STATISTICS 3N03/3J04 - TEST \#3 SOLUTIONS

Question 1a

Paired data \boldsymbol{t}-test is the correct parametric analysis.

[12 marks if all of the following is given; maximum 8 marks for a wrong analysis.]
Assumptions: Normality (can't test with such a small sample but it looks OK on a stem and leaf plot or dot plot); independence (can't test: sample is small and the observations are not in any particular order).

Conclusion: There is no evidence from these data $(P=0.61)$ that the mean noise level is different in acceleration and deceleration lanes in Bangkok. Note: using the textbook tables we get 2-sided $0.8>\mathrm{P}>$ 0.5 .

```
> bangkok
        acc dec diff
1 78.1 78.6 -0.5
2 78.1 80.0 -1.9
3 79.6 79.3 0.3
41.0 79.1 1.9
5 78.7 78.2 0.5
6 78.1 78.0 0.1
7 78.6 78.6 0.0
8 78.5 78.8 -0.3
978.4 78.0 0.4
10 79.6 78.4 1.2
> stem(bangkok$diff)
    The decimal point is at the |
    -1 | 9
    -0 53
    0 01345
    1 29
> t.test(bangkok$acc,bangkok$dec,pair=T)
    Paired t-test
data: bangkok$acc and bangkok$dec
t = 0.5311, df = 9, p-value = 0.6082
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.5540866 0.8940866
sample estimates:
mean of the differences
                        0.17
```


Sign test is the correct nonparametric analysis

[5 marks if all of the following is given.]
Conclusion: Out of 9 non-zero differences, 3 were negative, so a 2 -sided P -value is twice the left tail of $\operatorname{Bin}(9,0.5)$. There is no evidence from these data $(P=0.51)$ that the mean noise level is different in acceleration and deceleration lanes in Bangkok.

The t-test is more powerful than the sign test. The sign test is more robust than the t-test because it does not assume normality.

```
> 2*pbinom(sum(bangkok$diff<0), sum(bangkok$diff!=0), 0.5)
```

[1] 0.5078125

Question 1b

Independent-sample \boldsymbol{t}-test is the correct parametric analysis.

[18 marks if all of the following is given, including the F-test; maximum 8 marks for a wrong analysis.]
Assumptions: Normality (can't test with such a small sample but it looks OK on comparative stem and leaf or dot plots); independence within and between samples (can't test: samples are small and the observations are not in any particular order); homoscedasticity (accepted by the F-test below).

Conclusion: There is no evidence from these data $(P=0.45)$ that the mean viscosity is different after changing the catalyst. Note: using the textbook tables we get 2 -sided $0.5>\mathrm{P}>0.2$.

$>$	catalyst visc	
cat		


```
> t.test(visc~cat,catalyst,var.equal=T)
```

```
    Two Sample t-test
data: visc by cat
t = -0.7672, df = 21, p-value = 0.4515
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -24.76795 11.41795
sample estimates:
mean in group A mean in group B
    750.200 756.875
```


Two-sided \boldsymbol{F}-test is the correct test for homoscedasticity.

Assumptions: Same as for the t-test. Normality (can't test with such a small sample but it looks OK on comparative stem and leaf or dot plots); independence within and between samples (can't test: samples are small and the observations are not in any particular order).

Conclusion: $\mathrm{F}_{0}=1.238$, so there is no evidence from these data $(\mathrm{P}=0.69)$ that the variance in viscosity is different after changing the catalyst. Note: using the textbook tables we get 2 -sided $\mathrm{P}>0.5$.

```
> catvar<-sapply(split(catalyst$visc,catalyst$cat),var)
> catvar
    A B
365.8857 452.9821
> sqrt(catvar)
    A B
19.12814 21.28338
> (14*catvar[1]+7*catvar[2])/21
            A
394.9179
> sqrt((14*catvar[1]+7*catvar[2])/21)
            A
19.87254
> catvar[2]/catvar[1]
    B
1.238043
> 2*(1-pf(catvar[2]/catvar[1],7,14))
    B
0.6926031
```


Question 2

[5 marks.]
Here, $\alpha=0.05, \beta=0.01, \delta=0.2$, and we use $\sigma^{2}=s_{d}{ }^{2}=1.024$. From tables, $z_{0.025}=1.960$ and $_{z 0.01}=2.326$. We see that 471 locations would be required.

```
> var(bangkok$diff)
[1] 1.024556
> var(bangkok$diff)*(qnorm(.975)+qnorm(.99))^2/(0.2^2)
[1] 470.5904
```

