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Vanishing Theorems and Almost Symmetric Spaces
of Non-Compact Type*

Min-Oo and Ernst A. Ruh

Mathematisches Institut der Universitit, Wegelerstrasse 10, D-5300 Bonn, Federal Republic of
Germany

1. Introduction

In this paper we prove that a compact Riemannian manifold M whose curvature
and torsion is almost equal to the curvature and torsion of a non-compact
Riemannian symmetric space M of rank >1 and dimension > 6, is diffeormorphic
to a locally symmetric space I'\ M. In [9] we proved an analogous result, without
the condition on rank and dimension, for compact symmetric spaces as models.

The curvature assumptions imply the existence of an approximate solution w of
the Maurer-Cartan equation di + [@,®] = 0 on an appropriate principal bundle P
over M. The main step in the proof is the construction of an exact solution @ of this
equation. The obstruction to our proof is closely related to non-vanishing
cohomology classes in H?(I', M, ad), the second cohomology associated to discrete
subgroups of semi-simple Lie groups with coefficients in the adjoint representation.

The study of these cohomology groups was initiated by Eichler and further
developed by Shimura in case M is the upper half plane. The paper of Matsushima
and Murakami [8], where these cohomology groups were studied on the basis of
vector bundle valued harmonic forms is fundamental for our present work.

To solve the Maurer-Cartan equation do + [@,®] =0 we follow the iteration
method of Newton-Kolmogorov-Moser and solve the linearized deformation
equationd’'a = — Q, where Q = dw + [w, w]is the Cartan curvature, well enough for
the iteration to converge to a Cartan connection & with curvature Q = di + [@, @]
= 0. The operator d’ is closely related to the exterior derivative utilized in [8]. To
obtain a suitable solution of d’a = — Q we adapt the methods of Matsushima and
Murakami to our case, where the manifold M is not symmetric but nearly locally
symmetric in the sense that the curvature of M is close to the curvature of a
symmetric space M, i.e., we introduce the adjoint operator &’ of d’, the Laplace
operator 4'=d’§'+ §'d’, and obtain an approximate solution a of d'a = — Q by
solving 4'f = —Q and setting a = 6'f.

* This work was done under the program “Sonderforschungsbereich Theoretische Mathematik”
(SFB 40) at the University of Bonn
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To prove the existence of a unique solution f§ of 4'f= —Q we rely on the
positivity of A’. Since A4’ coincides with the Laplace operator of [8] in case M
= I'\ M and the vector bundle in question is associated to P = I" \ G by the adjoint
representation, we can utilize the main result of [8] stating that 4" is positive in case
a certain quadratic form is positive. Here we are concerned with 2-forms only
because the Cartan curvature is a 2-form with values in the vector bundle associated
to P by the adjoint representation.

The quadratic form in question is invariant under the isotropy group and the
study of its positivity can be done on the irreducible components separately. The
splitting of main interest here is the splitting into curvature and torsion
components. Fortunately, the main result of Simons [16] implies that the quadratic
form is positive on the curvature component in case rank M > 1. We prove that the
same is true for the torsion component; two spaces of dimensions 5 and 6 excepted.

For rank one models the comparison theorem is a consequence of the main
result of Gromov [4], where it is stated for real hyperbolic space as model only. For
complex hyperbolic space as model it is also a consequence of Greene and Krantz
[3]. Gromov’s result is not entirely analogous to ours. His curvature condition, in
case dim M = 4, depends only on the volume of M and not on the diameter. On the
other hand, our pinching constant can be estimated by purely analytical data.

Our method is not entirely restricted to models of rank > 1. The quadratic form
in question is positive in case M = H3, hyperbolic 3-space, because of the duality of
first and second cohomology. For higher dimensional real and complex hyperbolic
spaces the quadratic form is not strictly positive. The positivity however is not a
necessary condition. What we really need is a positive lower bound for the first
eigenvalue of 4'.

Such a bound does not exist in general for real and complex hyperbolic spaces M
of real dimension 4 as models, because the cohomology group H*(I',M,ad) does
not vanish for some discrete uniform I We thank Birgit Speh for this
communication. For higher dimensional hyperbolic spaces it is not known whether
or not H?(I',M,ad) vanishes for all discrete uniform I".

The main result of this paper, with the stronger restriction rank M > 2, was
announced in [10]. With the discovery of a counter example to the main result of
{14] by Christoph Im Hof and one of us the status of the result was uncertain for
some time. The correction [15] together with unpublished computations of Borel
and Wallach again justifies the original approach.

2. The Result

To motivate and clarify our assumptions on the curvature we first analyse the
situation in the standard case.

Let M = G/K be an irreducible Riemannian symmetric space of non-compact
type with K a maximal compact subgroup K< G. The projection G— M is a K-
principal bundle representing the reduction of the bundle of frames over M to the
holonomy group K. The left invariant vector fields on G define a g-valued 1-form,
the Maurer-Cartan form @: TG — g, where g is the Lie algebra of G. This 1-formis a
Cartan connection form of type (G,K) for M with vanishing curvature Q = do
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+ [0, w], where [,] is the Lie bracket in g. The Maurer-Cartan form @ is the
prototype of a Cartan connection form. The vanishing curvature Q=0 simply
means that the Maurer-Cartan equation holds.

The flatness of @ is reflected topologically in the fact that the G-principal bundle
G X G — M, obtained by extending the fibres of G — M from K to G, is canonically

trivial. The trivialization is:
G X GxG/Kx G, [(a,b)]~ (aK,ab),

where [(a, b)] denotes the equivalence class {(ak,k~'b)|keK}. Let g=T® m be the
Cartan decomposition of g defined by the subgroup K= G with Lie algebra f. The -
valued part of & is the Levi-Civita connection of the canonical metric on M, and the
m-valued part is the canonical soldering form related to the isomorphism
™ =G xm with K represented in m =~ R" via the adjoint representation of G on g

restricted to K.

The following assumptions on the general n-dim riemannian manifold M serve
to imitate the K-principal bundle G — M as well as the Maurer-Cartan form . The
first assumption on M is the existence of a reduction n:P— M of the bundle of
orthonormal frames over M to the structure group K represented orthogonally in
m = IR"as in the standard case. This is a purely topological assumption, obviously a
necessary condition for M to be diffeomorphic to a quotient of M. On P there is the
canonical m = R"-valued 1-form 6 defined by:

0:T,P>m, X u 'n(X),

where uePis a frame in T,,,, M and as such defines an isomorphism u:m— T, M. 0
is a K-equivariant 1-form vanishing on vertical vectors.

Let n denote a connection form on P. # is a metric connection for M since the
structure group of the bundle P is compact; and therefore preserves some
Riemannian metric. We do not assume that 5 is a Levi-Civita connection. For
models of rank > 1 the above holonomy assumption for the Levi-Civita connection
would imply, by a result of Berger [1], that the manifold M is locally isometric to the
model. We combine # and 6 to define the g-valued 1-form w=#n+6:TP—>g
={® m. w is a Cartan connection of type (G, K) with curvature Q = dw + [0, w],
where [, ]is the Lie bracket of g. We refer to the following chapter for a definition of
Cartan connections.

In the following theorem we require w to satisfy the Maurer-Cartan equation up
to a small error. To formulate this condition precisely, let ||Q| denote the
supremum of | Q| over the compact manifold M, where the norm | Q| of the g-valued
2-form Qis defined in terms of the Riemannian metric on M and the natural positive
definite scalar product on the semi-simple Lie algebra g =f@® m defined by the
Cartan-Killing form of g after change of sign on f.

Theorem. Let M = G/K denote an irreducible non-compact Riemannian symmetric
space of rank > 1 and dimension >6, M a compact Riemannian manifold and Q the
curvature form of the Cartan connection w on the K-principal bundle defined above.
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There exists a constant A> 0 depending on M and on an upper bound for the
diameter of M such that || Q|| < A implies that M is diffeomorphic to a quotient ' \ M,
where T is a discrete subgroup of the isometry group G of M.

We continue with some remarks concerning this result.

No explicit assumptions on the Riemannian curvature are made in the theorem.
In particular, we do not assume that M has non-positive Riemannian sectional
curvature. Our assumptions imply only that the connection # has small torsion and
has curvature very near to the curvature of the model M.

The diffeomorphism M—I'\M is a quasi-isometry with the dilatation
controlled by the constant 4 and the diameter of M.

Our theorem, together with the result of Chen and Eberlein [2] on the finiteness
of isometry types of compact Riemannian quotients with bounded diameter, shows
that the number of diffeomorphism types of manifolds satisfying the assumptions
of our theorem is finite.

The comparison theorem presented here bears some resemblance to the strong
rigidity theorems of Mostow [12] and Siu [17]. The difference is that while rigidity
theorems show that the fundamental group determines the manifold, our theorem
determines properties of the fundamental group, e.g., that it is a subgroup of the
isometry group G of the model M. The rigidity theorems are generalizations of A.
Weil’s local rigidity theorem which is a consequence of the vanishing of the first
cohomology group H' (I, M,ad). The theorem above is related to the vanishing of
H?(I',M,ad). More accurately, we need a positive lower bound for the first
eigenvalue of the Laplace operator 4’ defined in Chap. 4. We prove this result in
Chap. 4 by showing that a certain quadratic form introduced by Matsushima and
Murakami [8] in positive. As a consequence we obtain the following:

Vanishing Theorem. Let M denote a Riemannian symmetric space of non-compact
type, and rank >1, with the exception of SL(3,IR)/SO(3) and SO,(2,3)/SO(2)
x SO(3), I a discrete uniform subgroup of the isometry group G of M and ad the
adjoint representation of G. Then, H*(I', M,ad) = (0).

This vanishing theorem is a special case of results conjectured by Zuckerman
and proved by Vogan. Our reasons for giving a new proof for this special case are as
follows:

The results of Vogan and Zuckerman have not appeared in print yet, and more
importantly, their arguments are based on representation theoretic considerations,
and therefore do not yield an estimate for the first eigenvalue of 4’ on an almost
symmetric space. If the isometry group of M is a complex simple Lie group the
vanishing theorem above is also a special case of [5].

3. The Proof

The main work in the proof is to solve for a Cartan connection & on the principal
bundle P which satisfies the Maurer-Cartan equation do + [@,®]=0. In this
chapter we set up a successive approximation for the solution & and show that the
existence of such a flat Cartan connection implies the theorem. We defer the two
main steps of the proof; the existence of a solution of the potential equation and the
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estimates necessary for the convergence of the iterative procedure, to the next two
chapters.

The differential form w:TP— g defined in the previous chapter on the K-
principal bundle P is a Cartan connection form of type (G, K), i.e., it has the
following properties:

w(A*)= A for all A€t, where 4* is the
fundamental vertical vector field on P defined by the action

of the 1-parameter group expt 4on P. 3.1
R*w=ada 'w for all aeK, where R, is

the action (from the right) of a on P. (3.2)
w(X) #0 for all non-zero XeTP. 3.3)

The curvature of a Cartan connection w is defined to be
Q=dw+ [w,0], 3.4

where [, ] is the Lie bracket of the Lie algebra g.

It is well known that Q is a horizontal adK-equivariant g-valued 2-form on P,
i.e., it satisfies R*Q =ada "' Qand Q(4*, X) =0 for all aeK, Aef and XeTP. For
the computations we identify horizontal ad K-equivariant g-valued forms on P with
differential forms on the base space M with values in the vector bundle E=E,,.

Here, E,y=P xg denotes the vector bundle associated to the principal bundle P
by the adjoint representation of G restricted to K.

Starting with an almost flat Cartan connection w, we will set up an iteration
process leading to a flat Cartan connection @, i.e., with curvature Q = 0. To obtain
a flat Cartan connection @ = w + o we have to solve the equation

do+ [w,a] + [0, 0]+ [o,0] = — Q 3.95)

for a horizontal adK-equivariant g-valued 1-form « on P. In addition we need an
estimate ||a|| < c||Q||, where c is a constant depending only on M and an upper
bound for the diameter of M, in order to guarantee that o satisfies condition (3.3)
for Cartan connections.

Since (3.5) is non-linear we first consider the linearized deformation equation

d°a=du+ [w,a]+ [0, 0] = — Q. (3.6)

The operator d® defined here is the exterior covariant derivative of a covariant
derivative D defined on the trivial bundle P x g by the formula:

Dys= Xs+ [w(X),s], 3.7

where XeTP, s:P— g is a section and X is the derivative of s in the direction X.
The exterior covariant derivative d* associated to D acting on a g-valued p-form
o on P is given by
P
d°a(Xo, ..., X)) =Y, (=)' Dy a(Xo, ..., X;y ..., X})
i=0

p

Ko X)), (3.8

p

+ Y (=)o X, X, - X,

joeen
i<k
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The Bianchi identity for the curvature can be written simply as
d*Q=0. 3.9

We now set up an iteration procedure for a sequence of Cartan connections {;}
starting with the given connection w,=w and converging to a flat Cartan
connection ®.

We define inductively w;,, =w;+ o;, i=0, 1, ..., where o; is an approximate
solution of (3.6) with Q replaced by Q;. Since the curvature of w,,, is given by

Qi1 = Qi+ do o+ o, 04] (3.10)

Q, ., is of the order of magnitude || Q;||?, if we can solve (3.6) up to an error of the
same order, i.e., quadratic in ||€Q;]|, for a horizontal adK-equivariant 1-form o;
satisfying flol| ~ |-

The main estimates necessary for the iteration defined above to converge to a
flat Cartan connection are formulated in the following.

Main Lemma. Let w be a Cartan connection of type (G, K) on a principal bundle P
over a compact Riemannian manifold M with curvature Q, where M = G/K is an
irreducible Riemannian symmetric space of non-compact type, rank >1, and
dimension > 6.

There exists a constant A' > 0 depending only on M and on an upper bound for the
diameter of M such that if || Q|| < A’ then there exists an adK-equivariant horizontal,
g-valued 1-form a on P satisfying the estimates:

) ld°a+ Q| < cllQ|?

3.11
(i) lell < clell, (1)

where c is a constant depending only on M and an upper bound for the diameter of M,
Il Il is the maximum norm with respect to the metrics in g and P and || ||, , is the
Sobolev norm to be defined in the last chapter.

The proof will be given in the next chapters. The estimates (3.11) imply that the
sequence of curvatures {Q;} converges rapidly to zero, provided that the initial

curvature Q,= Q is small enough. The series ) «;, and hence the sequence of
i=0
Cartan connections {w;}, converges in the Sobolev space W, ,(P) to a 1-form
satisfying properties (3.1) and (3.2) of Cartan connections. To prove (3.3) it suffices
to prove that ||w,— @|| < 1, in terms of the metric defined on P by w,. This follows
from (3.11) (ii) via the Sobolev inequality. For more details we refer to [9].
Asin [9] we finish the proof by utilizing the flat Cartan connection o to define an
integrable distribution on P x G where P and G are the universal covers of P and G
respectively. The maximal integral submanifold through (7, e), where peP is an
arbitrary point and e is the identity in G, defines the graph of a diffeomorphism
F:P—»G. We then pass to quotients to obtain the required diffeomorphism
f:M — '\ M. Because we are dealing only with Cartan connections, the arguments
in [9] involving the center of mass construction are not needed here.
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4. A Vanishing Theorem

To solve for an a satisfying the linearized deformation equation (3.6) approximately
in the sense of the Main Lemma we will use Hodge theory for the associated
Laplacian. In the standard case M = I'\ M, P = I' \ G, the bundle E,, is flat and the
exterior covariant derivative d® defines cohomology groups H?(I", M, ad) of I" with
coefficients in the adjoint representation. These cohomology groups were first
studied on the basis of Hodge theory and vector bundle valued harmonic forms by
Matsushima and Murakami [8]. We will closely follow their computations and
show in this chapter that a sufficient condition for the vanishing of H?(I, M,ad),
namely that a certain algebraic quadratic form associated to the adjoint
representation is positive definite, is satisfied if rank M > 1, and dim M > 6.
Since we are interested in solving d”« = — Q only approximately, i.e., up to an
error whose order of magnitude is quadratic in the curvature, we are allowed to
replace d® by a slightly modified operator d’, as we did in [9], in order to exploit the
similarity to the model space and also to profit from the computations of
Matsushima and Murakami [8]. We obtain d’ from d® by replacing the vector ficld
bracket on Pin the last term of the formula (3.8) by the Lie algebra bracket of g. For
the rest of the paper the symbols X; will denote parallel vector fields on P, i.e., w(X;)
= const.eg. We define:
)4
d'a(Xo, ..., X,) = .Zo(——l)"DX‘a(Xo,...,Y,-, LX)

p
+ Y (D) (X, X)L X
i<k
where {X;, X,} = o™ ! ([w(X)), o(X})]).
The difference between d® and d’ is then given by
(d —d*)oa(Xo, ..., X)) = Y, (= 1) (@ QXL X)), -, Koo, Ko . X)) (42)

j<k

o Xe. X)), 41

As is easily verified, d’ maps the subspace of horizontal ad K-equivariant forms into
itself and from now on we will restrict our attention to such forms. d’ restricted to
these forms is then given by the following formula of Matsushima and Murakami
[8,(4.12)] with g =ad.

p

d'a(Xo,....X,)= Y (-1 X;a(Xo, ..., X, ..., X))

i=o

M=

+
where now w(X;) =constem.
The adjoint of d’ with respect to the scalar product we are using on g and the
corresponding metric induced by w on P is given by the formula [8, (6.3)]

(=1 w(X),2(Xo, ..., Xiy .., X1, 4.3)

0

a(Xq.., X)) =— Y eale, X, ..., X,)
k=1

+ k;[ [w(ek)’a(ek,Xb ~'~’Xp)]a (44)

where {€,},-1, ..., is a parallel orthonormal basis of horizontal vectors.

.....
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For further reference we note here the following three properties of d” and ¢'.
The first is a consequence of the Bianchi identity (3.9) and of (4.2). For the proof of
the other two properties we refer to [9,(3.10), (3.11)].

ld' Q|| < c||Q]|?, where ¢ depends only on g. (4.5)

d’d’a(XO,...,X,,+1)=Z(—1)i+fw‘1(Q(X,-,Xj))oz(X0,...,)?i,...,X’j,...,Xp)‘ (4.6)
i<j

88Xy, ..., X))= Y o '(Qen,e))alene, Xz, -, X)), 4.7

k,1=1

where {e,}x=, ..., is a parallel orthonormal basis of horizontal vectors.
Let A’=d"8'+ &'d’ be the Laplacian and we define

a=20'p, (4.8)
where f is the unique solution of the potential equation
A'p=—-Q. (4.9

The rest of this chapter is devoted to proving that 4’ is positive definite on E-valued
2-forms, which proves the vanishing theorem and shows that (4.9) has a unique
solution S.

In case P =I'\ G, 4’ coincides of course with the Laplacian 4 of [8]. Moreover,
since the formal expression of A’ with respect to a parallel orthonormal basis of
horizontal vectors is exactly the same as that of 4 on the model space, the main
computation of [8] proves that A’ splits as a sum of two operators

(A,ﬁ93)=(Al;ﬁ’ﬁ)+ j(AadB’ﬂ>, (410)

where (,) denotes the global L,-scalar product, 4; is the Laplacian associated to
some covariant differentiation ¥ so that (4, 8,8) =0 and (4,48, 8 is a quadratic
form defined pointwise on AP(TM)®E,,.

The main result of Raghunathan [15], which is the corrected version of an older
paper [14], gives a criterion for {4,B,B) to be positive definite, ¢ being an
irreducible representation of G. According to unpublished computations of Borel
and Wallach, this criterion is satisfied if p < rank M. Here we need the case p =2
and ¢ = ad. For this case we now give a direct proof that 4,, is positive definite on 2-
forms if rank M > 1 and dim M > 6. Our proof relies on the main result of Simons
[16], where he gives an intrinsic algebraic proof of some classification theorems on
holonomy groups due to Berger [1], and on certain computations of Matsushima
[7] and Kaneyuki and Nagano [6] concerning the cohomology of I \ M with trivial
coefficients.

4,=d,6,+ 6,d,where d,and §, for ¢ = ad are given by the following formulas:

p

doa(Xor..., X)= Y (= 1) Xty s Koy ooy X1, (4.11)
i=0
500Xy X)= 3 lept(ew Xas sy X, (4.12)
k=1

where a, feAP(m*)® g, X;em and {e;},~,, ... ,is an orthonormal basis for m.

.....
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As is well known 4, is invariant under the action of K on AP(m*)®g, and
therefore we consider Aad acting on the adK-invariant subspaces A*(m*) ®f and on
A% (m*) ® m separately.

A 2-form re A%(m*) ®f can be thought of as a map r: A%(m) >t < A% (m), where
we identify m* with m via the scalar product and f is imbedded in A%(m) via the
adjoint action. d,q7 = 0 is then equivalent to the Bianchi identity and hence a closed
2-form defines a tensor with the symmetries of a curvature tensor
r:A%2(m)—tc A*(m).

The main results of Simons [16, Theorems 2.4, and 6] now state that if rank
G/K > 1, then every curvature tensor 7: A% (m) > < A%(m) is a scalar multiple of the
curvature tensor of the symmetric space M = G/K. If r is harmonic then r has to
vanish, since d,47 = 0 is equivalent to the vanishing of the Ricci tensor associated to
r, and the Ricci curvature of the symmetric space M is well known to be non-zero.

This proves that there are no non-trivial algebraic harmonic curvature tensors r
if rank M > 1, and hence 4,4 is positive definite on A%(m)®f.

We now investigate 2 forms zeA?(m)®m, which we call torsion forms.
For the computations we introduce orthonormal bases {e,},-,, ..., for m
and {e,},_1.. .n_n for f. Using the formulas (4.11) and (4.12), the Laplacian
4,=d,6,+ 5.d,, with o =ad, acting on a 2 form ¢ is then computed to be

e’

(A t) (en 1) - Z [ek’ [ek’t(ene )]]
+ lé‘,l [le;, ec], t(ex, €))]

- é [le;, e, t(exs €] (4.13)

We write ¢f; = cl, = ([e;, ¢;],,> for the structure constants of g and set Rij=cfiCla
where we use the Emstem summation convention. R is the curvature tensor of M
and hence satisfies the usual identities. With this index notation, (4.13) can be
written as

m__ .m ,a 41 m .a 4l m .a 41
(4,07 = CkaClatij+ CaCixti; — CaiCiitii

= Ryt — Riyti;+ Rt (4.19)
We compute the first term of the right hand side in the following
n N-n 1
Lemma. Z [eka [ek’x]] = - Z [eaa [eaax]] =§x (415)
k=1 a=1
for all xem.
Proof. 0;;=<e;, ;) = + trade; ade;
= clacjk+ c:kc
and hence
<[ek, [eka el']]’ ej> = c{ca czi =- c{zk C’I:i
= —<[eaa [ea’ ei]]sej> %5ij'
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To compute the last two terms of (4.14) we first set rf;= oz”+ BY, where
af;= $(h+ e+ 1) is antisymmetric in all its indices and ;= t — af; satisfies the
Bianchi 1dent1ty B+ B+ Bli=

This defines an adK-mvarlant orthogonal splitting of A*(m)®m and we
consider 4, acting on these two spaces separately.

If ¢f; is antxsymmetrlc in all its indices, then

_ K __ 1 I
—Rjy th = (R + R tkj = Rﬂi’kﬂ' Ry ;= Ryt + R L

and therefore

— Rj 1, =3 R tiy- (4.16)
Substituting (4.15) and (4.16) in (4.14), we obtain after taking the scalar product
with ¢

(Aot 0y =511+ 3R 1i; 15

The last term is non-negative, because the curvature operator R: A% (m)— A*(m) of
M is non-positive. This shows that 4, is positive definite on antisymmetric 1.

Weare now left with ¢ satisfying the Bianchi identity. For such ¢, we consider the
splitting 7,;= s}, +%t}, where s{;=31; +%1; is symmetric in k and /. Since the
splitting is orthogonal, we have

Is|>=212/2. 4.17)

To simplify the last two terms in (4.14) we use the following

Lemma. R%, sl  is symmetric in m and i
R, tl, s antisymmetric in m and i.
The proof of this lemma is an easy computation using the Bianchi identity of the
curvature tensor R.
In view of these lemmas, scalar multiplication of (4.14) by ¢ now gives
(A t,ty =5|1|> = Ry sk sty — 4 Rl th
=3%|51? — Ry sk i +§ Rifi the th
2 3151® — REuShi S (4.18)
where we used (4.17) and the Bianchi equation on R for the second equation and the
fact that the curvature operator of M is non-positive for the last inequality.

We will now estimate the largest eigenvalue of the operator Q(s);, = Ri};Su
acting on symmetric 2-tensors s€ &*(m). Q can also be defined by the formulas

QOV),xOy) =3{R(xu)v+ R(xv)u,y) (4.19)

and ‘ N
QuOv) =~} [e,u] O e, 0], (4.20)

a=1
where we use the notation u® v =3 (u® v+ v®u) e &*(m). This operator has been

considered previously, in partlcular by Matsushima [7] and Kaneyuki and Nagano
[6]in connection with the computation of the Betti numbers of I' \ M. Following [6]
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we simplify the computation of the maximal eigenvalue of Q by considering the
corresponding operator Q of the compact simple Lie group U, where U/K is the
compact symmetric space dual to M. The curvature tensor of U/K is just —R.
Moreover, if R is the curvature tensor of U defined by (R(x,y)z,w)
= —{[[x, ], 2], w), where the metric ¢, ) is minus the Killing form B of u, the Lie
algebra of U, then R(x, u)vemif x, u, vem. Therefore, the largest eigenvalue of Q is
not larger than the largest eigenvalue of the operator

—0:F* (- F*(1)
N (4.21)
xOy*kgl [uksx]e [uk’y]a

where {,} is an orthonormal base for u.

The operator Q is of course closely related to the Casimir operator g(c) of the
representation ¢ of u on the symmetric 2-tensors induced by the adjoint
representation. In fact, if we define ¢ (c) with respect to the Killing form B on u, we
have

N
e@©(xOy) ==} [u. [u,x1Oy

k=

1
N
=2 ¥ (1,310, ]

- ¥ X0l (1]
=2x0y—20(x0y)

and hence
—0=10(c)—id. (4.22)

As is well known, g(c) acts as a scalar on each irreducible component of the
representation. The value of this scalar on an irreducible component ¥, of highest
weight A, with respect to an ordering of the roots, is computed by the following
formula, compare Raghunathan [13].

e(c)|y,= B(4,A+20)"id, (4.23)

where 26 is the sum of the positive roots of the given ordering.

The highest weight which occurs in the representation g of u on $?(u) is 24,
where u is the highest weight of the adjoint representation. Moreover, since the
Casimir operator of the adjoint representation with respect to the Killing form is the
identity we have the normalization

B(u, u+20)=1, (4.24)
hence the largest eigenvalue of —Q is given by

1BQu,2pu+ 28) —1=B(u,2u+ 20) — B(u, u+ 28) = B(u, p).
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To show that 4, is positive definite, it suffices therefore, by (4.18), to prove that
B(u,p) <3.
Because of the normalization (4.24) this is equivalent to

B(u,0) > B(u,p).- (4.25)

A simple check of the root systems for the simple Lie algebras shows that (4.25)
holds for all uexcept for the cases 4,, 4,, and B,. The symmetric spaces of type I11
corresponding to these cases which are of rank >1 are just the two spaces
SL(3;R)/SO(3)and SO, (2, 3)/SO(2) x SO(3). The symmetric spaces of type [V are
covered in [5] and also by the results of Simons [16].

This proves our vanishing theorem, and shows that the first eigenvalue of 4" is
bounded from below by a positive constant depending only on the model space M,
provided rank M >1 and dim M > 6.

5. The Estimates

The basic strategy for deriving the estimates of the Main Lemma is the same as in
[9]. Many of the estimates obtained there can be used here also. The difference is
that the operator 4’ that occurs in the comparison theorems for compact symmetric
spaces is coercive, and the solutions of the important equations there satisfy a
maximum principle. This is not the case here and we have only the L,-positivity of
A', proved in the preceding chapter at our disposal. To balance this deficiency we
require an upper bound on the diameter of M.

To prove the main lemma we use L -interior regularity estimates for solutions
of elliptic equations. These estimates are usually stated for balls in IR". As a first step
therefore, we have to convert the global L ;-norm of # on M into a norm defined by
integration over a suitable ball. The usual procedure of covering M with normal
neighborhoods and summing up the local estimates by means of a partition of unity
is not good enough for our purposes since we need estimates which are independent
of the injectivity radius of M. Instead, we use the following argument which arose in
a discussion with Christoph Im Hof. We replace the differential forms on M by their
pullbacks via a suitable exponential map. The exponential map defined in [9, p. 348]
restricted to horizontal vectors is suitable because of the estimate [9, (5.5)]. It proves
that the Jacobi fields differ from those of the model M by an error term that can be
controlled by ||Q|. In particular, since M has non-positive curvature, this ex-
ponential map exp, : T, M — M has maximal rank on a ball of arbitrarily large radius,
provided the constant 4’ of the main lemma is sufficiently small. We now consider
balls B, of a fixed radius r in each tangent space 7, M, where r is chosen large
compared to the diameter d(M) of M, say r>10d(M), but still small enough
compared to the distance to the first conjugate locus, e.g., such that the estimate

0.9 < ||dexp, (dexp) ' <1.1 holds, where dexp is the differential of the

exponential map of M. The tangent spaces of M and M are of course matched using
the frames in P.

Let B, denote the pullback via exp, of B to the ball B, T, M. We define the
Sobolev norm || ||, , by setting

1Bllmg=SUP 1 Bellmgs  WBellmg= 2 (5 ID“BXI“)”“. (5.1)

lul s m\B,
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First, we wish to show that || ||, ,and the L,-norm || ||, obtained by integration over
M are equivalent norms, i.e., that the inequalities

el 5= HIG=call 115, (5.2

hold for some constants ¢, , ¢, such that the ratio ¢,/c, is bounded from above by
some constant depending only on M and on an upper bound for d (M), provided the
constant A’ of the main lemma is sufficiently small. We take ¢, to be the infimum
over xeM of the inverse of the number of fundamental domains for M in T M
having non-empty intersection with B, and ¢, equal to the supremum over xeM of
the inverse of the number of fundamental domains contained in B,.

Secondly, in order to be able to use the estimates of [9] we view the E,;-valued
forms on M as horizontal adK-equivariant forms on P with values in g. Since the
fibres have constant volume, the L,-norm of such a form on P is just some constant
multiple of the L,-norm on M.

Thirdly, before we can use the estimates of [9] we have to note that the adjoint ¢’
we use here is not the 8’ used in [9] but rather its projection onto horizontal forms.
However, restricted to adK-equivariant horizontal forms, the difference of these
two operators is an algebraic operator of order zero. Similarly, the 4" we use here
differs from that of [9] only by lower order terms. In fact we still have an equation in
the form of [9, (5.6)]

4B+ (L' (B))yy= —Ly» (5.3)

where the leading term is the Laplacian acting on the component functions and L' is

a first-order differential operator, because the derivatives of f§;; in the vertical

directions are just algebraic expressions as f§ is an ad K-equivariant horizontal form.
Using the interior regularity estimate of [11, Theorem 5.5.5'] we obtain

1By, = c(1Qllo,g+ 1Bllo,2)- G4

where ¢ depends only on M, ¢, r and an upper bound for ||Q||.

From now on we fix some ¢ > N=dimP and denote by ¢ any constant
depending on M and on upper bounds for d(M), | Q| and on % where A is the
smallest eigenvalue of 4’ on 2-forms.

The right hand side of (5.4) is now estimated as follows

12llo.o < NIQlI(vol B) 1< eI 1, (.5

1 1
1BUS 2= —IIBIZ < -7—!IQII§ =S| Q11> vol (B,+ au)- (5.6)
¢y

Since the union of the —cl— fundamental domains having a non-empty intersection
1
with B, lies in a ball of radius r +d(M). (5.4), (5.5) and (5.6) now give
1Bl = clill. (5.7

The estimates [9, (5.11), (5.12)] are still valid since they do not involve the maximum
principle and because we do not have to switch from the L,-norms on M to the L -
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norms in balls. We therefore have

lerlly, g+ 1d'Bllyq < clQN+ 1217+ 17 1lo,0) (5.8)

where —y=d'a+Q=-96'd'p.
y satisfies the elliptic system:

dy=—d'do—dQ

(5.9

8'y=20'6"(d'p).
Using (4.5), (4.6), (4.7) and the L,-version of (5.8) we obtain from (5.9) the estimate
Ndyllo,2+ 16" llo,2 = cllI N LI+ NIy llo,2) (5.10)

where we have omitted the term || Q|| because it is negligible compared to || 2]|. We

now use (5.2) together with the fact that Z—Z is bounded from above to obtain
1

1 c, 1
19l < §V§_ dyllo 1+ 15
Yllo,2 ﬂllyllz Clﬂ(” Yo, 2+ |l ?llo,2)
<cllelidiell+ lIvlo,.2)-
This yields, if || Q]| is small enough, the estimate

I7llo.a S cllQl. (5.11)

As in [9] we rewrite (5.9) in the form
Ay=0'¢p+d'y, (5.12)
where ¢ and y are the right hand sides of (5.9). The L,-version of (5.10) is then
dllo, g+ IWllo,a = cllQUUILN+ 171lo,q)- (5.13)

Applying Stampacchia [18, Theorem 4.2] we obtain

Iyl < clliyllo2+ 1RUULI+ N7 N0,
which in view of (5.11) yields

Iyl < cl@uiQn+ lIyllo,q)
and the final result for small enough || Q|| is
Iyl S cllel®. (5.14)
From this and (5.8) we obtain
lleelly, g = cli2ll,
which is the second estimate of the main lemma. The first estimate is a consequence

of (5.14), (4.2), the second estimate and the Sobolev inequality.
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