STATISTICS 3N03 \& 3J04
 ASSIGNMENT 5 SOLUTIONS
 2006-11-24
 Updated 2006-12-12

Question 1

(a) You need at least 29 degrees of freedom.

```
> for (df in 25:30) print(c(df,qchisq(.995,df)/qchisq(.005,df)))
[1] 25.000000 4.460974
[1] 26.000000 4.326958
[1] 27.000000 4.204493
[1] 28.000000 4.092128
[1] 29.000000 3.988646
[1] 30.000000 3.893019
```

(b) Here, $\alpha=0.01, \beta=0.10, \delta=0.5$ and $\sigma=1.3$, so the required sample size n is given by

```
>((qnorm(1-(0.01)/2) + qnorm(1-0.1))*1.3/0.5)^2
[1] 100.5847
```

or, using table values from the text

```
> ((2.576 + 1.282)*1.3/0.5)^2
[1] 100.6169
```

so 101 observations would be required.
The probability of a Type II error is computed by text formula (9-17); when $\mathrm{n}=10$ it gives

```
> pnorm(qnorm(1-(0.01)/2)-0.5*sqrt(10)/1.3)
    + pnorm(-qnorm(1-(0.01)/2)-0.5*sqrt(10)/1.3)
[1] 0.9130915
```

and this probability is much too high for the test to be useful.
(c) One-sided test:

```
> ((qnorm(.95)+qnorm(.95))*2/(11.5-12))^2
[1] 173.1548
> 1 - pnorm(-qnorm(.95)-(11.5-12)*sqrt(50)/2)
[1] 0.4510879
```

The number of paint samples required to reduce the Type II error rate to 5% is 174 ; if you could only test 50 samples, the Type II error rate would be 45% which is too high for the test to be useful.

Two-sided test:

```
> ((qnorm(.975) +qnorm(.95))*2/(11.5-12))^2
[1] 207.9154
> pnorm(qnorm(.975)-(11.5-12)*sqrt(50)/2)
    - pnorm(-qnorm(.975)-(11.5-12)*sqrt(50)/2)
```

The number of paint samples required to reduce the Type II error rate to 5% is 208 ; if you could only test 50 samples, the Type II error rate would be 57.6% which is too high for the test to be useful. (10 marks for either 1-sided or 2 -sided answer)
(d) Assuming that the flaws occur independently, at random, at a constant average rate over the windshield (i.e. as a Poisson process), the number of flaws per windshield will follow a Poisson distribution. The probability it was produced at Plant A given that it has 3 flaws is found by Bayes' Theorem to be 20.8\%. (11 marks)

Let A be the event it was produced at Plant A, let X be the number of flaws.
$\mathrm{P}(\mathrm{A} \mid \mathrm{X}=3)=\mathrm{P}(\mathrm{X}=3 \mid \mathrm{A}) \mathrm{P}(\mathrm{A}) /[\mathrm{P}(\mathrm{X}=3 \mid \mathrm{A}) \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{X}=3 \mid \mathrm{B}) \mathrm{P}(\mathrm{B})]$
$>\operatorname{dpois}(3,2.1) * 0.2 /(\operatorname{dpois}(3,2.1) * 0.2+\operatorname{dpois}(3,4.3) * 0.8)$
[1] 0.2081147

Question 2

(a) Acceptable analyses: Paired t-test, 2-factor ANOVA without interaction, sign test, simple linear regression.
Acceptable graphs: dot, box or stem-leaf plot of differences; interaction plot; scatter plot with fitted line. (Graph 2, suitable analysis 2, correct calculation 4, assumptions 2, conclusions 2)

Paired t-test

Assumptions: Differences independent (can't test), normal (looks OK on dot plot and stem \& leaf plot).
Conclusions: There is no evidence $(\mathrm{P}=0.37)$ from these data of a difference in mean time between the two processors.

```
> stem(procspeed$diff)
    The decimal point is 1 digit(s) to the right of the |
    -0 | 8
    -0 | 310
        | | 03
> procspeed
    code procA procB diff
1 1 27.2 24.1 3.1
2 2 18.1 19.3-1.2
3 3 27.2 26.8 0.4
4 4 19.7 20.1 -0.4
5 5 24.5 27.6 -3.1
6 6 22.1 29.8 -7.7
> t.test(procspeed$procA, procspeed$procB, pair=T)
        Paired t-test
data: procspeed$procA and procspeed$procB
t = -0.9921, df = 5, p-value = 0.3667
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -5.326857 2.360190
sample estimates:
mean of the differences
    -1.483333
```


2-factor ANOVA

$>$	procspeed2	
code time	process	
1	1	27.2

```
1 2
    629.8
    B
```

```
> anova(lm(time~code+process, procspeed2))
```

> anova(lm(time~code+process, procspeed2))
Analysis of Variance Table
Analysis of Variance Table
Response: time
Response: time
Df Sum Sq Mean Sq F value Pr(>F)
Df Sum Sq Mean Sq F value Pr(>F)
code 5 129.068 25.814 3.8488 0.0827 .
code 5 129.068 25.814 3.8488 0.0827 .
process 1 6.601 6.601 0.9842 0.3667
process 1 6.601 6.601 0.9842 0.3667
Residuals 5 33.534 6.707
Residuals 5 33.534 6.707

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Sign test

Assumptions: Differences are independent (can't test).
Conclusions: There are 2 positive differences out of 6 non-zero differences, so $\mathrm{P}=0.69$ and there is no evidence from these data of a difference in the median time between the two processors.

```
> 2*pbinom(2,6,.5)
[1] 0.6875
```


Simple Linear Regression

Assumptions: The time with Processor A is linearly related to the time with Processor B, data are normal and homoscedastic. We can't test any of these because the sample is small and there are no repeated x-values.

Conclusions: There is no evidence from these data of a linear relationship between Processor A and Processor B times.
> plot(procA~procB, procspeed)


```
> abline(lm(procA~procB, procspeed))
> anova(lm(procA~procB, procspeed))
Analysis of Variance Table
```

```
Response: procA
    Df Sum Sq Mean Sq F value Pr(>F)
procB 1 25.502 25.502 2.1417 0.2172
Residuals 4 47.631 11.908
> anova(lm(procB~procA, procspeed))
Analysis of Variance Table
Response: procB
    Df Sum Sq Mean Sq F value Pr(>F)
procA 1 31.199 31.199 2.1417 0.2172
Residuals 4 58.270 14.567
```

(b) Acceptable analyses: Two-sample t-test or 1-factor ANOVA.

Acceptable graphs: Comparative dot, box or stem-leaf plots. (Graph 2, suitable analysis 2, correct calculation 3, F-test of variances 2, assumptions 2, conclusions 2)

Assumptions: Independence (can't test), normality (OK by plot), homoscedasticity (graph looks heteroscedastic; F -test gives no evidence $(\mathrm{P}=0.14)$ that the variances are not equal).

Conclusions: There is no evidence from these data that either the mean or the variance of resilient modulus differs between rutted and non-rutted pavement.

```
> ruts
    resmod rutted
1 1.48 YES
2 1.88 YES
3 1.90 YES
1.29 YES
5 3.53 YES
6 2.43 YES
7 1.00 YES
8 3.06 NO
9 2.58 NO
10 1.70 NO
11 5.76 NO
12 2.44 NO
13 2.03 NO
14 1.76 NO
15 4.63 NO
16 2.86 NO
17 2.82 NO
18 1.04 NO
19 5.92 NO
> boxplot(resmod~rutted, ruts, horizontal=T)
```



```
> t.test(resmod~rutted, ruts, var.eq=T)
    Two Sample t-test
data: resmod by rutted
t = 1.7268, df = 17, p-value = 0.1023
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.2484140 2.4884140
sample estimates:
    mean in group NO mean in group YES
        3.05 1.93
> FO <- var(ruts$resmod[ruts$rutted=="NO"])/var(ruts$resmod[ruts$rutted=="YES"])
> F0
[1] 3.474133
> 2*(1-pf(F0, 11, 6))
[1] 0.1387276
```


Question 3

The only acceptable analysis is a 2-factor ANOVA with a test for interaction.
Assumptions: Normality, independence, homoscedasticity.
Conclusions: There is no evidence ($\mathrm{P}=0.49$) from these data of an interaction between metal type and sintering time. The interaction plots confirm this as the lines are parallel. There is strong evidence that the mean compressive strength is different for the different sintering times $(\mathrm{P}=0.0003)$ and for the different metals $(\mathrm{P}=0.0006)$.

The 95% confidence interval for the residual variance is $(0.522,4.199)$.
(Correct calculation with P-values 9, assumptions 2, conclusions 3, either interaction plot 3, CI for residual variance 3)

```
> sinter
    strength metal time
1 17.1 1 100
2 16.5 1 100
14.9 1 100
4 12.3 2 100
5 13.8 2 100
6 10.8 2 100
7 19.4 1 200
8 18.9 1 200
9 20.1 1 200
10 15.6 2 200
11 17.2 2 200
12 16.7 2 200
> anova(lm(strength~metal*time, sinter))
Analysis of Variance Table
Response: strength
                Df Sum Sq Mean Sq F value Pr(>F)
metal 1 35.021 35.021 30.608 0.0005522 ***
time 1 42.187 42.187 36.872 0.0002985 ***
metal:time 1 0.608 0.608 0.531 0.4869859
Residuals 8 9.153 1.144
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> mse <- anova(lm(strength~metal*time, sinter)) ["Residuals","Mean Sq"]
> mse
[1] 1.144167
> mse/(qchisq(c(.975,.025),8)/8)
    [1] 0.5220171 4.1992954
> interaction.plot(sinter$time,sinter$metal,sinter$strength)
> interaction.plot(sinter$metal,sinter$time,sinter$strength)
```


Question 4

Assumptions: Independence, normality, homoscedasticity. The test of the slope also assumes linearity. Linearity is tested by the lack of fit F-test. Normality and Homoscedasticity can't be tested in such a small sample but look OK on the graph.

Conclusions: There is some evidence $(\mathrm{P}=0.07)$ from these data that the relationship is non-linear. However, if we choose to ignore that and test the slope, there is strong evidence $(\mathrm{P}=0.002)$ that the slope is not zero.
(Graph with line 4, regression analysis 7, lack of fit test 5, assumptions 3, conclusions 3, 99\% confidence interval for MSE or MSPE 3)

```
> concrete
    load age
1 11450 20
2 10420 20
311142 20
4 10840 25
5 11170 25
6 10540 25
7 9470 31
8 9190 31
9 9540 31
> plot(load~age, concrete)
> abline(lm(load~age, concrete))
```



```
> coef(lm(load~age, concrete))
(Intercept) age
    14192.1099 -148.9780
> anova(lm(load~age, concrete))
Analysis of Variance Table
Response: load
    Df Sum Sq Mean Sq F value Pr(>F)
age 1 4039390 4039390 19.03 0.003305 **
Residuals 7 1485858 212265
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> mse <- anova(lm(load~age, concrete))["Residuals", "Mean Sq"]
> mse
[1] 212265.4
> mse/(qchisq(c(.995,.005),7)/7)
[1] 73275.32 1501995.83
> anova(lm(load~age+as.factor(age), concrete))
Analysis of Variance Table
Response: load
\begin{tabular}{lrrrrrr} 
& Df & Sum Sq & Mean Sq & F value & Pr \((>F)\) & \\
age & 1 & 4039390 & 4039390 & 29.3341 & 0.001639 & ** \\
as.factor(age) & 1 & 659642 & 659642 & 4.7903 & 0.071204 & . \\
Residuals & 6 & 826216 & 137703 & & &
\end{tabular}
Residuals 6 826216 137703
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> mspe <- anova(lm(load~age+as.factor(age), concrete))["Residuals", "Mean Sq"]
> mspe
[1] 137702.7
> mspe/(qchisq(c(.995,.005),6)/6)
[1] 44545.75 1222707.21
```


Question 5

The analyses in original units and on a log scale give very similar results and lead to the same conclusion: the interaction is significant at the 5% level (or, better to say, $\mathrm{P} \ll 0.001$ so there is very strong evidence of an interaction between frequency and environment). That means that both frequency and environment affect the crack growth rate, but the effect of the environment is different at different frequencies; the higher the frequency, the less difference the environment makes. Because the interaction is significant, we do not test the main effects.

The residual plots show that the residuals from the log-scale analysis follow a normal distribution more closely than residuals from the original-scale analysis. In the original scale, the $23^{\text {rd }}$ observation is an outlier with a large negative residual.

> cracks			
growth	environ	freq	
1	2.29	Air	10
2	2.47	Air	10
3	2.48	Air	10
4	2.12	Air	10
5	2.65	Air	1
6	2.68	Air	1
7	2.06	Air	1
8	2.38	Air	1
9	2.24	Air	0.1
10	2.71	Air	0.1
11	2.81	Air	0.1
12	2.08	Air	0.1
13	2.06	Water	10
14	2.05	Water	10
15	2.23	Water	10
16	2.03	Water	10
17	3.20	Water	1
18	3.18	Water	1
19	3.96	Water	1
20	3.64	Water	1
21	11.00	Water	0.1
22	11.00	Water	0.1
23	9.06	Water	0.1
24	11.30	Water	0.1
25	1.90	Saltwater	10
26	1.93	Saltwater	10
27	1.75	Saltwater	10
28	2.06	Saltwater	10
29	3.10	Saltwater	1
30	3.24	Saltwater	1
31	3.98	Saltwater	1
32	3.24	Saltwater	1
33	9.96	Saltwater	0.1
34	10.01	Saltwater	0.1
35	9.36	Saltwater	0.1
36	10.40	Saltwater	0.1

```
> anova(lm(growth~environ*freq, cracks))
Analysis of Variance Table
Response: growth
```



```
environ:freq 4 101.966 rreq 25.491 126.89< 2.2e-16 ***
Residuals 27 5.424 0.201
---
Signif. codes: 0 '****' 0.001 ،**' 0.01 '*' 0.05 '.' 0.1 ، ' 1
> plot(lm(growth~environ*freq, cracks))
```



```
> anova(lm(log(growth)~environ*freq, cracks))
Analysis of Variance Table
Response: log(growth)
    Df Sum Sq Mean Sq F value Pr(>F)
environ 2 2.3576 1.1788 125.849 2.061e-14 ***
freq 2 7.5702 3.7851 404.095< 2.2e-16 ***
environ:freq 4 3.5284 0.8821 94.172 1.885e-15 ***
Residuals 27 0.2529 0.0094
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> plot(lm(log(growth)~environ*freq, cracks))
```


