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Abstract

This is a short selected survey of results on scalar curvature rigidity of certain
symmetric spaces, in particular, for the Euclidean, hyperbolic and spherical metrics.
The proofs, all of which use spinors, are sketched, with an attempt to show the basic
underlying structure.

1 Local Rigidity

Since the results in this section have their origins in the proof of the positive mass conjecture,
we will begin by describing briefly the relevant gravitational background.

In general relativity, there is no satisfactory notion of total energy, since the energy of
the gravitational field itself is described purely in terms of geometry and does not contribute
directly to the local stress-energy-momentum tensor Tij . However, in an asymptotically flat
space time describing an isolated system like a star or a black hole, where the gravitational
field approaches ordinary Newtonian gravity with respect to a background inertial coordinate
system at infinity, one can define the total mass, or more relativistically, the total energy-
momentum four-vector of the system by asymptotic comparison with Newtonian theory at
large distances.

More precisely, we define an asymptotically Euclidean space-like hypersurface to be a 3-
dimensional oriented Riemannian manifold (M, g) isometrically imbedded in 4-dimensional
space-time whose first and second fundamental forms gij and hij satisfy the following asymp-
totic conditions:

(A) There is a compact set K ⊂M so that M −K is a finite disjoint union of ends, each
diffeomorphic to the complement of a closed ball in R3 and using the standard coordinates
given by this diffeomorphism, g and h have the asymptotic behaviour:

∂α(gij − δij) ∈ O(r−1−|α|) for |α| ≤ 2 (1)
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and

∂β(hij) ∈ O(r−2−|β|) for |β| ≤ 1 (2)

These are not the optimal decay rates and we refer to [B] for refinements and also for a
discussion of the independence of the ADM-mass, from the choice of the coordinate system
at infinity. ADM stands for Arnowitt, Deser and Misner and their definition of the total
energy-momentum (E,Pj) of an asymptotically Euclidean space-like slice is:

E =
1

16πG
lim
r→∞

∮
S(r)

(∂kgik − ∂igkk)dσ
i (3)

Pj =
1

8πG
lim
r→∞

∮
S(r)

(hij − δijhkk)dσ
i (4)

where S(r) is the Euclidean sphere of radius r and the integrals are defined for each end.
For the important prototypical example of the Schwarzschild metric, this definition of course
recovers the usual mass that appears in the metric and P = 0 .

The next important physical assumption assumption is the following dominant energy
condition for the local mass density T :

(B) For each time like vector e0 transversal to M , T (e0, e0) ≥ 0 and T (e0, ) ia a non-
space-like covector. This implies that for any adapted orthonormal frame (e0, e1, e2, e3) with
e0 normal and e1, e2, e3 tangential to M , we have the inequalities:

T 00 ≥ |T µν | for all 0 ≤ µ, ν ≤ 3 (5)

and

T 00 ≥ (−T0kT
0k)1/2 (6)

We of course also assume that space time satisfies Einstein’s field equations:

Rµν −
1

2
Rgµν = 8πGTµν (7)

Given these assumptions, the positive energy theorem states that

Theorem 1 An asymptotically Euclidean space-like hypersurface in a space-time satisfying
Eistein’s equation and the dominant energy condition has non-negative total energy in the
sense that E ≥ |P | for each end. Moreover if E = 0 for some end, then there is exactly one
end and M is isometric to flat Euclidean space.

After several attempts by relativists, who established several special cases, the first com-
plete proof of this result was achieved by Schoen and Yau [SY 2,3,4], using minimal surface
techniques. Subsequently, Witten [W] found a completely different proof using harmonic
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spinors. It should be noted that some analytical subtleties in Witten’s paper were clarified
later by Parker and Taubes [PT]. In this section, we will present some results which are
proved by extending Witten’s method to other asymptotic background geometries.

Parallel to this development in relativity and, of course closely related to it, was the
famous problem about the existence and rigidity of positive scalar curvature metrics on the
torus. Here again there were two breakthroughs: first Shoen and Yau [SY1] using minimal
surfaces, were able to solve the problem in low dimensions and then independently Gromov
and Lawson [GL1,2,3], using twisted harmonic spinors resolved it for all dimensions. In
the next section we will discuss some newer results on scalar curvature rigidity obtained by
spinorial methods.

In the positive mass theorem, if we ignore the fact that the space-like slice (M3, g) is
imbedded in space-time, the assumption to be asymptotically Euclidean is well defined by
(1) and the formula (3) for the energy (or mass) E still makes sense. In this Riemannian
situation, the appropriate assumption that replaces the dominant energy condition (B) is
that the scalar curvature of (M3, g) is non-negative. In fact, if the space-like slice has zero
mean curvature zero (tr(h) = 0), then by the Gauss-Codazzi equations, assumption (B)
would imply that the scalar curvature of M3 is non-negative. More generally, one would like
to pose the problem whether, for all dimensions n, an asymptotically Euclidean Riemannian
manifold (Mn, g) with non-negative scalar curvature has non-negative mass . This is also
pertinent to physics, if one works in a more general framework than classical relativity. To
be exact, one needs to modify the decay rate in definition (1), depending on n. We assume
for simplicity:

∂α(gij − δij) ∈ O(r−n+2−|α|) for |α| ≤ 2 (8)

With this definition of asymptotically Euclidean we have the following result.

Theorem 2 An asymptotically Euclidean spin manifold M with non-negative scalar curva-
ture everywhere has positive total mass E. Moreover E = 0 if and only if M is isometric to
flat Euclidean space.

Both Schoen-Yau and Witten established this theorem in dimension 3 in the course of
their proof of the positive mass conjecture. For general n, this was first proved by Bartnik
[B]. We note that for a compactly supported perturbation of the flat metric, the above
theorem would be a simple consequence of the corresponding result for the torus.

It is a natural question to ask for similar results with different asymptotic geometries and
in [M1], I established the following hyperbolic version of the rigidity part of theorem 2.

Theorem 3 A strongly asymptotically hyperbolic spin manifold of dimension > 2 , whose
scalar curvature satisfies R ≥ −n(n− 1) everywhere, is isometric to hyperbolic space.

The definition of strongly asymptotically hyperbolic in [M1] is rather rigid and would
correspond, in the Euclidean version, to the zero mass case. In this respect, it should be
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interesting to understand the Bondi mass, defined in relativity in a general mathematical
context.

After dealing with the Euclidean and hyperbolic versions of local scalar curvature rigidity,
it is natural to pose the question for the sphere. The sharp local rigidity theorem for the
spherical metric is the following theorem on the hemisphere, which I have recently proved
[M2].

Theorem 4 Let Mn be a compact spin manifold with simply connected boundary ∂M and
let g be a Riemannian metric on M with the following properties:

(i) ∂M is totally geodesic in M ;

(ii) the metric induced on ∂M by g has constant sectional curvature K ≡ 1 ;

(iii) the scalar curvature of g satisfies R(g) ≥ n(n− 1) everywhere on M .

Then (M, g) is isometric to the round hemisphere with the standard metric.

2 Global Rigidity

The first global theorem on scalar curvature rigidity is the following well known result that
any metric with non-negative scalar curvature on the torus is flat.

Theorem 5 Let g be a Riemannian metric on T n with scalar curvature R(g) ≥ 0 every-
where. Then g is flat.

This was proved first by Schoen-Yau [SY1] for low dimensions (≤ 7) and then by Gromov-
Lawson [GL1,2,3] in all dimensions. The proof by Schoen and Yau is a somewhat simpler
version of their argument to establish the positive mass theorem and uses the second variation
formula for stable minimal surfaces. The proof by Gromov-Lawson on the other hand, uses
spinors. and is closer in spirit to Witten’s proof. However, since the result now is global,
the argument is more elaborate and is based on the Index Theorem. This was not needed
in any of the local rigidity results. In a recent paper, Gromov [G ] has given an elegant
re-interpretion of the basic idea of their proof, expressing it as an inequality relating the
scalar curvature to a new C0−invariant of a Riemannian metric called the K-area. The
K-area is, roughly speaking, the inverse of the norm of the smallest curvature obtainable
on the manifold in the class of all topologically essential unitary bundles equipped with a
connection. We refer to [G] for the precise definition. The main technique is then to obtain
an inequality bounding the K-area from below, in terms of the inverse of the infimum of
the scalar curvature, provided the manifold carries a metric with positive scalar curvature.
This can be achieved by analyzing a Weitzenbock formula for the square of a twisted Dirac
operator and appealing to the index theorem. Since there are almost flat but essential
bundles on a large covering of a torus, we now see that a torus cannot carry a metric of
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positive scalar curvature. Some extra geometric work is then needed to get the full scalar
curvature rigidity result for the torus.

It is then a natural question to find Riemanian manifolds which are “extremal” with
respect to this K-area inequality. The first sharp result of this nature was obtained by
Llarull [L1][L2] who made a careful analysis of the proof by Gromov and Lawson in the case
of the sphere to obtain the following theorem on the scalar curvature rigidity of spheres.

Theorem 6 Let g be a Riemannian metric on Sn satisfying g ≥ ḡ on all 2-vectors and with
scalar curvature R(g) ≥ R(ḡ) ≡ n(n − 1) everywhere, where ḡ is the standard metric of
constant sectional curvature K ≡ 1. Then g ≡ ḡ everywhere.

This is the main result in Llarull’s work, where one can also find various extensions and
generalizations. In the next section, we will sketch a simplified proof of Llarull’s theorem
in even dimensions. An appropriate modification of the proof yields the following result for
compact hermitean symmetric spaces.

Theorem 7 Let M2n be a compact Hermitian-symmetric space with non-zero Todd genus.
Let ḡ be the symmetric metric of constant scalar curvature R(ḡ) and let ω be the Kähler
form. If g is any Riemannian metric on M satisfying |ω|g < |ω|ḡ then there is a point on M
where the scalar curvatures satisfy R(g) < R(ḡ).

The assumption on the metrics in Llarull’s theorem can be stated more geometrically by
saying that all surfaces in M have larger area with respect to g than the standard metric ḡ.
For Hermitian-symmetric spaces, we relax the assumption on the metrics and compare them
only on the Kähler form, i.e., only the areas of holomorphic curves need to be compared.

3 The Proofs

The first basic step in proving all the results above is to establish a version of the Lichnerow-
icz’ formula for the square of an appropriate Dirac operator. For local rigidity theorems, we
solve for harmonic spinors which have the correct behaviour at infinity and then integrate
by parts. The boundary integrals, in the limit, are then identified with the “total mass”.
For global rigidity results, involving an inequality for the K-area in terms of lower bounds
on the scalar curvature, we use appropriate bundles to twist the ordinary Dirac operator,
make careful estimates of the curvature terms that appear in the (generalized) Lichnerowicz
formula and then appeal to the index theorem.

The famous formula of Lichnerowicz for the ordinary Dirac operator D is:

D2 = ∇∗∇+
R

4
, (9)

where ∇ is the Levi-Civita connection and R is the ordinary scalar curvature.

5



If we now integrate (9) on a manifold with boundary, we obtain:

∫
M

(|∇ψ|2 +
R

4
|ψ|2) +

∫
M

|Dψ|2 =

∫
∂M

〈∇νψ + νDψ, ψ〉 (10)

where ψ is a spinor and ν is the unit outer normal vector of the boundary.
For a harmonic spinor satisfying Dψ = 0, the boundary integral on the right-hand-side

will be non-negative, provided that R ≥ 0 and vanish iff ψ is globally parallel. To prove
Theorem 2, we prove first the existence of a harmonic spinor which is asymptotically parallel
in the sense that it approaches a parallel spinor (with respect to the background flat metric)
sufficiently fast. The limiting value of the boundary integral is then shown to be the mass
(= E) as defined by (3) when the boundary spheres go off to infinity. Rigidity follows from
the fact that if the mass vanishes, we get a trivialization of the manifold by parallel spinors
, since we get one for each asymptotic value.

To prove Theorem 3, one needs a connection ∇̃ that is flat for the standard hyperbolic
space. There is a natural one, which I called a hyperbolic Cartan connection in [M1],
which comes from imbedding hyperbolic space in Minkowski space and restricting the flat
vector space parallelism of the surrounding vector space. This can be done “virtually”
for any Riemannian manifold on the stabilized tangent bundle TM ⊕ 1, except that the
connection would not be flat unless the manifold is hyperbolic. For spin manifolds, we also
obtain induced connections on associated spinor bundles. The modified Dirac operator D̃,
is then defined using these Cartan connections. We refer to [M1] for details. This is highly
reminiscent of Witten’s proof of the positive energy theorem where he also used the Levi-
civita connection of the surrounding space-time restricted to the asymptotically Euclidean
space-like slice to define a modified Dirac operator. The curvature terms that appear in
the corresponding Lichnerowicz formula for the square of Witten’s Dirac operator involve
more than just the scalar curvature. However, miraculously, the dominant energy condition
together with Einstein’s equation is exactly what is needed to prove that the integrand is
non-negative. The boundary integrals are, of course, then identified, in the limit, with the
total energy-momentum vector.

In the case of the Dirac operator D̃, defined by a hyperbolic Cartan connection the
analogue of Lichnerowicz’ formula is obtained simply by replacing the Riemannian connection
and curvature terms by their hyperbolic analogues.

D̃2 = ∇̃∗∇̃+
R̃

4
(11)

where R̃ = R + n(n− 1) is the hyperbolic scalar curvature.
The proof of Theorem 3 now proceeds exactly as in the Euclidean case. First solve for a

hyperbolically harmonic spinor with good asymptotics and then integrate by parts.
It is now not hard to guess that Theorem 4 is proved by using a Dirac operator com-

ing from a spherical Cartan connection which is flat for the sphere. The corresponding
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Lichnerowicz-formula for the spherical Dirac operator is:

D̃2 − e0 D̃ = ∇̃∗∇̃+
R̃

4
= (e0D̃)2 + (n− 1)e0D̃ (12)

where R̃ = R− n(n− 1) is the spherical scalar curvature.
There are some technical subtleties, since this operator is no longer self-adjoint as it was

in the hyperbolic case and so the Lichnerowicz formula is somewhat complicated, as one
can see. Moreover, since one also has to deal with a finite boundary instead of infinity,
“integration by parts” is more involved and we refer to [M2] for details. One solves an
appropriate elliptic boundary value problem. However, the boundary conditions imposed
are “local” and not of the Atiyah-Patodi-Singer type. The proof therefore does not use the
Index Theorem. In fact, all proofs, that I know of, for local rigidity do not involve index
arguments. In contrast, all the results that are stated about global scalar curvature rigidity
on compact manifolds rely on the index of Dirac operators.

We now present a rather detailed proof of Llarull’s theorem for even dimensional spheres.
This is a somewhat simplified version of his proof and generalizes easily to prove Theorem
7. Again the first basic step is to derive and estimate an appropriately twisted version of
the Lichnerowicz’ formula. For the purpose of local calculations, we may always assume,
that the manifold M is spin. Let S(g) = S+(g) ⊕ S−(g) denote the bundle of spinors of
an even dimensional spin manifold (M, g), so we have two spinor bundles with respect to
the two metrics g and ḡ, where ḡ is the standard metric. We consider the twisted Dirac
operator D on the bundle S(g)⊗E, where we choose the coefficient bundle to be E = S+(ḡ)
(or S−(ḡ)), the spinor bundle with respect to the spherical, or more generally, a symmetric
background metric ḡ. Here we use the metric g and its Levi-Civita connection to define the
Dirac operator on the spinors in S(g), but for the twisting bundles S±(ḡ), the Levi-Civita
connection of the metric ḡ is used.

We will regard the two spinor bundles S(g) ≈ S(ḡ) as isomorphic complex vector bundles
over M , with two different metrics but more importantly, admitting two different Clifford
multiplications by vectors and exterior forms on M . To distinguish the two distinct Clifford
multiplications, we will denote them by: σ 7→ γ̄(v)σ for the metric ḡ and σ 7→ γ(v)σ for the
metric g, where v is a tangent vector (or more generally for v ∈ Λ∗(TM)).

After diagonalizing the metric g with respect to ḡ, so that we have two orthonormal
bases: {ēi} for ḡ and {ei = 1

λi
ēi} for g, we can define γ(ei) = γ̄(ēi) and extend it canonically

to the whole Clifford algebra with respect to g to give us a new representation on the same
Hermitian vector space S. γ then satisfies γ(u)γ(v)+ γ(v)γ(u) = −2g(u, v) and γ(u) is skew
adjoint.

The twisted Dirac operator is then explicitly given by the formula:

D(σ1 ⊗ σ2) =
2n∑

k=1

{
γ(ek)∇ek

σ1 ⊗ σ2 + γ(ek)σ1 ⊗∇ek
σ2

}
(13)

where {ek} is an orthonormal base for the tangent vectors with respect to the metric g,
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∇ is the Levi-Civita connection of g , ∇ is the Levi-Civita connection of the metric ḡ and
σ1 ⊗ σ2 ∈ Γ(S⊗ S+).

To simplify notation, we denote the product connection by ∇, i.e.:

∇v(σ1 ⊗ σ2) = ∇vσ1 ⊗ σ2 + σ1 ⊗∇vσ2.

The Lichnerowicz formula forD2 is then computed to be: (compare [LM, Chap.II, formula
(8.23), p.164])

D2(σ1 ⊗ σ2) = ∇∗∇(σ1 ⊗ σ2) +
R

4
σ1 ⊗ σ2 +R(σ1 ⊗ σ2) (14)

for σ1 ⊗ σ2 ∈ Γ(S ⊗ S+), where ∇∗ is the L2-adjoint of ∇, R is the scalar curvature of the
metric g, and the last term is explicitly given by:

R(σ1 ⊗ σ2) =
1

2

2n∑
j,k=1

γ(ej)γ(ek)σ1 ⊗Rm(ej ∧ ek)σ2 (15)

where {ei} is an orthonormal base with respect to the metric g for the tangent space TpM
at the point in question, Rm is the curvature tensor of ḡ and γ is Clifford multiplication for
g. Using the curvature operator Rop which acts on 2-forms by:

Rop(ei ∧ ej) =
∑

ḡ
(
R(ei, ej)el, ek

)
ek ∧ el

we can rewrite this expression as:

R(σ1 ⊗ σ2) = − 1

2

n(2n−1)∑
a=1

γ(ea)σ1 ⊗ γ̄
(
Rop(ea)

)
σ2 (16)

where {ea} is now an orthonormal base with respect to g for Λ2(TpM) and Rop is the
curvature operator of the symmetric metric. We note the right hand sides of (15) and (16)
are independent of the orthonormal bases chosen andR is a well-defined self-adjoint algebraic
operator on S ⊗ S. (Our notation for the curvature tensor is such that g (R(ei, ej)ej, ei) is
the sectional curvature of the plane spanned by ei and ej). The curvature operator of the
spherical metric ḡ is just the identity map on 2-vectors, so

R(σ1 ⊗ σ2) = − 1

2

m∑
a=1

γ(ea)σ1 ⊗ γ̄(ea)σ2 (17)

where m = n(2n− 1).
Let g now satisfy the condition: g ≥ ḡ on all 2-forms. This simply means that g(v, v) ≥

ḡ(v, v) for all v ∈ Λ2(TM). This implies that operator R dominates the corresponding
operator R defined by:

R(σ1 ⊗ σ2) = − 1

2

n(2n−1)∑
a=1

γ̄(ēa)σ1 ⊗ γ̄(ēa)σ2 (18)
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where {ēa}, a = 1, . . . ,ms is now an orthonormal base with respect to ḡ in the sense that
R − R is positive semi-definite on S ⊗ S with respect to the metric g ⊗ ḡ (and hence also
w.r.t. ḡ ⊗ ḡ). This is easily seen by choosing {ea} to be an orthonormal base of eigenforms
that diagonalizes the metric g with respect to the background metric ḡ on Λ2(TpM), so that
ea = 1

λa
ēa with λa ≥ 1 and with γ(ea) = γ̄(ēa). R is then given by:

R(σ1 ⊗ σ2) = − 1

2

n(2n−1)∑
a=1

1

λa

(γ(ea)σ1 ⊗ γ̄(ēa)σ2)

We now estimate the minimum eigenvalue of the operator R. The Casimir operator C of
the representation on S⊗ S induced by the isotropy representation is given by:

C(σ1 ⊗ σ2) = −
m∑

a=1

(γ̄(ēa))
2 (σ1 ⊗ σ2)

= −
m∑

a=1

{
(γ̄(ēa))

2 σ1 ⊗ σ2 + 2γ̄(ēa)σ1 ⊗ γ̄(ēa)σ2 + σ1 ⊗ (γ̄(ēa))
2 σ2

}
= 2m(σ1 ⊗ σ2) + 4R(σ1 ⊗ σ2)

by the Clifford identity (γ̄(ēa))
2 = −Id .

Now C is positive semi-definite on S ⊗ S ≈ Λ∗(TM). In fact, it is positive definite on
all non-trivial irreducible components of the representation and is equal to zero only on the
trivial representations that occur, in particular for Λ0 and Λn. In any case, we therefore have
the following basic algebraic estimate:

R ≥ R ≥ −m
2
Id = − R

4
Id ≥ − R

4
Id (19)

provided R = R(g) ≥ 2n(2n − 1) = R(ḡ) = R. Moreover, R is strictly > − R
4
Id unless all

the inequalities above are strict equalities at all points of M .
This yields, by the Lichnerowicz formula (14), a vanishing theorem for both S+(ḡ)−

and S−(ḡ) - valued harmonic spinors on the compact manifold M, provided that g ≥ ḡ on
Λ2(TpM) for each p and R(g) ≥ R(ḡ) everywhere, with strict inequality holding at least at
one point.

By the Index Theorem the topological indices of the two twisted Dirac operators are
given by: ∫

Â(M) · ch(S±) =
1

2
(e(M)± τ(M)) (20)

where e(M) is the Euler characteristic and τ(M) is the signature of M . This index is non-
zero for even-dimensional spheres. Rigidity follows from the fact that if strict equality holds
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in the inequalities above we must have g ≡ ḡ on Λ2
p at all points. Since g ≥ ḡ on Λ2 this

now implies that the two metrics are identical on each tangent space. The odd dimensional
case can be proved by applying the even-dimensional case to M × S1, which is given an
appropriate metric with a long S1. We refer to [L].

To prove Theorem 7, we consider the twisted Dirac operator D on the bundle S(g)⊗E,
where we choose the coefficient bundle E to be the line bundle L(ḡ), whose square is the
canonical bundle of the Hermitean symmetric space. Here we use the metric g and its Levi-
Civita connection to define the Dirac operator on the spinors in S(g), but for the twisting
bundle L(ḡ), the connection induced by the Levi-Civita connection of the symmetric metric
ḡ is used. Theorem 2 is proved in exactly the same fashion. The expression (15) for the
operator R acting on S(g)⊗ L simplifies to

R(σ ⊗ l) = − R

4
γ(ω̂)σ ⊗ γ̄(ω̂)l (21)

since the curvature form of the line bundle L is R
2
ω̂, where ω̂ = ω

|ω|ḡ .

Under the assumption that |ω|ḡ > |ω|g the operator R dominates the corresponding
operator R defined by:

R(σ ⊗ l) = − R

4
γ̄(ω̂)σ ⊗ γ̄(ω̂)l (22)

which in turn dominates − R
4
Id so that R+ R

4
Id is positive definite on S⊗L. The assumption

R ≥ R̄ would then imply that there are no harmonic spinors b Lichnerowicz’ formula. The
tensor product of the spinor bundle with the line bundle, whose square is the inverseof the
canonical bundle exists globally on any Hermitian manifold, and is the spinor bundle of the
canonically associated Spinc structure. The index for the corresponding Dirac operator is
given by the Todd genus which is non-zero for compact Hermitian symmetric spaces and
Theorem 7 follows.

QED

References

[B ] R. Bartnik, “The mass of an asymptotically flat manifold”, Comm. Pure Appl. Math.
39 (1986), 661-693.

[G ] M. Gromov: “Positive curvature, macroscopic dimension, spectral gaps and higher
signatures”, Functional Analysis on the eve of the 21st century, vol.II, Progress in
Math., vol. 132, Birkhauser, Boston, (1996).

[GL1 ] M. Gromov and H.B. Lawson: “Spin and scalar curvature in the presence of a
fundamental group I”; Ann. Math. 111, 209-230 (1980).

10



[GL2 ] M. Gromov and H.B. Lawson: “The clasification of simply-connected manifolds of
positive scalar curvature”; Ann. Math. 111, 423-486 (1980).

[GL3 ] M. Gromov and H.B. Lawson, “Positive scalar curvature and the Dirac operator on
complete Riemannian manifolds”, Publ. Math. I.H.E.S. 58 (1983), 295-408.

[LM ] H.B. Lawson, and M.-L. Michelsohn: “Spin Geometry”; Princeton Math. Series 38,
Princeton, 1989.

[L1 ] M. Llarull: “Sharp estimates and the Dirac Operator”; M. Llarull, Sharp estimates
and the Dirac operator, Math. Ann. 310 (1998), 55–71.

[L2 ]M. Llarull, Scalar curvature estimates for (n+ 4k)-dimensional manifolds, Differential
Geom. Appl. 6 (1996), no. 4, 321–326.

[M1 ] M. Min-Oo, “Scalar curvature rigidity of asymptotically hyperbolic spin manifolds”,
Math. Ann. 285 (1989), 527–539.

[M2 ] M. Min-Oo, “Scalar curvature rigidity of the hemisphere”, Preprint, McMaster, 1996.

[M3 ] M. Min-Oo, “Scalar curvature rigidity of compact Hermitian symmetric spaces”,
Preprint, McMaster, 1996.

[PT ] T. Parker and C.Taubes, “On Witten’s proof of the positive energy theorem”, Comm.
Math. Phys. 84 (1982), 223-238.

[SY1 ] R. Schoen and S.T. Yau, “Existence of minimal surfaces and the topology of 3-
dimensional manifolds with non-negative scalar curvature”, Ann. Math. 110 (1979),
127-142.

[SY2 ] R. Schoen and S.T. Yau, “On the proof of the positive mass conjecture in general
relativity ”, Comm. Math. Phys. 65 (1979), 45-76.

[SY3 ] R. Schoen and S.T. Yau, “The energy and linear-momentum of space-times in general
relativity ”, Comm. Math. Phys. 79 (1981), 47-51.

[SY4 ] R. Schoen and S.T. Yau, “Proof of the positive mass theorem II”, Comm. Math.
Phys. 79 (1981), 231-260.

[W ] E. Witten, “A new proof of the positive energy theorem”, Comm. Math. Phys. 80
(1981), 381-402.

Maung Min-Oo
Dept. of Mathematics, McMaster University
Hamilton, Ont., Canada L8S 4K1
e-mail: minoo@mcmail.mcmaster.ca

11


