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Abstract

These lecture notes are supplementary to the material presented during the course

Math 3GP3 in the Fall 2013 at McMaster University. Here we briefly introduce the

concepts of Differentiable Manifold, Tangent Space and Vector Fields and their flows.

1 Differentiable Manifolds

Definition 1.1. A topological manifold of dimension n is a Hausdorff, second countable

topological space M for which each point has a neighbourhood homeomorphic to an open

subset of Rn. If x is such a homeomorphism of a connected open set U ⊂M onto an open

subset of Rn, we call x a coordinate map and the pair (U, x) is called a coordinate system

or chart. If p ∈ U and x(p) = 0, then the coordinate system is said to be centred at p.

Definition 1.2. Let U ⊂ Rn be an open set and f : U 7→ Rn be a map. We say that f is

differentiable of class C∞ (or simply f is C∞) if each of the component functions f i has

partial derivatives of all orders.

Definition 1.3. A differentiable structure A of class C∞ on a topological manifold M is a

collection of coordinate systems {(Uα, xα)|α ∈ A} satisfying the following three properties:

•
⋃
α∈A = M

• xα ◦ x−1β is C∞ for all α, β ∈ A such that Uα ∩ Uβ 6= ∅.

• The collection A is maximal with respect to the previous property, i.e. if (U, x) is

a coordinate system such that x ◦ x−1α and x−1α ◦ x are C∞ for all α ∈ A such that

U ∩ Uβ 6= ∅, then (U, x) ∈ A.

Remark 1.4. If A0 is any collection of coordinate systems (called an atlas) satisfying

the first two properties, then there is a unique differentiable structure A containing A0.

Namely, A = {(U, x)|x ◦ x−1α and x−1α ◦ x are C∞ for all α ∈ A0}
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Definition 1.5. An n-dimensional differentiable manifold of class C∞ (or simply a

smooth manifold) is a pair (M,A) consisting of an n-dimensional topological manifold

M together with a differentiable structure A of class C∞ for M .

Example 1.6. • The standard differentiable structure on Rn is defined to be the max-

imal collection containing the single coordinate chart id : Rn→Rn.

• An open subset U of a smooth manifold M inherits a canonical smooth structure

defined by

A := {(U ∩ Uα, xα|U∩Uα) | (U, xα) ∈ AM}.

• GL(n;R) := {A|Ais a matrix n×n, det(A) 6= 0} ⊂ Rn2
is an open subset of Rn2

and

hence inherits a smooth manifolds structure

• If (M1,A1) and (M2,A2) are smooth manifolds of dimension n1, n2, then the prod-

uct M1 × M2 inherits a smooth structure A = {(Uα × Vβ, xα × yβ : Uα × Vβ 7→
Rn1+n2)|(Uα, xα) ∈ A1, (Vβ, yβ) ∈ A2}

• The n-sphere Sn := {x ∈ Rn+1||x|2 = 1} is a smooth dimensional manifold by taking

A to be the maximal atlas containing {(Sn \ {n}, spn), (Ss \ {n}, sps)} where spn and

sps are stereographic projections from the north pole n = (0, . . . , 1) and south pole

s = (0, . . . ,−1) respectively.

• Tn := S1 × S× · · · × S1 a product of n one dimensional sphere S1 has a canonical

smooth differentiable structure.

Definition 1.7. A continuous map f : M 7→ N between two differentiable manifolds is

said to be differentiable manifold of class C∞ iff x◦f ◦y−1 is C∞ for each coordinate map

x on M and y on N .

Since the composition of two smooth maps is again smooth we now have a category

of smooth manifolds and smooth maps. The ring of the R-valued smooth function on a

manifold M will be denoted by F(M).

Definition 1.8. A diffeomorphism is a smooth map whose inverse is also smooth.

A diffeomorphism is therefore an isomorphism in the category smooth manifolds and

maps. In general it is not easy to describe whether two differentiable structures in a given

topological manifold are diffeomorphic or not.
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2 The Tangent Space

Let M be a smooth manifold of dimension n.

Definition 2.1. Let p ∈M . Two R-valued functions f, g defined on an open set containing

p are said to have the same germ at p if they agree on some neighbourhood of p. This

defines an equivalence relation of smooth functions defined near p and the equivalence

classes are called germs. We denote them by Fp. We will denote the germ of f with f̄ .

Remark 2.2. Fp is an algebra over R.

Definition 2.3. The tangent space TpM of a smooth manifold M at a point p is defined to

be the space of all derivations of the algebra Fp, i.e. the space of all linear maps v : Fp 7→ R
satisfying v(f̄ · ḡ) = f̄(p)v(ḡ) + ḡ(p)v(f̄) for each f̄ , ḡ ∈ Fp.

Remark 2.4. TpM is a vector space over R. Moreover for any v ∈ TpM and any constant

germ c, v(c) = 0.

For a coordinate system (U, x) around a point p ∈ M with x(p) = a, we will denote

by ei = ∂
∂xi

, i = 1, . . . , n the tangent vector belonging to TpM defined by: ei(f̄) =
∂
∂xi
|x=a(f ◦φ) where φ = x−1, a = x(p) and f̄ represents the germ of f at p. We then have

ei(x
j) = δji where xj is the germ of the coordinate function xj at p.

Proposition 2.5. For any coordinate chart (U, x) around p, the vectors {ei}i=1,...,p form

a base for TpM .

The proof of the proposition depends on the following lemma.

Lemma 2.6. Let (U, x) be a coordinate system centred at p and let f be a smooth function

defined near p. Then there exists n smooth functions f1, . . . , fn defined near p such that

1. fi(p) = ei(f̄p) where f̄p ∈ Fp is the germ of f at p.

2. f = f(p) + Σn
i=1x

ifi in a neighbourhood of p.

Proof. Let F = f ◦ φ where φ = f−1. F is defined on a small ball B around 0 in Rn. For

any a ∈ B we have F (a)− F (0) =
∫ 1
0

d
dtF (ta1, . . . , tan)dt = Σn

i=1a
i
∫ 1
0 DiF (ta1, . . . , tan)dt

where DiF is the i-th partial derivative of F . Now we set Fi(a) =
∫ 1
0 DiF (ta1, . . . , tan)dt

and let fi = Fi ◦ x. This proves the lemma.

Proof. (of Proposition 2.5) We first show that any v ∈ TpM can be represented as v =

Σn
i=1v(x̄i)ei where x̄i ∈ Fp is the germ of xi at p. If x(p) 6= 0 we change coordinates to
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y = x − x(p) which is centred at p. We now apply Lemma 2.5 and write any smooth

function f defined near p as f = f(p) + Σn
i=1x

ifi with fi ∈ C∞. Thus

v(f̄) = v(f̄i(p)) + Σv(ȳi)f̄i(p) + Σȳi(p)v(f̄i) =

0 + Σv(x̄i − x̄i(p))f̄i(p) + 0 = Σv(x̄i)f̄i(p) = Σv(x̄i)ei(f̄),

since f̄i(p) = ∂
∂yi
f̄p = ∂

∂xi
f̄p = ēif̄p. If w = Σλiei = 0, then 0 = w(x̄j) = Σλiδji = λj for

all j. Hence, {ei}i=1,...,n are linearly independent and form a basis of TpM .

Definition 2.7. The differential dfp at a point p of a smooth map f : M 7→ N is defined

to be the linear map dfp : TpM → TqN , defined by dfp(v) = v ◦ f∗ where q = f(p) and

f∗ : Fq → Fp is defined by f∗(ḡ) = g ◦ f for ḡ ∈ Fq.

Remark 2.8. If x and y are local coordinates about p and q, then the matrix representing

dfp with respect to the basis { ∂
∂xi
} and { ∂

∂yi
} is the Jacobian Matrix of the function F =

y ◦ f ◦ x−1, i.e. dfp(
∂
∂xi

) = Σ∂F j

∂xi
∂
∂yj

Remark 2.9. If c : [a, b] 7→M is a smooth curve on M , [a, b] ⊂ R, then we denote by ċ(t)

the tangent vector dct(
∂
∂t) ∈ Tc(t)M where t is the standard coordinate of R. For a curve

on M with c(0) = p, it is easily seen that ċ(0) is the tangent vector given by Fp → R,

f̄ 7→ d
dt |t=0f(c(t)). This leads to the following geometric interpretation of TpM . Each

v ∈ TpM is equal to some ċ(0) for some curve c(t) with c(0) = p and two curves c1 and

c2 with c1(0) = c2(0) = p define the same tangent vector, i.e. ċ1(0) = ċ2(0) iff for any

coordinate system x about p, we have d
dt |t=0x(c1(t)) = d

dt |t=0x(c2(t)). So we may think

of a tangent vector vp as an equivalence class of curves through p, which have the same

“tangent” at p.

Definition 2.10. The tangent bundle of a differentiable manifold M is the disjoint union

of all the tangent spaces of M . That is, TM :=
⋃
p∈M TpM . There is a natural projection

that maps each tangent space TpM to the single point p defined by π‘ : TM → M where

π : v 7→ π(v) = p if v ∈ TpM .

Remark 2.11. If U is an open subset of M , π−1(U) = TU by definition of π since

TpU = TpM for p ∈ U .

If (U, x) is a coordinate system for M , then we have the following trivializing map for

TU : (x, ∂∂x) : TU → U × Rn → Rn × Rn with vp 7→ (p, v1, . . . , vn) 7→ (x(p), v1, . . . , vn).

Here p = π(v) and v = Σvi ∂
∂xi

, vi = v(x̄i). The collection of these charts

{(π−1(U), (x,
∂

∂x
)|(U, x) a coordinate system of M)}
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cover TM and we define a C∞ differentiable structure on TM by taking a maximal atlas

compatible with this collection. The topology of TM is also generated by the sets TU .

The transition function between two such charts (x, ∂∂x) 7→ (y, ∂∂y ) is given by

(y ◦ x−1, ∂y
i

∂xj
) : x(U ∩ V )× Rn → y(U ∩ V )× Rn

with x(p, a) 7→ (y(p), d(y ◦ x−1)(a)). Hence TM becomes a smooth manifold of dimension

2n and π : TM →M is a smooth map. In addition since TM is a disjoint union of vector

bundles locally trivialized by the above maps π−1 = TU ' U × Rn, it is a vector bundle

in the following sense.

Definition 2.12. A An n-dimensional real vector bundle is a continuous surjective map

π : E → X between two topological spaces with the following properties:

1. Each fibre Ex = π−1 ⊂ E carries the structure of a vector space over R, such that

the vector space operations are continuous.

2. ∀x ∈ X, ∃ a neighbourhood U of x and a homeomorphism φ

π−1(U)

U × Rn U

π'

pr1

such that the diagram is commutative and such that φ|Ex : π−1(x)→ {x}×Rn is an

homeomorphism of vector spaces for each x ∈ U

E is called the total space and X the base space of the bundle. A map φ as in Proposition

(?2?) is called a bundle chart.

Definition 2.13. A section of a vector bundle TM →π M is a continuous map s : X → E

such that π ◦ s = idX

Definition 2.14. The vector bundle TM →π M is called the tangent bundle. If M →f N

is a smooth map, then its differential df is the map df : TM → TN , with vp 7→ dfp(vp) ∈
Tf(p)N . df is C∞ and π linear on each fibre.
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3 Vector Fields and Their Flows

Definition 3.1. A smooth vector field on a smooth manifold M is a smooth section

X : M → TM of the tangent bundle

A vector field X associates to each point p ∈ M a vector Xp ∈ TpM in a smooth

manner. If (U, x) is a coordinate system on M , then X|U can be written as X = Σn
i=1X

i ∂
∂xi

where Xi = X(xi) are smooth functions. Therefore locally with respect to a coordinate

system a vector field is represented by a smooth vector valued function: X : U → Rn,

p 7→ (X1(p), . . . , Xn(p))

Definition 3.2. A curve c : [a, b]→ M is called an integral curve of a vector field X on

M if ċ(t) = Xc(t) for all t ∈ (a, b).

Let (−ε, ε)→M be an integral curve of the vector field X and let (U, x) be a coordinate

system about p = c(0). Then if we let ci = xi ◦ c and F i = Xi ◦ x−1 where the Xi’s are

the component functions of X with respect to the base ∂
∂xi

, i.e. X = Σn
i=1X

i ∂
∂xi

on U , we

obtain the following system of ODEs for the ci’s

dci

dt
= F i(c1(t), . . . , cn(t)),

for small t ∈ c−1(U). Suppose now that x(p) = 0 (by a translation if necessary). Then

the F i’s are smooth functions defined on an open ball around 0 and hence by the funda-

mental existence and uniqueness theorem for systems of ODEs, there exists a unique set

of solutions cik(t) satisfying the initial condition ciu(0) = u ∈ Rn (and depending smoothly

on the initial condition) for |t| < ε and |u| < a where ε and a are small positive numbers

depending only on F . Set φt(q) := X−1(cu(t)) where u = x(q), q ∈ x−1(Ba(0)) ⊂ U and

|t| < ε. If |t| < ε, |s| < ε and |s + t| < ε, and both |u| = |x(q)| < a and |x(φs(q))| < a,

then the functions γi(t) = ciu(t + s) are solutions of the ODE system with initial con-

ditions γi(0) = ciu(s). Therefore by uniqueness γi(t) = ciũ where ũ = (c1u(s), . . . , cnu(s)).

This proves φt(φs(q)) = φt+s(q). Since φ0 = id and φt(φ−t(q)) = φ0(q) = q, φt is a

diffeomorphism of a small neighbourhood of p for t small enough.

Definition 3.3. A local 1-parameter group of local diffeomorphisms or simply a local flow

on a manifold M is a mapping φ : (−ε, ε)×U →M where U is an open neighbourhood in

M with the following two properties:

1. ∀t ∈ (−ε, ε), φt : pmapstoφ(t, p) is a diffeomorphism of U onto its image φt(U) ⊂M .

2. if t, s, t+ s ∈ (−ε, ε) and if p, φs(p) ∈ U , then φt+s(p) = φt(φs(p)).
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A local flow defines a vector field Xp = d
dt |t=0φt(p). We can therefore paraphrase our

above discussion about the existence of local integral curves of a vector field as follows.

Proposition 3.4. Let X be a smooth vector field on M . Then ∀p ∈M , ∃ a neighbourhood

U of p, ε > 0 and a local flow φ : (−ε, ε)× U →M , of X.

Definition 3.5. A global flow on M is a map φ : R×M →M , satisfying

1. ∀t ∈ R, φt : p 7→ φ(t, p) is a diffeomorphism;

2. ∀t, s ∈ Rφt+s = φt ◦ φs

Definition 3.6. If X generates a global flow, then X is said to be complete.

Proposition 3.7. On a compact manifold every vector field is complete.

Proof. By Proposition 3.4 and compactness, there exists a finite set of local flows φi :

(−εi, εi) × Ui → M , for i = 1, . . . , N with
⋃
Ui = M . Set ε = mini=1,...,N{εi}. Then we

have a flow φ : (−ε, ε) ×M → M and hence a global flow φ : R ×M → M , by iterating

the flow.

We denote by F(M), the algebra of all smooth real valued functions on M and by X
the vector space of all vector fields on M .

Definition 3.8. For X,Y ∈ X (M) define [X,Y ] ∈ X (M) by setting [X,Y ]p(f̄) :=

Xp(Y (f))− Yp(X(f)) for f ∈ F(M). [X,Y ] is called the Lie Bracket of X and Y .

Proposition 3.9. 1. [X,Y ] is indeed a smooth vector field;

2. If f, g ∈ F(M), then [fX, gY ] = fg[X,Y ]− f X(g)Y − g Y (f)X;

3. [X,Y ] = −[Y,X]; skew-symmetric

4. ∀X,Y, Z ∈ X (M) we have [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 Jacobi Identity.

Proof. A soft exercise for the reader.

Definition 3.10. A vector space with a skew-symmetric bilinear operator [, ] satisfying

the Jacobu identity is called a Lie-Algebra

From 2. we get the following local expression for [X,Y ]. If X = ΣXi ∂
∂xi

and Y =

ΣY j ∂
∂yj

, then

[X,Y ] = Σi,j

(
Xi∂Y

j

∂xi
− Y i∂X

j

∂xi

) ∂

∂xj
.
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Let X be a vector field of f with associated local flow φt.

Definition 3.11. For f ∈ F(M), LXf := limt→0
f◦φt−f

t is called the Lie derivative of f

w.r.t. X.

Proposition 3.12. LXf = X(f) ∈ F(M).

Definition 3.13. For Y ∈ X (M), LXY := limt→0
dφ−t(Y ◦φt)◦φt−Y

t or more precisely

(LXY )p := lim
t→0

dφ−t(Y ◦ φt(p)) ◦ φt − Yp
t

LXY is called the Lie derivative of Y w.r.t X.

Proposition 3.14. LXY = [X,Y ] ∈ X (M)

Proof. Let f ∈ F(M), p ∈M and define F (t, r, s) = f(φs(ψr(φt(p)))) for small t, r, s such

that the flows φ and ψ associated to the vector fields X,Y respectively are defined. Let

G(t, r) = F (t, r−t). Then G(t, r) = (f ◦φ−t)(ψr(φt(p))) = g−t(ψr(pt)) where f ◦φ−t = g−t,

pt = φt(p). For fixed t,

D2G(t, 0) =
d

dr
|r=0g−t(ψr(pt)) = Ypt(g−t) = Yφt(p)(f ◦ φ−t) = (dφ−t(Yφt(p))) · f

D1D2G(0, 0) =
d

dt
|t=0(dφ−t(Yφt(p))) · f = lim

t→0

dφ−t(Y ◦ φt(p)) ◦ φt − dφ0Yp
t

f = (LXY )p · f

by definition of LXY since φ0 = id.

Now D2F (t, 0, 0) = d
dr |r=0(f ◦ψr)(φt(p)) = Yφt(p)f and D1D2F (0, 0, 0) = d

dt |t=0(Yφt(p)f) =
d
dt |t=0(Y f(φt(p))) = Xp(Y f). Similarly D2D3F (0, 0, 0) = Yp(Xf). On the other hand,

sinceG(t, r) = F (t, r,−t) we have by the chain ruleD1G(0, 0) = D1F (0, 0, 0)−D3F (0, 0, 0).

Therefore (LXY )pf = D1D2G(0, 0) = D2D1G(0, 0) = D2D1F (0, 0, 0)−D2D3F (0, 0, 0) =

D1D2F (0, 0, 0) − D2D3F (0, 0, 0) = Xp(Y f) − Yp(Xf) = [X,Y ]pf . And so the thesis

LXY = [X,Y ].

Definition 3.15. Let ψ be a diffeomorphism of M and X ∈ X (M). Then we set dψ(X) to

be the vector field dψ(X)p = dψq(Xq) where p = ψ(q), in other words dψ(X)◦ψ = dψ ◦X.

Proposition 3.16. dψ([X,Y ]) = [dψ(X), dψ(Y )].
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Proof. We have to show that the following diagram commutes:

TM

M

TM

M

dψ

[X,Y ]

ψ

[dψ(X), dψ(Y )]

Let q ∈M , p = ψ(q) and f ∈ F(M) We have:

dψ([X,Y ]q)f = [X,Y ]q(f◦ψ) = Xq(Y (f◦ψ))−Yq(X(f◦ψ)) = Xq((dψ◦Y )f)−Yq((dψ◦X)f)

= Xq((dψ(Y )f)◦ψ)−Yq((dψ(X)f)◦ψ) = dψ(X)p((dψ(Y )f)−dψ(Y )p((dψ(X)f) = [dψ(X), dψ(Y )]pf

If φt is the local flow of X and ψ is any diffeomorphism then dψX) generates the flow

ψ ◦ φt ◦ ψ−1. Because if p ∈M then

d

dt|t=0
(ψ ◦ (φt(ψ

−1(p)))) = dψ|t=0(φt(q)) = dψq(Xq) = dψ(X)p.

If dψ(X) = X, i.e. if X is invariant under ψ, then ψ commutes with the flow φt, i.e.

ψ ◦ φt = φt ◦ ψ for all t in a small interval (−ε, ε), then dψ(X) = X (just differentiate

ψ ◦ φt ◦ ψ−1 at t = 0). This implies that dφt(X) = X for all t.

Proposition 3.17. Suppose X,Y ∈ X (M) generate local flows φt and ψs respectively.

Then φt ◦ ψs = ψs ◦ φt for every s, t (small enough) iff [X,Y ] = 0.

Proof. If φt ◦ ψs = ψs ◦ φt then dψ(X) = X for all s and hence [X,Y ] = LXY =

lims→0
dψs(X)−X

s = 0.

Conversely if [X,Y ] = 0, then

dφt([X,Y ]) = [dφt(X), dφt(Y )] = [X, dφt(Y )] = L(dφt(Y )) = 0

by previous propositions since dφt(X) = X. Now

L(dφt(Y )) = lim
s→0

dφs(dφt(Y ))− dφt(Y )

s

= lim
s→0

dφt+s(Y )− dφt(Y )

s
=

d

dt
(dφt(Y )).

Therefore dφt(Y ) = dφ0(Y ) = Y for all t and so φt commutes with the flow ψt of Y .
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