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Scalar curvature rigidity
of asymptotically hyperbolic spin manifolds*

Maung Min-Oo
Department of Mathematics, McMaster University, Hamilton, Ontario, Canada L8S 4K 1

1. Introduction

The rigidity statement of the positive mass theorem for Riemannian manifolds
says that an asymptotically Euclidean spin manifold with everywhere non-negative
scalar curvature and zero mass is isometric to Euclidean space. The positive mass
conjecture in its various versions was first proved by Schoen and Yau in a series
of papers [11-13] and then independently by Witten [15] who introduced a new
and elegant method of proof using spinors. (See also [1, 10]).

In this paper we study the hyperbolic version of this result using Witten’s
method and show that a spin manifold which is (strongly) asymptotically hyperbolic
cannot have scalar curvature R 2 — n(n — 1) everywhere unless it is isometric to
hyperbolic space.

We denote hyperbolic space with constant sectional curvature K= —1
and scalar curvature R = — n(n — 1) by (H", §). We will think of hyperbolic space
as R" endowed with the metric § = ds® = dr? + (sinh ) d6? in polar coordinates.
For r > 0 we denote by H"(r, o0) the complement of a closed ball of radius r around
the origin, i.e. H(r, o) = H" — B,(0).

On a complete Riemannian manifold (M", g), L*9 will denote the Sobolev space
of all functions with derivatives of order <k in L% equipped with the usual
Sobolev norm || ||, The same notation will also be used for the Sobolev space
of tensors, spinors or other sections in vector bundles over M equipped with
metrics where the derivatives are defined by some metric preserving connection.
For tensors and spinors, which are intrinsically associated to the manifold, the
derivative means covariant derivative with respect to the Levi-Civita connection,
unless stated otherwise explicitly.

Definition. A smooth Riemannian manifold (M",g) is said to be strongly

asymptotically hyperbolic (with one end) if there exists a compact subset B M
and a diffeomorphism ¢: M — B> H"(r,, o0) for some ry >0, such that if we define

* This work was supported by the N.S.E.R.C. of Canada
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the gauge transformation A:T(M — B)-> T(M — B) by the equations:
(i) g(Au, Av) = ¢*g(u,v) = §(d¢(v), dp(v))
(i) g(Au,v)=g(u, Av)
then A satisfies the following two properties:
AH1 3 a uniform Lipschitz constant C = 1 such that, for all ve T(M — B):

(L.1)

C™! < min |Av| £ max|4v| L C
lvj=1 loj=1

AH2 exp(¢eor)-(4 — id)eL"¥T*M — B)® T(M — B),g)

We leave it to the reader to make the obvious extension of the above definition
to the case of finitely many ends. The theorem which follows also holds for
manifolds with finitely many asymptotically hyperbolic ends if we make the
corresponding trivial modifications of the proof. We restrict ourselves therefore
to the case of a connected end. If the dimension n = 3, this end will also be simply
connected. This fact however, is used essentially in the proof.

Condition AH1 assures, in particular, that the manifold is complete. The second
condition AH2 is of course the main assumption on the asymptotic structure of
M, although the exact Sobolev space L''? and the weight ¢" we have chosen here
are certainly not optimal. We will see that a condition on the metric, with respect
to a special coordinate chart is by no means the most natural restriction one can
impose on the structure at oo. Our proof shows that a more natural definition for
a manifold to be asymptotically hyperbolic, or for that matter to be asymptotically
like a symmetric space is given in terms of an almost parallel framing at infinity
for an almost symmetric structure with a Cartan connection and our results would
also be true with this more general definition of asymptotically hyperbolic. (See
[7] for a discussion about almost symmetric spaces and Cartan connections). The
formulation given above is similar to the definition of asymptotic flatness used in
relativity.

We recall that a spin manifold is an oriented Riemannian manifold (M",g)
together with a lift of the structural group SO(n) of its principal bundle SO(M", g)
of all oriented orthonormal frames to its simply connected double cover Spin(n).
It is well known that M has a spin structure iff its 2" Stiefel-Whitney class w,(M)
vanishes.

The main result of this paper can now be stated as follows:

Theorem. A strongly asymptotically hyperbolic spin manifold of dimension 2 3, whose
scalar curvature satisfies R = — n(n — 1) everywhere, is isometric to hyperbolic space.

The basic tool used to prove the above theorem is a Weitzenbock formula for
the Dirac operator associated to a Cartan connection of hyperbolic type. The
analogous formula for the usual Dirac operator of the Levi-Civita connection of
Riemannian geometry is the famous formula of A. Lichnerowicz, which is the basis
of many investigations related to the scalar curvature. In particular we refer to
the fundamental papers of Hitchin [5], and of Gromov and Lawson [2-4], where a
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twisted version of the Dirac operator is employed. The Cartan connection V used
in this paper is a different connection for the base manifold itself and therefore
our Dirac operator is not the usual Dirac operator twisted with some auxiliary
coefficient bundle. It is however still a generalized Dirac operator as defined in
Sect. 1 of [4].

In Sect. 2 we define this basic operator D and derive two Weitzenbock formulas
2

for it. One of them (the L2-version) states that D? = D2 + 24— where D is the usual

Dirac operator. This formula proves that D is invertible. The second formula is
the analogue of the Lichnerowicz formula and relates D? to the rough Laplacian
and the hyperbolic scalar curvature R=R+n(n—1).

The Theorem is then proved, in Sect. 3, by solving for a spinor ¥ satisfying
Dy =0, and which is asymptotically almost parallel with respect to the Cartan
connection V. An application of Stokes’ theorem to the second Weitzenbock
formula then yields a boundary term which goes to zero at infinity if the manifold
is strongly asymptotically hyperbolic. The curvature assumption R=0now implies
that y is parallel everywhere and so we obtain a global parallelization of the
bundle of spinors, forcing the manifold to be isometric to hyperbolic space. The
calculations rely on some of the elementary properties about generalized Dirac
operators as can be found in Sects. 1 and 2 of the paper [4].

Finally we would like to mention the paper [14], where some related rigidity
results involving the sectional curvature are proved.

2. The hyperbolic Dirac operator

For an oriented Riemannian manifold (M", g), we denote by SO(M, g)— M, the
principal SO(n)-bundle of oriented orthonormal frames and if M is a spin manifold,
the principal Spin (n)-bundle defining the spin structure, which is a double cover
of SO(M, g), will be denoted by P = Spin(M, g)— M.

The Levi-Civita connection is an ¢(n)-valued one form 5 defined on SO(M, g),
where O(n) denotes the Lie algebra of SO(n). Since connections are local objects,
n lifts to the double cover P defining the Levi-Civita connection for the spin bundle.
Similarly the horizontal R"-valued canonical one form 6, sometimes called the
soldering form, can be lifted to P.

The sum of these two 1-forms w=n+ & defines a parallelization for both
principal bundles. o is then an O(n)@ R"-valued 1-form. We now define the Lie
bracket structure of the Lie algebra (1, n) of the hyperbolic group SO(1, n) on this
direct sum O(n)@®R". » then becomes what is called a Cartan connection of
hyperbolic type on M. If the structure group Spin(n) of P is extended to the
hyperbolic spin group Spin (1, n) via the standard imbedding Spin (n) = Spin(1,n)
we obtain the principal Spin(1,n)-bundle P=P X Spin(l,n) and w can be

Spin(n)
canonically extended to an ((1,n)-valued 1-form on P defining a connection in
the usual sense of the word. Since P < P is a reduction, there is a corresponding
section ¢ for the fibre bundle B = P(H") associated to P by the action of Spin(1,n)
on the quotient H" = Spin (1, n)/Spin (n). The Cartan connection  defines a parallel
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translation and a developing map, via the soldering section g, in the hyperbolic
bundle B on M.
The curvature of w is defined to be the equivariant horizontal @(1,n)-valued

2-form:
N=do+ [v,v]. (2.01)

Breaking up £ into its O(n)- and R"-valued components gives us the structure
equations of hyperbolic geometry:

(i) 2, =dn+[nn]+1[6,0] (O(n)-component)
(i) 2,=d0+[n,0]+[6,n]=0 (R"-component)

£, is the torsion of the connection n and if we express the hyperbolic curvature
€, as a tensor R of type (1, 3) on the manifold M, then R is given by:

R(X,Y)Z =R(X,Y)Z-R(X,Y)Z (2.03)

(2.02)

where R(X, Y)Z is the usual Riemannian curvature tensor of the Levi-Civita
connection and -

RX,Y)VZ=—-(XAY)Z=—<(Y,Z)X +{X,Z)Y (2.04)

is the curvature tensor of the hyperbolic space of constant sect. curvature — 1.

Hence £, measures the deviation from being hyperbolic and £, =0 if and
only if (M", g) is locally isometric to hyperbolic space.

Let p:Spin(1,n)—»End (V) be a finite dimensional representation (over R or
C). Then we can form the associated vector bundle E, = P x ,V over M. Since the
structure group of P is reducible to the - maximal compact subgroup Spin(n) and
we have, in fact, a fixed reduction P < P we could also obtain the vector bundle
E,as E=E,=P x,V with a compact structure group, where p denotes now the
restriction of the given representation to Spin(n). We could then put a positive
definite metric on E invariant under the compact group Spin (n).

There are now two connections on E, one defined by the Cartan connection
, and the other connection coming from the original Levi-Civita connection #.
We will denote the corresponding covariant derivatives by V and V respectively.
V does not preserve a positive definite metric in E, but it would preserve a
Lorentzian metric defined by Spin (1, n).

In this paper, we are interested in the following two representations of Spin (1, n):
(i) the vector representation on Minkowski space R!*", and (ii) the spinor
representation on a complex vector space S of dimension s over C, where s = 2"

with m = [2]
2

In case (ii) we note that the spinor representation restricted to the maximal
compact subgroup Spin (n) is still the spin representation of Spin(n). In fact, the
Clifford algebra of R*™:Cl, ,=CIl_,&Cl, is isomorphic to Cl,@®Cl, Thus
elements of S are spinors for both groups. In case (i), we have of course the splitting
R = R@® R" under Spin(n).

These two representations therefore define two natural vector bundles over
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any spin manifold M", which we denote by:

(i) TM=TM@1 (1isthetrivial real line bundle over M) and
(i)) S(M) (or short just S for short).

The two covariant derivatives defined by «/ and # on these vector bundles are
then related by the following formulas:

VY = VY + (X, Y De,
ﬁxe():X

where X, YeI'(TM), e, is the trivial section e,:p— (0, 1)e TPM =TM®R, {, )
is the Riemannian metric and Vis the Levi-Civita connection on TM.

Vand g ={ , ) can be extended to TM in the obvious way as an orthogonal
direct sum so that g is positive-definite, |eq| = 1, e L TM, Ve, = 0. We will denote
this extension by the same symbols g or ¢ , > and V. We have Vg = 0, but Vg = 0.

On the other hand, we get a Lorentzian metric denoted by § on ™ by
extending g so that |eg| = — 1. We have then V§=0 but Vj+0. We point out
here the obvious fact that in case M is hyperbolic space, the equations (2.05) are
the Gauss equations for the standard imbedding H" = R!"".

In the case (ii) of the spinor bundle S(M) the Cartan connection w is given by:

Vil = Ve + Leo. X 40 (2.06)

where Y eI (S), XeTM and the vectors ey, XeI'(TM) are acting on the spinor
Y via Clifford multiplication, defined by the Lorentzian metric §. The factor 1
comes from the fact that Spin (n) is the double cover of SO(n).

As remarked above, spinors associated to the extended group Spin(1,n) can
be thought of as just “ordinary” spinors S for the Euclidean group Spin (n) where
vectors XeTM act via Clifford multiplication as usual and where we have an
extra element e, acting on S with the following properties:

(1) ey, 2> =<Y1,e0¥2;
(i) eg-eo¥y =+y
and (i) eg.- Xy = — X.eo.y for any XeTM

(2.05)

The Dirac operators corresponding to the two connections are defined by:

() Dy = z e Vi (2.08)

and (i) Dy = Z ex. Vi
k=1

where {e,,...,e,} is an orthonormal base for TM and V, means V...

We call D the hyperbolic Dirac operator in contrast to the “Euclidean” Dirac
operator D. Using the formula (2.07) and the anti-commutativity of e,. and e,.
then implies the following important relation between the two Dirac operators:

DY =Dy +inegy ie. D=D +ine, (2.09)




532 M. Min-Oo

This shows, in particular, that D is a formally self-adjoint operator on the
Hilbert space of L? spinors, since D and Clifford multiplication by e,. are both
self-adjoint with respect to the positive definite metric induced by g.

In fact, since (M, g) is complete, it follows from Thm. 1.17 of [4] that D and
D, which are both generalized Dirac operators in the sense of Sect. 1 of [4] are in fact,
essentially self-adjoint, with a unique closed self-adjoint extension defined on the
common domain of definition: Dom (D)= Dom (D)< L*(S), where L"*(S) is
defined to be the completion of the space C2(S) of all compactly supported smooth
sections of S with respect to the Sobolev norm:

1/2
wnl_z=(§<|vw+§|W)) .

Using now the super commutativity of the operators D and e,.:

{D,eo} =Deo- +eo.D=0 (2.10)
which follows from the fact that Ve, =0 and ¢,.eq = — e4.¢;, we find, upon squaring
the equation (2.07), the following fundamental relation:

~ n2
D2=D2+7. (2.11)

This is an 1>-Weitzenbock formula and we refer to [7] and [8] for some general

background on the usefulness of these L>-formulas in dealing with almost symmetric
2

spaces of non-compact type. The term '—14~ comes from an algebraic Laplacian, i.e.

a Casimir operator. . -
Our next step is to derive the “ordinary” C°-Weitzenbdck formulas for D? and
D?. We introduce the rough Laplacians defined by:

VA V= — V=3 WV, #P=—uP?=—3 B @12
k=1 k=1

where {e;},., ., is an orthonormal base for TM.

V*Vand V*V are both essentially self-adjoint, non-negative elliptic operators
(see for example Prop. 2.4 of [4]) and the relation between them is given by:

V= vrv4 ;,' (2.13)
This follows from the computation (we sum ovér the index k).
V* ﬁ= ("" Vk + %eo.ek.)(vk + %eo-ek-) = — Vk Vk + %eo.ek.eo.ek = V* V+ Z

(2.13) implies that in fact V* V7is positive-definite, so that there are no hyperbolic
Killing spinors satisfying the equation:
Vi = Vb +Leg. Xy =0 (2.14)

which are in [? on any complete manifold.
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The famous formula of Lichnerowicz for the ordinary Dirac operator is:
R
D*= V*V+Z (2.15)
where R is the ordinary scalar curvature of the Riemannian manifold (M", g).

The corresponding Weitzenbock formula for the hyperbolic Dirac operator
associated to a Cartan connection is therefore:

=V*V+ (2.16)

| =

where R=R+nn—1)= Y Y (R(e,ee,e;> is the hyperbolic scalar curvature.
k=1j=1

(2.16) follows from (2.11), (2.13) and (2.15). It can, of course, also be derived in
as direct manner, exactly as for the Lichnerowicz formula, by replacing the
Riemannian connection and curvature terms by their hyperbolic analogues. We
also record here a few more formulas that we need for the next section relating
the basic operators D, D, V, V and e,. (The metric used below is the positive
definite Riemannian metric g={ , )

() [Py = | VYI> + 1 + Ceo. Dy
i) §I Vw1 = 179 + 301017 = ¥t @17

(i) 1Dy|> =Dy |* + —|ll/|2+n<eo'D'//,l//>

(i) fIDy|? = IlDl/'|2+ fillllz (2.18)
oo e ﬁ_ n? R

() D’=V V+a+z—7*v+-‘4—+z

N 1 By 12 2 ez R 2 2 R 2

(i) fIDy|*=[|Vy] +ZIWI +fj4—|ll’l =||W|1,z+fz|¢|- (2.19)

The last formula above is of particular importance since it shows that, under
the assumption: R = 0, D:L}%(S)-> I(S) is an isomorphism, by Corollary 2. 10 of
[4]. As explained in [4], strictly speaking, the technical assumption that R is
umformly bounded would be needed to assure that the domain of definition of D
is exactly L2, In general, if we do not assume an upper bound for R this domain
of definition could be a proper subspace of L**? and can be defined as

Dom () = {n[/eL"z(§). yﬁ:(w < oo}. (2.20)

Under the assumption R0 (2.19) would then still imply an isomorphism
D:Dom (D)5 I~
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Since we would be working on a non-compact manifold we need the following
integrated version of the Weitzenbock formula (2.16) involving a boundary term:

JIDY2+ [ <V +vDy g = I(IWI’+§I¢IZ> 2.21)
M oM M

where (M, g) is any spin manifold with boundary dM and v is the exterior normal
of OM <= M.
This formula is proved, as usual, by computing the divergence of a one form

and applying Stokes’ theorem. The specific one form o we need here is defined by:
~ . n—1
WX) =L VY +XDYy>=L{Vxy + XY,y + (Xeowp, ¥  (2222)

2

for XeTM and for any fixed spinor field y € I'(S). The divergence of « is computed
to be:

R
—da=|Vy|*—|Dy|* + th/ll2 +(1—n)<eo-Dy, >

— P12 — 1Dy +§|-/z|2

where we freely used the formulas computed above, in particular (2.17), (2.18) and
(2.19).

3. The proof

As explained in the introduction, we will study an elliptic boundary value problem
on M with given boundary values at oo. We will solve for a spinor y satisfying
the first order elliptic equation Dy = 0 on the manifold M which is asymptotically
parallel in the sense that it approaches, in a suitable Sobolev norm, a spinor which
would be parallel with respect to the hyperbolic metric.

Since the Cartan connection & is flat for the hyperbolic space M = H" the
spinor bundle S(M) is trivialized by globally parallel sections which we denote
generically by §. These spinors can be regarded as the parallel spinors of the
Minkowskian vector space R!"" restricted to H" (imbedded in the standard way
as the set of vectors of length = — 1 with positive first component). Since the flat
connection of R does not leave the Riemannian metric of H" invariant, parallel
spinors do not have constant length with respect to a positive-definite metric.
Therefore we need to calculate first the rate of growth of the Euclidean length of

a parallel spinor. If X is any unit tangent vector, V is the Levi-Civita connection
and ¥ is spinor, parallel with respect to the Cartan connection ¥ then:
X9 =2<V, 9> since ?( , »=0
= —(eo. XY, ¥> since Vy= Vil +1eg. Xy =0
= - <X|I79 eO'J)
and therefore
XIS |X P leod| S1P1* since |X|=1.
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. . J . e
Choosing X to be the unit vector field p in the radial direction we have the
estimate r

o |-
\alt/flz 17 (3.01)

for aspinor  on H" which is parallel with respect to the flat Cartan connection.
_ This shows that [|? grows at most exponentially with r and if we normalize
¥ to be of unit length at the origin, then on the sphere of radius r, we have

W)I*<e. (3.02)

Using our hyperbolic coordinates at oo, ¢: M — B-> H"(r,, c0) we now transplant
these parallel spinors to each end of an asymptotically hyperbolic manifold M.

We first identify the end M, = M — B with H"(r,, o) via ¢, and we will simply
denote the induced hyperbolic metric ¢*3 on M, by § and call it the
background metric. We then write the metric g as:

glu,v)=g(A " 'u, A" v}, glu,v) = g(Au, Av) (3.03)

where the gauge transformation A:TM  — TM  is assumed to be symmetric with
respect to g. (A~ ! is then symmetric w.r.t. §).

If Vis the Levi-Civita connection of g, then the gauge-transformed connection
V=(4"1)*V as defined below would leave the metric g = (A~ Y)y*g invariant.

VoY = A(V (A~ 1Y) (3.04)
However V would have non-zero torsion T, computed to be:
T(X,Y)= A@d"A™ (X, ) (3.05)
and the difference Vy, — Vy = By to the Levi-Civita connection Vof gis given by:
2By Y, Z) =< T(X,Y),Z)—<T(Y,Z), X Y+ {T(Z,X), Y. 3.5)

For technical reasons—since our assumption AH2 is in terms of VA instead
of VA~ — we prefer a formula for B in terms of VA. A little computation gives:

—2{ByAY,AZ> = {d"AX,Y),AZ> — (dA(Y, Z), AX > + {d"A(Z, X), AY ).
(3.06)

On a spinor ¥, defined with respect to the Spin structure of the g-metric:
Spin(M ,g)— M ., the connections V and V are related by:

Vb = Vi + 1Bte,en ¥y (3.07)

where we sum over repeated indices and {e*} is an orthonormal base for g.
The curvature of Vis given by:

R(X,Y)=A°R(X,Y) A"} (3.08)

where R is the curvature of hyperbolic space defined in (2.04).
The gauge transformation A is a bundle isomorphism A:SO(M ,,§) > SO(M ., g)
mapping a j-orthonormal frame {¢,},_, , over M to the g-orthonormal frame

.....
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{4é}, ... This bundle map can be lifted uniquely (up to a choice of base points)
to an isomorphism of the corresponding spin bundles, still to be denoted by
A:Spin (M, §) > Spin (M, g). For the uniqueness of the lift we use the important
fact that the end M, is simply connected, since the dimension of M is > 2.

A spinor  with respect to a spin structure Spin (M, g) can be regarded as an
Spin (n)-equivariant map ¥ :Spin(M, g) - C*, where C° is the spin representation
space, and therefore, by composing with the gauge transformation A we can
transform a spinor  defined by the metric jon M into a spinor § = A* = o4 ~?
with respect to the metric g = A*g, and if y is parallel w.r.t. the flat hyperbolic
Cartan connection @ associated to the g-spin structure Spin(M ., ), then V is
parallel with respect to the gauge transformed Cartan connection & = A*(®) for
Spin(M , g), which is of course also flat. The covariant derivative of this connection
on the extended vector bundle TM = TM @ 1 is given by:

Vi Y = VY + g(4X, Y).e,
x

B = AX (3.09)

and the formula for the spinor bundle S(M) is:
Velh = Vil + e AX. (3.10)
where the Clifford multiplication is defined by the Lorentzian metric induced by

g on T™. -

The following computation for the curvature of V is, strictly speaking, not
necessary, since o is a gauge transform of the flat Cartan connection . However,
it is a good check for the correctness of our covariant derivative formulas:

R(X,Y)Z
=R(X,Y)Z + g(AY,Z)AX — g(AX,Z)AY
+9(V(AY) — Vy(AX) - A([X, Y1), Z)
=ARX,Y)AT'Z)+g(Y,A ' Z)AX — §(X,A"'Z)AY
+ g(A(VyY =V, X —[X,Y]),2Z)
=ARX, VA" '1Z) + A(§(Y,A"'Z2)X — §(X,A"'2)Y)
=0  by(2.04).

A parallel spinor ¢ on hyperbolic space therefore defines via the asymptotic
coordinates ¢ and the induced gauge transformation A4, a spinor ¥ = > A which
is parallel w.r.t. the connection & = A*(®) on the end M. In other words, by
choosing a basis of @-parallel spinors for H", we obtain a trivialization of the spin
bundle Spin (M, g) restricted to the end M, by &-parallel spinors.

Moreover, if we make the assumption that the Cartan connection w induced
by the Levi-Civita connection Vof g is close to the flat Cartan connection & = A*(®)
defined by the asymptotic coordinates ¢ near o, then this trivialization is almost
parallel w.r.t. . In this sense, as we mentioned in Sect. 1, the natural condition
one should impose at infinity is that there is an almost flat Cartan connection
together with an almost parallel framing (section of the principal bundle) at each
end.
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We now extend these transplanted spinors i to all of M by multiplying with
a suitable cut-off function y supported near co. To be specific we choose a radial
function y with:

xr)=1 for r=2p>2r

(3.11)
xr)=0 for r=<p
and 0 <y < p~! with p sufficiently large.
If we now set
U=xi=xi-A (3.12)

then «Z vanishes on a compact set and ﬁ; —0 at oo, since lz7$ =0 for large values
of r and w— & as r - c0. More precisely we have:
(f)x - (.UX = ﬁx - Vx + %eo.(AX - X).
= BX + %eo(AX - X),
where we are using the spin structure of g for the Clifford multiplication.

Therefore since V) =(V, — V,). and ¥ = oA for larger r, we have, using
(3.02) and our assumption AH1:

| V01 < Cn)(1B,| + | A —id|) ||
< C(n).|B].e’/2

for large r, where C(n) denotes from now on any generic constant depending only
on the constant C of our assumption AH1 and the dimension n.
(3.06) together with the assumption AH1, also gives us the estimate:

|B| £ C(n).| VA|. (3.15)

The second condition AH2 for asymptotic hyperbolicity: €’.(4 — id)e**? now
implies, first of all, that Vi and hence also Dy e LX(S, g). It also implies that if S(r)
denotes the sphere ¢ ~!(S(r)) for large r, then

lim o | | VA|=0. (3.16)

r—+o S(r)
We now solve for a spinor eeDom (D) ¢ L!*? satisfying;
De= —Dy. (3.17)

Then if we set =y +¢, ¥ would satisfy Dy =0 and Y - at co. We are
therefore not solving for an L? harmonic spinor y. In fact there are no L? harmonic

. .o~ n
spinors on M because of our fundamental equation: D? = D? + T

The basic fact about the Cartan Dirac operator D that we are using here, in
order to solve (3.17) is the following analytical

Lemma
D:Dom (D) = L3(M) > LXM) is an isomorphism. (3.18)
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This Lemma is a consequence of our fundamental L*-Weitzenbock formula
(2.11) together with some standard elliptic estimates, since on a complete manifold
(see Thm. 1.23 in [4]) 52|/1 =0iff 5¢ =0 for Yy eI?. We refer to Sect. 1, Sect. 2 of [4]
for basic facts about generalized Dirac operators and vanishing theorems. In
particular, applying Thm. 2.8, Cor. 2.9 and Thm. 2.11 in [4] to our Weitzenbdck
formula (2.19) gives a proof of the Lemma. As remarked earlier, Dom (D) would
coincide with L2 if we assume a _uniform bound on the scalar curvature since

. . R . .
then multiplication with the term n in (2.19) is a bounded operator on L*.

Substituting now the harmonic spinor ¥ into the integrated Weitzenbock
formula (2.20)

[IDYPP+ [V +v.Dy,y)= §(|W|2+§W>
M ‘M M

applied to the manifold M, = M — ¢~ '(H(r, 00)) with r — co would then give us a
boundary term which will be shown below to go to zero as the boundary sphere
approaches oo. The curvature assumption R =0 would then imply that ¢ is in
fact everywhere pgra]le]:yl// =0.

The operator V, + v.D appearing in the integrand of the boundary term of the
Weitzenbock formula (2.20) is self-adjoint with respect to the L2-inner product
when restricted to the boundary, since all the other terms appearing in the formula
have this property and hence:

$< V. +v.Dy, ¥ >
=$( VI +v.DY, ¥ ) +2{V§ +v.Dy,e) +{ V,e + v.Dee))

where § denotes the. boundary integral on the sphere S,=0M,= ¢~ (S(r)) for

large r.”
This boundary integral can be estimated as follows:_ -
(i) Since eeL?, we have V¢, Deel? and therefore $< V,¢ + v.De, &) tends to zero

r

as r— . o R
(i) OnalargesphereS,=0M,,x =1,y =0,y =y = A*y and since Y is parallel
w.r.t. the connection & we have by (3.14)

KV, 01 < Cny| VAl and | V0| < C(n).| VAle™.
Since Dy = ¢,. Ve, we also have:

[<v.DJ, Y| < Cn)| VAle" and |v.Dy| < C(n)| VAle">.
Substituting these estimates and using the fact that eeI?, we find:
$I<V +v.DY, ¥ > +2{ V. +v.Dyl,e | S C(n).e’.§| VA| -0 as r— oo by(3.16).

_We therefore have extended any given asymptotically parallel boundary value
¢ to a global parallel spinor ¥ defined on all of M. Choosing a basis of parallel
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spinors at co induced by the asymptotically hyperbolic structure and extending
them harmonically, we obtain a global basis of parallel spinors trivializing the
bundle S(M), which implies that the Cartan connection w defining V is flat, thus
proving that (M, g) is locally and hence globally isometric to hyperbolic space
(H", g). Global isometry follows from local isometry because M is diffeomorphic
to H" at infinity and n > 2.
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