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Abstract

These lecture notes are part (let’s say 40%) of the basic material for the course

Math 4B03 (Calculus on Differential Manifolds) that I am teaching during the Fall

Term 2014 at McMaster University. I am just writing down some preliminary def-

initions, notations and brief proofs here. I do make a point of emphasising the Lie

derivative and giving rather slick unified proofs of both the Poincare Lemma and

Stokes’ Theorem by integrating Cartan’s Formula for the Lie derivative which ex-

presses the invariance of deRham cohomology under infinitesimal diffeomorphisms.

The notes are unfortunately still rather stiff, pedantic and formal like most mathe-

matical expositions. The more interesting things (including my jokes) will be done live

during the lectures, which I actually shouldn’t prepare, since otherwise I would just

be copying stuff from my notes or whatever I can find in textbooks and the internet.

It’s better to be bored than be boring!

1 Differentiable Manifolds

Definition 1.1. A topological manifold of dimension n is a Hausdorff, second countable

topological space M for which each point has a neighbourhood homeomorphic to an open

subset of Rn. If x is such a homeomorphism of a connected open set U ⊂M onto an open

subset of Rn, we call x a coordinate map and the pair (U, x) is called a coordinate system

or chart. If p ∈ U and x(p) = 0, then the coordinate system is said to be centred at p.

(if you don’t know the words Hausdorff or second countability, don’t worry about it too

much, it’s just some legalistic formality to avoid pathological stuff)

Definition 1.2. Let U ⊂ Rn be an open set and f : U → Rn be a map. We say that f is

differentiable of class C∞ (or simply f is C∞) if all of the component functions f i have

partial derivatives of all orders.

1



Definition 1.3. A differentiable structure A of class C∞ on a topological manifold M is a

collection of coordinate systems {(Uα, xα)|α ∈ A} satisfying the following three properties:

•
⋃
α∈A = M

• xα ◦ x−1β is C∞ wherever it is defined, i.e. for all α, β ∈ A such that Uα ∩ Uβ 6= ∅.

• The collection A is maximal with respect to the previous property, i.e. if (U, x) is

a coordinate system such that x ◦ x−1α and x−1α ◦ x are C∞ for all α ∈ A such that

U ∩ Uβ 6= ∅, then (U, x) ∈ A.

Remark 1.4. If A0 is any collection of coordinate systems (called an atlas) satisfying

the first two properties, then there is a unique differentiable structure A containing A0.

Namely, A = {(U, x)| x ◦ x−1α and x−1α ◦ x are C∞ for all α ∈ A0}

Definition 1.5. An n-dimensional differentiable manifold of class C∞ (or simply a

smooth manifold) is a pair (M,A) consisting of an n-dimensional topological manifold

M together with a differentiable structure A of class C∞ for M .

Example 1.6. • The standard differentiable structure on Rn is defined to be the max-

imal collection containing the single coordinate chart id : Rn→Rn.

• An open subset U of a smooth manifold M inherits a canonical smooth structure

defined by

A := {(U ∩ Uα, xα|U∩Uα) | (U, xα) ∈ AM}.

• GL(n;R) := {A| A is a matrix n × n, det(A) 6= 0} ⊂ Rn2
is an open subset of Rn2

and hence inherits a smooth manifolds structure

• If (M1,A1) and (M2,A2) are smooth manifolds of dimension n1, n2, then the prod-

uct M1 × M2 inherits a smooth structure A = {(Uα × Vβ, xα × yβ : Uα × Vβ 7→
Rn1+n2)|(Uα, xα) ∈ A1, (Vβ, yβ) ∈ A2}

• The n-sphere Sn := {x ∈ Rn+1||x|2 = 1} is a smooth dimensional manifold by taking

A to be the maximal atlas containing {(Sn \ {n}, spn), (Ss \ {n}, sps)} where spn and

sps are stereographic projections from the north pole n = (0, . . . , 1) and south pole

s = (0, . . . ,−1) respectively.

• Tn := S1 × S× · · · × S1 a product of n one dimensional sphere S1 has a canonical

smooth differentiable structure.

• RPn the real projective space of all lines through the origin in Rn+1
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• CPn the complex projective space of all complex lines through the origin in Cn+1

• HPn the complex projective space of all quaternionic lines through the origin in Hn+1

• GrR(k,N) the Grassmannian of all k−dimensional linear subspaces of RN

• GrC(k,N) the Grassmannian of all k−dimensional linear subspaces of CN

• SO(n) the group of all n× n orthogonal matrices of determinant = 1.

• SU(n) the group of all n× n unitary matrices of determinant = 1.

• level surfaces F−1(c) of a differentiable map F : Rm → Rn m ≥ n, provided c is a

regular value.

• level surfaces P−1(c) of a polynomial map P : Cm → Cn m ≥ n, provided c is a

regular value.

et cetera et cetera!

Definition 1.7. A continuous map f : M → N between two differentiable manifolds is

said to be differentiable manifold of class C∞ iff x◦f ◦y−1 is C∞ (whenever it is defined!)

for each coordinate map x on M and y on N .

Since the composition of two smooth maps is again smooth we now have a category

of smooth manifolds and smooth maps. The ring of the R-valued smooth function on a

manifold M will be denoted by F(M).

Definition 1.8. A diffeomorphism is a smooth map whose inverse is also smooth.

A diffeomorphism is therefore an isomorphism in the category smooth manifolds and

maps. In general it is not easy to describe whether two differentiable structures on a given

topological manifold are diffeomorphic or not.

2 The Tangent Space

Let M be a smooth manifold of dimension n.

Definition 2.1. Let p ∈M . Two R-valued functions f, g defined on an open set containing

p are said to have the same germ at p if they agree on some neighbourhood of p. This

defines an equivalence relation of smooth functions defined near p and the equivalence

classes are called germs. We denote them by Fp. We will denote the germ of f with f̄ .

Remark 2.2. Fp is an algebra over R.
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Definition 2.3. The tangent space TpM of a smooth manifold M at a point p is defined to

be the space of all derivations of the algebra Fp, i.e. the space of all linear maps v : Fp 7→ R
satisfying v(f̄ · ḡ) = f̄(p)v(ḡ) + ḡ(p)v(f̄) for each f̄ , ḡ ∈ Fp.

Remark 2.4. TpM is a vector space over R. Moreover for any v ∈ TpM and any constant

germ c, v(c) = 0.

For a coordinate system (U, x) around a point p ∈ M with x(p) = a, we will denote

by ei = ∂
∂xi

, i = 1, . . . , n the tangent vector belonging to TpM defined by: ei(f̄) =
∂
∂xi
|x=a(f ◦φ) where φ = x−1, a = x(p) and f̄ represents the germ of f at p. We then have

ei(x
j) = δji where xj is the germ of the coordinate function xj at p.

Proposition 2.5. For any coordinate chart (U, x) around p, the vectors {ei}i=1,...,p form

a base for TpM .

The proof of the proposition depends on the following lemma.

Lemma 2.6. Let (U, x) be a coordinate system centred at p and let f be a smooth function

defined near p. Then there exists n smooth functions f1, . . . , fn defined near p such that

1. fi(p) = ei(f̄p) where f̄p ∈ Fp is the germ of f at p.

2. f = f(p) + Σn
i=1x

ifi in a neighbourhood of p.

Proof. Let F = f ◦ φ where φ = f−1. F is defined on a small ball B around 0 in Rn. For

any a ∈ B we have F (a)− F (0) =
∫ 1
0

d
dtF (ta1, . . . , tan)dt = Σn

i=1a
i
∫ 1
0 DiF (ta1, . . . , tan)dt

where DiF is the i-th partial derivative of F . Now we set Fi(a) =
∫ 1
0 DiF (ta1, . . . , tan)dt

and let fi = Fi ◦ x. This proves the lemma.

Proof. (of Proposition 2.5) We first show that any v ∈ TpM can be represented as v =

Σn
i=1v(x̄i)ei where x̄i ∈ Fp is the germ of xi at p. If x(p) 6= 0 we change coordinates to

y = x − x(p) which is centred at p. We now apply Lemma 2.5 and write any smooth

function f defined near p as f = f(p) + Σn
i=1y

ifi with fi ∈ C∞. Thus

v(f̄) = v(f̄(p)) + Σv(ȳi)f̄i(p) + Σȳi(p)v(f̄i) =

0 + Σv(x̄i − x̄i(p))f̄i(p) + 0 = Σv(x̄i)f̄i(p) = Σv(x̄i)ei(f̄),

since f̄i(p) = ∂
∂yi
f̄p = ∂

∂xi
f̄p = ēif̄p. If w = Σλiei = 0, then 0 = w(x̄j) = Σλiδji = λj for

all j. Hence, {ei}i=1,...,n are linearly independent and form a basis of TpM .
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Definition 2.7. The differential dfp at a point p of a smooth map f : M → N is defined

to be the linear map dfp : TpM → TqN , defined by dfp(v) = v ◦ f∗ where q = f(p) and

f∗ : Fq → Fp is defined by f∗(ḡ) = g ◦ f for ḡ ∈ Fq.

Remark 2.8. If x and y are local coordinates about p and q, then the matrix representing

dfp with respect to the basis { ∂
∂xi
} and { ∂

∂yi
} is the Jacobian Matrix of the function F =

y ◦ f ◦ x−1, i.e. dfp(
∂
∂xi

) = Σ∂F j

∂xi
∂
∂yj

Remark 2.9. If c : [a, b] 7→M is a smooth curve on M , [a, b] ⊂ R, then we denote by ċ(t)

the tangent vector dct(
∂
∂t) ∈ Tc(t)M where t is the standard coordinate of R. For a curve

on M with c(0) = p, it is easily seen that ċ(0) is the tangent vector given by Fp → R,

f̄ 7→ d
dt |t=0f(c(t)). This leads to the following geometric interpretation of TpM . Each

v ∈ TpM is equal to some ċ(0) for some curve c(t) with c(0) = p and two curves c1 and

c2 with c1(0) = c2(0) = p define the same tangent vector, i.e. ċ1(0) = ċ2(0) iff for any

coordinate system x about p, we have d
dt |t=0x(c1(t)) = d

dt |t=0x(c2(t)). So we may think

of a tangent vector vp as an equivalence class of curves through p, which have the same

“tangent” at p.

Definition 2.10. The tangent bundle of a differentiable manifold M is the disjoint union

of all the tangent spaces of M . That is, TM :=
⋃
p∈M TpM . There is a natural projection

that maps each tangent space TpM to the single point p defined by π‘ : TM → M where

π : v 7→ π(v) = p if v ∈ TpM .

Remark 2.11. If U is an open subset of M , π−1(U) = TU by definition of π since

TpU = TpM for p ∈ U .

If (U, x) is a coordinate system for M , then we have the following trivializing map for

TU : (x, ∂∂x) : TU → U × Rn → Rn × Rn with vp 7→ (p, v1, . . . , vn) 7→ (x(p), v1, . . . , vn).

Here p = π(v) and v = Σvi ∂
∂xi

, vi = v(x̄i). The collection of these charts

{(π−1(U), (x,
∂

∂x
)|(U, x) a coordinate system of M)}

cover TM and we define a C∞ differentiable structure on TM by taking a maximal atlas

compatible with this collection. The topology of TM is also generated by the sets TU .

The transition function between two such charts (x, ∂∂x) 7→ (y, ∂∂y ) is given by

(y ◦ x−1, ∂y
i

∂xj
) : x(U ∩ V )× Rn → y(U ∩ V )× Rn

with x(p, a) 7→ (y(p), d(y ◦ x−1)(a)). Hence TM becomes a smooth manifold of dimension

2n and π : TM →M is a smooth map. In addition since TM is a disjoint union of vector

bundles locally trivialized by the above maps π−1 = TU ' U × Rn, it is a vector bundle

in the following sense.
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Definition 2.12. A An n-dimensional real vector bundle is a continuous surjective map

π : E → X between two topological spaces with the following properties:

1. Each fibre Ex = π−1 ⊂ E carries the structure of a vector space over R, such that

the vector space operations are continuous.

2. ∀x ∈ X, ∃ a neighbourhood U of x and a homeomorphism φ

π−1(U)

U × Rn U

π'

pr1

such that the diagram is commutative and such that φ|Ex : π−1(x)→ {x}×Rn is an

homeomorphism of vector spaces for each x ∈ U

E is called the total space and X the base space of the bundle. A map φ as in Proposition

(?2?) is called a bundle chart.

Definition 2.13. A section of a vector bundle TM
π→M is a continuous map s : X → E

such that π ◦ s = idX

Definition 2.14. The vector bundle TM
π→M is called the tangent bundle.

If M
f→ N is a smooth map, then its differential is the map df : TM → TN , with

vp 7→ dfp(vp) ∈ Tf(p)N . df is C∞, commutes with the bundle projections and is linear on

each fibre.

f : M → N is called an immersion if dfp is injective for all p ∈M
An immersion is called a imbedding if f is injective and M is diffeomorphic to the image

f(M), considered as a subspace of N .

f : M → N is called a submersion if f is surjective and dfp is surjective for all p ∈M

Definition 2.15. A subspace M ⊂ N where N is a manifold is a submanifold if the

inclusion map is an imbedding. In other words if for each p ∈M ⊂ N , there is a coordinate

chart (U, x) of the manifold N containing p such that x maps U∩M into the linear subspace

Rm ⊂ Rn. where m,n are the dimensions of M and N respectively. So, x restricted to

U ∩M is a coordinate chart for the submanifold.

There is a fundamental theorem which says that every manifold Mn can be imbedded into

RN for a sufficiently large N . N = 2n+ 1 is good enough, I think.
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Since the condition to be a submanifold is local, i.e., can be checked in a coordinate chart,

one can use the standard Implicit (or the Inverse) Function Theorem to of Vector Calculus

to check it, especially for submanifolds defined as level sets of functions. For example, if

F : N → L is differentaible then M = F−1(q), for q ∈ L is a submanifold of N if dFp is of

maximal rank at all points p ∈M .

So what is the dimension of M? What if we replace a point by a submanifold Q ⊂ L

7



3 Vector Fields and Their Flows

Definition 3.1. A smooth vector field on a smooth manifold M is a smooth section

X : M → TM of the tangent bundle

A vector field X associates to each point p ∈ M a vector Xp ∈ TpM in a smooth

manner. If (U, x) is a coordinate system on M , then X|U can be written as X = Σn
i=1X

i ∂
∂xi

where Xi = X(xi) are smooth functions. Therefore locally with respect to a coordinate

system a vector field is represented by a smooth vector valued function: X : U → Rn,

p 7→ (X1(p), . . . , Xn(p))

Definition 3.2. A curve c : [a, b]→ M is called an integral curve of a vector field X on

M if dc( ∂∂t) = ċ(t) = Xc(t) for all t ∈ (a, b).

Let (−ε, ε)→M be an integral curve of the vector field X and let (U, x) be a coordinate

system about p = c(0). Then if we let ci = xi ◦ c and F i = Xi ◦ x−1 where the Xi’s are

the component functions of X with respect to the base ∂
∂xi

, i.e. X = Σn
i=1X

i ∂
∂xi

on U , we

obtain the following system of ODEs for the ci’s

dci

dt
= F i(c1(t), . . . , cn(t)),

for small t ∈ c−1(U). Suppose now that x(p) = 0 (by a translation if necessary). Then

the F i’s are smooth functions defined on an open ball around 0 and hence by the funda-

mental existence and uniqueness theorem for systems of ODEs, there exists a unique set

of solutions cik(t) satisfying the initial condition ciu(0) = u ∈ Rn (and depending smoothly

on the initial condition) for |t| < ε and |u| < a where ε and a are small positive numbers

depending only on F . Set φt(q) := X−1(cu(t)) where u = x(q), q ∈ x−1(Ba(0)) ⊂ U and

|t| < ε. If |t| < ε, |s| < ε and |s + t| < ε, and both |u| = |x(q)| < a and |x(φs(q))| < a,

then the functions γi(t) = ciu(t + s) are solutions of the ODE system with initial con-

ditions γi(0) = ciu(s). Therefore by uniqueness γi(t) = ciũ where ũ = (c1u(s), . . . , cnu(s)).

This proves φt(φs(q)) = φt+s(q). Since φ0 = id and φt(φ−t(q)) = φ0(q) = q, φt is a

diffeomorphism of a small neighbourhood of p for t small enough.

Definition 3.3. A local 1-parameter group of local diffeomorphisms or a local flow on a

manifold M is a mapping φ : (−ε, ε) × U → M where U is an open neighbourhood in M

with the following two properties:

1. ∀t ∈ (−ε, ε), φt : p 7→ φ(t, p) is a diffeomorphism of U onto its image φt(U) ⊂M .

2. ∀t, s, t+ s ∈ (−ε, ε) with p, φs(p) ∈ U , we have φt+s(p) = φt(φs(p)).
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A local flow defines a vector field Xp = d
dt |t=0φt(p). We can therefore paraphrase our

above discussion about the existence of local integral curves of a vector field as follows.

Proposition 3.4. Let X be a smooth vector field on M . Then ∀p ∈M , ∃ a neighbourhood

U of p, ε > 0 and a local flow φ : (−ε, ε)× U →M , of X.

Definition 3.5. A global flow on M is a map φ : R×M →M , satisfying

1. ∀t ∈ R, φt : p 7→ φ(t, p) is a diffeomorphism;

2. ∀t, s ∈ R, φt+s = φt ◦ φs

Definition 3.6. If X generates a global flow, then X is said to be complete.

Proposition 3.7. On a compact manifold every vector field is complete.

Proof. By Proposition 3.4 and compactness, there exists a finite set of local flows φi :

(−εi, εi) × Ui → M , for i = 1, . . . , N with
⋃
Ui = M . Set ε = mini=1,...,N{εi}. Then we

have a flow φ : (−ε, ε) ×M → M and hence a global flow φ : R ×M → M , by iterating

the flow.

We denote by F(M), the algebra of all smooth real valued functions on M and by X
the vector space of all vector fields on M .

Definition 3.8. For X,Y ∈ X (M) define [X,Y ] ∈ X (M) by setting [X,Y ]p(f̄) :=

Xp(Y (f))− Yp(X(f)) for f ∈ F(M). [X,Y ] is called the Lie Bracket of X and Y .

Proposition 3.9. 1. [X,Y ] is indeed a smooth vector field;

2. If f, g ∈ F(M), then [fX, gY ] = fg[X,Y ]− f X(g)Y − g Y (f)X;

3. [X,Y ] = −[Y,X]; skew-symmetric

4. ∀ X,Y, Z ∈ X (M) we have [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 Jacobi Identity.

Proof. A soft exercise for the reader.

Definition 3.10. A vector space with a skew-symmetric bilinear operator [, ] satisfying

the Jacobi identity is called a Lie-Algebra

We have the following local expression for [X,Y ]. If X = ΣXi ∂
∂xi

and Y = ΣY j ∂
∂yj

,

then

[X,Y ] =
∑
i,j

(
Xi∂Y

j

∂xi
− Y i∂X

j

∂xi

) ∂

∂xj
.
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Let X be a vector field of f with associated local flow φt.

Definition 3.11. For f ∈ F(M),

LXf := lim
t→0

f ◦ φt − f
t

= df(X) = X(f)

is called the Lie derivative of f along the flow of X.

Definition 3.12. For Y ∈ X (M), we define: or more precisely

(LXY )p := lim
t→0

dφ−t(Yφt(p))− Yp
t

LXY is called the Lie derivative of Y with respect to X.

Here is a KEY FACT:

Proposition 3.13. LXY = [X,Y ] ∈ X (M)

Proof. Let f ∈ F(M), p ∈M and define F (t, r, s) = f(φs(ψr(φt(p)))) for small t, r, s such

that the flows φ and ψ associated to the vector fields X,Y respectively are defined. Let

G(t, r) = F (t, r−t). Then G(t, r) = (f ◦φ−t)(ψr(φt(p))) = g−t(ψr(pt)) where f ◦φ−t = g−t,

pt = φt(p). For ease of notation let us write D1 = ∂
∂t , D2 = ∂

∂r and D3 = ∂
∂s . For a fixed t

D2G(t, 0) =
d

dr
|r=0g−t(ψr(pt)) = Ypt(g−t) = Yφt(p)(f ◦ φ−t) = (dφ−t(Yφt(p))) · f

D1D2G(0, 0) =
d

dt
|t=0(dφ−t(Yφt(p))) · f = lim

t→0

dφ−t(Y ◦ φt(p)) ◦ φt − dφ0Yp
t

f = (LXY )p · f

by definition of LXY since φ0 = id.

Now D2F (t, 0, 0) = d
dr |r=0(f ◦ψr)(φt(p)) = Yφt(p)f and D1D2F (0, 0, 0) = d

dt |t=0(Yφt(p)f) =
d
dt |t=0(Y f(φt(p))) = Xp(Y f). Similarly D2D3F (0, 0, 0) = Yp(Xf). On the other hand,

sinceG(t, r) = F (t, r,−t) we have by the chain ruleD1G(0, 0) = D1F (0, 0, 0)−D3F (0, 0, 0).

Therefore (LXY )pf = D1D2G(0, 0) = D2D1G(0, 0) = D2D1F (0, 0, 0)−D2D3F (0, 0, 0) =

D1D2F (0, 0, 0) − D2D3F (0, 0, 0) = Xp(Y f) − Yp(Xf) = [X,Y ]pf . And so the thesis

LXY = [X,Y ].

Definition 3.14. Let ψ be a diffeomorphism of M and X ∈ X (M). Then we set dψ(X) to

be the vector field dψ(X)p = dψq(Xq) where p = ψ(q), in other words dψ(X)◦ψ = dψ ◦X.

Proposition 3.15. dψ([X,Y ]) = [dψ(X), dψ(Y )].
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Proof. We have to show that the following diagram commutes:

TM

M

TM

M

dψ

[X,Y ]

ψ

[dψ(X), dψ(Y )]

Let q ∈M , p = ψ(q) and f ∈ F(M) We have:

dψ([X,Y ]q)f = [X,Y ]q(f◦ψ) = Xq(Y (f◦ψ))−Yq(X(f◦ψ)) = Xq((dψ◦Y )f)−Yq((dψ◦X)f)

= Xq((dψ(Y )f)◦ψ)−Yq((dψ(X)f)◦ψ) = dψ(X)p((dψ(Y )f)−dψ(Y )p((dψ(X)f) = [dψ(X), dψ(Y )]pf

If φt is the local flow of X and ψ is any diffeomorphism then dψX) generates the flow

ψ ◦ φt ◦ ψ−1. Because if p ∈M then

d

dt|t=0
(ψ ◦ (φt(ψ

−1(p)))) = dψ|t=0(φt(q)) = dψq(Xq) = dψ(X)p.

If dψ(X) = X, i.e. if X is invariant under ψ, then ψ commutes with the flow φt, i.e.

ψ ◦ φt = φt ◦ ψ for all t in a small interval (−ε, ε), then dψ(X) = X (just differentiate

ψ ◦ φt ◦ ψ−1 at t = 0). This implies that dφt(X) = X for all t.

Proposition 3.16. Suppose X,Y ∈ X (M) generate local flows φt and ψs respectively.

Then φt ◦ ψs = ψs ◦ φt for every s, t (small enough) iff [X,Y ] = 0.

Proof. If φt ◦ ψs = ψs ◦ φt then dψ(X) = X for all s and hence [X,Y ] = LXY =

lims→0
dψs(X)−X

s = 0.

Conversely if [X,Y ] = 0, then

dφt([X,Y ]) = [dφt(X), dφt(Y )] = [X, dφt(Y )] = LX(dφt(Y )) = 0

by the previous propositions since dφt(X) = X. Now

L(dφt(Y )) = lim
s→0

dφs(dφt(Y ))− dφt(Y )

s

= lim
s→0

dφt+s(Y )− dφt(Y )

s
=

d

dt
(dφt(Y )).

Therefore dφt(Y ) = dφ0(Y ) = Y for all t and so φt commutes with the flow ψt of Y .
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4 Tensors and differential forms

First let’s do some simple (multi-)linear algebra.

For two finite dimensional real (or complex) vector spaces V and W , let Hom(V,W ) be

the vector space of all linear maps from V to W .

The dual vector space denoted by V ∗ is then just Hom(V,R).

A linear map A ∈ Hom(V,W ) induces a dual linear map A∗ ∈ Hom(W ∗, V ∗).

(In general-nonsense-jargon, ∗ is a contravariant functor from the category of finite di-

mensional vector spaces to itself).

V ∗ is isomorphic to V , but not canonically. (You have to choose a non-degenerate met-

ric or a basis to get an isomorphism). However, V ∗∗ is canonically isomorphic to V via

the pairing (or contraction) (α, v) 7→ α(v). More generally, Hom(V,W ) is canonically

isomorphic to Hom(W ∗, V ∗).

Definition 4.1. V ⊗W = Hom(W ∗, V )

v ⊗ w denotes the map α 7→ α(w)v for all v ∈ V,w ∈W,α ∈W ∗.

Let us denote by V s the direct product of s copies of V with itself. For s = 0 we define

V 0 to be just the field R.

Definition 4.2. A tensor of type (r, s) is an element of Hom(V s, V r)

So a tensor α of type (0, k) is just a multilinear map: (v1, . . . , vk) 7→ α(v1, . . . vk) ∈ R
A non-degenerate metric tensor is a tensor g of type (0, 2) which is symmetric, i.e.

g(v1, v2) = g(v2, v1) and is an isomorphism g : V ∗ ∼= V .

Definition 4.3. An alternating (or exterior) form of degree k is a tensor of type (0, k)

which is totally anti-symmetric in all its arguments.

For example, for k = 3 this means that α(u, v, w) = −α(v, u, w) = −α(w, v, u) = α(u,w, v)

For k = n = dim(V ), an alternating form of degree n is the determinant.

We denote the alternating forms of degree k by Λk = Λk(V ∗). Its dimension is
(
n
k

)
.

We now define the exterior product.

Definition 4.4. For α ∈ Λk and β ∈ Λl, α ∧ β ∈ Λk+l is defined by

(α ∧ β)(v1, . . . , vk+l) =
∑
σ∈S′

sign(σ)α(vσ(1), . . . , vσ(k)) β(vσ(k+1), . . . , vσ(k+l))
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where S ′ denotes the subgroup of “shuffle” permutations of the set {1, . . . , k+ l} satisfying:

σ(i) < σ(j) for 1 ≤ i < j ≤ k and for k = 1 ≤ i < j ≤ k = l.

This product is not commutative but it is ‘graded-commutative”:

α ∧ β = (−1)|α||β| β ∧ α

where |α| = k is the degree of α and |β| = l is the degree of β

We say the exterior forms form a graded exterior algebra.

Dual to this we also have an “interior” product (not to be confused with an “inner prod-

uct”)

Definition 4.5. For α ∈ Λk (k > 0) and v ∈ V , ιvα ∈ Λk−1 is defined by

ιvα(v1, . . . , vk−1) = α(v, v1, . . . , vk−1)

Now let V = TpM be the tangent space of a differential manifold at a point p in a a

neighbourhood U where we have local coordinates (x1, . . . , xn). Then we have a well

defined basis ei = ∂
∂xi

for V and a corresponding dual basis ei = dxi for V ? at each point

(algebra is geometry at a point).

We can then use the basis dxI = dxi1 ∧ . . . ∧ dxik for Λk where I is a multi-index I =

(i1, . . . ik). (very multicultural but anti-symmetric!)

To deal with the whole manifold, we bundle them up and think of an exterior form as a

section of a vector bundle (actually of a graded-algebra bundle):

Λk(TM∗) =
⋃
p∈M

Λk(TpM
∗)

and think of exterior differential forms as sections of that bundle written in local coordi-

nates as:

α = αIdx
I

where the αI are smooth (i.e. C∞) functions on M and we will be using the Einstein

summation convention (sum over repeated “dual” indices) from now on.

We denote all smooth exterior differential k-forms by Ωk(M) and the whole algebra by

Ω?(M).

Although it is ”legalistically” incorrect I will sometimes just write Λ with Ω (in order to

confuse you? lol)

13



Definition 4.6. A nowhere vanishing n-form ν on an n-dimensional manifold Mn is

called an orientation for M . M is then oriented. M is said to be orientable if we can

find an orientation for M . We usually assume that M is connected.

Remark 4.7. M is orientable if and only if we can find an atlas such that all the coordinate

changes preserves orientation, i.e., all the Jacobian matrices for coordinate changes have

positive determinants.
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5 Exterior derivative and Cartan’s Formula

Definition 5.1. A derivation (anti-derivation respectively) of degree l ∈ Z is a linear

operator:

D : Ωk(M)→ Ωk+l(M) k = 0, 1, . . .

satisfying the product rule

D(α ∧ β) = Dα ∧ β + α ∧Dβ for a derivation

and

D(α ∧ β) = Dα ∧ β + (−1)|α| α ∧Dβ for an anti- derivation

Definition 5.2. The commutator (respectively the anti-commutator) of two derivations

(anti-derivations respectively) is defined by:

[D1, D2] = D1D2 −D2D1 commutator

{D1, D2} = D1D2 +D2D1 anti-commutator

Given the product rule it is obvious to the naked eye that a derivation or an anti-

derivation is uniquely determined by its action on functions and on the one

forms (which locally are always of the form df for some function f ∈ Ω0(M) = F). Ergo

we have the following simple but very important fact:

Lemma 5.3. There exists a unique anti-derivation d of degree one with the following two

properties:

(i) df is just the “usual” differential of f for a function f

(ii) d 2 = 0

d is called the exterior derivative and is the most fundamental operator for doing calculus

on manifolds it (the name of this course!). Of course d 2 = d ◦ d = 0 is here the key and

the mother of a lot of theorems and computations as we will see.

Definition 5.4. For a smooth map φ : M → N and for α ∈ Ωk(N), we define φ∗ α ∈
Ωk(M) (the pull-back, since forms are contravariant) by:

φ∗ α(v1, . . . , vk) := α(dφ(v1), . . . , dφ(vk)) k > 0

and by φ∗f = f ◦ φ for functions (k = 0)
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φ∗ is a linear operator order 0. It is not a derivation (or anti-derivation) but it is a

homomorphism:

φ∗(α ∧ β) = φ∗α ∧ φ∗β

.

More importantly, it commutes with d:

[φ∗, d] = φ∗ d− dφ∗ = 0

[φ∗, d] is an anti-derivation of order 1 and it commutes with d because d2 = 0. Now all we

have to do is to check that it vanishes on functions but that is just the chain rule!

φ∗df = df ◦ dφ = d(f ◦ φ) = dφ?(f).

We can now define the Lie derivative of a vector field acting on differential forms:

Definition 5.5. For a vector field X and a k-form α ∈ Ωk we define:

LX α = lim
t→0

φ∗tα− α
t

where φs is the flow of the vector field X.

Since φ∗ is a homomorphism, the product rule says that the Lie derivative is a derivation

of order 0:

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ

Since φ∗ commutes with d so does the Lie derivative:

[LX , d] = 0

Now comes one of my favourite formulas in all of Mathematics:

LX = {ιX , d} = ιXd+ d ιX (5.1)

The proof is trivial. Both sides are derivations that commute with d, so we just have to

check it on functions and by definition LX f = df(X) = ιXd f , since ιX f = 0.
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6 DeRham Cohomology and the Poincare Lemma

Definition 6.1. A differential form is said to be closed if it is in the kernel of d.

A differential form is said to be exact if it is in the image of d.

We will denote by Zk(M) all the vector space of closed differential forms on M and by

Bk(M) the vector space of all exact differential forms on M .

So α is closed iff dα = 0 and α is exact iff there exists a form β such that α = dβ. Since

d2 = 0, Bk(M) is a subspace of Zk(M) i.e., all exact forms are necessarily closed, but the

converse is in general not true (remember not all vector fields with zero curl are gradient

of functions!). It depends on the topology of M.

Definition 6.2. The deRham cohomology groups of a differential manifold M are defined

to be

Hk
dR(M) = Zk(M)/Bk(M)

for a non-negative integer k.

It is a NON-TRIVIAL FACT that these vector spaces Hk(M) (in fact they are rings under

the wedge product) are all finite-dimensional for compact manifolds. For ease of notation,

we will skip the sub-index dR for the rest of the notes.

The dimension of the vector space Hk(M) is called the k-th Betti number of M and is

denoted by bk(M).

H∗ is a contravariant functor from manifolds to vector spaces (rings, in fact), since a

differentiable map f :→ N induces a homomorphism f∗ : H∗(N) → H∗(M) such that

(f ◦ g)∗ = g∗ ◦ f∗

I should point out that cohomology groups are not always that easy to compute and one

needs a lot of tools (and tricks). defining what a bike is easier than riding one?

For non-compact manifolds (such as Rn !), it is more meaningful to use deRham cohomol-

ogy with compact support which is defined as follows:

Definition 6.3. The deRham cohomology with compact support of a differential manifold

M is defined to be

Hk
c (M) = Zkc (M)/Bk

c (M)

where Zkc denotes closed forms with support inside a compact set (i.e. they vanish outside

a compact set) and Bk
c denotes closed forms α which can be written as α = dβ where β is

compactly supported.
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In order to define homotopy and explain the homotopy invariance of cohomology, let us

now look at the product M × R where M is some smooth manifold. We will denote by

t the coordinate on R and by x a (local) coordinate on M , so (x, t) is a generic point in

M × R and let jt be the inclusion map: M →M × R : x 7→ jt(x) = (x, t).

Let X be the vector field ∂
∂t . Then the corresponding flow φt of X on M × I is just the

“time” translation: φt(x, s) = (x, s+ t) and φs ◦ jt = js+t

Let us define a linear operator of degree −1 (a chain homotopy for a high-brow topologist):

Iβ =

∫ 1

0
jt
∗(ι ∂

∂t
β) dt

acting on a differential form β.

Now here is the FUNDAMENTAL LEMMA (mother of all lemmas!) which is a

consequence (or better an integrated version) of the magical Cartan formula but which

implies both Poincare’s lemma and Stokes’ theorem after some easy manipulations.

Lemma 6.4.

j1
∗ − j0∗ = {d, I}

i.e.

j1
∗β − j0∗β = d(Iβ) + I(dβ)

and hence, if dβ = 0 ( β is a closed form), then

j1
∗β − j0∗β = dα where α =

∫ 1

0
jt
∗(ι ∂

∂t
β) dt

Of course, 0 and 1 can be replaced by any a < b

Proof. L ∂
∂t

= ι ∂
∂t
d+ d ι ∂

∂t
and so jt

∗L ∂
∂t

= jt
∗ι ∂
∂t
d+ jt

∗d ι ∂
∂t

= jt
∗ι ∂
∂t
d+ djt

∗ι ∂
∂t

Now φs ◦ jt = js+t so j∗s+t = j∗t φ
∗
s and hence d

dtjt
∗ = jt

∗L ∂
∂t

so we have:

d

dt
(jt
∗β) = d jt

∗ι ∂
∂t
β + jt

∗ι ∂
∂t
dβ

Now integrate from 0 to 1

Definition 6.5. Two smooth maps f0 : M → N and f1 : M → N are said to be (differ-

entiably) homotopic if there exists a smooth map H : M × [0.1]→ N such that j0 ◦H = f0

and j1 ◦H = f1
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Lemma 6.6. If α is a closed form on N (i.e. dα = 0) and if f0, f1 : M → N are

homotopic, then f1
∗α− f0∗α is exact (i.e. this difference is in the image of d).

This is a special case of the Fundamental Lemma. Saying the same thing in fancy words

we get:

Lemma 6.7. Homotopic maps induce the same homomorphism between the deRham co-

homology groups

Definition 6.8. M is said to be contractible if the identity map id : M →M is homotopic

to a constant map M → {pt}, where pt is a point in M .

So

Lemma 6.9. If M is contractible, then M has the same deRham cohmology groups as

that of a point: Hk
dR(M) ∼= Hk

dR{pt}) for all k.

Note that H0
dR{pt} = R and Hk

dR{pt} = 0 for all k > 0.

This is the content of Poincare’s Lemma, but let me introduce a notion that is used to

state Poincare’s lemma in textbooks:

Definition 6.10. A open set U ⊂ Rn is said to be ”star-shaped” with respect to a point

p0 ∈ U if for every point p ∈ U , the straight line segment from p0 to p lies in U .

A star-shaped U is obviously contractible since H(p, t) = tp+(1− t)p0 is a homotopy from

the constant map to the identity map. Hence we have what is called Poincare’s Lemma

in the textbooks:

Lemma 6.11. If U ⊂ Rn is star-shaped, then all closed k-forms are exact (k > 0).

Example 6.12. Hk(Rn) ' {0} if k 6= 0 and H0(Rn) ' R.
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7 Stokes’ Theorem

Up to now we’ve been only talking about derivatives. In elementary calculus on the real

line, we all learned that integration and differentiation are related by the Fundamental

Theorem of Calculus:∫
[a,b]

df =

∫ b

a
df =

∫ b

a
f ′(x)dx = f(b)− f(a) =

∫
∂[a,b]

f

Stokes theorem, which is a powerful generalisation of this to manifolds, replaces the func-

tion f by a differential form ω, the derivative d by the exterior derivative, still denoted by

d and we now integrate on “chains”, which are nothing but (finite) linear combinations

of differentiable maps from “standard objects” of the appropriate dimension in Rk to the

manifold. For these lecture notes, I will use the k-dimensional cube Ik = [0, 1]k ⊂ Rk as

the standard object where I want to integrate (topologists prefer to use the k-simplex). So

the computations are actually performed on these standard objects and the rest is done

“functorially” (I didn’t say perfunctorially!) by pulling back to a space where you know

how to integrate.We will integrate a k-form α on a k chain c, and this will be bilinear

pairing producing a real number:

< c , α >=

∫
c
ω ∈ R

Definition 7.1. A k-dimensional chain on a manifold M is a (finite) linear combination

c =
N∑
i=1

λici

where each ci is a smooth map ci : Ik →M and the λi are real numbers. We set∫
c
α =

N∑
i=1

λi

∫
Ik
ci
∗α

where α is a k-form on M .

So now all we have to do is to define the integral of a k-form α on Ik. This is easy since α is

a “top form” we can write it as α = a(x1, . . . , xk) dx
1∧ . . .∧dxk in Euclidean coordinates,

where a is a smooth function and we simply set∫
Ik
α =

∫ 1

0
· · ·
∫ 1

0
a(x1, · · · , xk)dx1 . . . dxk

(you can use Lebesgue integrals if you know that, but our functions are differentiable so

Riemann integrals will do the job)
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Stokes’ theorem is the Fundamental Theorem of Calculus applied to integrating exterior

forms on chains. It says that the geometric boundary operator ∂ on chains is the “trans-

pose” or the “adjoint” operator of the exterior derivative. So what is ∂. It is a linear

operator which maps a k-chain to a k − 1-chain and by “functoriality” we only need to

define it for the standard object Ik:

Definition 7.2.

∂Ik =
k∑
j=1

(−1)j+ε ı(j,ε)(I
k)

where ε = 0, 1 and ı(j,ε) is the inclusion of the (j, ε)-th face:

ı(j,ε) : (x1, . . . , xk−1) 7→ (x1, . . . , xj−1, ε, xj , . . . , xk−1)

For c : Ik →M , we set

∂c =
k∑
j=1

(−1)j+ε c(j,ε)

where c(j,ε) = ı(j,ε) ◦ c

It is now an easy exercise to check (it’s in Spivak’s book on p.99 for example) the crucial

fact that ∂2 = ∂ ◦ ∂ = 0

We are now ready to state Stokes’ Theorem:

Theorem 7.3. Let ω be a k-form and c be a (k + 1)-dimensional chain on a differential

manifold M . Then ∫
c
dω =

∫
∂c
ω

Proof:

By the above ”functorial” way of defining the objects, we only need to consider the case

where c = Ik+1 itself.

We prove by induction on k. For k = 0,∫
[0,1]

df = f(1)− f(0) =

∫
∂[0,1]

f

is just the Fundamental Theorem of Calculus, so we start from there and proceed by using

the Fundamental lemma, which is the integrated version of Cartan’s magic formula.

Let ωε = ı∗1,ε ω (the restriction of ω to the top and bottom faces). Then
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∫
Ik
ω1 −

∫
Ik
ω0 =

∫
Ik
dIω +

∫
Ik
Idω

=

∫
∂Ik

Iω +

∫
Ik+1

dω

by induction and the definition of I and hence:∫
Ik+1

dω =

∫
Ik
ω1 −

∫
Ik
ω0 −

∫
∂Ik

Iω =

∫
∂Ik+1

ω

Stokes’ theorem can be succinctly stated as:

< c , dω >=< ∂c , ω > (7.2)

A more common version of Stokes’ Theorem which can be found in the literature is the

following:

Theorem 7.4. If Mn is a smooth, compact, oriented manifold with a smooth boundary

∂M , then for any (n− 1)-form ω: ∫
M
dω =

∫
∂M

ω

I will explain the proof (using something technical called a ”partition of unity”) in class.
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8 Cohomology with compact support and Degree theory

To discuss Degree Theory and Poincare Duality, we need to define deRham cohomology

using compactly supported differential forms. Of course, on a compact manifold every

thing is compactly supported. Let M be a differential manifold.

Definition 8.1.

Hk
c (M) =

Zkc (M)

Bk
c (M)

where

Zkc (M) = {α ∈ Ωk(M) | dα = 0, and supp(α) is compact}

Bk
c (M) = {α ∈ Ωk(M) | α = dβ, and supp(β) is compact}

Theorem 8.2.

Hk
c (Rn) ∼= {0} for k 6= n and Hn

c (Rn) ∼= R

More generally we have:

Theorem 8.3.

Hn
c (Mn) ∼= R

for any connected, orientable n-dimensional manifold.

The cohomology class of an orientation ν is a basis for this 1−dimensional vector space

and defines a specific isomorphism: Hn
c (Mn) ∼= R, since

∫
M ν 6= 0

Definition 8.4. Given a proper map f : Mn → Nn between two connected oriented

manifolds, the degree of f is defined to be the real number that is the 1×1 matrix describing

the linear map f? : Hk
c (M) = R→ R = Hk

c (M)

So

f?[νN ] = deg(f)[νM ]

where [ ] denotes the cohomology class of a closed form.

A map is called proper if pre-images of compact sets are compact.
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Theorem 8.5. Given a proper map f : Mn → Nn between two connected oriented

manifolds, the degree of f can be computed by the formula:

deg(f) =
∑

p∈f−1(q)

sign(f ; p) ∈ Z for any regular value q ∈ N

where sign(f ; p) =

{
+1 if dfp is orientation preserving

−1 if dfp is orientation reversing

Note that f−1(q) is a finite discrete set of points in M .

The main thing to remember here is that (i) the degree is an integer and that (ii) it is

a sum of local contributions. This is prototypical of a lot of“index-type” statements in

differential geometry and algebraic topology

The proofs of these theorems are not difficult but involves a bit of technical work and will

be presented in class. Come to the lectures, as I always say!
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9 Poincare Duality and Hodge Duality

Theorem 9.1. If Mn is an oriented n-dimensional manifold, then for 0 ≤ k ≤ n, we

have an isomorphism:

Hk
c (M) ∼= Hn−k(M)?

The key fact is to prove that

([α], [β]) 7→
∫
M
α ∧ β ∈ R

where α is a closed k-form with compact support and β is any closed (n − k)-form is a

well-defined non-degenerate bilinear pairing.

There are different proofs of Poincare duality. A straightforward but rather technical

method uses a covering of M by a good neighbourhoods that intersect nicely and a gluing

argument (Mayer-Vietoris) which I will briefly explain in class.

A more elegant way to understand Poincare duality on a compact manifold is through

Hodge duality using a metric on M and a volume form ν. An inner product < , > on any

vector space induces an inner product on the exterior algebra (using Gram determinants):

< v1 ∧ . . . ∧ vk , w1 ∧ . . . ∧ wk >= det (< vi, wj >)

The Hodge star operator is a linear isomorphism between k-forms and (n− k)-forms.

Definition 9.2. For a k-form α on a manifold M with an orientation ν and a metric

< , >, ?α is the (n− k)-form defined by

α ∧ β =< ?α , β > ν valid for any (n− k)-formβ

It is now tempting to think that the Hodge star of a closed form is exactly the Poincare

dual. The problem is that the Hodge star of a closed form is not necessarily closed, so we

want to look at closed forms whose Hodge duals are also closed. This leads us to the next

section!
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10 The Laplacian and Hodge Theory

For simplicity, I will assume in this section that Mn is an n-dimensional, orientable, closed

(i.e. compact without boundary) Riemannian (i.e. equipped with a positive-definite metric

< >) manifold oriented with the volume form ν coming from the metric. This defines a

positive-definite inner product on forms (L2-inner product) as follows:

< α, β >=

∫
M
< α, β > ν

The Orwellian double-notation here is deliberate! You can always figure out in a given

context what I mean like the word kids nowadays use the word “like” lol

The adjoint operator δ of the exterior derivative d is defined by:

δ = ± ? d ?

where the sign is (−1)k(n+1)+1 (I think) on k-forms. The sign is chosen so that δ satisfies

< α, dβ >=< δα, β >

after integration (global )

Do the local computation

< dα, β > − < α, δβ >= ±d(α ∧ ?β)

to figure out the correct sign using the fact that ?? = (−1)k(n−k) on k-forms.

Now apply Stokes’ theorem to get the global formula. Doing this is known as integration

by parts as you learned it in elementary calculus on R. In case M has a boundary, then

you will retain a boundary integral∫
M
< α, dβ > νM −

∫
M
< δα, β > νM = ±

∫
∂M

α ∧ ?β
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The Laplace operator acting on forms is defined to be

∆ = d δ + δ d

.

∆ is a self-adjoint elliptic operator (the symbol is the metric).

< ∆α, β >=< α,∆β >

and is non-negative

< ∆α, α >= |dα|2 + |δα|2 ≥ 0

Furthermore, ∆ commutes with ?.

The Kernel of the linear operator ∆ is the vector space of harmonic forms, i.e. forms

that satisfy:

∆α = 0

which is on a closed manifold equivalent to being closed and co-closed, so both α and ?α

are closed. Again we are being Orwellian about the double meaning of the word “closed” !

∆α = 0 ⇔ dα = 0 and δα = 0

The first basic Theorem in the subject (Hodge Theory) is that there is a unique harmonic

form representing any given deRham cohomology class. The second basic theorem is that

the set of harmonic forms (on a closed manifold) is finite-dimensional. The third basic

Theorem is that the L2 Hilbert space of forms has an orthogonal decomposition:

Ω ∼= Harmonic⊕ Image of d⊕ Image of δ

It’s trivial to see now that Poincare Duality is simply given by the Hodge star operator

on harmonic forms.
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11 Mayer-Vietoris and Künneth

There are two fundamental formulas that can be used to compute cohomology groups.

Theorem 11.1. Mayer-Vietoris exact sequence

If U and V are two open sets (with non-empty intersection) in a manifold, then we have

a long exact sequence of cohomology groups:

· · · → Hk−1(U ∩ V )→ Hk(U ∪ V )→ Hk(U)⊕Hk(V )→ Hk(U ∩ V )→ · · ·

Here the word exact just means that the kernel of any arrow (linear map) is the image of of

the proceeding arrow. More generally a sequence of vector spaces and arrows connecting

them like that is called a co-chain complex if the composition of two subsequent arrows

is the zero map, that is to say the kernel of an arrow contains the image of the proceeding

arrow. If the arrows are in the opposite direction it’s called a chain complex.

One can think of a co-chain complex as a graded vector space with an operator of degree +1

(−1 for a chain complex) whose square is zero. Exterior differential forms ω ∈ Ω∗(M) on a

manifold with the exterior derivative operator d is a co-chain complex and the set of chains

c ∈ C∗(M) on a manifold with the boundary operator ∂ is a chain complex. Integration

and Stokes’ theorem describes the duality (pairing) between these two complexes.

A (co-) chain map (homomorphism) from one (co-)chain complex to another is a degree-

preserving map (so a sequence of linear maps between the corresponding vector spaces

of the same degree) that commutes with the operator d. The pull back φ∗ of a map

φ : M → N is an example.

The long exact Mayer-Vietoris sequence is an abstract algebraic consequence of the simple

fact that the following sequence of co-chain maps between the co-chain complexes is exact:

0→ Ω∗(U ∪ V )→ Ω∗(U)⊕ Ω∗(V )→ Ω∗(U ∩ V )→ 0

The second arrow is given by restricting the forms to each piece and the third arrow is

taking the difference after restricting the forms to the intersection. The exactness in the

middle simply means that forms come from the union iff they agree on the intersection.

For the surjectivity at the end you can use two functions that form a simple “partition

of unity”. Mayer-Vietoris now follows from the mantra “short exact sequence of chain

complexes gives rise to a long exact sequence of their cohomology groups”
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Theorem 11.2. Künneth formula

If M and N are two compact oriented manifolds, then:

Hk(M ×N) ∼=
⊕
i+j=k

H i(M)⊗Hj(N)

In terms of Betti numbers: bk(M ×N) =
∑

i+j=k bi(M)bj(N)

To prove this for manifolds, you can use Hodge theory. Pull back harmonic forms from

each factor to the product manifold and then take the wedge product. Use the product

metric on M ×N to show that what you get is still harmonic.
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