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Preface

These notes form an outline of a series of lectures that I delivered at
the Universitat Jaume I in Castellon de la Plana from July 17 to 23, 2001
for the Advanced Course on Global Riemannian Geometry: curvature
and topology, organized by the Centre de Ricerca Mathematica, Institut
d’Estudis Catalans.

The theme of these notes is centered around the use of the Dirac op-
erator in Geometry and Physics, with the main focus on scalar curvature,
Gromov’s K-area and positive mass theorems in General Relativity.

The notes are written in a rather impressionistic style following Her-
mann Weyl’s advice. I quote:

“The stringent precision attainable in Mathematics has led many au-
thors to a mode of writing which must give the reader the impression of
being shut up in a brightly illuminated cell where every detail sticks out
with the same dazzling intensity, but without relief. I prefer the open
landscape with a clear sky with its depth of perspective where a wealth of
sharply defined nearby details gradually fade away towards the horizon”.

My objective is to give a flavour of some selected aspects of the sub-
ject that I understand, rather than a comprehensive survey. I have not
stated results and proofs in their most general form or in their most re-
cent version to avoid getting bogged down in too many technical details.
Instead, I have attempted to give a broader overview of the topics at
an introductory level, emphasizing more the basic ideas and concepts
involved, so that the reader can more easily consult the literature. Al-
though I have included a number of important references to the original
literature, my list is certainly not complete and I apologize for any serious
omissions, but nowadays, it is a simple matter to access recent literature
through preprint servers and the MathSciNet.

I would like to thank the CRM and in particular, my colleagues Vi-
cente Palmer, Ximo Gual Arnau, Ana Lluch Peris and Vicente Miquel
for the invitation and their warm hospitality on my first visit to Spain.

i



1 Spinors and the Dirac Operator

1.1 Introduction to spinors

Spinors are objects that are more sensitive to the action of the orthogonal
group than ordinary vectors. The simplest example is the Hopf bundle
over S2. The bundle is half as curved as the tangent bundle of S2 geo-
metrically and topologically. Parallel translation in this bundle around
a great circle in S2 rotates a spinor by an angle of π instead of 2π for
a vector and the Euler characteristic of the Hopf bundle is 1, which is
half that of the tangent bundle. More generally, the existence of such
a double cover of the orthonormal frame bundle called a spin structure
would be guaranteed by the vanishing of a suitable characteristic class.

There are two steps involved in defining a spin structure on a man-
ifold. The first is a purely algebraic construction of Clifford algebras
and spin groups associated to a vector space with a given quadratic form
(scalar product). The second has to do with the way these structures can
be globally defined on the tangent bundle or more generally on vector
bundles. A rough definition of a spin structure is therefore an assignment
of a spin group to each point on the manifold, in a manner consistent
with the transition functions of the tangent bundle.

We will begin with a description of Clifford algebras, which are the
devices needed to give an explicit construction of the spin groups. After
that, we will turn to the problem of globalizing such objects to manifolds,
i.e. to the problem of defining a spin structure on a smooth manifold.
It is at this stage that global topological features of the tangent bun-
dle become important. Before turning to the algebraic part, it is useful
to mention that ‘two step’ constructions from an algebraic infinitesimal
object to a global definition are quite canonical in differential geome-
try. A metric on a manifold, for example, is a smoothly varying choice
of inner product on the tangent space at each point of the manifold.
The construction thus involves extending inner products on each tangent
space smoothly to the tangent bundle. Of course, for positive definite
inner products the extension is always possible. On the other hand, to
define an orientation on a manifold, we must consistently extend the ori-
entation defined for each tangent space to the whole manifold and this
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is in general, not possible. The obstruction to this is called the first
Stiefel-Whitney class. For the existence of a spin structure on a manifold
the obstruction is called the second Stiefel-Whitney class. Now for the
algebra:

A quadratic space is a pair (V, q), where V is a real finite-dimensional
vector space and q : V ⊗V → R is a non-degenerate quadratic form. We
denote by O(V, q) the orthogonal group of q. The real Clifford algebra
Cl(V, q) is the (unique) unital associative algebra generated by V subject
to the defining relation

v · w + w · v = −2q(v, w)1

for every v, w ∈ V .
If c is a linear map from V to a unital algebra satisfying c(v) =

−q(v, v) then c extends naturally to an algebra homorphism and the
Clifford algebra is the universal algebra with that characterizing property.
As a vector space the Clifford algebra is isomorphic to the exterior algebra
∧V of V , but the multiplication is, of course, different.

The isometry v 7→ −v extends to an involutive automorphism χ of
the algebra defining its Z/2-grading:

Cl(q) = Cl0(q)⊕ Cl1(q)

. If V = Rm and q is the standard positive definite quadratic form,
then we will simply write Clm = Cl0m ⊕ Cl1m. The map Rm → Cl0m+1,
v 7→ vem+1, extends to an isomorphism of algebras: Clm ∼= Cl0m+1.

If (e1, . . . , em) is an orthonormal frame in V , then η = e1 . . . em ∈
Cl(q)is called the volume element. The square of η is either 1 or −1,
depending on the signature of q.

Let (M, g) be a Riemannian manifold. The Clifford bundle of (M, g)
is the total space Cl(M, g) =

⋃
xCl(TxM, gx) of all the Clifford algebras

of the tangent spaces.

A bundle of Clifford modules on (M, g) is a complex vector bundle
S over M with a homomorphism of bundles of algebras γ : Cl(g) →
End(S), i.e., for every x ∈ M , the vector space Sx is a left module
over the algebra Cl(gx). Restricted to TM ⊂ Cl(g), the map γ is a
Clifford morphism, i.e. a homomorphism of vector bundles such that

2



γ(v)2 = −|v|2idSx for every x ∈ M and v ∈ TxM . It follows from the
universal property of Clifford algebras that, conversely, given a vector
bundle S over M and a Clifford morphism: TM → End(S), one can
extend it to a homomorphism of bundles of algebras.

Here are two examples:

(i) The bundle of exterior algebra on M . Put S =
∧
T ∗M and define

γ by γ(v)ω = vyω + v ∧ ω for v ∈ TxM and ω ∈ Sx where y denotes
interior multiplication with respect to the given metric. The isomorphism
Cl(M, g) ∼=

∧
T ∗(M) given by the map v 7→ γ(v) · 1 is called the symbol

map. It is the symbol of the deRham operator d + δ on the exterior
algebra of forms.

(ii) Let (M, g) be a Kähler manifold with complex structure J . The map:
γ(v + v̄)ω =

√
2(v̄yω + v ∧ ω) for w ∈ W = {v ∈ TM ⊗ C |J(v) = i v}

and put ω ∈ S =
∧
W defines a Clifford module.

If n ≥ 3 then the fundamental group of the special orthogonal group
SO(n) is Z/2 and the simply connected universal cover is a group called
Spin(n). We will use Clifford algebras to describe this group.

First of all, the pinor group Pin(m) is the group consisting of all
products of unit vectors in Cln. The map ρ(v) : x 7→ v · x · v−1, where v
is a unit vector and x is any vector in Rm, describes the reflection in the
hyperplane v⊥ and hence defines a representation from Pin(m) to O(m)
which is a double cover. Since O(m) has two connected components, we
can restrict to the pre-image of the identity component SO(m) to obtain
the spinor group Spin(m). Therefore Spin(m) = Pin(m) ∩ Cl0m and is
generated by products of an even number of unit vectors in the Clifford
algebra.

We can also complexify the Clifford algebra Clcm = Clm⊗C and define
the complex spinor group as Spinc(m) = Spin(m)⊗Z/2 S

1.
One basic property of the Spin group is that there exists (half-integral)

representations which do not descend to SO(n). The basic representation
space is called the space of spinors and these are the “sensitive” objects,
since the orthogonal group cannot act as a single-valued representation.

In even dimensions m = 2n, the algebra Clm is a simple matrix
algebra and there is a unique faithful and irreducible (graded) Dirac
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representation in a complex, 2n-dimensional vector space S called the
spinor space such that Clm ⊗ C = End(S). Restricted to Cl0m (and
hence to Spin(n)), this representation decomposes into the direct sum
of two irreducible and inequivalent, half-spinor Weyl representations S =
S+ ⊕ S−. The splitting is basically given by the eigenspaces of Clifford
multiplication with the volume element η. In odd dimensions, we can use
the isomorphism: Cl2n

∼= Cl02n+1 to obtain the unique irreducible complex
spinor representation of dimension 2n. (The representation does not split
w.r.t. Spin(2n+1)). There are exactly two irreducible representations of
Cl2n+1, of complex dimesion 2n which become isomorphic representations
when restricted to Spin(2n + 1), since the volume form η is now the
intertwining map.

The Stiefel-Whitney classes w(E) of a real vector bundle E of rank r
are Z/2-characteristic classes characterized by the following properties:

(i) w(E) = 1 + w1(E) + ...+ wr(E) with wi(E) ∈ H i(M ; Z/2)

(ii) If f : M → N is a map then f ∗(w(E)) = w(f ∗(E)).

(iii) w(E ⊕ F ) = w(E) + w(F ).

(iv) If L is the non orientable Möbius line bundle over S1 then w(L) 6= 0.

The first Stiefel-Whitney class measures the obstruction for a vec-
tor bundle to be orientable and the non-vanishing of the second is the
obstruction to the existence of a spin structure.

Let E be an oriented vector bundle with a fiber metric over a manifold
M and let Uα be a simple cover of M such that E has transition functions
gαβ ∈ SO(r) on Uα∩Uβ satisfying the cocycle condition gαβgβγ = gαγ. We
say that E admits a spin structure if E is orientable and we can define lifts
g̃αβ of the transition functons to Spin(r) such that the cocycle condition
is preserved. This can be expressed in terms of the Stiefel Whitney classes
simply as w2(E) = 0. The set of all inequivalent spin structure is then
parametrized by H1(M ; Z/2).

From the point of view of principal bundles, a spin structure can
be realized as a principal bundle Spin(E) with structure group Spin(n)
which is a double cover (over each fiber) of the oriented frame bundle
SO(E) of the vector bundle E. Given a spin manifold, the vector bundle
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associated to the basic spinor representation will be denoted by S and is
called the spinor bundle.

Similarly, the necessary and sufficient topological condition to define
a Spinc structure on a unitary bundle E is that w2(E) is the mod 2
reduction of an integral cohomology class. This is always true for a
Hermitian vector bundle E, since w2(E) ≡ c1(E) mod 2.

Examples

1. The sphere Sn is spin for all n.

2. The complex projective space is spin if and only if m is odd. The spin
structure is unique since CPm is simply connected. However, as is true
for all Kähler manifolds, CPm has a canonical Spinc structure for all m.

3. The product and connected sum of spin manifolds is again spin.

1.2 The Dirac Operator

The Dirac operator is the fundamental first order elliptic operator defined
on a spin manifold. Its symbol is given by Clifford multiplication and its
index is given by the Â-genus of the spin manifold.

LetMn be a Riemannian manifold with Clifford bundle Cl(M) and let
S be any bundle of left modules over Cl(M). Assume that S is furnished
with a metric and a connection preserving the metric and compatible
with the Clifford module structure, (i.e. the product rule holds). Then
the Dirac operator of S is the canonical first-order differential operator
defined by:

Dσ =
n∑

k=1

ek · ∇ek
σ

where {ek} is an orthonormal base of TM and σ ∈ Γ(S).
This defines a general Dirac operator since all we need is a Clif-

ford module over a (not necessarily spin) manifold. However, we will be
mainly interested in twisted Dirac operators that are defined on S ⊗ E
where E is a complex Hermitian bundle with a connection and S is the
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spinor bundle. These operators can sometimes be defined even if the
manifold is not spin, provided the tensor product exists as a bundle. For
example for Kähler manifolds we always have the spinc Dirac operator
where E is a line bundle which can be thought of as the “virtual square
root” of the canonical bundle. Although E and S do not exist globally
on the manifold, S⊗ E and E ⊗ E are well defined.

For even dimensional manifolds the spinor representation has a natu-
ral splitting S = S+⊕ S− and the Dirac operator splits as D = D+ +D−

with D± : S± ⊗ E −→ S∓ ⊗ E and D− being the adjoint of D+. Since
the Dirac operator on a closed compact manifold is a self-adjoint elliptic
operator it has a real discrete spectrum with finite multiplicities on a
compact manifold. In particular, the index of D+ :

index(D+) = dim(Kern(D+))− dim(Kern(D−))

is a topological invariant given by the famous Atiyah-Singer Index The-
orem:

index(D+) =

∫
M

Â(M) ∧ ch(E)

where the Â genus, a certain formal power series in the Pontryagin classes
of M , and ch(E), the Chern character of the vector bundle E, will be
defined below.

The Chern character of a complex bundle E of rank r can be defined
by

ch(E) =
r∑

k=1

exp(xk)

where the total Chern class is expressed (by the splitting principle) as:

C(E) = 1 + c1(E) + ...+ cr(E) =
r∏

k=1

(1 + xk)

so that ck is given by the kth elementary symmetric function of the xk’s.
The first few terms are:

ch(E) = dim(E) + c1(E) +
1

2
(c1(E)2 − 2c2(E)) + ...
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The Chern character satisfies:

ch(E1 ⊕ E2) = ch(E1) + ch(E2), ch(E1 ⊗ E2) = ch(E1)ch(E2)

and hence defines a ring homorphism ch : K(M) −→ Heven(M).

Similarly, the total Â genus is given by:

Â(M) =
r∏

k=1

xk/2

sinh(xk/2)

where now the total Pontryagin class of TM is formally expressed as:

p(M) = 1 + p1(M) + ...+ pr(M) =
r∏

k=1

(1 + x2
k)

so that pk is given by the kth elementary symmetric function of the x2
k’s.

The first few terms are:

Â = 1− 1

24
p1 +

1

27325
(−4p2 + 7p2

1) + ...

We can represent the Chern character of E by the differential form

ch(E) = Tr
(
exp(

F∇

2πi
)
)

where F∇ is the curvature of a connection ∇ for E, regarded as an
End(E)-valued two form.

Similarly, Â(M) is represented by the closed differential form:

Â(M) =
√

det
( R/2

sinh(R/2)

)
where R is the Riemannian curvature of the metric g, regarded as and
End(TM)-valued two form and

√
det is the Pfaffian.
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1.3 The Lichnerowicz Formula

The Bochner technique of proving vanishing theorems for harmonic forms
rely on expressing the relevant Laplacian as a sum of a non-negative oper-
ator (the rough Laplacian) and a purely algebraic terms depending only
on the curvature. For the square of the Dirac operator, the corresponding
result is the famous formula of Lichnerowicz:

D2 = ∇∗∇+
R

4

where ∇ is the Levi-Civita connection, ∇∗ its adjoint and R is the scalar
curvature.

The surprising element here is the simplicity of the curvature term.
Only the simplest invariant, namely the scalar curvature appears. As we
will see in the proof below, this is partly a consequence of the fact that
the spin representation is very “democratic” in the sense that all weights
are equal.

The Lichnerowicz formula implies that a compact spin manifold with
positive scalar curvature has no non-zero harmonic spinors. As a conse-
quence, by the index theorem, compact spin manifolds with a non-zero
Â-genus do not carry metrics of positive scalar curvature. Also it is
interesting to note that the curvature expressions for the characteristic
classes appearing in the index theorem are quite elaborate and it is not
easy to see why the simple condition R > 0 should imply directly that
the top form in the index density is exact (on a compact manifold). The
index density is the (super-)trace of the heat kernel exp(−tD2) as t→ 0+

whereas the harmonic projectors describe the behaviour of the heat ker-
nel as t → ∞, so there should be a natural way that the index density
and the Lichnerowicz formula are related by varying t in the heat kernel.

For the twisted Dirac operator with values in a vector bundle E, the
Lichnerowicz formula for D2 is computed to be:

D2(σ ⊗ φ) = ∇∗∇(σ ⊗ φ) +
R

4
σ ⊗ φ+R(σ ⊗ φ)

for σ⊗ φ ∈ Γ(S⊗F ), where ∇∗∇ is the rough Laplacian, R is the scalar
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curvature and the last term is explicitly given by:

R(σ ⊗ φ) =
1

2

m∑
j,k=1

γ(ea)σ ⊗R∇(ea)φ

where {ea}, a = 1, ...m = n(n−1)
2

is now an orthonormal base with respect

to the metric g for the two-vectors
∧2(TpM) at the point in question,

R∇ is the curvature tensor of the connection in the bundle E and γ is
Clifford multiplication for g.

Proof

We define the second order covariant derivative: ∇2
u,v = ∇u∇v−∇∇uv

where for simplicity of notation, ∇ is used for all the covariant deriva-
tives ∇2

u,v is tensorial in u,v and its antisymmetric part is the curvature:
R(u, v) = ∇2

u,v −∇2
v,u (Here we use the fact that the Levi-Civita connec-

tion is torsion free). Now using a frame satisfying ∇ek
el = 0 at a given

point we compute:

D2 =
∑
k,l

ek · ∇ek

(
el · ∇el

)
=

∑
k,l

ek · el · ∇ek
∇el

=
∑
k=l

ek · el∇ek
∇el

+ 2
∑
k<l

ek · el∇ek
∇el

= −
∑

k

∇ek
∇ek

+
∑
k<l

ek · el ·R(ek, el)

The first term is the rough Laplacian∇∗∇ and the second term acting
on σ ⊗ φ can be simplified as:

∑
k<l

ek · el ·R(ek, el)(σ⊗ φ) = −
m∑

a=1

ea · R̂(ea)σ⊗ φ+
m∑

a=1

ea · σ⊗R∇(ea)φ

where {ea}, a = 1, ...,m = n(n−1)
2

is now an orthonormal base for for∧2(TM) and R̂ is the curvature operator of the Riemannian manifold.
(Note the sign change!).
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The second term is the same as R and the first term can be further
simplified by choosing an orthonormal base {ea} for

∧2(TM) that di-
agonalizes the curvature operator, so that R̂(ea) = λa ea and R̂(ea)σ =
1
2
λa ea · σ:

−
m∑

a=1

ea · R̂(ea)σ = −1

2

m∑
a=1

λa ea · ea · σ =
R

4
σ

This proves the Lichnerowicz formula.
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2 Gromov’s K-Area

2.1 Definition of K-Area

The K-area is, roughly speaking, the inverse of the norm of the smallest
curvature obtainable among all topologically essential unitary bundles
equipped with connections on a given Riemannian manifold. K stands
here both for K-theory and also for curvature (Krümmung). To measure
the norm of the curvature, a metric g on the manifold is used. However
the definition does not involve the Riemannian curvature of the metric
and hence the K-area is a pure C0-invariant of g. It measures the K-
theoretic 2-dimensional size of the manifold. One can modify the defini-
tion by taking the supremum with respect to a suitable class of metrics,
e.g., adapted metrics for a symplectic manifold. One can also restrict
ourselves to a special class of bundles to get more refined invariants. We
refer to [G] for more details.

Since we would like to speak about symplectic connections, we will de-
scribe a rather general set-up to define the K-area. Let G be a connected
Lie group, not necessarily finite-dimensional, whose tangent bundle is
equipped with a bi-invariant norm defining a left invariant metric on G.
We identify the Lie algebra g of G with the space of right-invariant vector
fields on G. Suppose that G acts on a connected manifold. The standard
situation is when F is a vector space E and we have a representation
of G. Another case which is also important is when F is a symplectic
manifold and G is a subgroup of the infinite dimensional group of all
Hamiltonian symplectomorphisms: Ham (F, ω).

Consider a fiber bundle π : P → M , over a Riemannian mani-
fold (M, g) with fiber F associated to a G-principal bundle. and G -
connections on these bundles, i.e. connections whose parallel transports
belong to the structural group G. Let R∇ denote the curvature of a
connection ∇ on the bundle P .

To a pair of vectors v, w ∈ TxM , the curvature tensor associates an
element R∇(v, w) ∈ g, defining a G-vector field on the fiber π−1(x). The
fiber π−1(x) can be identified with F and since ‖ · ‖ is bi-invariant norm
on g, ‖R∇(v, w)‖ is well-defined independent of the identification. For
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G = U(N) acting on a vector space E through a representation ρ, we
will use the following supremum norm:

‖A‖ = max
|u|=1

|ρ(A)(u)|,

where the maximum is taken over all unit vectors in E.

For a given bundle with a connection ∇ we define:

‖R∇ (F )‖ = sup
|v∧w|=1

‖R∇(v, w)‖,

where the maximum is taken over all unit bi-vectors v ∧ w ∈ Λ2(TM)
with respect to the metric g.

Gromov’s K-area of a compact even dimensional Riemannian mani-
fold (M2m, g) is now defined by taking the supremum of ‖R∇(E)‖−1 over
all unitary bundles E with structure groups U(N) (all N), that have a
non-vanishing Chern number. That E has a non-vanishing Chern num-
ber is equivalent to the fact that the classifying map for E: χE : M −→
BU(N) is not homologous to zero. By an algebraic calculation involving
Chern classe, it can also be shown (see [GR3]) to be equivalent to the
non-vanishing of the index of the Dirac operator twisted with the bundle
E. We will call such bundles homologically essential.

Definition.

K-area (M2m, g) = sup
E,∇

‖R∇(E)‖−1,

where the maximum is taken over all homologically esssential unitary
bundles E of all dimensions and over all connections ∇.

Since the classifying space carries a universal connection on its uni-
versal bundle and every unitary connection is induced by a map into BU ,
one can think of minimizing the“surface area” among all homologically
essential classifying maps.

In order to extend the definition to odd dimensional manifolds we
first define K-area for non compact even dimensional manifolds exactly as
above, except that we use bundles E which are trivial outside a compact
set and also characteristic classes with compact support. Now for an odd
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dimensional manifold (M2m+1, g), we stabilize by taking products with
R2k+1 for all k and define the stable K-area as:

K-areast (M2m+1, g) = sup
k
K-area (M × R2k+1, g × ḡ)

The K-area has some fundamental properties (see [G] for more de-
tails):

(i) K-area scales like a two dimensional area and if g1 ≥ g2 on 2-vectors,
then K-area (M, g1) ≥ K-area (M, g2).

(ii) The K-area of a simply connected manifold is finite, since on a simply
connected manifold an almost flat connection can be deformed to a flat
connection.

(iii) A finite covering (which is trivial outside a compact set) has the
same K-area. This implies in particular that the K-area of a torus is ∞,
since it can cover a multiple of itseslf by homotheties.

(iii) More generally, the K-area of a closed manifold of non-positive sec-
tional curvature whose fundamental group is residually finite is ∞, since
such manifolds admit finite coverings can cover a multiple of itseslf by
homotheties.

That the torus has infinite K-area can also be seen from the fact
that there are homologically essential bundles on a covering torus with
arbitrarily small curvature. A large even dimensional (covering) torus
can always be mapped to a standard round sphere: f : T 2m → S2m

such that |df | is very small. Now we can pull back the spinor bundle
S+ on the sphere (this bundle has non-zero top Chern class and is the
fundamental generator of the K-theory of even-dimensional spheres) to
the torus via the map f . f ∗(S) is then homologically essential but will
have very small curvature on a large torus, showing that the K-area of a
torus is arbitrarily large.

13



2.2 The fundamental estimate in terms of scalar
curvature

Although the definition of K-area does not involve the curvature tensor of
the Riemannian metric, there is a deep and perhaps surprising connection
to the scalar curvature. In fact, part of the motivation that led Gromov
to this new invariant is to give a new interpretation of the proof given
by Gromov and Lawson of the following fundamental global theorem on
scalar curvature rigidity of the torus.

Theorem 1. Let g be a Riemannian metric on T n with scalar curvature
R(g) ≥ 0 everywhere. Then g is flat.

This was proved first by Schoen-Yau [SY1] for low dimensions (≤ 7)
and then by Gromov-Lawson [GL1,2,3] in all dimensions. The proof
by Schoen and Yau is a somewhat simpler version of their argument to
establish the positive mass theorem and uses the second variation formula
for stable minimal surfaces. The proof by Gromov-Lawson on the other
hand, uses spinors and is closer in spirit to Witten’s subsequent proof
of the positive mass theorem. However, since the result is global, the
argument is more elaborate than Witten’s and is based on the Index
Theorem. Gromov’s definition of K-area gives an elegant re-interpretion
of the basic idea of their proof, expressing it as a fundamental inequality
relating the scalar curvature to the K-area.

The main technique is to obtain a bound for the K-area from above,
in terms of the inverse of the infimum of the scalar curvature, provided
the manifold carries a metric with positive scalar curvature. This can
be achieved by analyzing the Lichnerowicz formula and using the index
theorem. Since the torus has infinite K-area, we see that a torus cannot
carry a metric of positive scalar curvature. Some extra geometric work is
then needed to get the full scalar curvature rigidity result for the torus.

The fundamental K-area inequality can be stated as follows:

Theorem 2. Every complete Riemannian spin manifold (Mn, g) with
scalar curvature R(g) ≥ κ2 everywhere satisfies:

K-areast (M, g) ≤ c(n)

κ2

for some universal constant c(n) depending only on the dimension.
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The proof is an immediate cosequence of the Lichnerowicz formula,
the index theorem and the definitions. We refer again to [G] for details.

It is a natural question now to find Riemanian manifolds which are
“extremal” with respect to this K-area inequality. The first sharp result
of this nature was obtained by Llarull [L1] who made a careful analysis
of the proof by Gromov and Lawson in the case of the sphere to obtain
the following theorem on the scalar curvature rigidity of spheres.

Theorem 3. Let g be a Riemannian metric on Sn satisfying g ≥ ḡ on all
2-vectors and with scalar curvature R(g) ≥ R(ḡ) ≡ n(n− 1) everywhere,
where ḡ is the standard metric of constant sectional curvature K ≡ 1.
Then g ≡ ḡ everywhere.

This is the main result in Llarull’s work [L1][L2], where one can also
find various extensions and generalizations. The theorem basically says
that round spheres are extremal for the K-area inequality among spin
manifolds. We will sketch a simplified proof of Llarull’s theorem in even
dimensions. An appropriate modification of the proof yields the following
results for compact symmetric spaces.

Theorem 4. Let (M2n, ḡ) be a compact Hermitian-symmetric space of
constant scalar curvature R(ḡ) with Kähler form ω. If g is any Rieman-
nian metric on M satisfying |ω|g < |ω|ḡ then there is a point on M where
the scalar curvatures satisfy R(g) < R(ḡ).

Theorem 5. Let (M2n, ḡ) be an even-dimensional compact symmetric
space of constant scalar curvature R(ḡ). Assume that either the Euler
class or the signature of M is non-zero. If g is any Riemannian metric
on M satisfying g > ḡ on all 2-vectors then there is a point on M where
the scalar curvatures satisfy R(g) < R(ḡ).

Before proving these results, I would like to mention a recent preprint
by S.Goette and U. Semmelmann [GS], where theorem 4 has been gener-
alized to Kähler manifolds with positive Ricci curvature. They show that
these manifolds are extremal for the K-area inequality in the category of
spinc-manifolds.

The assumption on the metrics in Llarull’s theorem can be stated
more geometrically by saying that all surfaces in M have larger area
with respect to g than the standard metric ḡ. For Hermitian-symmetric
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spaces, we relax the assumption on the metrics and compare them only
on the Kähler form, i.e., only the areas of holomorphic curves need to be
compared.

The key step in obtaining sharp estimates for the K-area inequality
is to find the optimal homologically essential twisting bundle for the
Dirac operator. We then have to make make careful estimates of the
curvature terms that appear in the Lichnerowicz formula and then appeal
to the index theorem. In order to illustrate this we now present a rather
detailed proof of Llarull’s theorem for even dimensional spheres. This is
a somewhat simplified version of his proof and generalizes easily to prove
Theorem 4.

For the purpose of local calculations, we may always assume, that
the manifold is spin. Let S(g) = S+(g) ⊕ S−(g) denote the bundle of
spinors of an even dimensional spin manifold (M2n, g), so we have two
spinor bundles with respect to the two metrics g and ḡ, where ḡ is the
standard metric. We consider the twisted Dirac operatorD on the bundle
S(g) ⊗ E, where we choose the coefficient bundle to be E = S+(ḡ) (or
S−(ḡ)), the spinor bundle with respect to the spherical, or more generally,
a symmetric background metric ḡ. Here we use the metric g and its Levi-
Civita connection to define the Dirac operator on the spinors in S(g), but
for the twisting bundles S±(ḡ), the Levi-Civita connection of the metric
ḡ is used.

We will regard the two spinor bundles S(g) and S(ḡ) as isomorphic
complex vector bundles over M , with two different metrics but more
importantly, admitting two different Clifford multiplications by vectors
and exterior forms on M . To distinguish the two distinct Clifford mul-
tiplications, we will denote them by: σ 7→ γ̄(v)σ for the metric ḡ and
σ 7→ γ(v)σ for the metric g, where v is a tangent vector (or more generally
for v ∈ Λ∗(TM)).

After diagonalizing the metric g with respect to ḡ, so that we have
two orthonormal bases: {ēi} for ḡ and {ei = 1

λi
ēi} for g, we can define

γ(ei) = γ̄(ēi) and extend it canonically to the whole Clifford algebra with
respect to g to give us a new representation on the same Hermitian vector
space S. γ then satisfies γ(u)γ(v) + γ(v)γ(u) = −2g(u, v) and γ(u) is
skew adjoint.
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The twisted Dirac operator is then given by:

D(σ1 ⊗ σ2) =
2n∑

k=1

{
γ(ek)∇ek

σ1 ⊗ σ2 + γ(ek)σ1 ⊗∇ek
σ2

}
where {ek} is an orthonormal base for the tangent vectors with respect to
the metric g, ∇ is the Levi-Civita connection of g , ∇ is the Levi-Civita
connection of the metric ḡ and σ1 ⊗ σ2 ∈ Γ(S⊗ S+).

To simplify notation, we denote the product connection by ∇, i.e.:

∇v(σ1 ⊗ σ2) = ∇vσ1 ⊗ σ2 + σ1 ⊗∇vσ2.

The last term in the Lichnerowicz formula:

D2(σ1 ⊗ σ2) = ∇∗∇(σ1 ⊗ σ2) +
R

4
σ1 ⊗ σ2 +R(σ1 ⊗ σ2)

can be expressed as:

R(σ1 ⊗ σ2) = − 1

2

m∑
a=1

γ(ea)σ1 ⊗ γ̄
(
R̄(ea)

)
σ2

where {ēa}, a = 1, . . . ,m = n(2n−1) is an orthonormal base with respect
to g for Λ2(TpM) and R̄ is the curvature operator of the symmetric
metric. We note the right hand side is independent of the orthonormal
base chosen and R is a well-defined self-adjoint algebraic operator on
S⊗ S.

Let g now satisfy the condition: g ≥ ḡ on all 2-forms. This simply
means that g(v, v) ≥ ḡ(v, v) for all v ∈ Λ2(TM). This implies that
operator R dominates the corresponding operator R defined by:

R(σ1 ⊗ σ2) = − 1

2

m∑
a=1

γ̄(ēa)σ1 ⊗ γ̄
(
R̄(ēa)

)
σ2

where {ēa}, a = 1, . . . ,m is now an orthonormal base for ḡ, in the sense
that R−R is positive semi-definite on S⊗ S with respect to the metric
g⊗ ḡ (and hence also w.r.t. ḡ⊗ ḡ). This is easily seen by choosing {ea}to
be an orthonormal base of eigenforms that diagonalizes the metric g with
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respect to the background metric ḡ on Λ2(TpM), so that ea = 1
λa
ēa with

λa ≥ 1 and with γ(ea) = γ̄(ēa). R is then given by:

R(σ1 ⊗ σ2) = − 1

2

m∑
a=1

1

λa

(
γ(ea)σ1 ⊗ γ̄

(
R̄(ēa)

)
σ2

)
If Kp ⊂ O(TpM) = Λ2(TpM) denotes the holonomy (= isotropy)

subalgebra of the symmetric space at the point in question, then the
curvature operator of ḡ is just the orthogonal projection onto Kp followed
by an invertible symmetric map S : K → K. Therefore:

R(σ1 ⊗ σ2) = − 1

2

m∑
a=1

γ̄(ēa)σ1 ⊗ ρaγ̄(ea)σ2

where the ρa’s are the non-zero eigenvalues of the curvature operator and
m = dim(K).

On each simple factor Ks of K, the eigenvalues of the operator R̄ are
all equal (= ρs 6= 0), so

Rs(σ1 ⊗ σ2) = − ρs

2

ms∑
a=1

γ̄(ēa)σ1 ⊗ γ̄(ēa)σ2

wherems = dim(Ks), and {ēa} is an orthonormal base forKs ⊂ Λ2(TpM).
Rs is independent of the choice of the orthonormal base.

We now estimate the minimum eigenvalue of the operator Rs. The
Casimir operator Cs of the representation on S⊗S induced by the isotropy
representation restricted to each simple component Ks is given by:

Cs(σ1 ⊗ σ2) = −
ms∑
a=1

(γ̄(ēa))
2 (σ1 ⊗ σ2)

= −
ms∑
a=1

{
(γ̄(ēa))

2 σ1 ⊗ σ2 + 2γ̄(ēa)σ1 ⊗ γ̄(ēa)σ2 + σ1 ⊗ (γ̄(ēa))
2 σ2

}
= 2ms(σ1 ⊗ σ2) +

4

ρs

Rs(σ1 ⊗ σ2)

where we used the Clifford identity (γ̄(ēa))
2 = −Id. Now Cs is positive

semi-definite on S ⊗ S ≈ Λ∗(TM). In fact, it is positive definite on all
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non-trivial irreducible components of the representation and is equal to
zero only on the trivial representations that occur, in particular for Λ0

and Λn. In any case, we have the following basic algebraic estimate:

Rs ≥ −ms
ρs

2
Id

This implies:

R ≥ R =
∑

s

Rs ≥ −
∑

s

ms
ρs

2
Id = − R

4
Id ≥ − R

4
Id

provided R = R(g) ≥ R(ḡ) = R. Moreover, R is strictly > − R
4
Id

unless all the inequalities above are strict equalities everywhere on M .
This yields, by the Lichnerowicz formula, a vanishing theorem for both
S+(ḡ) and S−(ḡ) valued harmonic spinors on M , provided that g ≥ ḡ
on Kp ⊂ Λ2(TpM) for each p and R(g) ≥ R(ḡ) everywhere, with strict
inequality holding at least at one point.

By the Index Theorem the topological indices of the two twisted Dirac
operators are given by:∫

Â(M) · ch(S±) =
1

2
(e(M)± τ(M)) (1)

where e(M) is the Euler characteristic and τ(M) is the signature of M .
This proves Theorem 5, since the twisted bundles are globally defined

for any Riemannian manifold and we need the factors (the spinor bundles)
only for local calculations.

In the case of the sphere,the curvature operator is just the identity
map on 2-vectors, so rigidity follows from the fact that if strict equality
holds in the inequalities above we must have g ≡ ḡ on Λ2

p at all points.
Since g ≥ ḡ on Λ2 this now implies that the two metrics are identical on
each tangent space. The odd dimensional spherical case can be proved
by applying the even-dimensional case to M × S1, which is given an
appropriate metric with a long S1. We refer to [L1].

To prove Theorem 4, we consider the twisted Dirac operator D on
the bundle S(g)⊗E, where we choose the coefficient bundle E to be the
line bundle L(ḡ), whose square is the canonical bundle of the Hermitian
symmetric space. Here we use the metric g and its Levi-Civita connection
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to define the Dirac operator on the spinors in S(g), but for the twisting
bundle L(ḡ), the connection induced by the Levi-Civita connection of the
symmetric metric ḡ is used. Under the assumption that |ω|ḡ > |ω|g the
operator R dominates the corresponding operator R:

R(σ ⊗ l) = − R

4|ω|2g
γ̄(ω)σ ⊗ γ̄(ω)l

which in turn dominates −R/4 so that R + R/4 is positive definite
on S ⊗ L. The assumption R ≥ R̄ would then imply that there are
no harmonic spinors by Lichnerowicz’ formula. The tensor product of
the spinor bundle with the line bundle, whose square is the inverse of
the canonical bundle exists globally on any Hermitian manifold, and is
the spinor bundle of the canonically associated spinc structure. The
index for the corresponding Dirac operator is given by the Todd genus
which is non-zero for compact Hermitian symmetric spaces and Theorem
4 follows.

2.3 Connections with symplectic invariants

In symplectic geometry, there is a notion of fibrations π : P →M with a
symplectic manifold F as fiber, where the structure group is the group of
(exact) Hamiltonian symplectomorphisms of the fiber. These are called
symplectic fibrations. If the base manifold (M,ωM) is also symplectic,
there is a weak coupling construction, originally due to Thurston, of
defining a symplectic structure on the total space P . An efficient way to
describe this procedure is through the use of the curvature of a symplec-
tic connection and results in what is known as minimal coupling form.
We rerfer to [GLS] for details. Parallel translation w.r.t. a symplectic
connection is a symplectomorphism of the fiber and hence the symplectic
curvature can be described as a two-form on the base manifold M with
values in the Hamiltonian vector fields on the fiber at the given point
and hence can be identified with a function (the Hamiltonian) on the
fiber. We normalize Hamiltonians on compact symplectic manifolds to
have mean value zero. If the fiber F is compact and simply-connected,

20



each symplectic connection Γ gives rise to a unique closed 2-form ωΓ on
the total space P characterized by the following properties:

(i) ωΓrestricts to the symplectic form on the fibers.

(ii) The horizontal space and the vertical space of the connection Γ are
perpendicular w.r.t. ωΓ.

(iii) On the horizontal space, ωΓ coincides with the symplectic curvature
of the connection. Γ

The cohomology class of ωΓ is independent of the connection Γ and
hence is a symplectic invariant of the fibration. In general, the form ωΓ

is not symplectic (it could be degenerate in horizontal flat directions).
However if we define the weak coupling form:

ωε = εωΓ + π∗(ωB)

then for sufficiently small ε, this would define a closed non-degenerate
symplectic form on the total space P . The maximal possible value εmax

is a symplectic invariant called the maximal weak coupling constant.

Using this interpretation of symplectic curvature, we can now define
the symplectic K-area of a given fixed symplectic fibration over a compact
symplectic as the inverse of the minimum possible curvature. First we
define the norm:

‖ωΓ‖ == max
v,w

|ωΓ(v̄, w̄)|
|ωB(v, w)|

where v̄, w̄ denote the horizontal lifts and the maximum is taken over
all pairs of vectors v, w in the base manifold B such that ωB(v, w) 6= 0.

The symplectic K-area is then defined to be:
Definition.

Ksymp-area (P ) = sup
Γ
‖ωΓ‖−1

where the maximum is taken over all symplectic connections on the fixed
fibration:P →M .

In many situations we are dealing with symplectic fibrations that
arise from linear vector bundles. An important case is when the fiber is
a co-adjoint orbit F = O ⊂ g∗ and the bundle is associated to a principle
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G-bundle via the adjoint representation. G is here a finite dimesional Lie
group, e.g. U(n). An “ordinary” connection ∇ is then necessarily sym-
plectic since G acts symplectically on the co-adjoint orbits with moment
map given by the incluson: F ⊂ g∗. The symplectic curvature of ∇ is
therefore simply the curvature R∇ ∈ g thought of as a linear function on
g∗ restricted to the co-adjoint orbit. It is clear that the symplectic K-area
is an upper bound for the “ordinary” K-area (of the fixed bundle), since
we are taking the smallest possible curvature among a larger class of
connections. Optimistically, one might expect that for simple co-adjoint
orbits, the two K-areas are equal, since the curvature of “ordinary” con-
nection induces a simple linear Hamiltonian function of the fiber and so
should be minimizing among all symplectic connections. That this is in
fact true, was shown by Polterovich [P1] for the special case of certain
complex projective bundles over S2. Moreover, it is not hard to see that
the symplectic K-area is bounded from above by the maximal εmax for
the weak coupling constant and Polterovich was able to show that all
three invariants are equal in these special cases. This allows him also to
conclude a sharp estimate for the Hofer norm of some loops in U(n+ 1)
acting on CP n. His proof uses the theory of J-holomorphic curves and
Gromov-Witten invariants on the total space of the fibration. It would be
intriguing to see whether there is a simple “spinorial” proof in the spirit
of the last section of these results and also more generally investigate
when symplectic K-area inequalities are sharp.

2.4 The Vafa-Witten inequality

In 1984 Vafa and Witten [VW] proved the following surprising fact about
the spectrum of twisted Dirac operators on compact spin manifolds.
These results do not hold for ordinary Laplacians on bundle valued forms.

Theorem 6. Let |λ1| ≤ |λ2| ≤ ... be the eigenvalues ordered by their
absolute values of a twisted Dirac operator DE defined on S ⊗ E over a
compact spin manifold (M.g) of dimension n, where we use a connection
∇ for E. Then there exists a constant C(M, g), depending only on the
Riemannian manifold (M.g) and independent of the twisting bundle E

22



and the connection ∇ on E such that for all k we have the following
universal bound:

1

k
|λk|n ≤ C(M, g)

For odd-dimensional manifolds, there are stronger results (which do
not hold in even dimensions) to the effect that every interval on the real
line of a certain lenth C (depending only on (M, g) but not on the twisting
bundle E nor on the connection ∇ used on E) contains an eigenvalue of
DE.

Sketch of proof

For the sake of clarity, we will restrict ouselves to the case k = 1, i.e.,
the first eigenvalue and to even-dimensional manifolds first.

If index(D+
E) 6= 0, then there is nothing to prove since there is a

harmonic spinor (zero eigenvalue) for DE. The strategy is to show that
any DE is close (up to an algebraic zeroth order operator) to a twisted
Dirac operator which has non-zero index. To be more precise we show
that this is true for the twisted Dirac operator of some multiple E ⊗CN

of E which has the same spectrum, as DE up to multiplicities.
This is done in two steps:

Step 1. Find a bundle F such that index(D+
E⊗F ) 6= 0

Step 2. Find a complementary bundle F⊥ such that F ⊕ F⊥ is trivial.

Step one is achieved in the usual fashion, by pulling back to M the
spinor bundle S+ of S2m, whose top Chern class is non-zero, using a map
of degree one: M2m → S2m. (We can just map a small ball onto the
sphere punctured at a point and the rest of the manifold can be mapped
to that point). This makes the index of D+

E⊗F equal to dim(F ), since we
are assuming that index(D+

E) = 0.
For step two we can choose the complementary bundle to be the pull

back (under the same map as in step one) of the universal complementary
bundle for S+ on the sphere (this is simply the bundle S− on the sphere).
Moreover we can use the connections that are also pull backs of the
standard spinor connections on the round sphere. The difference of the
connection on E ⊗ (F ⊕ F⊥) ∼= E ⊗ CN defined by these pull-backs to
that induced by the original connection ∇ on the multiple E ⊗ CN now
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depends only on the universal bundles on the sphere and the map used to
pull back the bundles and hence is independent of E and ∇. Therefore
the spectrum of a multiple of the original Dirac operator DE is close
to another twisted Dirac operator which has a zero eigenvalue and the
theorem is proved in this case.

To extend the theorem to higher eigenvalues (higher k) we need to
use higher degree maps (using disjoint balls) to pull back the bundles
from the sphere in order to get bigger indices ( = degree × dim(F )).

To prove the odd dimensional case, we take the product of the odd
dimensional manifold with S1 and use a spectral flow argument. This
also proves the more general result about the distribution of eigenvalues
in an interval (not necessarily containing zero) of a definite length.

Although the proof seems rough and topological, the Vafa-Witten
upper bounds are sharp in certain cases.

Examples

(i) For the spheres, the estimates are sharp and the method is in fact
closely related to the proof of Llarull’s theorem.

(ii) To get sharp estimates for M = CP n (n odd) one should use the
trivial bundle (TM ⊕ 1C)⊗H where H is the Hopf bundle and 1C is the
trivial complex line bundle.

The main idea used behind the Vafa-Witten proof can be formalized
to the notoin of K-length of a Riemannian manifold. For a given bundle
E with connection, we can measure its non-triviality by finding the min-
imum amount of “second fundamental form” required to imbed it inside
a larger trivial bundle. The K-length is then the inverse of the smallest
norm of such “second fundamental forms” over all homologically essential
bundles. The K-length can be used to control spectral gaps. We refer
again to [G] for more details.
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3 Positive Mass Theorems

3.1 Description of Results

In general relativity, there is no satisfactory notion of total energy, since
the energy of the gravitational field itself is described purely in terms
of geometry and does not contribute directly to the local stress-energy-
momentum tensor Tij . However, in an asymptotically flat space time
describing an isolated system like a star or a black hole, where the grav-
itational field approaches ordinary Newtonian gravity with respect to a
background inertial coordinate system at infinity, one can define the total
mass, or more relativistically, the total energy-momentum four-vector of
the system by asymptotic comparison with Newtonian theory at large
distances.

More precisely, we define an asymptotically Euclidean space-like hy-
persurface to be a 3-dimensional oriented Riemannian manifold (M, g)
isometrically imbedded in 4-dimensional space-time whose first and sec-
ond fundamental forms gij and hij satisfy the following asymptotic con-
ditions:

(A) There is a compact set K ⊂M so that M \K is a finite disjoint
union of ends, each diffeomorphic to the complement of a closed ball in
R3 and using the standard coordinates given by this diffeomorphism, g
and h have the asymptotic behaviour:

∂α(gij − δij) ∈ O(r−1−|α|) for |α| ≤ 2 (2)

and

∂β(hij) ∈ O(r−2−|β|) for |β| ≤ 1 (3)

These are not the optimal decay rates and we refer to [B] for refine-
ments and also for a discussion of the independence of the ADM-mass,
from the choice of the coordinate system at infinity. ADM stands for
Arnowitt, Deser and Misner and their definition of the total energy-
momentum (E,Pj) of an asymptotically Euclidean space-like slice is:

E =
1

16πG
lim
r→∞

∮
S(r)

(∂kgik − ∂igkk)dσ
i (4)
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Pj =
1

8πG
lim
r→∞

∮
S(r)

(hij − δijhkk)dσ
i (5)

where S(r) is the Euclidean sphere of radius r and the integrals are
defined for each end. For the important prototypical example of the
Schwarzschild metric, this definition of course recovers the usual mass
that appears in the metric and P = 0 .

The next important physical assumption assumption is the following
dominant energy condition for the local mass density T :

(B) For each time like vector e0 transversal to M , T (e0, e0) ≥ 0 and
T (e0, ) ia a non-space-like covector. This implies that for any adapted
orthonormal frame (e0, e1, e2, e3) with e0 normal and e1, e2, e3 tangential
to M , we have the inequalities:

T 00 ≥ |T µν | for all 0 ≤ µ, ν ≤ 3 (6)

and

T 00 ≥ (−T0kT
0k)1/2 (7)

We of course also assume that space time satisfies Einstein’s field
equations:

Rµν −
1

2
Rgµν = 8πGTµν (8)

Given these assumptions, the positive energy theorem states that

Theorem 7. An asymptotically Euclidean space-like hypersurface in a
space-time satisfying Eistein’s equation and the dominant energy condi-
tion has non-negative total energy in the sense that E ≥ |P | for each
end. Moreover if E = 0 for some end, then there is exactly one end and
M is isometric to flat Euclidean space.

After several attempts by relativists, who established several special
cases, the first complete proof of this result was achieved by Schoen and
Yau [SY 2,3,4], using minimal surface techniques. Subsequently, Witten
[W] found a completely different proof using harmonic spinors. It should
be noted that some analytical subtleties in Witten’s paper were clarified
later by Parker and Taubes [PT].
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In the positive mass theorem, if we ignore the fact that the space-like
slice (M3, g) is imbedded in space-time, the assumption to be asymp-
totically Euclidean is well defined by (1) and the formula (3) for the
energy (or mass) E still makes sense. In this Riemannian situation,
the appropriate assumption that replaces the dominant energy condi-
tion (B) is that the scalar curvature of (M3, g) is non-negative. In fact,
if the space-like slice has zero mean curvature zero (tr(h) = 0), then
by the Gauss-Codazzi equations, assumption (B) would imply that the
scalar curvature of M3 is non-negative. More generally, one would like to
pose the problem whether, for all dimensions n, an asymptotically Eu-
clidean Riemannian manifold (Mn, g) with non-negative scalar curvature
has non-negative mass . This is also pertinent to physics, if one works
in a more general framework than classical relativity. To be exact, one
needs to modify the decay rate in definition (1), depending on n. We
assume for simplicity:

∂α(gij − δij) ∈ O(r−n+2−|α|) for |α| ≤ 2 (9)

With this definition of asymptotically Euclidean we have the following
result.

Theorem 8. An asymptotically Euclidean spin manifold M with non-
negative scalar curvature everywhere has positive total mass E. Moreover
E = 0 if and only if M is isometric to flat Euclidean space.

Both Schoen-Yau and Witten established this theorem in dimension
3 in the course of their proof of the positive mass conjecture. For general
n, this was first proved by Bartnik [B]. We note that for a compactly
supported perturbation of the flat metric, the above theorem would be a
simple consequence of the corresponding result for the torus.

It is a natural question to ask for similar results with different asymp-
totic background geometries and in [M1], I established, using Witten’s
method, the following hyperbolic version of the rigidity part of the last
theorem.

Theorem 9. A strongly asymptotically hyperbolic spin manifold of di-
mension > 2 , whose scalar curvature satisfies R ≥ −n(n−1) everywhere,
is isometric to hyperbolic space.
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There is a technical mistake in the definition of strongly asymptoti-
cally hyperbolic in my paper [M1] and I would like to redefine it here.

Definition: A Riemannian manifold (Mn, g) is said to be strongly
asymptotically hyperbolic (with one end) if there exists a compact subset
B ⊂ M and a diffeomorphism φ : M \ B → Hn \ B̄(r0) for some r0 > 0
such that, if we define the gauge transformationA : T (M\B) → T (M\B)
by the equations: (i) g(Au,Av) = φ∗g(u, v), (ii) g(Au, v) = g(u,Av),
then A satisfies the following properties:

AH1: There exists a uniform Lipschitz constant C such that

C−1 ≤ inf
|v|=1

|Av| ≤ sup
|v|=1

|Av| ≤ C

AH2: exp(φ ◦ r)(A− id) ∈ L1,1 ∩ L1,2(T ∗ ⊗ T (M \B).

Before I sketch the main idea behind the spinorial proofs of these
theorems here are some remarks:

1. There are also Lorentzian versions of these results for asymptotically
Anti-deSitter spaces. See for example: [RT],[WO].

2. X. Zhang [Z] proves a generalization of theorem 8 and there is also a
version established by M. Herzlich [HE1], where the background metric
is that of a complex hyperbolic space.

3. There is a much stronger version of the positive mass conjecture known
as the Penrose conjecture for black holes where the mass is bounded
from below by the area of the event horizon. The Riemannian version of
this conjecture has been now established by Huisken-Ilmanen [HI] and
H.Bray [BR]. The proofs are not spinorial and use what is known as the
inverse mean curvature flow. For a spinorial proof of a related“Penrose-
like inequality” see [HE2].

4. There are some recent new positive energy conjectures formulated
by by Horowitz and Myers [HM], in their attempt to deal with stability
problems arising from the AdS/CFT correspondence. For example, they
conjecture a positive energy theorem and a corresponding rigidity result
for metrics on four dimensional manifolds which asymptotically look like:

ds2 =
r2

l2

[(
1− r4

0

r4

)
dθ2 + (dx1)2 + (dx2)2

]
+

(r2

l2
(
1− r4

0

r4

))−1

dr2
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where r ≥ r0 and θ ∈ S1 with period π l2/r0. This the Euclidean
version of their conjecture and energy has to appropriately defined.

3.2 Sketch of proofs

The first basic step in proving these theorems is to solve for harmonic
spinors which have the correct behaviour at infinity and then apply the
integrated version of the Lichnerowicz formula, using Stokes’ theorem.
The boundary integrals, in the limit, are then identified with the “mass”.

If now integrate the Lichnerwicz formula for the ordinary Dirac op-
erator:

D2 = ∇∗∇+
R

4

on a manifold with boundary, we obtain:∫
M

(|∇ψ|2 +
R

4
|ψ|2) +

∫
M

|Dψ|2 =

∫
∂M

〈∇νψ + ν ·Dψ,ψ〉

where ψ is a spinor and ν is the unit outer normal vector of the boundary.
The formula can also be proved by computing the divergence of a one

form and applying Stokes’ theorem. The specific one form α we use here
is defined by:

α(v) = 〈∇vψ + v ·Dψ,ψ〉

for v ∈ TM and for a fixed spinor field ψ. The divergence of α is computed
to be:

−δα = |∇ψ|2 − |Dψ|2 +
R

4
|ψ|2

For a harmonic spinor satisfying Dψ = 0, the boundary integral on
the right-hand-side will be non-negative, provided the scalar curvature
is non-negative. Moreover it can and vanish if and only if ψ is globally
parallel. To prove Theorem 7, we prove first the existence of a harmonic
spinor which is asymptotically parallel in the sense that it approaches a
parallel spinor (with respect to the background flat metric) sufficiently
fast. The limiting value of the boundary integral is then shown to be
the mass (= E) when the boundary spheres go off to infinity. Rigidity
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follows from the fact that if the mass vanishes, we get a trivialization of
the manifold by parallel spinors, since we get one for each asymptotic
value.

To prove Theorem 8, one needs a connection ∇̃ that is flat for the
standard hyperbolic space. There is a natural one, which I called a hyper-
bolic Cartan connection in [M1], which comes from imbedding hyperbolic
space in Minkowski space and restricting the flat vector space parallelism.
This can be done “virtually” for any Riemannian manifold on the stabi-
lized tangent bundle TM ⊕ 1, except that the connection would not be
flat unless the manifold is hyperbolic. For spin manifolds, we also obtain
induced connections on associated spinor bundles. The modified Dirac
operator D̃, is then defined using these Cartan connections. We refer to
[M1] for details. This is very similar to Witten’s proof of the Lorentzian
version ( Theorem 6), where he also used the Levi-Civita connection of
the surrounding space-time restricted to the space-like slice to define a
modified Dirac operator. The curvature terms that appear in the Lich-
nerowicz formula for the square of Witten’s Dirac operator involve more
than just the scalar curvature. However, the dominant energy condition
together with Einstein’s equation is exactly what is needed to prove that
the integrand is non-negative. The boundary integrals are identified, in
the limit, with the total energy-momentum vector.

In the case of the Dirac operator D̃, defined by a hyperbolic Car-
tan connection the analogue of Lichnerowicz’ formula is obtained simply
by replacing the Riemannian connection and curvature terms by their
hyperbolic analogues.

D̃2 = ∇̃∗∇̃+
R̃

4

where R̃ = R + n(n− 1) is the hyperbolic scalar curvature.
The proof of Theorem 8 now proceeds exactly as in the Euclidean case.

First solve for a hyperbolically harmonic spinor with good asymptotics
and then integrate by parts.

The above proofs for positive mass theorems do not involve index ar-
guments in contrast to results from the last section on compact manifolds.
It would be interesting to have versions of these theorems for manifolds
with (finite) boundary involving relative versions of the K-area and the
index theorem. In fact, we express the boundary integral purely in terms
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of a self-adjoint tangential Green’s operator acting on the boundary:

∇ν + νD = νD̂ − H

2

where H is the mean curvature (with respect to the inner normal ν) of

the boundary, and νD̂ is a tangential self adjoint boundary operator. We
have then the following fundamental formula for a harmonic spinor:∫

M

(
|∇ψ|2 +

R

4
|ψ|2

)
= −

∫
∂M

〈νD̂ψ, ψ〉+

∫
∂M

H

2
|ψ|2 .

One would then impose appropriate boundary conditions to control the
sign of the boundary integral.

3.3 Some mathematical aspects of the AdS/CFT
correspondence

There are many physical aspects about the AdS/CFT correspondence,
more generally known as the holographic principle. I will only be able
to describe some special mathematical features and my description is
necessarily very limited.

First of all AdS stands for Anti-deSitter space which is the Lorentzian
analogue of hyperbolic space in Riemannian Geometry. CFT stands for
conformal field theory and the correspondence is between supergravity
(or string theory) of the bulk manifold (say hyperbolic space) and confor-
mal field theory on its boundary (which in the case of hyperbolic space
is the conformal sphere).

To be more specific, one studies a complete Riemannian Einstein
manifold Mn+1 with negative Ricci curvature, which has a conformal
compactification in the following sense: M is the interior of a compact
manifold with boundary M and the metric of M can be written near the
boundary as:

ds2 =
1

t2
(dt2 + gij(t, x)dx

idxj)

where t is a smooth function which is positive on M and has a zero of
first order at N = ∂M (i.e. dt 6= 0 near N).
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Although the induced metric on the boundary depends on the choice
of the defining function t, the conformal class is independent of the choice
and so conformal invariants on N are well defined. In particular, one is
interested in expressing classical action functionals for (super)-gravity
in terms of correlation functions of the boundary values at infinity. As
a simple example, for scalar functions on hyperbolic space Hn+1, one
can solve the Laplace equation for functions with any given prescribed
boundary values. The resulting harmonic function is classically given by
the Poisson kernel and so the Dirichlet functional (action) for harmonic
functions can easily be written as a boundary integral on the conformal
sphere Sn. (This is a two point correlation function for the boundary
values). More generally one would study this correspondence for more
elaborate functionals arising from supergravity and gauge theory on say,
asymptotically hyperbolic spaces.

If the conformal class of the metric on the boundary contains a metric
of positive scalar curvature (i.e. if the Yamabe invariant is positive),
then Witten and Yau [WY] has shown that the conformal boundary N
is connected and also the nth homology group of M vanishes. This is a
basic result, since the non-connectedness would have unnatural physical
implications.

Somewhat more general results were then established by M.Cai and
G.Galloway [CG]. The results can be formulated in a more geometrical
fashion and the proofs are also based on more traditional comparison
methods of Riemannian geometry.

Theorem 10. Let Mn+1 be a complete Riemannian manifold with com-
pact boundary and suppose that the Ricci curvature of M satisfies Ric(g) ≥
−n g everywhere and suppose that the boundary has mean curvature H >
n. Then M is compact.

Theorem 11. Let Mn+1 be a complete Riemannian manifold admitting
a coformal compactification M , with boundary Nn, and suppose that the
Ricci curvature of M satisfies Ric(g) ≥ −n g everywhere and such that
Ric(g) → −n g sufficiently fast near the conformal boundary. Assume
also that N has a component with a metric of non-negative scalar curva-
ture. Then the following properties hold:

(i) N is connected.
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(ii) If M is orientable then Hn(M,Z) = 0.

(iii) The map i∗ : π1(N) −→ π1(M) induced by the inclusion is onto.

The Witten-Yau proof uses variational and comparison methods for
minimal surfaces and related functionals for branes whereas Cai and Gal-
loway use only variational and comparison methods for geodesics.

The proof of Theorem 9 is quite simple and follows from the fact
that the condition H > n on the boundary forces the geodesics starting
perpendicular to the boundary to focus more strongly than the negative
Ricci curvature of the bulk manifold and hence these geodesics will have
conjugate points within a finite distance. This is, of course, very reminis-
cent of the classical Bonnet-Myers argument. Theorem 10 is a little bit
harder to prove, but still is based on classical methods of Riemannian ge-
ometry using comparison arguments for Busemann functions. It would
be nice to see a spinorial approach and maybe obtain stronger results
using only lower bounds on the scalar curvature.

Finally, I would like to remark that there might be a connection
of these type of problems with the entropy rigidity result of Besson-
Courtois-Gallot [BCG]. In one of their proofs they used the fact that
the imbedding of the manifold in the Hilbert space of all probability
measures on the boundary at infinity given by the square root of the
Poisson kernel calibrates the volume form. It is a homothety for the
standard hyperbolic space. It would be interesting to extend this idea to
other harmonic propagators, involving the Dirac operator, spinors, scalar
curvature, K-area and the index theorem.
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