
STATS 4F03/6F03 Test #2 SOLUTIONS 
 
Problems 2.25, 2.26 
 
I have computed the exact-test P-values using the hypergeometric distribution and using the fisher.test() function. 
For the hypergeometric, I took the top right cell as the random variable, making the one-sided test a left-tail test. This 
seemed to be more convenient. 
 
> for(x in 0:5) print(matrix(c(23-x,13+x,x,5-x),nrow=2)) 
     [,1] [,2] 
[1,]   23    0 
[2,]   13    5 
     [,1] [,2] 
[1,]   22    1 
[2,]   14    4 
     [,1] [,2] 
[1,]   21    2 
[2,]   15    3 
     [,1] [,2] 
[1,]   20    3 
[2,]   16    2 
     [,1] [,2] 
[1,]   19    4 
[2,]   17    1 
     [,1] [,2] 
[1,]   18    5 
[2,]   18    0 
 
> dhyper(0:5,23,18,5) 
[1] 0.01143318 0.09391538 0.27548512 0.36157422 0.21269072 0.04490137 
 
One-sided P-value: 
> phyper(2,23,18,5) 
[1] 0.3808337 
 
One-sided mid-P: 
> phyper(1,23,18,5)+0.5*dhyper(2,23,18,5) 
[1] 0.2430911 
 
Conclusion from the one-sided test: There is no evidence from these data (P = 0.38, mid-P = 0.24) that the odds of 
controlling cancer are greater with surgery than with radiation treatment. 
 
Two-sided P-value: 
> sum(dhyper(0:5,23,18,5)[dhyper(0:5,23,18,5) <= dhyper(2,23,18,5)]) 
[1] 0.6384258 
 
Two-sided mid-P: 
> sum(dhyper(0:5,23,18,5)[dhyper(0:5,23,18,5) < 
dhyper(2,23,18,5)])+0.5*dhyper(2,23,18,5) 
[1] 0.5006832 
 
Conclusion from the two-sided test: There is no evidence from these data (P = 0.64, mid-P = 0.50) that the odds of 
controlling cancer are different with surgery than with radiation treatment. 
 
The smallest possible P-value would result when X = 0 (the first table in the list of tables above). Because this is the 
smallest possible hypergeometric probability, the P-value would be the same for a two-sided test as for a one-sided 
test (left-tail in my case). Note that a 1% test could never reject the hypothesis. 
> dhyper(0,23,18,5) 
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[1] 0.01143318 
 
Since X = 0 is the extreme tail observation, the smallest possible mid-P is half of the smallest possible P. Note that 
using mid-P a 1% test could reject the hypothesis but a 0.5% test could never reject. 
> 0.5*dhyper(0,23,18,5) 
[1] 0.005716589 
 
Here is the sample odds ratio and a confidence interval for the true odds ratio computed using Woolf’s formula: 
> (21*3)/(15*2) 
[1] 2.1 
> > ((21*3)/(15*2))*exp(c(-1,1)*qnorm(0.975)*sqrt((1/21)+(1/15)+(1/2)+(1/3))) 
[1]  0.3116097 14.1523194 
 
fisher.test() gives the same P-values as I got with the hypergeometric but the estimated odds ratio and confidence 
intervals are different because they are true conditional ML estimates based on the non-central hypergeometric. 
> fisher.test(matrix(c(21,15,2,3),nrow=2)) 
 
        Fisher's Exact Test for Count Data 
 
data:  matrix(c(21, 15, 2, 3), nrow = 2)  
p-value = 0.6384 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
  0.2089115 27.5538747  
sample estimates: 
odds ratio  
  2.061731  
 
> fisher.test(matrix(c(21,15,2,3),nrow=2), alt="greater") 
 
        Fisher's Exact Test for Count Data 
 
data:  matrix(c(21, 15, 2, 3), nrow = 2)  
p-value = 0.3808 
alternative hypothesis: true odds ratio is greater than 1  
95 percent confidence interval: 
 0.2864828       Inf  
sample estimates: 
odds ratio  
  2.061731  
 
Here for comparison is the two-sided P-value computed by Pearson’s chi-square with and without continuity 
correction. 
> chisq.test(matrix(c(21,15,2,3),nrow=2)) 
 
        Pearson's Chi-squared test with Yates' continuity correction 
 
data:  matrix(c(21, 15, 2, 3), nrow = 2)  
X-squared = 0.086, df = 1, p-value = 0.7694 
 
Warning message: 
Chi-squared approximation may be incorrect in: chisq.test(matrix(c(21, 15, 2, 
3), nrow = 2))  
 
> chisq.test(matrix(c(21,15,2,3),nrow=2),correct=F) 
 
        Pearson's Chi-squared test 
 
data:  matrix(c(21, 15, 2, 3), nrow = 2)  
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X-squared = 0.5992, df = 1, p-value = 0.4389 
 
Warning message: 
Chi-squared approximation may be incorrect in: chisq.test(matrix(c(21, 15, 2, 
3), nrow = 2), correct = F)  
 
Finally, here is a logistic analysis; the P-value is, of course, very close to that obtained with Pearson’s Chi-square 
without continuity correction as the model and the estimates are the same but the glm uses G2 instead of X2 to test 
the fit. 
> q2.25 <- data.frame(cc=c(21,15),cnc=c(2,3),treat=c("Su","RT")) 
> anova(glm(cbind(cc,cnc)~treat, q2.25, family=binomial(link=logit)), 
test="Chis") 
Analysis of Deviance Table 
 
Model: binomial, link: logit 
 
Response: cbind(cc, cnc) 
 
Terms added sequentially (first to last) 
 
 
      Df Deviance Resid. Df Resid. Dev P(>|Chi|) 
NULL                      1    0.59476           
treat  1  0.59476         0  6.661e-16   0.44058 
 
> summary(glm(cbind(cc,cnc)~treat, q2.25, family=binomial(link=logit))) 
 
Call: 
glm(formula = cbind(cc, cnc) ~ treat, family = binomial(link = logit),  
    data = q2.25) 
 
Deviance Residuals:  
[1]  0  0 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)   
(Intercept)   1.6094     0.6325   2.545   0.0109 * 
treatSu       0.7419     0.9735   0.762   0.4460   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 5.9476e-01  on 1  degrees of freedom 
Residual deviance: 6.6613e-16  on 0  degrees of freedom 
AIC: 9.3348 
 
Number of Fisher Scoring iterations: 4 
 
The 95% confidence interval for the odds ratio calculated from the logistic analysis agrees with the one calculated by 
Woolf’s formula; I re-entered the estimated log odds ratio and standard deviation from the printout above so the 
result is only accurate to 4 significant digits. 
> exp(.7419) 
[1] 2.099922 
> exp(.7419+c(-1,1)*1.960*.9736) 
[1]  0.31150 14.15625 
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Problem 3.15 
 
I have done the analysis first with cross-tabulated data and the mantelhaen.test() and breslowday.test() functions, 
then with the data frame and logistic analysis. 
 
> merit 
   freq district pay race 
1    24       NC   Y    B 
2    10       NE   Y    B 
3     5       NW   Y    B 
4    16       SE   Y    B 
5     7       SW   Y    B 
6     9       NC   N    B 
7     3       NE   N    B 
8     4       NW   N    B 
9     7       SE   N    B 
10    4       SW   N    B 
11   47       NC   Y    W 
12   45       NE   Y    W 
13   57       NW   Y    W 
14   54       SE   Y    W 
15   59       SW   Y    W 
16   12       NC   N    W 
17    8       NE   N    W 
18    9       NW   N    W 
19   10       SE   N    W 
20   12       SW   N    W 
> meritx <- xtabs(freq~race+pay+district, merit) 
> meritx 
, , district = NC 
 
    pay 
race  N  Y 
   B  9 24 
   W 12 47 
 
, , district = NE 
 
    pay 
race  N  Y 
   B  3 10 
   W  8 45 
 
, , district = NW 
 
    pay 
race  N  Y 
   B  4  5 
   W  9 57 
 
, , district = SE 
 
    pay 
race  N  Y 
   B  7 16 
   W 10 54 
 
, , district = SW 
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    pay 
race  N  Y 
   B  4  7 
   W 12 59 
 
With the exception of district NW, which has a P-value close to 5%, the partial tables do not show association 
between race and merit pay. 
> apply(meritx,3,fisher.test) 
$NC 
 
        Fisher's Exact Test for Count Data 
 
data:  array(newX[, i], d.call, dn.call)  
p-value = 0.4509 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 0.4728644 4.4115657  
sample estimates: 
odds ratio  
  1.462374  
 
 
$NE 
 
        Fisher's Exact Test for Count Data 
 
data:  array(newX[, i], d.call, dn.call)  
p-value = 0.6782 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 0.243233 8.758798  
sample estimates: 
odds ratio  
  1.672719  
 
 
$NW 
 
        Fisher's Exact Test for Count Data 
 
data:  array(newX[, i], d.call, dn.call)  
p-value = 0.0431 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
  0.8170578 28.1676045  
sample estimates: 
odds ratio  
  4.912599  
 
 
$SE 
 
        Fisher's Exact Test for Count Data 
 
data:  array(newX[, i], d.call, dn.call)  
p-value = 0.1368 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 0.6448157 8.1625569  
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sample estimates: 
odds ratio  
  2.336334  
 
 
$SW 
 
        Fisher's Exact Test for Count Data 
 
data:  array(newX[, i], d.call, dn.call)  
p-value = 0.212 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
  0.5120718 13.1045517  
sample estimates: 
odds ratio  
  2.765975  
 
> apply(meritx,3,chisq.test) 
$NC 
 
        Pearson's Chi-squared test with Yates' continuity correction 
 
data:  array(newX[, i], d.call, dn.call)  
X-squared = 0.251, df = 1, p-value = 0.6164 
 
 
$NE 
 
        Pearson's Chi-squared test with Yates' continuity correction 
 
data:  array(newX[, i], d.call, dn.call)  
X-squared = 0.0766, df = 1, p-value = 0.7819 
 
 
$NW 
 
        Pearson's Chi-squared test with Yates' continuity correction 
 
data:  array(newX[, i], d.call, dn.call)  
X-squared = 3.3164, df = 1, p-value = 0.06859 
 
 
$SE 
 
        Pearson's Chi-squared test with Yates' continuity correction 
 
data:  array(newX[, i], d.call, dn.call)  
X-squared = 1.5124, df = 1, p-value = 0.2188 
 
 
$SW 
 
        Pearson's Chi-squared test with Yates' continuity correction 
 
data:  array(newX[, i], d.call, dn.call)  
X-squared = 1.225, df = 1, p-value = 0.2684 
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The Mantel-Haenzel test shows that if there is a common odds ratio for all 5 districts, it is significantly different from 
1 (P = 0.008 with continuity correction, P = 0.005 without), hence there is an association between race and merit pay. 
The odds that a white will get merit pay are more than twice the odds that a black will get merit pay. 
> mantelhaen.test(meritx) 
 
        Mantel-Haenszel chi-squared test with continuity correction 
 
data:  meritx  
Mantel-Haenszel X-squared = 6.9797, df = 1, p-value = 0.008244 
alternative hypothesis: true common odds ratio is not equal to 1  
95 percent confidence interval: 
 1.244268 3.769779  
sample estimates: 
common odds ratio  
         2.165783  
 
> mantelhaen.test(meritx, correct=F) 
 
        Mantel-Haenszel chi-squared test without continuity correction 
 
data:  meritx  
Mantel-Haenszel X-squared = 7.8149, df = 1, p-value = 0.005182 
alternative hypothesis: true common odds ratio is not equal to 1  
95 percent confidence interval: 
 1.244268 3.769779  
sample estimates: 
common odds ratio  
         2.165783  
 
The exact Mantel-Haenszel test gives a result that is not much different; the P-value is a bit smaller and the 
confidence interval is a bit wider. 
> mantelhaen.test(meritx, correct=F, exact=T) 
 
        Exact conditional test of independence in 2 x 2 x k tables 
 
data:  meritx  
S = 27, p-value = 0.008428 
alternative hypothesis: true common odds ratio is not equal to 1  
95 percent confidence interval: 
 1.197300 3.933736  
sample estimates: 
common odds ratio  
         2.182267  
 
The Breslow-Day test shows that the odds ratio does not differ significantly between districts (P = 0.71), whether the 
common odds ratio is the marginal odds ratio (default in the Breslow-Day test) or the Mantel-Haenszel estimator. 
> breslowday.test(meritx) 
      OR     Stat       df   pvalue  
2.237192 2.137252 4.000000 0.710532  
 
> breslowday.test(meritx, mantelhaen.test(meritx, correct=F)$estimate) 
OR.common odds ratio                 Stat                   df  
           2.1657826            2.1506942            4.0000000  
              pvalue  
           0.7080655  
 
In the logistic analysis, the test of race:district interaction (P = 0.72) is equivalent to the Breslow-Day test and the 
test of race main effect (P = 0.007) is equivalent to the Mantel-Haenszel test. 
> meritl 
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   yes no district race 
1   24  9       NC    B 
2   10  3       NE    B 
3    5  4       NW    B 
4   16  7       SE    B 
5    7  4       SW    B 
11  47 12       NC    W 
12  45  8       NE    W 
13  57  9       NW    W 
14  54 10       SE    W 
15  59 12       SW    W 
 
> anova(glm(cbind(yes,no)~district*race, meritl, family=binomial(link=logit)), 
test="Chis") 
Analysis of Deviance Table 
 
Model: binomial, link: logit 
 
Response: cbind(yes, no) 
 
Terms added sequentially (first to last) 
 
 
              Df Deviance Resid. Df Resid. Dev P(>|Chi|) 
NULL                              9    10.6649           
district       4   1.2024         5     9.4624    0.8777 
race           1   7.3915         4     2.0710    0.0066 
district:race  4   2.0710         0 -1.266e-14    0.7227 
 
> summary(glm(cbind(yes,no)~district+race, meritl, 
family=binomial(link=logit))) 
 
Call: 
glm(formula = cbind(yes, no) ~ district + race, family = binomial(link = 
logit),  
    data = meritl) 
 
Deviance Residuals:  
       1         2         3         4         5        11        12        13   
 0.60191   0.30311  -0.97042  -0.09608  -0.30707  -0.53319  -0.18583   0.47422   
      14        15   
 0.07216   0.15054   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  0.74947    0.29581   2.534  0.01129 *  
districtNE   0.25837    0.42067   0.614  0.53909    
districtNW   0.13836    0.40517   0.341  0.73273    
districtSE   0.12087    0.37287   0.324  0.74581    
districtSW   0.00445    0.38486   0.012  0.99077    
raceW        0.79129    0.28532   2.773  0.00555 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 10.665  on 9  degrees of freedom 
Residual deviance:  2.071  on 4  degrees of freedom 
AIC: 49.437 
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Number of Fisher Scoring iterations: 4 
 
The regression coefficient raceW and its standard error give a confidence interval for the common odds ratio. 
> exp(.79129) 
[1] 2.206241 
> exp(.79129 + c(-1,1)*qnorm(.975)*0.28532) 
[1] 1.261212 3.859381 
 
The following command gives 4 diagnostic plots. 
> plot(glm(cbind(yes,no)~district+race, meritl, family=binomial(link=logit))) 
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The diagnostic plots show observations 1 (NC black), 11 (NC white), 3 (NW black) and 13 (NW white) as being 
influential (large residual and high leverage). To interpret the plots, remember that there are 10 points but only 4 
degrees of freedom. The plot of residual versus predicted, for example, shows the 5 points for blacks on the left 
(merit pay less likely) and the 5 points for whites on the right (more likely) and the two clusters of points are nearly 
top-to-bottom flips of each other. 


