Math 3Z03

Assignment \#2
Due: Friday, Feb. 2nd, 2015 (Please hand it to me in class)
Solve any 6 of the following 7 Problems:

1. (From Chiu Chang Suan Shu c. 400 AD). The height of a wall is 10 chi'ih. A pole of unknown length leans against the wall so that its top is even with the top of the wall. If the bottom of the pole is moved 1 chi'ih further from the wall, the pole will fall to the ground. What is the length of the pole?
2. Derive the cosine formula

$$
\cos \frac{a}{R}=\cos \frac{b}{R} \cos \frac{c}{R}+\sin \frac{b}{R} \sin \frac{c}{R} \cos \alpha
$$

for a geodesic triangle on a sphere of radius R, with sides a, b, c and corresponding angles α, β, γ. What happens when $R \rightarrow \infty$? (Trigonometric formulas of this kind were known to Hindu and Arab mathematicians during the 10th century AD).
3. Prove the following infinite product formula for π discovered by François Vièta (15401603):

$$
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots
$$

4. Sum the infinite series:

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}
$$

(This was calculated by Richard Suiseth in a book from around 1350, called the Liber Calculationum. At about the same time Nicholas Orseme (1340-1382) summed this and similar series by geometric arguments)
5. Demonstrate Leibniz's result that

$$
\sum_{n=2}^{\infty} \sum_{p=2}^{\infty} \frac{1}{n^{p}}=1
$$

6. Prove that e (the base of the natural logarithm) is an irrational number. (e is in fact, transcendental (who proved that first?))
7. Define the cross-ratio of four points on a line and prove that the cross-ratio is preserved under a projection from a point to any other line.
