-\sqrt{z}$ through which the contour runs. Near this "saddle point" the Taylor approximation of ϕ is:

$$
\phi(s) \approx \phi(-\sqrt{z})+\sqrt{z}(s+\sqrt{z})^{2}=-\frac{2}{3} z^{\frac{3}{2}}+\sqrt{z}(s+\sqrt{z})^{2}
$$

So we have:

$$
2 \pi i(A i(z))=\int_{C} e^{\phi(s)} d s \approx e^{-\frac{2}{3} z^{\frac{3}{2}}} \int_{C} e^{\sqrt{z}\left(s-s_{0}\right)^{2}} d s
$$

Evaluating the Gaussian integral (with $s-s_{0}=i t$):

$$
\int_{C} e^{\sqrt{z}\left(s-s_{0}\right)^{2}} d s \approx i \int_{-\infty}^{+\infty} e^{-\sqrt{z} t^{2}} d t=i \sqrt{\frac{\pi}{\sqrt{z}}}
$$

we finally obtain:

$$
A i(z) \approx \frac{1}{2 \sqrt{\pi}} \frac{1}{z^{\frac{1}{4}}} e^{-\frac{2}{3} z^{\frac{3}{2}}}
$$

as $z \rightarrow+\infty$

