STATS 3N03/3J04 TEST #02 SOLUTIONS 2003-10-30

Solution of Q.1 [Total 14]

Let *X* denote the total score when two four-sided dice are rolled independently. The sample space will be

# on first dice	# on second dice	Total of the
		two dice
1	1	2
2	1	3
3	1	4
4	1	5
1	2	3
2	2	4
3	2	5
4	2	6
1	3	4
2	3	5
3	3	6
4	3	7
1	4	5
2	4	6
3	4	7
4	4	8

Frequency distribution [4]

Observation	Frequency	Probability	Cumulative
X	f_x		Probability
2	1	1/16	1/16
3	2	2/16	3/16
4	3	3/16	6/16
5	4	4/16	10/16
6	3	3/16	13/16
7	2	2/16	15/16
8	1	1/16	16/16 = 1
Total	16		

Probability Mass Function: [2]

Cumulative Distribution Function: [2]

Mean, Median and Mode: [3]

Mean = $\sum X \times Probability = 5$

By symmetry, Mean=Median=Mode=5

Variance and Standard Deviation : [2+1]

Variance(X)
=
$$\sum (X - mean)^2 \times Probability$$

= $\frac{1(2-5)^2}{16} + \frac{2(3-5)^2}{16} + \frac{3(4-5)^2}{16} + \frac{4(5-5)^2}{16} + \frac{3(6-5)^2}{16} + \frac{2(7-5)^2}{16} + \frac{1(8-5)^2}{16}$
= $2\left(\frac{9}{16} + \frac{8}{16} + \frac{3}{16}\right)$
= $\frac{40}{16} = 2.5$

Standard deviation = $\sqrt{Variance(X)} = \sqrt{2.5} = 1.5811$

Solution of Q.2 [Total 10]

Interpretaion of the R code: [2]

The R code simulates 20 rolls of two 4-sided dice. It first generates a sample of 40 observations between 1 and 4, puts them in two columns (20 observations in each) and then adds the two columns to produce a vector of "total scores from the two columns".

Stem and leaf plot: [2]

Cumulative	Freq.		
Freq.			
1	1	2	0
6	5	3	00000
7	1	4	0
12	5	5	00000
17	5	6	00000
19	2	7	00
20	1	8	0

Mean, median, mode, variance, SD: [6]

Mean = 4.9 Sample variance = 2.7263 SD= 1.6511

Median = 5 Mode = $\{3,5,6\}$

Solution of Q.3 [Total 12]

Let *X* be the weight of a pill.

Assume that the weight is normally distributed, i.e., $X \sim N(50, 1^2)$

Then
$$p = P(X < 48) = \Phi\left(\frac{48 - 50}{1}\right) = \Phi(-2) = 1 - \Phi(2) = 1 - 0.97725 = 0.02275$$

Let *Y* be the number of pill in a box of 10 that weigh less than 48gm. Assuming independence, $Y \sim Binomial(10, p)$. Then the probability that at most 1 pill in a given box will weigh less than 48 gm is:

$$P(Y \le 1) = {\binom{10}{0}} p^0 (1-p)^{10} + {\binom{10}{1}} p^1 (1-p)^9$$

= (0.02275)⁰ (0.97725)¹⁰ + 10(0.2275)¹ (0.97725)⁹ [6]
= 0.9794

Let Z be the number of pills in the bottle of 1000 that weigh less than 48 gm. Assuming independence, $Z \sim Binomial(1000, p)$

$$P(Z \le 20) = \sum_{z=0}^{20} {\binom{1000}{z}} p^{z} (1-p)^{1000-z}$$

$$\approx \Phi\left(\frac{20.5 - 1000 p}{\sqrt{1000 p(1-p)}}\right)$$

$$= \Phi\left(\frac{20.5 - 22.75}{4.715}\right)$$

$$= \Phi(-0.477)$$

$$= 1 - \Phi(0.477)$$

$$= 1 - 0.683$$

$$= 0.317$$

[6]

Solution of Q.4 [Total 7]

Assume that accident happen one at a time, at a constant average rate of 3 per month. Also ignore the difference in the length of month. [2]

Let X denote the number of accidents in this month. Assuming that accidents happen independently, $=> X \sim Poisson(3)$. So the probability of 6 or more accidents :

$$P(X \ge 6) = 1 - P(X \le 5)$$

= $1 - \sum_{x=0}^{5} \frac{e^{-3} 3^{x}}{x!}$
= $1 - \left[e^{-3} \left(1 + 3 + \frac{3^{2}}{2!} + \frac{3^{3}}{3!} + \frac{3^{4}}{4!} + \frac{3^{5}}{5!} \right) \right]$
= $1 - e^{-3} (18.4)$
= 0.0839 [4]

The probability is not very small; an average we would expect this to happen in one month every year, as 12(0.0839) = 1.01

Therefore, this would not be an unusual event. [1]

Solution of Q.5 [Total 2]

Random variable: A function that assigns a real number to each outcome in the sample space of a random experiment. [1]

Parameter: A scaler or vector that includes a family of probaility distributions. In another words, it can be defined as the unknown population characteristics. [1]