

Math 4B03
Assignment #5

DUE: WEDNESDAY, NOVEMBER 26TH, 2014

1. Prove that even dimensional spheres *of positive dimension* cannot be Lie groups.
2. The metric $ds^2 = -dt^2 + dz^2 + dr^2 + r^2(1-4\mu)^2d\phi^2$ represents a simple model of a straight infinite cosmic string lying along the z -axis, of mass μ per unit length. Show that in the (r, ϕ) -plane, the 2-dimensional metric $dr^2 + r^2(1-4\mu)^2d\phi^2$ is isometric to the surface of a cone of semi-angle α , with $\sin \alpha = 1 - 4\mu$.
3. Let $\mathbb{C}P^n$ denote the projective space of all complex lines in \mathbb{C}^{n+1} . Let $L \subset \mathbb{C}P^n \times \mathbb{C}^{n+1}$ be defined by $L = \{(l, z) \mid z \in l\}.$
 - (i) Show that L is a complex line bundle over $\mathbb{C}P^n$
 - (ii) Find an $n-$ dimensional complex vector bundle L^\perp such that the sum $L \oplus L^\perp$ is a trivial bundle over $\mathbb{C}P^n$
 - (iii) Show that the tangent bundle T of $\mathbb{C}P^n$ is isomorphic to $\text{Hom}(L, L^\perp)$
 - (iv) Show that $T \oplus \mathbf{1}$, where $\mathbf{1}$ is the trivial line bundle, is isomorphic to $(n+1)L$ (sum of $n+1$ copies of L)
 - (v) For $n = 1$, explain how L is related to the Hopf fibration from the third assignment.
 - (vi) Compute the first Chern class of the tangent bundle of $\mathbb{C}P^n$
4. (*bonus question*) Compute the deRham cohomology groups of $SU(3)$