STATS 4F03/6F03 Test \#2 SOLUTIONS

Problems 2.25, 2.26
I have computed the exact-test P -values using the hypergeometric distribution and using the fisher.test() function. For the hypergeometric, I took the top right cell as the random variable, making the one-sided test a left-tail test. This seemed to be more convenient.

```
> for(x in 0:5) print(matrix(c(23-x,13+x,x,5-x),nrow=2))
    [,1] [,2]
[1,] 23 0
[2,] 13 5
    [,1] [,2]
[1,] 22 1
[2,] 14 4
    [,1] [,2]
[1,] 21 2
[2,] 15 3
    [,1] [,2]
[1,] 20 3
[2,] 16 2
    [,1] [,2]
[1,] 19 4
[2,] 17 1
    [,1] [,2]
[1,] 18 5
[2,] 18 0
> dhyper(0:5,23,18,5)
[1] 0.01143318 0.09391538 0.27548512 0.36157422 0.21269072 0.04490137
```

One-sided P-value:
> phyper $(2,23,18,5)$
[1] 0.3808337
One-sided mid-P:

```
> phyper(1,23,18,5)+0.5*dhyper (2,23,18,5)
```

[1] 0.2430911

Conclusion from the one-sided test: There is no evidence from these data $(P=0.38$, mid- $\mathrm{P}=0.24)$ that the odds of controlling cancer are greater with surgery than with radiation treatment.

Two-sided P-value:

```
> sum(dhyper(0:5,23,18,5)[dhyper(0:5,23,18,5) <= dhyper(2,23,18,5)])
```

[1] 0.6384258

Two-sided mid-P:

```
> sum(dhyper(0:5,23,18,5)[dhyper(0:5,23,18,5) <
```

dhyper $(2,23,18,5)])+0.5 * \operatorname{dhyper}(2,23,18,5)$
[1] 0.5006832

Conclusion from the two-sided test: There is no evidence from these data $(P=0.64$, mid- $\mathrm{P}=0.50)$ that the odds of controlling cancer are different with surgery than with radiation treatment.

The smallest possible P -value would result when $\mathrm{X}=0$ (the first table in the list of tables above). Because this is the smallest possible hypergeometric probability, the P -value would be the same for a two-sided test as for a one-sided test (left-tail in my case). Note that a 1% test could never reject the hypothesis.
> dhyper $(0,23,18,5)$
[1] 0.01143318

Since $X=0$ is the extreme tail observation, the smallest possible mid-P is half of the smallest possible P. Note that using mid-P a 1% test could reject the hypothesis but a 0.5% test could never reject.

```
> 0.5*dhyper (0, 23,18,5)
```

[1] 0.005716589
Here is the sample odds ratio and a confidence interval for the true odds ratio computed using Woolf's formula:

```
> (21*3)/(15*2)
[1] 2.1
>>((21*3)/(15*2))*exp(c(-1,1)*qnorm(0.975)*sqrt((1/21)+(1/15)+(1/2)+(1/3)))
[1] 0.3116097 14.1523194
```

fisher.test() gives the same P-values as I got with the hypergeometric but the estimated odds ratio and confidence intervals are different because they are true conditional ML estimates based on the non-central hypergeometric.

```
> fisher.test(matrix(c(21,15,2,3),nrow=2))
    Fisher's Exact Test for Count Data
data: matrix(c(21, 15, 2, 3), nrow = 2)
p-value = 0.6384
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.2089115 27.5538747
sample estimates:
odds ratio
    2.061731
> fisher.test(matrix(c(21,15,2,3),nrow=2), alt="greater")
    Fisher's Exact Test for Count Data
data: matrix(c(21, 15, 2, 3), nrow = 2)
p-value = 0.3808
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
    0.2864828 Inf
sample estimates:
odds ratio
    2.061731
```

Here for comparison is the two-sided P-value computed by Pearson's chi-square with and without continuity correction.

```
> chisq.test(matrix(c(21,15,2,3),nrow=2))
    Pearson's Chi-squared test with Yates' continuity correction
data: matrix(c(21, 15, 2, 3), nrow = 2)
X-squared = 0.086, df = 1, p-value = 0.7694
Warning message:
Chi-squared approximation may be incorrect in: chisq.test(matrix(c(21, 15, 2,
3), nrow = 2))
> chisq.test(matrix(c(21,15,2,3),nrow=2),correct=F)
    Pearson's Chi-squared test
data: matrix(c(21, 15, 2, 3), nrow = 2)
```

```
X-squared = 0.5992, df = 1, p-value = 0.4389
Warning message:
Chi-squared approximation may be incorrect in: chisq.test(matrix(c(21, 15, 2,
3), nrow = 2), correct = F)
```

Finally, here is a logistic analysis; the P-value is, of course, very close to that obtained with Pearson's Chi-square without continuity correction as the model and the estimates are the same but the glm uses G^{2} instead of X^{2} to test the fit.

```
> q2.25 <- data.frame(cc=c(21,15),cnc=c (2,3),treat=c("Su","RT"))
> anova(glm(cbind(cc,cnc)~treat, q2.25, family=binomial(link=logit)),
test="Chis")
Analysis of Deviance Table
Model: binomial, link: logit
Response: cbind(cc, cnc)
Terms added sequentially (first to last)
    Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 1 0.59476
treat 1 0.59476 0 6.661e-16 0.44058
> summary(glm(cbind(cc,cnc)~treat, q2.25, family=binomial(link=logit)))
Call:
glm(formula = cbind(cc, cnc) ~ treat, family = binomial(link = logit),
    data = q2.25)
Deviance Residuals:
[1] 0 0
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6094 0.6325 2.545 0.0109 *
treatSu 0.7419 0.9735 0.762 0.4460
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 5.9476e-01 on 1 degrees of freedom
Residual deviance: 6.6613e-16 on 0 degrees of freedom
AIC: 9.3348
Number of Fisher Scoring iterations: 4
```

The 95% confidence interval for the odds ratio calculated from the logistic analysis agrees with the one calculated by Woolf's formula; I re-entered the estimated \log odds ratio and standard deviation from the printout above so the result is only accurate to 4 significant digits.
$>\exp (.7419)$
[1] 2.099922
$>\exp (.7419+c(-1,1) * 1.960 * .9736)$
[1] 0.3115014 .15625

Problem 3.15

I have done the analysis first with cross-tabulated data and the mantelhaen.test() and breslowday.test() functions, then with the data frame and logistic analysis.

pay
race N Y
B 924
W 1247
, , district = NE

pay		
race	N	Y
B	3	10
W	8	45

```
, , district = NW
```

 pay
 | race | N | Y |
| ---: | ---: | ---: |
| B | 4 | 5 |
| W | 9 | 57 |

, , district $=$ SE

```
        pay
race N Y
    B 7 16
    W 10 54
```

```
, , district = SW
```

```
        pay
race N Y
    B 4 7
    W 12 59
```

With the exception of district NW, which has a P-value close to 5%, the partial tables do not show association between race and merit pay.

```
> apply(meritx,3,fisher.test)
$NC
    Fisher's Exact Test for Count Data
data: array(newX[, i], d.call, dn.call)
p-value = 0.4509
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.4728644 4.4115657
sample estimates:
odds ratio
    1.462374
```

\$NE

```
    Fisher's Exact Test for Count Data
data: array(newX[, i], d.call, dn.call)
p-value = 0.6782
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.243233 8.758798
sample estimates:
odds ratio
    1.672719
```

\$NW
Fisher's Exact Test for Count Data
data: array(newX[, i], d.call, dn.call)
p-value = 0.0431
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.817057828 .1676045
sample estimates:
odds ratio
4.912599
\$SE
Fisher's Exact Test for Count Data
data: array(newX[, i], d.call, dn.call)
$p-v a l u e=0.1368$
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.64481578 .1625569

```
sample estimates:
odds ratio
    2.336334
```

\$SW
Fisher's Exact Test for Count Data
data: array(newX[, i], d.call, dn.call)
p-value $=0.212$
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.512071813 .1045517
sample estimates:
odds ratio
2.765975
> apply(meritx,3,chisq.test)
\$NC
Pearson's Chi-squared test with Yates' continuity correction
data: array(newX[, i], d.call, dn.call)
X-squared $=0.251, d f=1, p$-value $=0.6164$
\$NE
Pearson's Chi-squared test with Yates' continuity correction
data: array(newX[, i], d.call, dn.call)
X-squared $=0.0766, \mathrm{df}=1, \mathrm{p}$-value $=0.7819$
\$NW
Pearson's Chi-squared test with Yates' continuity correction
data: array(newX[, i], d.call, dn.call)
X-squared $=3.3164, \mathrm{df}=1, \mathrm{p}$-value $=0.06859$
\$SE
Pearson's Chi-squared test with Yates' continuity correction
data: array(newX[, i], d.call, dn.call)
X-squared $=1.5124, \mathrm{df}=1, \mathrm{p}$-value $=0.2188$
\$SW
Pearson's Chi-squared test with Yates' continuity correction
data: array(newX[, i], d.call, dn.call)
X-squared $=1.225, \mathrm{df}=1, \mathrm{p}$-value $=0.2684$

The Mantel-Haenzel test shows that if there is a common odds ratio for all 5 districts, it is significantly different from $1(\mathrm{P}=0.008$ with continuity correction, $\mathrm{P}=0.005$ without), hence there is an association between race and merit pay. The odds that a white will get merit pay are more than twice the odds that a black will get merit pay.

```
> mantelhaen.test(meritx)
    Mantel-Haenszel chi-squared test with continuity correction
data: meritx
Mantel-Haenszel X-squared = 6.9797, df = 1, p-value = 0.008244
alternative hypothesis: true common odds ratio is not equal to 1
9 5 \text { percent confidence interval:}
    1.244268 3.769779
sample estimates:
common odds ratio
    2.165783
> mantelhaen.test(meritx, correct=F)
    Mantel-Haenszel chi-squared test without continuity correction
data: meritx
Mantel-Haenszel X-squared = 7.8149, df = 1, p-value = 0.005182
alternative hypothesis: true common odds ratio is not equal to 1
9 5 \text { percent confidence interval:}
    1.244268 3.769779
sample estimates:
common odds ratio
                        2.165783
```

The exact Mantel-Haenszel test gives a result that is not much different; the P -value is a bit smaller and the confidence interval is a bit wider.

```
> mantelhaen.test(meritx, correct=F, exact=T)
    Exact conditional test of independence in 2 x 2 x k tables
data: meritx
S = 27, p-value = 0.008428
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
    1.197300 3.933736
sample estimates:
common odds ratio
            2.182267
```

The Breslow-Day test shows that the odds ratio does not differ significantly between districts ($\mathrm{P}=0.71$), whether the common odds ratio is the marginal odds ratio (default in the Breslow-Day test) or the Mantel-Haenszel estimator. > breslowday.test(meritx)

```
    OR Stat df pvalue
2.237192 2.137252 4.000000 0.710532
> breslowday.test(meritx, mantelhaen.test(meritx, correct=F)$estimate)
OR.common odds ratio Stat df
        2.1657826 2.1506942 4.0000000
            pvalue
        0.7080655
```

In the logistic analysis, the test of race:district interaction $(P=0.72)$ is equivalent to the Breslow-Day test and the test of race main effect $(\mathrm{P}=0.007)$ is equivalent to the Mantel-Haenszel test.
> meritl

	yes	no	district	race
1	24	9	NC	B
2	10	3	NE	B
3	5	4	NW	B
4	16	7	SE	B
5	7	4	SW	B
11	47	12	NC	W
12	45	8	NE	W
13	57	9	NW	W
14	54	10	SE	W
15	59	12	SW	W

```
> anova(glm(cbind(yes,no)~district*race, meritl, family=binomial(link=logit)),
test="Chis")
Analysis of Deviance Table
Model: binomial, link: logit
Response: cbind(yes, no)
Terms added sequentially (first to last)
```

	Df	Deviance	Resid.	Df	Resid. Dev
NULL		9	10.6649		
district	4	1.2024	5	9.4624	0.8777
race	1	7.3915	4	2.0710	0.0066
district:race	4	2.0710		0	$-1.266 e-14$

> summary(glm(cbind(yes,no)~district+race, meritl,
family=binomial(link=logit)))
Call:
glm(formula = cbind(yes, no) ~ district + race, family = binomial(link =
logit),
data = meritl)
Deviance Residuals:

1	2	3	4	5	11	12
0.60191	0.30311	-0.97042	-0.09608	-0.30707	-0.53319	-0.18583

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.74947 0.29581 2.534 0.01129 *
$\begin{array}{lllll}\text { districtNE } 0.25837 & 0.42067 & 0.614 & 0.53909\end{array}$
$\begin{array}{lllll}\text { districtNW } 0.13836 & 0.40517 & 0.341 & 0.73273\end{array}$
$\begin{array}{lllll}\text { districtSE } & 0.12087 & 0.37287 & 0.324 & 0.74581\end{array}$
$\begin{array}{llllll}\text { districtSW } & 0.00445 & 0.38486 & 0.012 & 0.99077\end{array}$
raceW $0.79129 \quad 0.28532 \quad 2.7730 .00555$ **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10.665 on 9 degrees of freedom
Residual deviance: 2.071 on 4 degrees of freedom
AIC: 49.437

Number of Fisher Scoring iterations: 4
The regression coefficient raceW and its standard error give a confidence interval for the common odds ratio. $>\exp (.79129)$
[1] 2.206241
$>\exp (.79129+c(-1,1) * q n o r m(.975) * 0.28532)$
[1] 1.2612123 .859381
The following command gives 4 diagnostic plots.
> plot(glm(cbind(yes, no)~district+race, meritl, family=binomial(link=logit)))

Residuals vs Fitted

Residuals vs Leverage

The diagnostic plots show observations 1 (NC black), 11 (NC white), 3 (NW black) and 13 (NW white) as being influential (large residual and high leverage). To interpret the plots, remember that there are 10 points but only 4 degrees of freedom. The plot of residual versus predicted, for example, shows the 5 points for blacks on the left (merit pay less likely) and the 5 points for whites on the right (more likely) and the two clusters of points are nearly top-to-bottom flips of each other.

