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Question 1 
 
(a) You need at least 29 degrees of freedom.  
  
> for (df in 25:30) print(c(df,qchisq(.995,df)/qchisq(.005,df)))  
[1] 25.000000  4.460974  
[1] 26.000000  4.326958  
[1] 27.000000  4.204493  
[1] 28.000000  4.092128  
[1] 29.000000  3.988646  
[1] 30.000000  3.893019  

  
(b) Here, α = 0.01, β = 0.10, δ = 0.5 and σ = 1.3, so the required sample size n is given by  
  
> ((qnorm(1-(0.01)/2) + qnorm(1-0.1))*1.3/0.5)^2  
[1] 100.5847  

  
or, using table values from the text  
  
> ((2.576 + 1.282)*1.3/0.5)^2  
[1] 100.6169  

  
so 101 observations would be required.  
  
The probability of a Type II error is computed by text formula (9-17); when n = 10 it gives  
  
> pnorm(qnorm(1-(0.01)/2)-0.5*sqrt(10)/1.3) 
 + pnorm(-qnorm(1-(0.01)/2)-0.5*sqrt(10)/1.3) 
[1] 0.9130915  

  
and this probability is much too high for the test to be useful. 
 
(c) One-sided test: 
 
> ((qnorm(.95)+qnorm(.95))*2/(11.5-12))^2 
[1] 173.1548 
> 1 - pnorm(-qnorm(.95)-(11.5-12)*sqrt(50)/2) 
[1] 0.4510879 

 
The number of paint samples required to reduce the Type II error rate to 5% is 174; if you could only 
test 50 samples, the Type II error rate would be 45% which is too high for the test to be useful.  
 
Two-sided test: 
 
> ((qnorm(.975)+qnorm(.95))*2/(11.5-12))^2 
[1] 207.9154 
> pnorm(qnorm(.975)-(11.5-12)*sqrt(50)/2) 
 - pnorm(-qnorm(.975)-(11.5-12)*sqrt(50)/2) 
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[1] 0.5761095 

 
The number of paint samples required to reduce the Type II error rate to 5% is 208; if you could only 
test 50 samples, the Type II error rate would be 57.6% which is too high for the test to be useful. (10 
marks for either 1-sided or 2-sided answer) 
 
(d) Assuming that the flaws occur independently, at random, at a constant average rate over the 
windshield (i.e. as a Poisson process), the number of flaws per windshield will follow a Poisson 
distribution. The probability it was produced at Plant A given that it has 3 flaws is found by Bayes’ 
Theorem to be 20.8%. (11 marks) 
 
Let A be the event it was produced at Plant A, let X be the number of flaws. 
 
P(A|X=3) = P(X=3|A)P(A)/[P(X=3|A)P(A) + P(X=3|B)P(B)] 
 
> dpois(3,2.1)*0.2/(dpois(3,2.1)*0.2 + dpois(3,4.3)*0.8) 
[1] 0.2081147 
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Question 2 
(a) Acceptable analyses: Paired t-test, 2-factor ANOVA without interaction, sign test, simple linear 
regression. 
Acceptable graphs: dot, box or stem-leaf plot of differences; interaction plot; scatter plot with fitted 
line. (Graph 2, suitable analysis 2, correct calculation 4, assumptions 2, conclusions 2) 
 
Paired t-test 
 
Assumptions: Differences independent (can’t test), normal (looks OK on dot plot and stem & leaf plot). 
 
Conclusions: There is no evidence (P = 0.37) from these data of a difference in mean time between the 
two processors. 
 
> stem(procspeed$diff) 
 
  The decimal point is 1 digit(s) to the right of the | 
 
  -0 | 8 
  -0 | 310 
   0 | 03 
 
> procspeed 
  code procA procB diff 
1    1  27.2  24.1  3.1 
2    2  18.1  19.3 -1.2 
3    3  27.2  26.8  0.4 
4    4  19.7  20.1 -0.4 
5    5  24.5  27.6 -3.1 
6    6  22.1  29.8 -7.7 
> t.test(procspeed$procA, procspeed$procB, pair=T) 
 
        Paired t-test 
 
data:  procspeed$procA and procspeed$procB  
t = -0.9921, df = 5, p-value = 0.3667 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -5.326857  2.360190  
sample estimates: 
mean of the differences  
              -1.483333  
 

2-factor ANOVA 
 
> procspeed2 
   code time process 
1     1 27.2       A 
2     2 18.1       A 
3     3 27.2       A 
4     4 19.7       A 
5     5 24.5       A 
6     6 22.1       A 
7     1 24.1       B 
8     2 19.3       B 
9     3 26.8       B 
10    4 20.1       B 
11    5 27.6       B 
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12    6 29.8       B 
 
> anova(lm(time~code+process, procspeed2)) 
Analysis of Variance Table 
 
Response: time 
          Df  Sum Sq Mean Sq F value Pr(>F)   
code       5 129.068  25.814  3.8488 0.0827 . 
process    1   6.601   6.601  0.9842 0.3667   
Residuals  5  33.534   6.707                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 
Sign test 
 
Assumptions: Differences are independent (can’t test). 
 
Conclusions: There are 2 positive differences out of 6 non-zero differences, so P = 0.69 and there is no 
evidence from these data of a difference in the median time between the two processors. 
 
> 2*pbinom(2,6,.5) 
[1] 0.6875 
 

Simple Linear Regression 
 
Assumptions: The time with Processor A is linearly related to the time with Processor B, data are 
normal and homoscedastic. We can’t test any of these because the sample is small and there are no 
repeated x-values. 
 
Conclusions: There is no evidence from these data of a linear relationship between Processor A and 
Processor B times. 
 
> plot(procA~procB, procspeed) 

 
> abline(lm(procA~procB, procspeed)) 
> anova(lm(procA~procB, procspeed)) 
Analysis of Variance Table 
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Response: procA 
          Df Sum Sq Mean Sq F value Pr(>F) 
procB      1 25.502  25.502  2.1417 0.2172 
Residuals  4 47.631  11.908                
 
> anova(lm(procB~procA, procspeed)) 
Analysis of Variance Table 
 
Response: procB 
          Df Sum Sq Mean Sq F value Pr(>F) 
procA      1 31.199  31.199  2.1417 0.2172 
Residuals  4 58.270  14.567                
 

 
 
 
(b) Acceptable analyses: Two-sample t-test or 1-factor ANOVA. 
Acceptable graphs: Comparative dot, box or stem-leaf plots. (Graph 2, suitable analysis 2, correct 
calculation 3, F-test of variances 2, assumptions 2, conclusions 2) 
 
Assumptions: Independence (can’t test), normality (OK by plot), homoscedasticity (graph looks 
heteroscedastic; F-test gives no evidence (P = 0.14) that the variances are not equal). 
 
Conclusions: There is no evidence from these data that either the mean or the variance of resilient 
modulus differs between rutted and non-rutted pavement. 
 
> ruts 
   resmod rutted 
1    1.48    YES 
2    1.88    YES 
3    1.90    YES 
4    1.29    YES 
5    3.53    YES 
6    2.43    YES 
7    1.00    YES 
8    3.06     NO 
9    2.58     NO 
10   1.70     NO 
11   5.76     NO 
12   2.44     NO 
13   2.03     NO 
14   1.76     NO 
15   4.63     NO 
16   2.86     NO 
17   2.82     NO 
18   1.04     NO 
19   5.92     NO 
> boxplot(resmod~rutted, ruts, horizontal=T) 
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> t.test(resmod~rutted, ruts, var.eq=T) 
 
        Two Sample t-test 
 
data:  resmod by rutted  
t = 1.7268, df = 17, p-value = 0.1023 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -0.2484140  2.4884140  
sample estimates: 
 mean in group NO mean in group YES  
             3.05              1.93  
 
> F0 <- var(ruts$resmod[ruts$rutted=="NO"])/var(ruts$resmod[ruts$rutted=="YES"]) 
> F0 
[1] 3.474133 
> 2*(1-pf(F0, 11, 6)) 
[1] 0.1387276 
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Question 3 
The only acceptable analysis is a 2-factor ANOVA with a test for interaction. 
 
Assumptions: Normality, independence, homoscedasticity. 
Conclusions: There is no evidence (P = 0.49) from these data of an interaction between metal type and 
sintering time. The interaction plots confirm this as the lines are parallel. There is strong evidence that 
the mean compressive strength is different for the different sintering times (P = 0.0003) and for the 
different metals (P = 0.0006).  
 
The 95% confidence interval for the residual variance is (0.522, 4.199). 
 
(Correct calculation with P-values 9, assumptions 2, conclusions 3, either interaction plot 3, CI for 
residual variance 3) 
> sinter 
   strength metal time 
1      17.1     1  100 
2      16.5     1  100 
3      14.9     1  100 
4      12.3     2  100 
5      13.8     2  100 
6      10.8     2  100 
7      19.4     1  200 
8      18.9     1  200 
9      20.1     1  200 
10     15.6     2  200 
11     17.2     2  200 
12     16.7     2  200 
> anova(lm(strength~metal*time, sinter)) 
Analysis of Variance Table 
 
Response: strength 
           Df Sum Sq Mean Sq F value    Pr(>F)     
metal       1 35.021  35.021  30.608 0.0005522 *** 
time        1 42.187  42.187  36.872 0.0002985 *** 
metal:time  1  0.608   0.608   0.531 0.4869859     
Residuals   8  9.153   1.144                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
> mse <- anova(lm(strength~metal*time, sinter))["Residuals","Mean Sq"] 
> mse 
[1] 1.144167 
> mse/(qchisq(c(.975,.025),8)/8) 
 [1] 0.5220171 4.1992954 
 
> interaction.plot(sinter$time,sinter$metal,sinter$strength) 
> interaction.plot(sinter$metal,sinter$time,sinter$strength) 
 



 8 
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Question 4 
Assumptions: Independence, normality, homoscedasticity. The test of the slope also assumes linearity. 
Linearity is tested by the lack of fit F-test. Normality and Homoscedasticity can’t be tested in such a 
small sample but look OK on the graph. 
 
Conclusions: There is some evidence (P = 0.07) from these data that the relationship is non-linear. 
However, if we choose to ignore that and test the slope, there is strong evidence (P = 0.002) that the 
slope is not zero. 
 
(Graph with line 4, regression analysis 7, lack of fit test 5, assumptions 3, conclusions 3, 99% 
confidence interval for MSE or MSPE 3) 
 
> concrete 
   load age 
1 11450  20 
2 10420  20 
3 11142  20 
4 10840  25 
5 11170  25 
6 10540  25 
7  9470  31 
8  9190  31 
9  9540  31 
> plot(load~age, concrete) 
> abline(lm(load~age, concrete)) 

 
> coef(lm(load~age, concrete)) 
(Intercept)         age  
 14192.1099   -148.9780  
 
> anova(lm(load~age, concrete)) 
Analysis of Variance Table 
 
Response: load 
          Df  Sum Sq Mean Sq F value   Pr(>F)    
age        1 4039390 4039390   19.03 0.003305 ** 
Residuals  7 1485858  212265                     
--- 
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
> mse <- anova(lm(load~age, concrete))["Residuals", "Mean Sq"] 
> mse 
[1] 212265.4 
> mse/(qchisq(c(.995,.005),7)/7) 
[1]   73275.32 1501995.83 
 
> anova(lm(load~age+as.factor(age), concrete)) 
Analysis of Variance Table 
 
Response: load 
               Df  Sum Sq Mean Sq F value   Pr(>F)    
age             1 4039390 4039390 29.3341 0.001639 ** 
as.factor(age)  1  659642  659642  4.7903 0.071204 .  
Residuals       6  826216  137703                     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
> mspe <- anova(lm(load~age+as.factor(age), concrete))["Residuals", "Mean Sq"] 
> mspe 
[1] 137702.7 
> mspe/(qchisq(c(.995,.005),6)/6) 
[1]   44545.75 1222707.21 



 11 

Question 5 
 
The analyses in original units and on a log scale give very similar results and lead to the same 
conclusion: the interaction is significant at the 5% level (or, better to say, P << 0.001 so there is very 
strong evidence of an interaction between frequency and environment). That means that both frequency 
and environment affect the crack growth rate, but the effect of the environment is different at different 
frequencies; the higher the frequency, the less difference the environment makes. Because the 
interaction is significant, we do not test the main effects. 
 
The residual plots show that the residuals from the log-scale analysis follow a normal distribution more 
closely than residuals from the original-scale analysis. In the original scale, the 23rd observation is an 
outlier with a large negative residual. 
 
> cracks 
   growth   environ freq 
1    2.29       Air   10 
2    2.47       Air   10 
3    2.48       Air   10 
4    2.12       Air   10 
5    2.65       Air    1 
6    2.68       Air    1 
7    2.06       Air    1 
8    2.38       Air    1 
9    2.24       Air  0.1 
10   2.71       Air  0.1 
11   2.81       Air  0.1 
12   2.08       Air  0.1 
13   2.06     Water   10 
14   2.05     Water   10 
15   2.23     Water   10 
16   2.03     Water   10 
17   3.20     Water    1 
18   3.18     Water    1 
19   3.96     Water    1 
20   3.64     Water    1 
21  11.00     Water  0.1 
22  11.00     Water  0.1 
23   9.06     Water  0.1 
24  11.30     Water  0.1 
25   1.90 Saltwater   10 
26   1.93 Saltwater   10 
27   1.75 Saltwater   10 
28   2.06 Saltwater   10 
29   3.10 Saltwater    1 
30   3.24 Saltwater    1 
31   3.98 Saltwater    1 
32   3.24 Saltwater    1 
33   9.96 Saltwater  0.1 
34  10.01 Saltwater  0.1 
35   9.36 Saltwater  0.1 
36  10.40 Saltwater  0.1 
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> anova(lm(growth~environ*freq, cracks)) 
Analysis of Variance Table 
 
Response: growth 
             Df  Sum Sq Mean Sq F value    Pr(>F)     
environ       2  64.252  32.126  159.92 1.076e-15 *** 
freq          2 209.893 104.946  522.40 < 2.2e-16 *** 
environ:freq  4 101.966  25.491  126.89 < 2.2e-16 *** 
Residuals    27   5.424   0.201                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
> plot(lm(growth~environ*freq, cracks)) 
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> anova(lm(log(growth)~environ*freq, cracks)) 
Analysis of Variance Table 
 
Response: log(growth) 
             Df Sum Sq Mean Sq F value    Pr(>F)     
environ       2 2.3576  1.1788 125.849 2.061e-14 *** 
freq          2 7.5702  3.7851 404.095 < 2.2e-16 *** 
environ:freq  4 3.5284  0.8821  94.172 1.885e-15 *** 
Residuals    27 0.2529  0.0094                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
> plot(lm(log(growth)~environ*freq, cracks)) 
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