Math 3Z03

Assignment \#5

Due: Monday, March 23rd in class
Solve any 5 of the following 6 problems:

1. Show that if $a^{n}-1$ is a prime, then $a=2$ and n is a prime.
2. A palindrome is a number that reads the same backward as forward, such as 2662 or $9,351,539$. Prove that any six digit palindrome is divisible by 11.
3. What are the five Platonic solids and why are there only five? Compute the radius of the sphere passing through all the vertices of a dodecahedron of side length 1 .
4. Prove the following result of Cauchy: Let $a_{1} \geq a_{2} \geq a_{3} \geq \cdots$ be a non-increasing sequence of positive real numbers.

Show that the series $a_{1}+a_{2}+\cdots+a_{n}+\cdots$ converges if and only if $a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\cdots+2^{n} a_{2^{n}}+\cdots$ converges.
5. In 1969, Newton quit his job as a professor, to work as the Master of Mint. However, he did not entirely gave up Mathematics. At about 1772, he posed the following problem:

Suppose that grass grows at a constant rate. For $i=1,2,3$, suppose that it takes x_{i} cows t_{i} days to eat all the grass on a_{i} acres. Prove that:

$$
a_{1} a_{2} x_{3} t_{3}\left(t_{2}-t_{1}\right)+a_{2} a_{3} x_{1} t_{1}\left(t_{3}-t_{2}\right)+a_{3} a_{1} x_{2} t_{2}\left(t_{1}-t_{3}\right)=0
$$

6. Show that

$$
\int_{0}^{1} x^{-x} d x=\sum_{n=1}^{\infty} n^{-n}
$$

(Euler knew that)

