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Question 1 [10] 
 
Figure 8-4 
> xgr <- seq(-4,4,length=50) 
> plot(xgr, dnorm(xgr), type = "l", lty = 1, xlab = "x", ylab ="f(x)") 
> lines(xgr,dt(xgr,10),lty=2) 
> lines(xgr,dt(xgr,1),lty=3) 
> legend(1.8,.38,c("infinite df","10 df","1 df"),lty=1:3) 
> title("t density") 

 
Figure 8-8 
> xgr <- seq(0,30,length=50) 
> plot(xgr, dchisq(xgr, 2), type = "l", lty = 1, xlab = "x", ylab ="f(x)") 
> lines(xgr,dchisq(xgr,5),lty=2) 
> lines(xgr,dchisq(xgr,10),lty=3) 
> legend(15,.4,c("2 df","5 df","10 df"),lty=1:3) 
> title("Chi-square density") 
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Figure 10 
> xgr <- seq(0,8,length=90) 
> plot(xgr, df(xgr,5,15), type = "l", lty = 1, xlab = "x", ylab ="f(x)") 
> lines(xgr,df(xgr,5,5),lty=3) 
> legend(3,.6,c("F(5,15)","F(5,5)"),lty=c(1,3)) 
> title("F density") 
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Question 2 [10] 
 
When n = 4, the coverage seems to be slightly less than 95%, closer to 93% or 94%. With such a 
small difference, 1000 simulated intervals aren’t enough to answer the question. However, it 
would be safe to say that n = 20 is enough. I wrote a function so I wouldn’t have to keep re-
entering the code to try more examples. 
 
> weibconf 
function (n, shape, scale, nint = 1000)  
{ 
    wmean <- scale * gamma(1 + 1/shape) 
    weibdata <- matrix(rweibull(nint * n, shape, scale), ncol = n) 
    xbar <- apply(weibdata, 1, mean) 
    sx <- apply(weibdata, 1, sd) 
    llim <- xbar - qt(0.975, n - 1) * sx/sqrt(n) 
    ulim <- xbar + qt(0.975, n - 1) * sx/sqrt(n) 
    mean(wmean > llim & wmean < ulim) 
} 
> weibconf(4, 30, 2) 
[1] 0.932 
> weibconf(4, 30, 2) 
[1] 0.938 
> weibconf(20, 30, 2) 
[1] 0.956 
> weibconf(20, 30, 2) 
[1] 0.934 
> weibconf(100, 30, 2, 100000) 
[1] 0.94778 
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Question 3 [4 + 4 + 4 + 8] 
 
(a) You need at least 29 degrees of freedom. 
 
> for (df in 25:30) print(c(df,qchisq(.995,df)/qchisq(.005,df))) 
[1] 25.000000  4.460974 
[1] 26.000000  4.326958 
[1] 27.000000  4.204493 
[1] 28.000000  4.092128 
[1] 29.000000  3.988646 
[1] 30.000000  3.893019 
 
 
(b) Here, α = 0.01, β = 0.10, δ = 0.5 and σ = 1.3, so the required sample size n is given by 
 
> ((qnorm(1-(0.01)/2) + qnorm(1-0.1))*1.3/0.5)^2 
[1] 100.5847 
 
or, using table values from the text 
 
> ((2.576 + 1.282)*1.3/0.5)^2 
[1] 100.6169 
 
so 101 observations would be required. 
 
The probability of a Type II error is computed by text formula (9-17); when n = 10 it gives 
 
> pnorm(qnorm(1-(0.01)/2)-0.5*sqrt(10)/1.3) + pnorm(-qnorm(1-
(0.01)/2)-0.5*sqrt(10)/1.3) 
[1] 0.9130915 
 
and this probability is much too high for the test to be useful. 
 
(c) Let D be the event that the lot was produced domestically and let D’ be the event that it was 
produced offshore. Let X be the number of defective items in a lot of 100. We are given that 
P(D) = 0.1, P(D’) = 0.9. Assuming independence of defective items, we have that X | D ~ 
Bin(100, 0.02) and X | D’ ~ Bin(100, 0.01). Hence, by Bayes’ theorem, 
 
P(D | X = 3) = P(X = 3 | D)*P(D)/( P(X = 3 | D)*P(D) + P(X = 3 | D’)*P(D’)) = 0.249. 
 
> dbinom(3,100,0.02)*0.1/ 
(dbinom(3,100,0.02)*0.1 + dbinom(3,100,0.01)*0.9) 
[1] 0.2492600 



 5 
Question 4 [15 + 10] 
 
(a) The correct analysis is an independent-sample t-test to compare the means, assuming 
homoscedasticity. The graph could be comparative dot plots, box plots, stem and leaf plots, or 
histograms, but they must be comparative (side by side, or one above the other, on identical 
scales). 

 
> t.test(yield~process, coal, var.equal=T) 
 
 Two Sample t-test 
 
data:  yield by process  
t = 2.4159, df = 18, p-value = 0.02654 
alternative hypothesis: true difference in means is not equal to 
0  
95 percent confidence interval: 
 0.2868403 4.1131597  
sample estimates: 
mean in group New mean in group Old  
            14.92             12.72  
 
Testing for homoscedasticity: 
 
> var(coal$yield[coal$process=="New"]) 
[1] 5.679556 
> var(coal$yield[coal$process=="Old"]) 
[1] 2.612889 
> var(coal$yield[coal$process=="New"])/ 
var(coal$yield[coal$process=="Old"]) 
[1] 2.173669 
> 2*(1-pf(var(coal$yield[coal$process=="New"]) 
/var(coal$yield[coal$process=="Old"]),9,9)) 
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[1] 0.2629612 
 
A two-sided F test on 9 over 9 df gives P > 0.1, so there is no evidence from these data of 
heteroscedasticity. 
 
Testing equality of the means without assuming homoscedasticity, we get an almost identical 
result: 
 
> t.test(yield~process, coal) 
 
 Welch Two Sample t-test 
 
data:  yield by process  
t = 2.4159, df = 15.834, p-value = 0.02816 
alternative hypothesis: true difference in means is not equal to 
0  
95 percent confidence interval: 
 0.2679119 4.1320881  
sample estimates: 
mean in group New mean in group Old  
            14.92             12.72  
 
Additional Assumptions: Normality (looks OK in dot plot), Independence (small sample, can’t 
test). 
 
Conclusions: There is no evidence (P > 0.1) of heteroscedasticity. There is some evidence (0.05 
> P > 0.025 two –sided, 0.025 > P > 0.01 right-tailed) that the means are not the same, so we 
conclude that the new process gives a slightly higher yield than the old process. 
 
 
(b) The correct analysis is a paired t-test. The graph could be a dot plot, stem and leaf plot, box 
plot or histogram of the differences. 
 
A regression analysis with a test of the slope is not appropriate as it would say nothing about the 
difference in heat loss between glass and steel pipes, only about their similarity at different 
diameters. 
 
> heatloss 
  steel glass diff 
1   4.6   2.5  2.1 
2   3.7   1.3  2.4 
3   4.2   2.0  2.2 
4   1.9   1.8  0.1 
5   4.8   2.7  2.1 
6   6.1   3.2  2.9 
7   4.7   3.0  1.7 
8   5.5   3.5  2.0 
9   5.4   3.4  2.0 
 
 
> stem(heatloss$diff) 
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  The decimal point is at the | 
 
  0 | 1 
  1 | 7 
  2 | 0011249 
 
> mean(heatloss$diff)/sqrt(var(heatloss$diff)/9) 
[1] 7.608696 
> 1-pt(mean(heatloss$diff)/sqrt(var(heatloss$diff)/9), 8) 
[1] 3.126906e-05 
> 2*(1-pt(mean(heatloss$diff)/sqrt(var(heatloss$diff)/9), 8)) 
[1] 6.253811e-05 
 
> t.test(heatloss$steel,heatloss$glass,pair=T) 
 
 Paired t-test 
 
data:  heatloss$steel and heatloss$glass  
t = 7.6087, df = 8, p-value = 6.254e-05 
alternative hypothesis: true difference in means is not equal to 
0  
95 percent confidence interval: 
 1.355132 2.533757  
sample estimates: 
mean of the differences  
               1.944444  
 
The t-test could be either right-tail or two-tail but either way P << 0.001 so there is strong 
evidence from these data that heat loss in glass pipes is less than in steel pipes. 
 
Assumptions: The differences are independent (sample size is too small to test) and normal 
(sample size is too small to test). 
 
Conclusions: There is strong evidence (P << 0.001 by a one-sided or two-sided test) that heat 
loss in glass pipes is less than in steel pipes. 
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Question 5 [25] 
 
> interaction.plot(ozone$time, ozone$ph, ozone$effdecl) 
> interaction.plot(ozone$ph, ozone$time, ozone$effdecl) 
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> ozone 
   effdecl time   ph 
1       23   20  7.0 
2       21   20  7.0 
3       16   20  9.0 
4       18   20  9.0 
5       14   20 10.5 
6       13   20 10.5 
7       20   40  7.0 
8       22   40  7.0 
9       14   40  9.0 
10      13   40  9.0 
11      12   40 10.5 
12      11   40 10.5 
13      21   60  7.0 
14      20   60  7.0 
15      13   60  9.0 
16      12   60  9.0 
17      10   60 10.5 
18      13   60 10.5 
 
> anova(lm(effdecl~as.factor(time)*as.factor(ph), ozone)) 
Analysis of Variance Table 
 
Response: effdecl 
                              Df  Sum Sq Mean Sq F value    Pr(>F)     
as.factor(time)                2  24.111  12.056  8.3462  0.008912 **  
as.factor(ph)                  2 264.778 132.389 91.6538 1.038e-06 *** 
as.factor(time):as.factor(ph)  4   5.889   1.472  1.0192  0.447259     
Residuals                      9  13.000   1.444                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
> anova(lm(effdecl~as.factor(time)*as.factor(ph), ozone))[4,3] 
[1] 1.444444 
 
> 9*anova(lm(effdecl~as.factor(time)*as.factor(ph), 
ozone))[4,3]/c(qchisq(.975,9), qchisq(.025,9)) 
[1] 0.6833916 4.8141203 
 
Assumptions: Normality, Independence, Homoscedasticity. 
 
Conclusions: There is no evidence (P > 0.1) of an interaction between reaction time and pH 
level, so we can test the main effects. There is strong evidence that both time (P << 0.01) and pH 
level (P << 0.01) affect the mean percent decline in effluent. 



 10 
Question 6 [25] 
 

 
> plot(effdecl~ph, ozone[ozone$time==40,]) 
> abline(lm(effdecl~ph, ozone[ozone$time==40,])) 
 
 
> anova(lm(effdecl~ph, ozone[ozone$time==40,])) 
Analysis of Variance Table 
 
Response: effdecl 
          Df Sum Sq Mean Sq F value   Pr(>F)    
ph         1 94.651  94.651  43.606 0.002725 ** 
Residuals  4  8.682   2.171                     
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
 
> anova(lm(effdecl~ph+as.factor(ph), ozone[ozone$time==40,])) 
Analysis of Variance Table 
 
Response: effdecl 
              Df Sum Sq Mean Sq F value   Pr(>F)    
ph             1 94.651  94.651 94.6509 0.002307 ** 
as.factor(ph)  1  5.682   5.682  5.6824 0.097285 .  
Residuals      3  3.000   1.000                     
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
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Using the regression residual: 
 
> anova(lm(effdecl~ph, 
ozone[ozone$time==40,]))["Residuals","Mean Sq"] 
          
2.170608  
> 4*anova(lm(effdecl~ph, 
ozone[ozone$time==40,]))["Residuals","Mean Sq"] 
/c(qchisq(.975,4),qchisq(.025,4)) 
[1]  0.7791626 17.9234100 
 
Using pure error: 
 
> anova(lm(effdecl~ph+as.factor(ph), 
ozone[ozone$time==40,]))["Residuals","Mean Sq"] 
   
1  
> 3*anova(lm(effdecl~ph+as.factor(ph), 
ozone[ozone$time==40,]))["Residuals","Mean Sq"] 
/c(qchisq(.975,3),qchisq(.025,3)) 
[1]  0.3209104 13.9020648 
 
Assumptions: Linear relationship (OK by lack of fit test), Independence (can’t test), 
Homoscedasticity (looks OK on plot). 
 
Conclusions: There is no evidence from these data (P = 0.1) that the relationship between 
percent decline in effluent and pH is not linear over the range of pH studied, at 40 min reaction 
times. There is strong evidence (P << 0.01 using either the regression residual or pure error) that 
the slope of the relationship is not zero.  
 
> predict(lm(effdecl~ph, 
ozone[ozone$time==40,]),newdat=data.frame(ph=8)) 
[1] 17.64189 
 
By interpolation of the fitted line, we predict a 17.6% decline in effluent when pH = 8. Since this 
is an interpolation of a relationship demonstrated to be linear, it can be considered reliable. 
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Question 7 [25] 
 
The analyses in original units and on a log scale give very similar results and lead to the same 
conclusion: the interaction is significant at the 5% level (or, better to say, P << 0.001 so there is 
very strong evidence of an interaction between frequency and environment). That means that 
both frequency and environment affect the crack growth rate, but the effect of the environment is 
different at different frequencies; the higher the frequency, the less difference the environment 
makes. Because the interaction is significant, we do not test the main effects. 
 
The residual plots show that the residuals from the log-scale analysis follow a normal 
distribution more closely than residuals from the original-scale analysis. In the original scale, the 
23rd observation is an outlier with a large negative residual. 
 
> cracks 
   growth   environ freq 
1    2.29       Air   10 
2    2.47       Air   10 
3    2.48       Air   10 
4    2.12       Air   10 
5    2.65       Air    1 
6    2.68       Air    1 
7    2.06       Air    1 
8    2.38       Air    1 
9    2.24       Air  0.1 
10   2.71       Air  0.1 
11   2.81       Air  0.1 
12   2.08       Air  0.1 
13   2.06     Water   10 
14   2.05     Water   10 
15   2.23     Water   10 
16   2.03     Water   10 
17   3.20     Water    1 
18   3.18     Water    1 
19   3.96     Water    1 
20   3.64     Water    1 
21  11.00     Water  0.1 
22  11.00     Water  0.1 
23   9.06     Water  0.1 
24  11.30     Water  0.1 
25   1.90 Saltwater   10 
26   1.93 Saltwater   10 
27   1.75 Saltwater   10 
28   2.06 Saltwater   10 
29   3.10 Saltwater    1 
30   3.24 Saltwater    1 
31   3.98 Saltwater    1 
32   3.24 Saltwater    1 
33   9.96 Saltwater  0.1 
34  10.01 Saltwater  0.1 
35   9.36 Saltwater  0.1 
36  10.40 Saltwater  0.1 
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> anova(lm(growth~environ*freq, cracks)) 
Analysis of Variance Table 
 
Response: growth 
             Df  Sum Sq Mean Sq F value    Pr(>F)     
environ       2  64.252  32.126  159.92 1.076e-15 *** 
freq          2 209.893 104.946  522.40 < 2.2e-16 *** 
environ:freq  4 101.966  25.491  126.89 < 2.2e-16 *** 
Residuals    27   5.424   0.201                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
> plot(lm(growth~environ*freq, cracks)) 
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> anova(lm(log(growth)~environ*freq, cracks)) 
Analysis of Variance Table 
 
Response: log(growth) 
             Df Sum Sq Mean Sq F value    Pr(>F)     
environ       2 2.3576  1.1788 125.849 2.061e-14 *** 
freq          2 7.5702  3.7851 404.095 < 2.2e-16 *** 
environ:freq  4 3.5284  0.8821  94.172 1.885e-15 *** 
Residuals    27 0.2529  0.0094                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
> plot(lm(log(growth)~environ*freq, cracks)) 
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