STATISTICS 3N03/3J04 – TEST #3 SOLUTIONS

Question 1a

Paired data *t*-test is the correct parametric analysis.

[12 marks if all of the following is given; maximum 8 marks for a wrong analysis.]

Assumptions: Normality (can't test with such a small sample but it looks OK on a stem and leaf plot or dot plot); independence (can't test: sample is small and the observations are not in any particular order).

Conclusion: There is no evidence from these data (P = 0.61) that the mean noise level is different in acceleration and deceleration lanes in Bangkok. Note: using the textbook tables we get 2-sided 0.8 > P > 0.5.

```
> bangkok
    acc dec diff
   78.1 78.6 -0.5
1
  78.1 80.0 -1.9
2

      3
      79.6
      79.3
      0.3

      4
      81.0
      79.1
      1.9

  78.7 78.2 0.5
5
6 78.1 78.0 0.1
7 78.6 78.6 0.0
8 78.5 78.8 -0.3
9 78.4 78.0 0.4
10 79.6 78.4 1.2
> stem(bangkok$diff)
  The decimal point is at the |
  -1 | 9
  -0 | 53
   0 01345
   1 | 29
> t.test(bangkok$acc,bangkok$dec,pair=T)
      Paired t-test
data: bangkok$acc and bangkok$dec
t = 0.5311, df = 9, p-value = 0.6082
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5540866 0.8940866
sample estimates:
mean of the differences
                      0.17
```

Sign test is the correct nonparametric analysis [5 marks if all of the following is given.]

Conclusion: Out of 9 non-zero differences, 3 were negative, so a 2-sided P-value is twice the left tail of Bin(9, 0.5). There is no evidence from these data (P = 0.51) that the mean noise level is different in acceleration and deceleration lanes in Bangkok.

The *t*-test is more powerful than the sign test. The sign test is more robust than the *t*-test because it does not assume normality.

```
> 2*pbinom(sum(bangkok$diff<0), sum(bangkok$diff!=0), 0.5)
[1] 0.5078125</pre>
```

Question 1b

Independent-sample *t*-test is the correct parametric analysis.

[18 marks if all of the following is given, including the F-test; maximum 8 marks for a wrong analysis.]

Assumptions: Normality (can't test with such a small sample but it looks OK on comparative stem and leaf or dot plots); independence within and between samples (can't test: samples are small and the observations are not in any particular order); homoscedasticity (accepted by the *F*-test below).

Conclusion: There is no evidence from these data (P = 0.45) that the mean viscosity is different after changing the catalyst. Note: using the textbook tables we get 2-sided 0.5 > P > 0.2.

> catalyst		
	visc	cat
1	724	Α
2	718	Α
3	776	Α
4	760	Α
5	745	A
6	759	Α
7	795	A
8	756	A
9	742	A
10	740	Α
11	761	A
12	749	A
13	739	Α
14	747	A
15	742	Α
16	735	В
17	775	В
18	729	В
19	755	В
20	783	В
21	760	В
22	738	В
23	780	В

> t.test(visc~cat,catalyst,var.equal=T)

```
Two Sample t-test

data: visc by cat

t = -0.7672, df = 21, p-value = 0.4515

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-24.76795 11.41795

sample estimates:

mean in group A mean in group B

750.200 756.875
```

Two-sided *F*-test is the correct test for homoscedasticity.

Assumptions: Same as for the *t*-test. Normality (can't test with such a small sample but it looks OK on comparative stem and leaf or dot plots); independence within and between samples (can't test: samples are small and the observations are not in any particular order).

Conclusion: $F_0 = 1.238$, so there is no evidence from these data (P = 0.69) that the variance in viscosity is different after changing the catalyst. Note: using the textbook tables we get 2-sided P > 0.5.

```
> catvar<-sapply(split(catalyst$visc,catalyst$cat),var)</pre>
> catvar
                В
       Α
365.8857 452.9821
> sqrt(catvar)
                 В
       Α
19.12814 21.28338
> (14*catvar[1]+7*catvar[2])/21
       Α
394.9179
> sqrt((14*catvar[1]+7*catvar[2])/21)
       Α
19.87254
> catvar[2]/catvar[1]
       В
1.238043
> 2*(1-pf(catvar[2]/catvar[1],7,14))
0.6926031
```

Question 2

[5 marks.]

Here, $\alpha = 0.05$, $\beta = 0.01$, $\delta = 0.2$, and we use $\sigma^2 = s_d^2 = 1.024$. From tables, $z_{0.025} = 1.960$ and $z_{0.01} = 2.326$. We see that 471 locations would be required.

```
> var(bangkok$diff)
[1] 1.024556
> var(bangkok$diff)*(qnorm(.975)+qnorm(.99))^2/(0.2^2)
[1] 470.5904
```