STATISTICS 3N03/3J04 - TEST \#3A SOLUTIONS

Question 1a

Paired data \boldsymbol{t}-test is the correct parametric analysis.

[11 marks if all of the following is given; maximum 8 marks for a wrong analysis.]
Assumptions: Normality (can't test with such a small sample but it does not look good on a stem and leaf plot or dot plot); independence (can't test: sample is small and the observations are not in any particular order).

Conclusion: There is some evidence from these data $(P=0.078)$ that the mean noise level is different in acceleration and deceleration lanes in Bangkok. Note: using the textbook tables we get 2-sided $0.1>\mathrm{P}>$ 0.05 .

```
> bangkokA
    acc dec diff
1 78.1 78.6 -0.5
2 78.1 80.0 -1.9
3 79.6 79.3 0.3
41.0 79.1 1.9
5 88.7 78.2 10.5
6 88.1 78.0 10.1
7 78.6 78.6 0.0
8 78.5 78.8 -0.3
988.4 78.0 10.4
10 79.6 78.4 1.2
> stem(bangkokA$diff)
    The decimal point is 1 digit(s) to the right of the |
    -0 | 210
    0 0012
    0
    1 | 001
> t.test(bangkokA$acc,bangkokA$dec,pair=T)
    Paired t-test
data: bangkokA$acc and bangkokA$dec
t = 1.9872, df = 9, p-value = 0.07815
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.4386036 6.7786036
sample estimates:
mean of the differences
```

 3.17
 Sign test is the correct nonparametric analysis
[5 marks if all of the following is given.]
Conclusion: Out of 9 non-zero differences, 3 were negative, so a 2 -sided P -value is twice the left tail of $\operatorname{Bin}(9,0.5)$. There is no evidence from these data $(P=0.51)$ that the mean noise level is different in acceleration and deceleration lanes in Bangkok.

The t-test is more powerful than the sign test. The sign test is more robust than the t-test because it does not assume normality.

```
> 2*pbinom(sum(bangkokA$diff<0), sum(bangkokA$diff!=0), 0.5)
```

[1] 0.5078125

Question 1b

Independent-sample \boldsymbol{t}-test is the correct parametric analysis.
[16 marks if all of the following is given, including the F-test; maximum 8 marks for a wrong analysis.]
Assumptions: Normality (can't test with such a small sample but it looks OK on comparative stem and leaf or dot plots); independence within and between samples (can't test: samples are small and the observations are not in any particular order); homoscedasticity (accepted by the F-test below).

Conclusion: There is no evidence from these data $(P=0.63)$ that the mean viscosity is different after changing the catalyst. Note: using the textbook tables we get 2 -sided $0.8>\mathrm{P}>0.5$.

```
> catalystA
    visc cat
1 724 A
2 718 A
3776 A
4 760 A
5 745 A
6 759 A
7 795 A
8 756 A
9 742 A
10 740 A
11 761 A
12 749 A
16 735 B
17 775 B
18 729 B
19 755 B
20 783 B
21 760 B
22 738 B
23 780 B
```



```
> t.test(visc~cat,catalystA,var.equal=T)
    Two Sample t-test
data: visc by cat
t = - 0.4965, df = 18, p-value = 0.6256
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -25.06809 15.48476
sample estimates:
mean in group A mean in group B
    752.0833 756.8750
```


Two-sided \boldsymbol{F}-test is the correct test for homoscedasticity.

Assumptions: Same as for the t-test. Normality (can't test with such a small sample but it looks OK on comparative stem and leaf or dot plots); independence within and between samples (can't test: samples are small and the observations are not in any particular order).

Conclusion: $\mathrm{F}_{0}=1.0217$, so there is no evidence from these data $(\mathrm{P}=0.92)$ that the variance in viscosity is different after changing the catalyst. Note: using the textbook tables we get 2 -sided $\mathrm{P}>0.5$.

```
> catvar<-sapply(split(catalystA$visc,catalystA$cat),var)
> catvar
    A B
443.3561 452.9821
> sqrt(catvar)
    A B
21.05602 21.28338
> (11*catvar[1]+7*catvar[2])/18
            A
447.0995
> sqrt((11*catvar[1]+7*catvar[2])/18)
            A
21.14473
> catvar[2]/catvar[1]
            B
1.021712
> 2*(1-pf(catvar[2]/catvar[1],7,14))
0.9157905
```


Question 2

[5 marks.]
Here, $\mathrm{n}_{1}=12, \mathrm{n}_{2}=8, \alpha=0.05, \delta=.2$, and we use $\sigma^{2}=\mathrm{s}_{\mathrm{p}}{ }^{2}=447.0995$. From tables, $\mathrm{z}_{0.025}=1.960$. We find that the chance of a Type II error is 82%.

```
> s2p<-(11*catvar[1]+7*catvar[2])/18
> s2p
    A
447.0995
> 10/sqrt(s2p*(1/12+1/8))
    A
1.036140
> qnorm(0.975)-10/sqrt(s2p*(1/12+1/8))
    A
0.9238238
> -qnorm(0.975)-10/sqrt(s2p*(1/12+1/8))
            A
-2.996104
> pnorm(qnorm(0.975)-10/sqrt(s2p*(1/12+1/8)))+pnorm(-qnorm(0.975)-
10/sqrt(s2p*(1/12+1/8)))
            A
0.8235782
Question 2
[3 marks.]
```

William Sealey Gosset +3 interesting facts.

