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Abstract

The Ricci flow of Riemannian metrics on a compact manifold can be interpreted

as a deformation of Cartan connections of hyperbolic type. The purpose of this

paper is to show that there is analogous interpretation for the holonomy invari-

ant transversal Riemannian metric defined for foliations over compact manifolds.

Once the short-time existence of the transversal flow of Cartan connections is

established, the theorems proved using deformation of the metric through the

Ricci flow are generalized to the case of a Riemannian foliation on a compact

Riemannian manifold.

1 Introduction and Results

In [9] the Ricci flow of Riemannian metrics on a compact manifold was inter-

preted as a deformation of Cartan connections of hyperbolic type. The purpose
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of this paper is to show that there is analogous interpretation for the holon-

omy invariant transversal Riemannian metric defined for foliations over compact

manifolds.

As the first consequence, using the theorem of Hamilton [3, section 5] we

obtain the short-time existence of the transversal flow of Cartan connections

on M. Following the idea of Bemelmans, Min-Oo and Ruh introduced in [2]

and using the maximum principle as in [1] we obtain the following smoothing

property:

Theorem 1.1 Let F be a foliation of codimension q defined on a compact n-

dimensional Riemannian manifold M with a holonomy invariant transversal

Riemannian metric gQ on the normal bundle Q. There exists a smooth curve

of transversal Riemannian metrics g(t) with g(0) = gQ and universal constants

C(q) and ε(q) depending only on the codimension q, such that
∞∑

k=0

tk

((k + 1)!)2
|DkFD(g(t))|2 ≤ C(q)|FD(g(0))|2 (1)

uniformly for t ∈ [0, ε(q)], where |DkFD(g(t))| is the supremum of the k−th

covariant derivative of the transversal curvature tensor FD(g(t)) of the metric

g(t).

Theorems proved using deformation of the metric through the Ricci flow (see

[7, 8, 12]) can now be generalized to the case of a Riemannian foliation on a

compact Riemannian manifold. In particular, we obtain the following theorems

(see [3, 4]):

Theorem 1.2 Let F be a foliation of codimension three on a compact manifold

M with a holonomy invariant transversal Riemannian metric gQ for the normal
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bundle Q. Suppose that the Ricci curvature of gQ is positive definite. The metric

gQ can be deformed to a holonomy invariant transversal Riemannian metric with

constant positive sectional curvature.

Theorem 1.3 Let F be a foliation of codimension four on a compact manifold

M with a holonomy invariant transversal Riemannian metric gQ for the normal

bundle Q. Suppose that the curvature operator of gQ is positive definite. The

metric gQ can be deformed to a holonomy invariant transversal Riemannian

metric with constant positive sectional curvature.

Similar result can be obtained in higher codimensions for a transversal cur-

vature that is pinched enough (see [7, 8, 12]).

In order to prove theorems 1.2 and 1.3 we have to observe that once the

existence of the flow (20) has been established, Hamilton’s proof in [4] carries

over to the more general setting of a Riemannian foliation since the Weitzenböck

formulas are true locally on the local Riemannian quotient and because we can

use the maximum principle for basic functions on the compact manifold exactly

as it was done in [10]. The technical details will be dealt with in a forthcoming

paper.

It is worth noting that the theorem of Hamilton concerning the Ricci flow on

surfaces [5] does not have a generalization to Riemannian foliations. Technical

reasons for this are the lack of a Gauss-Bonnet theorem and the non-existence

of a suitable volume. A more basic reason is the counter-example of Hebda [6].

In Section 2 we present the background material and introduce Cartan con-

nections. Section 3 is devoted to a study of the transversal flow of Cartan
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connections, which turns out to be the right tool – it enables us to extend the

known results (see [4]) to foliations over Riemannian manifolds. In section 4

integrability and smoothness of the flow are established.

2 Main Concepts

Let (M, gM ) be a compact Riemannian manifold and ∇M its Levi-Civita con-

nection. By F we denote a Riemannian foliation on M defined by an integrable

distribution Lp ⊆ TM with normal bundle Qq ∼= TM/L.

The tangent bundle TM splits orthogonally (with respect to gM ) as TM =

L⊕L⊥, and gM = gL⊕ gL⊥ . The metric gQ on Q ∼= L⊥ is defined as a pullback

by local Riemannian submersions fα (local transition functions are isometries)

which describe the foliation F . This metric is actually the pullback σ∗gL⊥ , where

σ : Q→ L⊥ ⊆ TM splits the sequence

0 → L→ TM
prQ−→ Q→ 0. (2)

Such a metric satisfies [11, page 78] LXgQ = 0 for X ∈ ΓL and we say that the

metric gQ is holonomy invariant (or that gM is bundle-like).

Basic Vector Fields and Basic Forms.

A vector field X defined on a domain U ⊆ M is called basic if X ∈ ΓQ (i.e. if

X is horizontal) and if X is locally f−related to a vector field X defined on a

local Riemannian quotient f(U).

A vector fieldX in TM is called projectable if [X,Y ] ∈ ΓL whenever Y ∈ ΓL.

(In local coordinates X =
∑q

i=1 xi(y1, ..., yq) ∂
∂yi

, where {yi} is the transversal
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coordinate frame). It is always possible to find a local orthonormal coordinate

system {e1, . . . , en} on TM such that e1, . . . , ep ∈ ΓL and ep+1, . . . , en ∈ ΓQ

are projectable vector fields.

A differentiable form α on M (with values in a vector bundle E with con-

nection D) is called basic iff iXα = 0 and LXα = 0 for X ∈ ΓL, or equivalently,

iff both α and dDα are horizontal. Such a form can be identified, on a distin-

guished chart (U, f), with the pullback α on the Riemannian quotient f(U), i.e.

α = f∗α.

Basic Transversal Levi-Civita Connection in Q.

The bundle Q is canonically (independently of the metric) equipped with the

partial connection (called the Bott connection)

∇B
XY = prQ[X,Y ′], (3)

where X ∈ ΓL, Y ∈ ΓQ and Y ′ ∈ ΓTM is such that prQ(Y ′) = Y. This

connection is flat (i.e. R∇
B

(X,Y ) = 0 whenever X,Y ∈ ΓL) and ∇B
XY = 0 for

a basic vector field Y. It is not the restriction of the Levi-Civita connection ∇M

of TM to L.

To extend the Bott connection we define

∇XY = prQ(∇M
X Y ′) (4)

for X,Y ∈ ΓQ, and Y ′ ∈ ΓTM is such that prQ(Y ′) = Y.

The connection ∇XY for X ∈ ΓTM and Y ∈ ΓQ defined by (3) and (4) is

called adapted to Bott connection ∇B
XY. It is metric (with respect to gQ) [13,

page 53], and torsion free [13, page 49] and is called the transversal Levi-Civita

connection of F . It coincides (because of local uniqueness) with the pullback of
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the local Levi-Civita connection on the Riemannian quotient. Such a connection

is called basic. Equivalent statement, iXR∇ = 0 for X ∈ ΓL, is a consequence

of the Jacobi identity.

Gauge Transformations.

Any invertible endomorphism θ : Q→ Q can be extended to a homomorphism

θ = θ ◦ prQ : TM → Q, where prQ : TM → Q is a projection onto Q defined

using the (fixed) metric gM on M. It can be easily verified that if LXθ = 0 for

X ∈ ΓL, then θ is a basic 1-form on M with values in the bundle Q.

The gauge transform of a connection ∇ in Q is (θ∗∇)XY = θ−1(∇X(θY )).

The curvature is then θ∗R(X,Y )(Z) = θ−1(R(X,Y )(θZ)).

The gauge transform of the metric gQ in Q is θ∗gQ(X,Y ) = gQ(θX, θY ),

where X,Y ∈ ΓQ.

Cartan Connections.

Consider a vector bundle E = Q⊕Q∧Q over a compact manifoldM . The bundle

Q∧Q is identified (via gQ) with the bundle of skew-symmetric endomorphisms

of Q, i.e.

(X ∧ Y ) ↔ (Z 7→ gQ(Z, Y )X − gQ(Z,X)Y ). (5)

The fibers of E are isomorphic to o(1, n), and the Lie algebra structure is

given by

[(X,A), (Y,B)] = (A(Y )−B(X), [A,B]Q∧Q +X ∧ Y ), (6)

where X,Y ∈ ΓQ and A,B ∈ Γ(Q ∧Q).

The metric gE in fibers of E is a direct sum metric induced by the base

metric gM ; hence gE(A,B) = − 1
2 tr(AB) and gE(A,X ∧ Y ) = −gM (A(X), Y )
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for X,Y ∈ ΓQ and skew-symmetric maps A,B : Q→ Q.

Combining the connection on E = Q⊕Q ∧Q induced by ∇ (see definitions

(3) and (4)) with the gauge transform θ we form a Cartan connection of the

type o(1, n)

DXs = ∇Xs+ [θX, s], (7)

where X ∈ ΓTM, s ∈ ΓE and the bracket being defined in (6). Since both ∇

and θ are basic it follows that the Cartan connection D is also basic, i.e. is a

local lift of a Cartan connection on a local Riemannian quotient.

Take any α ∈ Ωp(M ;E). The exterior covariant derivative with respect to

the connection D is defined by

dDα(X0, . . . , Xp) =
n∑

i=0

(−1)iDXi
(α(X0, . . . , X̂i, . . . , Xp))

+
n∑

1≤i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp), (8)

where X0, . . . , Xp ∈ ΓTM. The exterior derivative d∇ with respect to the con-

nection ∇ on Q adapted to the Bott connection is defined analogously. Hence

dDα = d∇α+ d2α, (9)

where d2 is the algebraic operator

d2α(X0, . . . , Xp) =
n∑

i=0

(−1)i[θ(Xi), α(X0, . . . , X̂i, . . . , Xp)]. (10)

Let FD be the curvature of the connection D, FD ∈ Ω2(M ;E∗ ⊗ E). A

simple computation shows that

FD(X,Y )s = R∇(X,Y )s+ [θX ∧ θY, s] + [d∇θ(X,Y ), s] (11)
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for X,Y ∈ ΓTM and s ∈ ΓE. Therefore the curvature FD is the direct sum

FD = F1 + F2, where F1 has values in Q ∧Q and is given by

F1(X,Y ) = R∇(X,Y ) + θX ∧ θY (12)

and

F2(X,Y ) = d∇θ(X,Y ) (13)

has values in Q. The Cartan torsion is defined by the formula

T∇,θ(X,Y ) = F2(X,Y ) = ∇X(θY )−∇Y (θX)− θ([X,Y ]). (14)

Lemma 2.1 (Bianchi identities) Assume that the Cartan torsion is zero.

Then d2F = 0 and d∇F = 0.

Proof: A straightforward computation gives

d2F1(X,Y, Z) = [θX, F1(Y,Z)]− [θY, F1(X,Z)] + [θZ, F1(X,Y )]

= −F1(Y, Z)θX + F1(X,Z)θY − F1(X,Y )θZ

= −R∇(Y, Z)θX − gQ(θX, θZ)θY + gQ(θX, θY )θZ

+R∇(X,Z)θY + gQ(θY, θZ)θX − gQ(θY, θX)θZ

−R∇(X,Y )θZ − gQ(θZ, θY )θX + gQ(θZ, θX)θY

= −θ(θ−1R∇(Y, Z)θX + θ−1R∇(Z,X)θY + θ−1R∇(X,Y )θZ)

= −θ(Rθ∗∇(Y,Z)(X) +Rθ∗∇(Z,X)(Y ) +Rθ∗∇(X,Y )(Z)) = 0 (15)

by the first Bianchi identity. Furthermore,

d∇F1 = d∇R∇ + d∇(θ ∧ θ) = 0, (16)

since d∇R∇ = 0, and d∇θ = 0 by assumption. 2
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3 Transversal Flow of Cartan Connections

In this section we consider Cartan connections D = ∇ + θ on a vector bundle

E = Q⊕Q ∧Q satisfying the following requirements:

(i) ∇ restricts to the Bott connection ∇B on ΓL

(ii) ∇gQ = 0, where gQ is the (fixed) initial transversal metric, and

(iii) the Cartan torsion T∇,θ = 0.

Lemma 3.1 The connection θ∗∇ is the basic Levi-Civita connection of the

transversal Riemannian metric θ∗gQ.

Proof: Since

((θ∗∇)U (θ∗gQ))(X,Y )

= U(θ∗gQ(X,Y ))− θ∗gQ((θ∗∇)UX,Y )− θ∗gQ(X, (θ∗∇)UY )

= U(gQ(θX, θY ))− gQ(∇U (θX), θY )− gQ(X,∇U (θY )) = 0 (17)

and

T θ∗∇(X,Y ) = (θ∗∇)XprQ(Y )− (θ∗∇)Y prQ(X)− prQ[X,Y ]

= θ−1∇X(θY )− θ−1∇Y (θX)− θ−1(θ[X,Y ])

= θ−1(T∇,θ(X,Y )) = 0, (18)

it follows that θ∗∇ is the Levi-Civita connection of θ∗gQ. The fact that it is

basic follows from

(iXRθ∗∇)(Y ) = Rθ∗∇(X,Y ) = θ−1(R∇(X,Y )θ) (19)

and the fact that ∇ is basic. 2
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Consider the flow of Cartan connections D = ∇+ θ

∂

∂t
D = −δ̃DFD (20)

on a vector bundle E = Q ⊕ Q ∧ Q, with the initial condition D(0) = ∇ + id.

The operator δ̃D is ”almost” adjoint of the exterior covariant derivative dD, and

is given by the formula

δ̃Dα(X2, . . . , Xp) = −
n∑

k=1

∇ek
(α(ek, X2, . . . , Xp))

+
n∑

k=1

α(∇̃ek
ek, X2, . . . , Xp) +

n∑
k=1

n∑
j=2

α(ek, X2, . . . , ∇̃ek
Xj , . . . , Xp)

+
n∑

k=1

[θek, α(ek, X2, . . . , Xp)], (21)

where X2, . . . , Xp ∈ ΓTM, {ek} is an orthonormal basis of TM for the metric

gL ⊕ θ∗gQ and ∇̃ is the metric connection (which preserves the splitting TM =

L⊕Q) given by

∇̃XY = prL∇M
X (prLY ) + prQ∇M

X (prQY ) (22)

for X,Y ∈ ΓTM . The connection ∇M in (22) is the Levi-Civita connection of

the metric gM on M and prL the projection TM → L.

The operator δ̃D leaves basic forms invariant and coincides, on a distin-

guished chart U , with the lift of the usual formal adjoint on the local Riemannian

quotient f(U) (see [10, Prop. 2.6]).

Define the operators δ2 and δ̃∇ by:

δ2α(X2, . . . , Xp) = [θek, α(ek, X2, . . . , Xp)], (23)

and

δ̃∇α(X2, . . . , Xp) = −(∇̃ ⊗ ∇)ek
α(ek, X2, . . . , Xp)
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= −
n∑

k=1

∇ek
(α(ek, X2, . . . , Xp)) +

n∑
k=1

α(∇̃ek
ek, X2, . . . , Xp)

+
n∑

k=1

n∑
j=2

α(ek, X2, . . . , ∇̃ek
Xj , . . . , Xp), (24)

for a p-form α on M with values in E, X2, . . . , Xp ∈ ΓTM and a frame {ek} of

TM orthonormal with respect to the metric gL⊕θ∗gQ. The operator δ̃D defined

in (21) can now be written as

δ̃Dα = δ̃∇α+ δ2α. (25)

The Ricci tensor, viewed as a 1-form with values in TM can be expressed as

Ric(X) = R(X, ek)ek = [ek, R(ek, X)], (26)

where the full curvature R is interpreted as a 2-form with values in TM ∧ TM.

The short-time existence of the flow (20) is proved in the next section.

Lemma 3.2 Let F2 = 0. Then ∇̇ = −δ̃∇F and θ̇ = −δ2F.

Proof: By definition of the Cartan connection it follows that

ḊXs = ∇̇Xs+ [θ̇X, s], (27)

since the Lie algebra structure in fibers is fixed. On the other hand, by the

definition (21)

(δ̃DF (X))s = (δ̃∇F (X))s+ [δ2F (X), s]. (28)

Comparison of the components of Q and Q∧Q in (20) and the fact that F2 = 0

imply the statement of the lemma. 2
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Lemma 3.3 Let F2 = 0. The flow (20) induces the following evolution equation

for the transversal metric:

ġQ(X,Y ) = −2gQ(Ric(gQ)(X), Y )− 2(n− 1)gQ(X,Y ). (29)

Proof: By the previous lemma the time derivative of the (changing) metric

θ∗gQ is computed to be

∂

∂t
(θ∗gQ(X,Y )) = gQ(θ̇X, θY ) + gQ(θX, θ̇Y )

= −gQ([θek, F (ek, X)], θY )− gQ([θek, F (ek, Y )], θX) (30)

for a θ∗gQ−orthonormal basis {ek}. Now since F2 = 0,

gQ([θek, F (ek, X)], θY ) = gQ(−F1(ek, X)θek, θY )

= −gQ(R∇(ek, X)θek, θY )− gQ((θek ∧ θX)θek, θY )

= −θ∗gQ(Rθ∗∇(ek, X)ek, Y )− gQ(θek, θX)gQ(θek, θY )

+gQ(θek, θek)gQ(θX, θY )

= θ∗gQ(Ricθ
∗∇(X), Y ) + (n− 1)θ∗gQ(X,Y ). (31)

The result now follows from the fact that (30) is symmetric in X and Y. 2

Equation (29) differs from Hamilton’s [3, page 259] in the normalizing factor.

Lemma 3.4 Let F2 = 0. Then ∇̇V X = 0 for V ∈ ΓL and X ∈ ΓQ.

Proof: The statement follows from the equation ∇̇V X = −(δ̃∇F (V ))(X)

(see lemma 3.2 ) and the fact that F = F1 is basic. 2

Lemma 3.5 Let F2 = 0. Then Ḟ2 = −d2δ̃
∇F − d∇δ2F.
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Proof: A straightforward computation gives

Ḟ2(X,Y ) = ∇̇X(θY )− ∇̇Y (θX) +∇X(θ̇Y )−∇Y (θ̇X)− θ̇[X,Y ]

= −δ̃∇F1(X)(θY ) + δ̃∇F1(Y )(θX) + d∇θ̇(X,Y )

= [θY, δ̃∇F (X)]− [θX, δ̃∇F (Y )] + d∇θ̇(X,Y )

= −d2δ̃
∇F (X,Y )− d∇δ2F (X,Y ), (32)

by lemma 3.2 and definition (10). 2

Now we show that the flow (20) is tangent to the space of Cartan connections

with vanishing Cartan torsion.

Lemma 3.6 Let F2 = 0. Then Ḟ2 = 0.

Proof: Let {ek} be an orthonormal basis of TM with respect to the metric

gL⊕ θ∗gQ chosen so that e1, . . . , ep ∈ ΓL and ep+1, . . . , en ∈ ΓQ are projectable

vector fields. Take X = XL + XQ and Y = YL + YQ in TM with transversal

components XQ and YQ being projectable vector fields (such a choice suffices

because (32) is linear with respect to smooth functions on M). Since ∇M is the

Levi-Civita connection, we can assume that at the point x on M the vector field

bracket and the covariant derivatives of vectors ek, XL, XQ, YL and YQ vanish.

If ek ∈ ΓL then F (ek, ∇̃ek
X) = 0 since F = F1 is basic and F (∇̃ek

ek, X) = 0

since ∇̃ek
ek = prL(∇M

ek
ek) = 0. If ek ∈ ΓQ then ∇̃ek

ek = prQ(∇M
ek
ek) = 0 and

∇̃ek
X = 0 by the choice of ek and X and by definition (22) of the connection

∇̃ on M . In any case,

δ̃∇F (X) = −∇ek
F (ek, X) = −∇ek

(F (ek, X)). (33)
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Definitions (3) and (4) and the assumption∇MXQ = 0 imply that∇XQ = 0.

The fact that the gauge transform θ−1∇θ of ∇ is basic implies that their projec-

tions on the local Riemannian quotient are also related by the gauge transform

θ and therefore, since ∇XQ = 0, it follows that θ−1∇θXQ = 0. Consequently,

∇θX = 0 (∇θXL = 0 holds by the definition of θ) and analogously ∇θY = 0

and ∇θek = 0. This consideration simplifies the following computations (see

Lemma 7 in [9]):

d2δ̃
∇F (X,Y ) = [θX, δ̃∇F (Y )]− [θY, δ̃∇F (X)]

= −[θX,∇ek
(F (ek, Y ))] + [θY,∇ek

(F (ek, X))]

= ∇ek
([θX, F (Y, ek)] + [θY, F (ek, X)])

= −∇ek
[θek, F (X,Y )], (34)

by the Bianchi identity d2F = 0. On the other hand

d∇δ2F (X,Y ) = ∇X(δ2F (Y ))−∇Y (δ2F (X))

= ∇X([θek, F (ek, Y )])−∇Y ([θek, F (ek, X)])

= [θek,∇X(F (ek, Y ))−∇Y (F (ek, X))]

= ∇ek
[θek, F (X,Y )], (35)

by the Bianchi identity d∇F = 0. 2

4 Integrability and Smoothness of the Flow

Our next goal is to prove the short time integrability of the flow (20). To avoid

introducing additional notation we will use the symbol gQ to denote the metric
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on E = Q ⊕ Q ∧ Q induced by the metric gQ on Q. Fix the connection D(0)

on E. Any other connection D on E can be expressed as D = D(0) + A with

A ∈ Ω1(M ;E∗ ⊗ E), and therefore we can rewrite (20) as the flow

∂

∂t
A = −δ̃D(0)+A

θ∗gQ
FD(0)+A (36)

in Ω1(M ;E∗ ⊗ E) with initial condition A = 0. The symbol δ̃D(0)+A
θ∗gQ

denotes

the adjoint (21) defined with respect to the connection D(0)+A and the gauge-

transformed metric θ∗gQ.

Proposition 4.1 The evolution equation (36) has a unique smooth solution for

some (small) time interval [0, T > 0] for any initial condition D(0).

Proof: The time derivative of A is computed to be

∂

∂t
A = −δ̃D(0)+A

θ∗gQ
FD(0)+A

= (−δ̃D(0)
gQ

.+A ∨ .−G.)(FD(0) + dD(0)A+ [A,A])

= −δ̃D(0)
gQ

dD(0)A− δ̃D(0)
gQ

[A,A] +A ∨ dD(0)A−G.dD(0)A

+A ∨ FD(0) +A ∨ [A,A]−G.[A,A]− δ̃D(0)
gQ

FD(0) −G.FD(0), (37)

where

δ̃D(0)
gQ

α(X2, . . . , Xp) = −(∇̃ ⊗D(0))ek
α(ek, X2, . . . , Xp), (38)

and {ek} is a gQ−orthonormal frame of TM , dD(0) is the exterior derivative

operator defined in (8),

A ∨ α(X2, . . . , Xp) =
n∑

k=1

A(ek)α(ek, X2, . . . , Xp) (39)
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and

G.α(X2, . . . , Xp) =
n∑

k=1

α(G(ek)ek, X2, . . . , Xp)

+
n∑

k=1

p∑
j=2

α(ek, X1, . . . , G(ek)Xj , . . . , Xp)

+
n∑

k=1

Gk(θ, ∂θ)α(ek, X2, . . . , Xp), (40)

where Gk are smooth functions in θ and its partial derivatives and

G(X)Y = θ−1(∇̃X(θY )− θ∇̃XY ) = (θ−1 ◦ (∇̃Xθ))Y (41)

for X,Y ∈ ΓTM. Hence

∂

∂t
A = −δ̃D(0)

gQ
dD(0)A+ terms of lower order in A, (42)

with the second order term given by

−δ̃D(0)
gQ

dD(0)A(X) = −
n∑

k=1

D(0)ek
D(0)ek

A(X)−
n∑

k=1

D(0)ek
D(0)XA(ek)

+lower order terms. (43)

Define the operators

L(A)H = δ̃
D(0)+A
θ∗gQ

H (44)

for H ∈ Ω1(M ;E∗ ⊗ E), and

E(A) = −δ̃D(0)+A
θ∗gQ

FD(0)+A. (45)

Now L(A)E(A) = −
(
δ̃

D(0)+A
θ∗gQ

)2

is a first-order operator, since δ̃ is adjoint to d

up to an algebraic term, see (21).

From (43) it follows that the symbol of the derivative DE(A) in the cotangent

direction ξ equals

(σDE(A)(ξ)H)j = (
n∑

k=1

ξ2k)Hj −
n∑

k=1

ξkξjHk. (46)
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The symbol of L(A) is given by

σL(A)(ξ)H = −
n∑

k=1

ξkHk, (47)

and therefore the nullspace N of σL(A)(ξ) consists of all H ∈ Ω1(M ;E∗ ⊗ E)

satisfying
∑n

k=1 ξkHk = 0. The restriction of σDE(A)(ξ) to N is then

(σDE(A)(ξ)|NH)j = (
n∑

k=1

ξ2k)Hj , (48)

i.e. a multiplication by
∑
ξ2k. Hence both conditions of the theorem of Hamilton

[3, Theorem 5.1] are satisfied, and the conclusion follows. 2

To prove the smoothness property of the flow (20) we follow closely the idea

presented in [1]. Let E → M be a vector bundle with connection D over a

compact manifold M and let FD be its curvature. The flow of connections

defined by the equation ∂
∂tD = −δ̃DFD implies the following heat equation for

the curvature:
∂

∂t
FD = −∆DFD, (49)

where ∆D = dD δ̃D + δ̃DdD. By the Weitzenböck formula,

∆DFD = ∆FD +K1(FD) +K2(FD), (50)

where ∆ = −DiDi is the rough Laplacian, K1 is linear in FD and involves the

curvature of the base space, and K2 quadratic in the curvature FD. Let gE be

a family of metrics on E and assume that∣∣∣∣ ∂∂tgE

∣∣∣∣ ≤ C. (51)
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Theorem 4.2 There exist constants C(q) and δ(q) depending on the dimension

of E only such that the equation (49) has a solution for any initial condition

FD(0) with |FD(0)| ≤ 1 on the interval [0, δ(q)], and

∞∑
k=0

tk

((k + 1)!)2
|DkFD|2 ≤ C(q). (52)

The proof will be based on estimates given in the next few lemmas. By C we

denote any constant which depends only on the dimension of the manifold M

and the variance of the tensor T.

Lemma 4.3 For any tensor T

∆|T |2 = 2〈∆T, T 〉 − 2|∇T |2. (53)

Lemma 4.4 Let T be any tensor and ∆ the rough Laplacian. Then

∆(DkT )−Dk(∆T ) =
k∑

i=0

ci(DiFD)(Dk−iT ), (54)

where ci ≤
(
k+2
i+2

)
for 0 ≤ i ≤ k.

Proof: We use the induction and the fact that

∆(DkT ) = D(∆(Dk−1T ))− 2FD.DkT −DFD.Dk−1T. (55)

Lemma 4.5 Assume that ∂
∂tD = −δ̃DFD. Then

∂

∂t
(DkT )−Dk(

∂

∂t
T ) =

k∑
i=1

(
k

i

)
(Di−1(

∂

∂t
D))(Dk−iT ), (56)

and hence ∣∣∣∣ ∂∂t (DkT )−Dk(
∂

∂t
T )
∣∣∣∣ ≤ C

k∑
i=1

(
k

i

)
|DiFD||Dk−iT |. (57)
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Combining lemmas 4.4 and 4.5 we obtain

Lemma 4.6∣∣∣∣( ∂∂t + ∆)DkFD

∣∣∣∣ ≤ C

(
k∑

i=0

|DiFD|+
k∑

i=0

(
k + 2
i+ 2

)
|DiFD||Dk−iFD|

)
. (58)

For m ≥ 1 we define

ak =
tk/2

(k + 1)!
|DkFD| , ϕ =

m∑
k=0

a2
k and (59)

bk =
t(k−1)/2

k!
|DkFD| , ψ =

m∑
k=1

b2k. (60)

Lemma 4.7 For m ≥ 1 there is the estimate

m∑
k=0

k∑
i=0

tk

((k + 1)!)2

(
k + 2
i+ 2

)
|DiFD||DkFD||Dk−iFD| ≤ 2(tϕ1/2ψ + ϕ3/2). (61)

Assume that t ≤ 1. Then

m∑
k=0

tk

((k + 1)!)2

k∑
i=0

|DiFD||DkFD| ≤ 6ϕ. (62)

Proof of theorem 4.2 Combining lemmas 4.3 and 4.6 with the uniform

bound on the change of gE we obtain

∂

∂t
|DkFD|2 ≤ C|DkFD|2 + C

k∑
i=0

|DiFD||DkFD|

+ C
k∑

i=0

(
k + 2
i+ 2

)
|DiFD||DkFD||Dk−iFD| −∆|DkFD|2 − 2|Dk+1FD|2.

(63)

We then estimate tk

((k+1)!)2 |D
kFD|2 using (63), add up the inequalities thus ob-

tained (from k = 0 to m) and combine with lemma 4.7 , obtaining the inequality

∂

∂t
ϕ ≤ −∆ϕ− (1− Ctϕ1/2)ψ + Cϕ3/2 + Cϕ. (64)
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The maximum principle applied to (64) together with the fact that (by the

assumption) |ϕ(0)| = |FD(0)|2 ≤ 1, implies

ϕ(t) ≤ 1
(2e−Ct/2 − 1)2

(65)

for all t ∈ [0, T ], T = 1
2C ≤ 1, and the theorem follows. 2
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CH-1700 Fribourg, Switzerland

21


