

Math 4B03
Assignment #3

DUE: MONDAY, OCTOBER 20TH, 2014

1. Prove the Brouwer fixed point theorem that every differentiable map from the closed unit disk in \mathbb{R}^n to itself has a fixed point.
2. Let M be a compact orientable differential manifold **without boundary**. Show that M is not contractible to a point *if the dimension of M is not zero*
3. The Hopf fibration is defined by

$$\phi : S^3 \rightarrow S^2 \quad q \mapsto \phi(q) = q i \bar{q}$$

where we view S^3 as the set of unit quaternions and S^2 as the set of unit imaginary quaternions.

- (i) Show that the fibres (i.e. the inverse images of points $\phi^{-1}(z)$) are great circles.
- (ii) What is the linking number between any two such fibres?
- (iii) Let ω be the normalized volume form on S^2 so that $\int_{S^2} \omega = 1$ Find a 1-form β on S^3 so that $d\beta = \phi^*(\omega)$ and compute $\int_{S^3} \beta \wedge \phi^*(\omega)$.
- (iv) Show that ϕ is homotopically non-trivial (i.e., cannot be deformed to the trivial map)

4. (*bonus question*) Compute the deRham cohomology of $\mathbb{C}P^n$.