ASSIGNMENT \#3 - SOLUTIONS

2005-12-06
Corrected 2005-12-14
[Full Marks = 140]

Question 1 [10]

Figure 8-4
$>$ xgr <- seq(-4,4,length=50)
> plot(xgr, dnorm(xgr), type = "l", lty = 1, xlab = "x", ylab ="f(x)")
$>$ lines(xgr,dt(xgr,10),lty=2)
$>$ lines(xgr,dt(xgr,1),lty=3)
> legend(1.8,.38,c("infinite df","10 df","1 df"),lty=1:3)
> title("t density")

Figure 8-8
$>\operatorname{xgr}<-\operatorname{seq}(0,30$, length=50)
$>$ plot(xgr, dchisq(xgr, 2), type = "l", lty = 1, xlab = "x", ylab ="f(x)")
$>$ lines(xgr,dchisq(xgr,5),lty=2)
> lines(xgr,dchisq(xgr,10),lty=3)
> legend(15,.4,c("2 df","5 df","10 df"),lty=1:3)
> title("Chi-square density")

Chi-square density

Figure 10

```
\(>\) xgr <- seq(0,8,length=90)
\(>\) plot(xgr, df(xgr,5,15), type = "l", lty = 1, xlab = "x", ylab ="f(x)")
\(>\) lines(xgr,df(xgr,5,5),lty=3)
\(>\) legend (3,.6,c("F(5,15)","F(5,5)"),lty=c(1,3))
> title("F density")
```

F density

Question 2 [10]

When $\mathrm{n}=4$, the coverage seems to be slightly less than 95%, closer to 93% or 94%. With such a small difference, 1000 simulated intervals aren't enough to answer the question. However, it would be safe to say that $\mathrm{n}=20$ is enough. I wrote a function so I wouldn't have to keep reentering the code to try more examples.

```
> weibconf
function (n, shape, scale, nint = 1000)
{
    wmean <- scale * gamma(1 + 1/shape)
    weibdata <- matrix(rweibull(nint * n, shape, scale), ncol = n)
    xbar <- apply(weibdata, 1, mean)
    sx <- apply(weibdata, 1, sd)
    llim <- xbar - qt(0.975, n - 1) * sx/sqrt(n)
    ulim <- xbar + qt(0.975, n - 1) * sx/sqrt(n)
    mean(wmean > llim & wmean < ulim)
}
> weibconf(4, 30, 2)
[1] 0.932
> weibconf(4, 30, 2)
[1] 0.938
> weibconf(20, 30, 2)
[1] 0.956
> weibconf(20, 30, 2)
[1] 0.934
> weibconf(100, 30, 2, 100000)
[1] 0.94778
```

Question $3[4+4+4+8]$
(a) You need at least 29 degrees of freedom.

```
> for (df in 25:30) print(c(df,qchisq(.995,df)/qchisq(.005,df)))
[1] 25.000000 4.460974
[1] 26.000000 4.326958
[1] 27.000000 4.204493
[1] 28.000000 4.092128
[1] 29.000000 3.988646
[1] 30.000000 3.893019
```

(b) Here, $\alpha=0.01, \beta=0.10, \delta=0.5$ and $\sigma=1.3$, so the required sample size n is given by

```
> ((qnorm(1-(0.01)/2) + qnorm(1-0.1))*1.3/0.5)^2
```

[1] 100.5847
or, using table values from the text

```
> ((2.576 + 1.282)*1.3/0.5)^2
```

[1] 100.6169
so 101 observations would be required.
The probability of a Type II error is computed by text formula (9-17); when $n=10$ it gives

```
> pnorm(qnorm(1-(0.01)/2)-0.5*sqrt(10)/1.3) + pnorm(-qnorm(1-
(0.01)/2)-0.5*sqrt(10)/1.3)
[1] 0.9130915
```

and this probability is much too high for the test to be useful.
(c) Let D be the event that the lot was produced domestically and let D ' be the event that it was produced offshore. Let X be the number of defective items in a lot of 100. We are given that $\mathrm{P}(\mathrm{D})=0.1, \mathrm{P}\left(\mathrm{D}^{\prime}\right)=0.9$. Assuming independence of defective items, we have that $\mathrm{X} \mid \mathrm{D} \sim$ $\operatorname{Bin}(100,0.02)$ and X I $D^{\prime} \sim \operatorname{Bin}(100,0.01)$. Hence, by Bayes' theorem,

```
P(D | X = 3) = P(X = 3 | D)*P(D)/( P(X = 3 | D)*P(D) + P(X = 3 | D')*P(D')) = 0.249.
> dbinom(3,100,0.02)*0.1/
(dbinom(3,100,0.02)*0.1 + dbinom(3,100,0.01)*0.9)
[1] 0.2492600
```

Question 4 [15 + 10]
(a) The correct analysis is an independent-sample t-test to compare the means, assuming homoscedasticity. The graph could be comparative dot plots, box plots, stem and leaf plots, or histograms, but they must be comparative (side by side, or one above the other, on identical scales).

Testing for homoscedasticity:

```
> var(coal$yield[coal$process=="New"])
[1] 5.679556
> var(coal$yield[coal$process=="Old"])
[1] 2.612889
> var(coal$yield[coal$process=="New"])/
var(coal$yield[coal$process=="Old"])
[1] 2.173669
> 2*(1-pf(var(coal$yield[coal$process=="New"])
/var(coal$yield[coal$process=="Old"]),9,9))
```

A two-sided F test on 9 over 9 df gives $\mathrm{P}>0.1$, so there is no evidence from these data of heteroscedasticity.

Testing equality of the means without assuming homoscedasticity, we get an almost identical result:

```
> t.test(yield~process, coal)
    Welch Two Sample t-test
data: yield by process
t = 2.4159, df = 15.834, p-value = 0.02816
alternative hypothesis: true difference in means is not equal to
0
9 5 \text { percent confidence interval:}
    0.2679119 4.1320881
sample estimates:
mean in group New mean in group Old
    14.92 12.72
```

Additional Assumptions: Normality (looks OK in dot plot), Independence (small sample, can't test).

Conclusions: There is no evidence ($\mathrm{P}>0.1$) of heteroscedasticity. There is some evidence (0.05 $>\mathrm{P}>0.025$ two - sided, $0.025>\mathrm{P}>0.01$ right-tailed) that the means are not the same, so we conclude that the new process gives a slightly higher yield than the old process.
(b) The correct analysis is a paired t-test. The graph could be a dot plot, stem and leaf plot, box plot or histogram of the differences.

A regression analysis with a test of the slope is not appropriate as it would say nothing about the difference in heat loss between glass and steel pipes, only about their similarity at different diameters.

```
> heatloss
    steel glass diff
1 4.6 2.5 2.1
2 3.7 1.3 2.4
3 4.2 2.0 2.2
4 1.9 1.8 0.1
5 4.8 2.7 2.1
6 6.1 3.2 2.9
7 4.7 3.0 1.7
8.5 3.5 2.0
9.4 3.4 2.0
> stem(heatloss$diff)
```

The decimal point is at the |

```
    0 | 1
    1 7
    2 | 0011249
> mean(heatloss$diff)/sqrt(var(heatloss$diff)/9)
[1] 7.608696
> 1-pt(mean(heatloss$diff)/sqrt(var(heatloss$diff)/9), 8)
[1] 3.126906e-05
> 2*(1-pt(mean(heatloss$diff)/sqrt(var(heatloss$difff)/9), 8))
[1] 6.253811e-05
> t.test(heatloss$steel,heatloss$glass,pair=T)
        Paired t-test
data: heatloss$steel and heatloss$glass
t = 7.6087, df = 8, p-value = 6.254e-05
alternative hypothesis: true difference in means is not equal to
0
95 percent confidence interval:
    1.355132 2.533757
sample estimates:
mean of the differences
                        1.944444
```

The t-test could be either right-tail or two-tail but either way $\mathrm{P} \ll 0.001$ so there is strong evidence from these data that heat loss in glass pipes is less than in steel pipes.

Assumptions: The differences are independent (sample size is too small to test) and normal (sample size is too small to test).

Conclusions: There is strong evidence ($\mathrm{P} \ll 0.001$ by a one-sided or two-sided test) that heat loss in glass pipes is less than in steel pipes.

Question 5 [25]

```
> interaction.plot(ozone$time, ozone$ph, ozone$effdecl)
> interaction.plot(ozone$ph, ozone$time, ozone$effdecl)
```



```
> ozone
    effdecl time ph
                23 20 7.0
                21 20 7.0
                16 20 9.0
                18 20 9.0
                14 20 10.5
                13 20 10.5
                20 40 7.0
                22 40 7.0
                14 40 9.0
                13 40 9.0
                12 40 10.5
                1140 10.5
                21 60 7.0
                    20 60 7.0
                    13 60 9.0
                    12 60 9.0
                    10 60 10.5
                        13 60 10.5
> anova(lm(effdecl~as.factor(time)*as.factor(ph), ozone))
Analysis of Variance Table
Response: effdecl
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Df & Sum Sq & Mean Sq & \(F\) value & \(\operatorname{Pr}(>F)\) & \\
\hline as.factor(time) & 2 & 24.111 & 12.056 & 8.3462 & 0.008912 & ** \\
\hline as.factor (ph) & 2 & 264.778 & 132.389 & 91.6538 & 1.038e-06 & *** \\
\hline as.factor(time): as.factor (ph) & 4 & 5.889 & 1.472 & 1.0192 & 0.447259 & \\
\hline Residuals & 9 & 13.000 & 1.44 & & & \\
\hline
\end{tabular}
---
Signif. codes: 0 ،***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(lm(effdecl~as.factor(time)*as.factor(ph), ozone)) [4,3]
[1] 1.444444
> 9*anova(lm(effdecl~as.factor(time)*as.factor(ph),
ozone))[4,3]/c(qchisq(.975,9), qchisq(.025,9))
[1] 0.6833916 4.8141203
```

Assumptions: Normality, Independence, Homoscedasticity.
Conclusions: There is no evidence ($\mathrm{P}>0.1$) of an interaction between reaction time and pH level, so we can test the main effects. There is strong evidence that both time ($\mathrm{P} \ll 0.01$) and pH level ($\mathrm{P} \ll 0.01$) affect the mean percent decline in effluent.

> plot(effdecl~ph, ozone[ozone\$time==40,])
> abline(lm(effdecl~ph, ozone[ozone\$time==40,]))
> anova(lm(effdecl~ph, ozone[ozone\$time==40,]))
Analysis of Variance Table
Response: effdecl
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
ph $194.65194 .651 \quad 43.6060 .002725$ **
Residuals 48.6822 .171
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(lm(effdecl~ph+as.factor(ph), ozone[ozone\$time==40,]))
Analysis of Variance Table
Response: effdecl

	Df	Sum Sq Mean Sq	F value	$\operatorname{Pr}(>F)$		
ph	1	94.651	94.651	94.6509	0.002307	$* *$
as.factor (ph)	1	5.682	5.682	5.6824	0.097285	.
Residuals	3	3.000	1.000			

Signif. codes: $0{ }^{-* * * ' ~} 0.001$ '**' 0.01 '*' 0.05 -.' 0.1 ' ' 1

Using the regression residual:

```
> anova(lm(effdecl~ph,
ozone[ozone$time==40,]))["Residuals","Mean Sq"]
2.170608
> 4*anova(lm(effdecl~ph,
ozone[ozone$time==40,]))["Residuals","Mean Sq"]
/c(qchisq(.975,4),qchisq(.025,4))
[1] 0.7791626 17.9234100
```


Using pure error:

```
> anova(lm(effdecl~ph+as.factor(ph),
ozone[ozone$time==40,]))["Residuals","Mean Sq"]
1
> 3*anova(lm(effdecl~ph+as.factor(ph),
ozone[ozone$time==40,]))["Residuals","Mean Sq"]
/c(qchisq(.975,3),qchisq(.025,3))
[1] 0.3209104 13.9020648
```

Assumptions: Linear relationship (OK by lack of fit test), Independence (can't test), Homoscedasticity (looks OK on plot).

Conclusions: There is no evidence from these data $(P=0.1)$ that the relationship between percent decline in effluent and pH is not linear over the range of pH studied, at 40 min reaction times. There is strong evidence ($\mathrm{P} \ll 0.01$ using either the regression residual or pure error) that the slope of the relationship is not zero.

```
> predict(lm(effdecl~ph,
ozone[ozone$time==40,]),newdat=data.frame(ph=8))
```

[1] 17.64189

By interpolation of the fitted line, we predict a 17.6% decline in effluent when $\mathrm{pH}=8$. Since this is an interpolation of a relationship demonstrated to be linear, it can be considered reliable.

The analyses in original units and on a log scale give very similar results and lead to the same conclusion: the interaction is significant at the 5% level (or, better to say, $\mathrm{P} \ll 0.001$ so there is very strong evidence of an interaction between frequency and environment). That means that both frequency and environment affect the crack growth rate, but the effect of the environment is different at different frequencies; the higher the frequency, the less difference the environment makes. Because the interaction is significant, we do not test the main effects.

The residual plots show that the residuals from the log-scale analysis follow a normal distribution more closely than residuals from the original-scale analysis. In the original scale, the $23^{\text {rd }}$ observation is an outlier with a large negative residual.

	cracks growth	environ	freq
1	2.29	Air	10
2	2.47	Air	10
3	2.48	Air	10
4	2.12	Air	10
5	2.65	Air	1
6	2.68	Air	1
7	2.06	Air	1
8	2.38	Air	1
9	2.24	Air	0.1
10	2.71	Air	0.1
11	2.81	Air	0.1
12	2.08	Air	0.1
13	2.06	Water	10
14	2.05	Water	10
15	2.23	Water	10
16	2.03	Water	10
17	3.20	Water	1
18	3.18	Water	1
19	3.96	Water	1
20	3.64	Water	1
21	11.00	Water	0.1
22	11.00	Water	0.1
23	9.06	Water	0.1
24	11.30	Water	0.1
25	1.90	Saltwater	10
26	1.93	Saltwater	10
27	1.75	Saltwater	10
28	2.06	Saltwater	10
29	3.10	Saltwater	1
30	3.24	Saltwater	1
31	3.98	Saltwater	1
32	3.24	Saltwater	1
33	9.96	Saltwater	0.1
34	10.01	Saltwater	0.1
35	9.36	Saltwater	0.1
36	10.40	Saltwater	0.1

```
> anova(lm(growth~environ*freq, cracks))
```

Analysis of Variance Table

```
Response: growth
    Df Sum Sq Mean Sq F value Pr(>F)
environ 2 64.252 32.126 159.92 1.076e-15 ***
freq 2 209.893 104.946 522.40< 2.2e-16 ***
environ:freq 4 101.966 25.491 126.89 < 2.2e-16 ***
Residuals 27 5.424 0.201
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> plot(lm(growth~environ*freq, cracks))
```


Normal Q-Q


```
> anova(lm(log(growth)~environ*freq, cracks))
Analysis of Variance Table
Response: log(growth)
            Df Sum Sq Mean Sq F value Pr(>F)
environ 2 2.3576 1.1788 125.849 2.061e-14 ***
freq 2 7.5702 3.7851 404.095< 2.2e-16 ***
environ:freq 4 3.5284 0.8821 94.172 1.885e-15 ***
Residuals 27 0.2529 0.0094
---
Signif. codes: 0 ،***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> plot(lm(log(growth)~environ*freq, cracks))
```


Fitted values
Im(log(growth) \sim environ * freq)

