STATS 3N03/3J04 TEST \#02 SOLUTIONS 2003-10-30

Solution of Q. 1 [Total 14]

Let X denote the total score when two four-sided dice are rolled independently. The sample space will be

\# on first dice	\# on second dice	Total of the two dice
1	1	2
2	1	3
3	1	4
4	1	5
1	2	3
2	2	4
3	2	5
4	2	6
1	3	4
2	3	5
3	3	6
4	3	7
1	4	5
2	4	6
3	4	7
4	4	8

Frequency distribution [4]

Observation X	Frequency f_{x}	Probability	Cumulative Probability
2	1	$1 / 16$	$1 / 16$
3	2	$2 / 16$	$3 / 16$
4	3	$3 / 16$	$6 / 16$
5	4	$4 / 16$	$10 / 16$
6	3	$3 / 16$	$13 / 16$
7	2	$2 / 16$	$15 / 16$
8	1	$1 / 16$	$16 / 16=1$
Total	$\mathbf{1 6}$		

Probability Mass Function: [2]

Cumulative Distribution Function: [21

Mean, Median and Mode: [3]

Mean $=\quad \sum X \times$ Probability $=5$
By symmetry, Mean=Median=Mode=5

Variance and Standard Deviation : [2+1]

Variance(X)
$=\sum(X-\text { mean })^{2} \times$ Probability
$=\frac{1(2-5)^{2}}{16}+\frac{2(3-5)^{2}}{16}+\frac{3(4-5)^{2}}{16}+\frac{4(5-5)^{2}}{16}+\frac{3(6-5)^{2}}{16}+\frac{2(7-5)^{2}}{16}+\frac{1(8-5)^{2}}{16}$
$=2\left(\frac{9}{16}+\frac{8}{16}+\frac{3}{16}\right)$
$=\frac{40}{16}=2.5$

Standard deviation $=\sqrt{\operatorname{Variance}(X)}=\sqrt{2.5}=1.5811$

Solution of Q. 2 [Total 10]

Interpretaion of the \mathbf{R} code: [2]

The R code simulates 20 rolls of two 4 -sided dice. It first generates a sample of 40 observations between 1 and 4, puts them in two columns (20 observations in each) and then adds the two columns to produce a vector of "total scores from the two columns".

Stem and leaf plot: [2]

Cumulative Freq.	Freq.		
1	1	2	0
6	5	3	00000
7	1	4	0
12	5	5	00000
17	5	6	00000
19	2	7	00
20	1	8	0

Mean, median, mode, variance, SD: [6]
Mean $=4.9$
Sample variance $=2.7263$
SD= 1.6511
Median $=5$
Mode $=\{3,5,6\}$

Solution of Q. 3 [Total 12]

Let X be the weight of a pill.
Assume that the weight is normally distributed, i.e., $X \sim N\left(50,1^{2}\right)$
Then $p=P(X<48)=\Phi\left(\frac{48-50}{1}\right)=\Phi(-2)=1-\Phi(2)=1-0.97725=0.02275$
Let Y be the number of pill in a box of 10 that weigh less than 48 gm . Assuming independence, $Y \sim \operatorname{Binomial}(10, p)$. Then the probability that at most 1 pill in a given box will weigh less than 48 gm is:

$$
\begin{aligned}
P(Y \leq 1) & =\binom{10}{0} p^{0}(1-p)^{10}+\binom{10}{1} p^{1}(1-p)^{9} \\
& =(0.02275)^{0}(0.97725)^{10}+10(0.2275)^{1}(0.97725)^{9} \\
& =0.9794
\end{aligned}
$$

[6]

Let Z be the number of pills in the bottle of 1000 that weigh less than 48 gm . Assuming independence, $Z \sim \operatorname{Binomial}(1000, p)$

$$
\begin{aligned}
P(Z \leq 20) & =\sum_{z=0}^{20}\binom{1000}{z} p^{z}(1-p)^{1000-z} \\
& \approx \Phi\left(\frac{20.5-1000 p}{\sqrt{1000 p(1-p)}}\right) \\
& =\Phi\left(\frac{20.5-22.75}{4.715}\right) \\
& =\Phi(-0.477) \\
& =1-\Phi(0.477) \\
& =1-0.683 \\
& =0.317
\end{aligned}
$$

Solution of Q. 4 [Total 7]

Assume that accident happen one at a time, at a constant average rate of 3 per month. Also ignore the difference in the length of month.

Let X denote the number of accidents in this month. Assuming that accidents happen independently, $=>X \sim \operatorname{Poisson}(3)$. So the probability of 6 or more accidents :

$$
\begin{align*}
P(X \geq 6) & =1-P(X \leq 5) \\
& =1-\sum_{x=0}^{5} \frac{e^{-3} 3^{x}}{x!} \\
& =1-\left[e^{-3}\left(1+3+\frac{3^{2}}{2!}+\frac{3^{3}}{3!}+\frac{3^{4}}{4!}+\frac{3^{5}}{5!}\right)\right] \tag{4}\\
& =1-e^{-3}(18.4) \\
& =0.0839
\end{align*}
$$

The probability is not very small; an average we would expect this to happen in one month every year, as $12(0.0839)=1.01$

Therefore, this would not be an unusual event.
[1]

Solution of Q. 5 [Total 2]

Random variable: A function that assigns a real number to each outcome in the sample space of a random experiment.

Parameter: A scaler or vector that includes a family of probaility distributions. In another words, it can be defined as the unknown population characteristics. [1]

