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ABSTRACT. We prove that the multiplier algebra of the Drury-Arveson Hardy
space H2 on the unit ball in C™ has no corona in its maximal ideal space,
thus generalizing the Corona Theorem of L. Carleson to higher dimensions.
This result is obtained as a corollary of the Toeplitz corona theorem and a
new Banach space result: the Besov-Sobolev space By has the "baby corona
property" forallo > 0and 1 < p < co. In addition we obtain infinite generator

and semi-infinite matrix versions of these theorems.
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1. INTRODUCTION

In 1962 Lennart Carleson demonstrated in [12] the absence of a corona in the
maximal ideal space of H* () by showing that if {g; };V:l is a finite set of functions
in H* (D) satisfying

N
(L.1) dolgi () ze>0, zeD,
j=1

then there are functions {fj}j.v:l in H*° (D) with

N
(1.2) Y fi(z)gi(z)=1, ze€D,
j=1

In 1968 Fuhrmann [14] extended Carleson’s corona theorem to the finite matrix
case. In 1980 Rosenblum [23] and Tolokonnikov [27] proved the corona theorem for
infinitely many generators N = oo. This was further generalized to the one-sided
infinite matrix setting by Vasyunin in 1981 (see [28]). Finally Treil [30] showed
in 1988 that the generalizations stop there by producing a counterexample to the
two-sided infinite matrix case.

Hormander noted a connection between the corona problem and the Koszul
complex, and in the late 1970’s Tom Wolff gave a simplified proof using the theory
of the d equation and Green’s theorem (see [15]). This proof has since served as a
model for proving corona type theorems for other Banach algebras.

While there is a large literature on corona theorems in one complex dimension
(see e.g. [19]), progress in higher dimensions has been limited. Indeed, apart from
the simple cases in which the maximal ideal space of the algebra can be identified
with a compact subset of C™, no corona theorem has been proved until now in
higher dimensions. Instead, partial results have been obtained, such as the beautiful
Toeplitz corona theorem for Hilbert function spaces with a complete Nevanlinna-
Pick kernel, the H? corona theorem on the ball and polydisk, and results restricting
N to 2 generators in (1.1) (the case N = 1 is trivial). In particular, Varopoulos [35]
published a lengthy classic paper in an unsuccessful attempt to prove the corona
theorem for the multiplier algebra H> (B,,) of the classical Hardy space H? (B,,)
of holomorphic functions on the ball with square integrable boundary values. His
BMO estimates for solutions with N = 2 generators remain unimproved to this
day. We will discuss these partial results in more detail below.

Our main result is that the corona theorem, namely the absence of a corona in
the maximal ideal space, holds for the multiplier algebra Mpz of the Hilbert space
H?2, the celebrated Drury-Arveson Hardy space on the ball in n dimensions.

Theorem 1. If {gj};,vzl is a finite set of functions in Myz satisfying (1.1), then

N in My satisfying (1.2).

there are functions {f;},_,

In many ways H?2, and not the more familiar space H? (B,), is the natural
generalization to higher dimensions of the classical Hardy space on the disk. For
example, H?2 is universal among Hilbert function spaces with the complete Pick
property, and its multiplier algebra My is the correct home for the multivariate
von Neumann inequality (see e.g. [9]). See Arveson [8] for more on the space H2,
including the model theory of n-contractions.
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More generally, the corona theorem holds for the multiplier algebras Mpgs,,)
of the Besov-Sobolev spaces BY (B,,), 0 < 0 < %, on the unit ball B,, in C™. The
space BJ (B,,) consists roughly of those holomorphic functions f whose derivatives

of order 2 — o lie in the classical Hardy space H? (B,,) = Bz% (B,,), and is normed

by
11 {le(f““)()’z/ 2 <>}%
14 = 0 + d>\nz )
B3 =\ 2 .

for some m > § — o where R = Z;‘L=1 zg% is the radial derivative. In particular
J

(1-1e3)"" R (2)

1
H? = B2 (B,,). Finally, we also obtain semi-infinite matrix versions of these results.

Note: Our techniques also yield BMO estimates for the H* (B,) corona
problem, which will appear elsewhere.

2. THE CORONA PROBLEM IN C"

Let X be a Hilbert space of holomorphic functions in an open set 2 in C" that
is a reproducing kernel Hilbert space with a complete irreducible Nevanlinna-Pick
kernel (see [9] for the definition). The following Toeplitz corona theorem is due to
Ball, Trent and Vinnikov [10] (see also Ambrozie and Timotin [2] and Theorem 8.57
in [9]).

For f = (fa))_, € ®V X and h € X, define M;h = (f,h)>_, and

up [[Mghflgw x -

I F1 At X,oNX) = Myl gnx = 8
uli( X, 87 X) @ Il <1

N 2
Note that maxi<a<n My, |3 < 1 flaunx,enx) < \/Eazl Ml -

Toeplitz corona theorem: Let X be a Hilbert function space in an open set
Q in C" with an irreducible complete Nevanlinna-Pick kernel. Let 6 > 0
and N € N. Then g1,...,gv € Mx satisfy the following "baby corona
property"; for every h € X, there are fi, ..., fy € X such that
1
2 2 2
(2.1) Iillx + o vl < 51kl

91 (2) i)+ +gn(2) fn(2) = h(z), z2€9Q,

if and only if g1, ...,gn € Mx satisfy the following "multiplier corona prop-
erty"; there are ¢y, ..., o5y € Mx such that

(2.2) HQDHMult(X,@NX) < 1
G121 () + v (Dey(z) = Vi, zeqQ
The baby corona theorem is said to hold for X if whenever g1, ..., gy € My satisfy
(2.3) () + .+ lgn (2))P>e>0, z2€Q,

then g1, ..., gn satisfy the baby corona property (2.1). The Toeplitz corona theorem
thus provides a useful tool for reducing the multiplier corona property (2.2) to the
more tractable, but still very difficult, baby corona property (2.1) for multiplier
algebras M B2 (B,) of certain of the Besov-Sobolev spaces By (B,,) when p =2 - see
below. The case of M BZ(B,) when p # 2 must be handled by more classical methods
and remains largely unsolved.
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Remark 1. A standard abstract argument applies to show that the absence of a
corona for the multiplier algebra Mx, i.e. the density of the linear span of point
evaluations in the mazximal ideal space of Mx, is equivalent to the following asser-
tion: for each finite set {gj};,v:l C Mx such that (2.3) holds for some ¢ > 0, there

are {@j};vzl C Mx and 6 > 0 such that condition (2.2) holds. See for example
Lemma 9.2.6 in [19] or the proof of Criterion 3.5 on page 39 of [25].

2.1. The Baby Corona Theorem. To treat N > 2 generators in (2.1), it is just
as easy to treat the case N = oo, and this has the advantage of not requiring
bookkeeping of constants depending on N. We will

(1) use the Koszul complex for infinitely many generators, and
(2) invert higher order forms in the 9 equation, and
evise new estimates for the Charpentier solution operators for these equa-
3) devi timates for the Ch ti luti tors for th
tions including,
a) the use of sharp estimates on Euclidean expressions |(w — z) == f| in
th f sh timat Euclid i w—2z) 2

terms of the invariant derivative ’6 f ’ (see Proposition 4),

(b) the use of the exterior calculus together with the explicit form of Char-
pentier’s solution kernels in Theorems 4 and 6 to handle rogue Euclid-
ean factors w; — z; (see Section 8), and

(c) the application of generalized operator estimates of Schur type in
Lemma 10 to obtain appropriate boundedness of solution operators.

In addition to these novel elements in the proof, we make crucial use of the
beautiful integration by parts formula of Ortega and Fabrega [20], and in order to
obtain ¢2-valued results, we use the clever factorization of the Koszul complex in
Andersson and Carlsson [4] but adapted to 2.

Notation 1. For sequences f (z) = (fi (2))se; € €% we will write

Z | fi (2)|2-

When considering sequences of vectors such as V" f (z) = (V™ f; (2))ie,, the same

notation |V™ f (z)| = \/Zfil V™ fi (2)|* will be used with V™ f; ()| denoting the
Euclidean length of the vector V™ f; (z). Thus the symbol || is used in at least three
different ways; to denote the absolute value of a complex number, the length of a
finite vector in CN and the norm of a sequence in £%. Later it will also be used to
denote the Hilbert-Schmidt norm of a tensor, namely the square root of the sum of
the squares of the coefficients in the standard basis. In all cases the meaning should
be clear from the context.

Recall that By (Bn; €%) consists of all f = (fi);~; € H (By;(?) such that
(2.4)

m—1

logimnen = 3 7510+ ([ |(1-12) " wms 02
k=0 n

for some m > % — o. By Proposition 1 below (see also [11]), the right side is finite
for some m > 2 — ¢ if and only if it is finite for all m > % — 0. As usual we will
write By (B,,) for the scalar-valued space.

1
p

pdAn (z)) < 00,
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We now state our baby corona theorem for the ¢?-valued Banach spaces By (IB%TL; 62),
0 >0,1<p< oco. Observe that for o < 0, Mps®,) = By (B,) is a subalgebra
of C (E) and so has no corona. The N = 2 generator case of Theorem 2 when
o€ {0, %) U (%,oo) and 1 < p < oo is due to Ortega and Fabrega [20], who
also obtain the N = 2 generator case when o = % and 1 < p < 2. See Theorem

A in [20]. In [21] Ortega and Fabrega prove analogous results with scalar-valued
Hardy-Sobolev spaces in place of the Besov-Sobolev spaces.
Let [Mgll 5o (g, )— po (s, 2 denote the norm of the multiplication operator My
P n P mno

from By (B,,) to the £?-valued Besov-Sobolev space By (IB%,L; 52).

Theorem 2. Let 6 >0, 0 >0 and 1 < p < co. Then there is a constant Cp 5 p s
such that given g = (g;);oq € Mpg(®B,)—Bg(B,:42) Satisfying

”MQHBg(Bn)HBg(En;Z?) < L

oo

Ylgi ) = 6°>0, z€B,,

j=1
there is for each h € By (B,,) a vector-valued function f € By (]B%n;@) satisfying
(2.5) ||f||Bg([Bn;22) < Cnops

‘hHBg(]Bn)a
Ygi(2) fiz) = h(z), z€B,.
j=1

Corollary 1. Let0 <o < % Then the Banach algebra Mpg (s,,) has no corona, i.e.
(2.1) implies (2.2). In particular this includes Theorem 1 that the multiplier algebra

of the Drury-Arveson space H2 = BQ% (B,.) has no corona (the one-dimensional case
is Carleson’s corona theorem), and also includes that the multiplier algebra of the n-
dimensional Dirichlet space D (B,,) = BY (B,,) has no corona (the one-dimensional
case here is due to Tolokonnikov [29]).

The corollary follows immediately from the finite generator case p = 2 of Theo-
rem 2 and the Toeplitz corona theorem (and Remark 1) since the spaces B (B,,)
have an irreducible complete Nevanlinna-Pick kernel when 0 < o < 1 ([7]).

We also have a semi-infinite matricial corona theorem.

Corollary 2. Let 0 < ¢ < % Let 'Hy be a finite m-dimensional Hilbert space
and let Ho be an infinite dimensional separable Hilbert space. Suppose that F €
MBg (B,)(H,—H,) Salisfies 6%I,, < F*(2)F(2) < I,,. Then thereisG e MBgB,)(Ha—H1)

such that
G(2)F(z) = Ipn,

HGHMBg(B")(HQﬂHI) < Congm-

This corollary follows immediately from the case p = 2 of Theorem 2 and the
Toeplitz corona theorem together with Theorem (MCT) in Trent and Zhang [34].
See [34] for the notation used here. We already commented above on the special

case of this corollary for the Hardy space BQ% (B;) = H? (D) on the disk. The case
m = 1 of this corollary for the classical Dirichlet space BY (B1) = D (D) on the disk
is due to Trent [33]. It would be of interest to determine the dependence of the
constants on p and § in Theorem 2.
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2.1.1. Prior results. In [4] Andersson and Carlsson solve the baby corona problem
for H? (B,,) and obtain the analogous (baby) H? corona theorem on the ball B,, for
1 < p < oo and with constants independent of the number of generators (see also
Amar [1], Andersson and Carlsson [5],[3] and Krantz and Li [16]). Partial results
on the corona problem restricted to N = 2 generators and BMO in place of L™
estimates have been obtained for H* (B,,) (the multiplier algebra of H?(B,) =
BQ% (B,)) by N. Varopoulos [35] in 1977. This classical corona problem remains
open (Problem 19.3.7 in [24]), along with the corona problems for the multiplier
algebras of BS (B,), + <o < 2.

More recently in 2000 J. M. Ortega and J. Fabrega [20] obtain partial results
with N = 2 generators in (2.1) for the algebras Mpgg,) when 0 < o < %, ie.
from the Dirichlet space BY (B,,) up to but not including the Drury-Arveson Hardy
space H2 = Bzé (B,). To handle N = 2 generators they exploit the fact that
a 2 X 2 antisymmetric matrix consists of just one entry up to sign, so that as a
consequence the form Q2 in the Koszul complex below is d-closed. The paper [20]
by Ortega and Fabrega has proved to be of enormous influence in our work, as the
basic groundwork and approach we use are set out there.

In [31] S. Treil and the third author obtain the H? corona theorem on the poly-
disk D" (see also Lin [18] and Trent [32]). The Hardy space H? (D) on the polydisk
fails to have the complete Nevanlinna-Pick property, and consequently the Toeplitz
corona theorem only holds in a more complicated sense that a family of kernels
must be checked for positivity instead of just one. As a result the corona theorem
for the algebra H> (D™) on the polydisk remains open for n > 2. Finally, even the
baby corona problems, apart from that for HP, remain open on the polydisk.

2.2. Plan of the paper. We will prove Theorem 2 using the Koszul complex and
a factorization of Andersson and Carlsson, an explicit calculation of Charpentier’s
solution operators, and generalizations of the integration by parts formulas of Or-
tega and Fabrega, together with new estimates for boundedness of operators on
certain real-variable analogues of the holomorphic Besov-Sobolev spaces. Here is a
brief plan of the proof.

We are given an infinite vector of multipliers g = (g;);o, € M B (Bn)— B (Bn;2)
that satisfy ||M9HB;(IBH)—>B;§(IBH;€2) < 1 and infg, |g| > d > 0, and an element
h € Bf (B,,). We wish to find f = (f;);2; € By (Bn; €?) such that

(1) Myf=g-f=h,
(2) 9f =0,
®3)

An obvious first attempt at a solution is

Hf“Bg(]Bn;Z?) < Chops ”hHBg(IBn) :

g
f = 72}1"
9]

since f obviously satisfies (1), can be shown to satisfy (3), but fails to satisfy (2)
in general.

To rectify this we use the Koszul complex in Section 5, which employs any
solution to the @ problem on forms of bidegree (0,q), 1 < ¢ < n, to produce a
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correction term A,I'Z so that

f= izh - Agr(z)
9]
now satisfies (1) and (2), but (3) is now in doubt without specifying the exact
nature of the correction term A,I'.

In Section 3 we explicitly calculate Charpentier’s solution operators to the 9
equation for use in solving the & problems arising in the Koszul complex. These so-
lution operators are remarkably simple in form and moreover are superbly adapted
for obtaining estimates in real-variable analogues of the Besov-Sobolev spaces in
the ball. In particular, the kernels K (w,z) of these solution operators involve
expressions like

(1—w2)" " (1= ul?) (w=2)
A (w, z)" ’

(2.6)

where

A(w,z) = |P, (w—2)+ 1—|z\2Qz(w—z)

is the length of the vector w — z shortened by multiplying by 1/1 — |z|2 its pro-
jection @, (w — z) onto the orthogonal complement of the complex line through z.
Also useful is the identity /A (w, z) = |1 — wZ| |, (w)| where ¢, is the involutive
automorphism of the ball that interchanges z and 0; in particular this shows that
d(w,z) = /A (w,z) is a quasimetric on the ball.

In Section 6.1 we introduce real-variable analogues A7 . (B,) of the Besov-
Sobolev spaces By (B,,) along with ¢2-valued variants, that are based on the geom-
etry inherent in the complex structure of the ball and reflected in the solution
kernels in (2.6). In particular these norms involve modifications D of the invariant

derivative V in the ball:
Df (w) = (1 - \w|2) PuV 4+ /1~ [wQuV.

Three crucial inequalities are then developed to facilitate the boundedness of the
Charpentier solution operators, most notably
. O™

(z—w) WF(I”)‘ <CA (w,2)
for € H*® (IB%n; 62), which controls the product of Euclidean lengths with Euclid-
ean derivatives on the left, in terms of the product of the smaller length /A (w, 2)

—1 .
and the larger derivative (1 - |w|2) D on the right. We caution the reader that

m
2

(2.7)

)

(1 . |w|2)7m D"F (w)

our definition of D™ is not simply the composition of m copies of D - see Definition
6 below.

In Section 4 we recall the clever integration by parts formulas of Ortega and
Fabrega involving the left side of (2.7), and extend them to the Charpentier solution
operators for higher degree forms. If we differentiate (2.6), the power of A (w, z) in
the denominator can increase and the integration by parts in Lemma 3 below will
temper this singularity on the diagonal. On the other hand the radial integration
by parts in Corollary 3 below will temper singularities on the boundary of the ball.
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In Section 7 we use Schur’s Test to establish the boundedness of positive opera-
tors with kernels of the form

(1 - W)a (1 - |w|2)b A, 2)

a+b+c+n+1

|1 — wz|
The case ¢ = 0 is standard (see e.g. [36]) and the extension to the general case
follows from an automorphic change of variables. These results are surprisingly
effective in dealing with the ameliorated solution operators of Charpentier.
Finally in Section 8 we put these pieces together to prove Theorem 2.
The appendix collects technical proofs of formulas and modifications of existing
proofs in the literature that would otherwise interrupt the main flow of the paper.

3. CHARPENTIER'S SOLUTION KERNELS FOR (0, ¢)-FORMS ON THE BALL

In Theorem I.1 on page 127 of [13], Charpentier proves the following formula for
(0, g)-forms:

Theorem 3. For q >0 and all forms f () € C* (B,,) of degree (0,q + 1), we have
for z € B,:

P =€, [ 3O nCH (€3) 4. { RGIALE 2}

Here C29(¢,2) is a (n,n — ¢ — 1)-form in € on the ball and a (0,q)-form in 2z
on the ball that is defined in Definition 2 below. Using Theorem 3, we can solve
0.u = f for a 0-closed (0,q + 1)-form f as follows. Set

ue =e, [ fONCHES)
Taking 0. of this we see from Theorem 3 and df = 0 that

ga=e. ([ ey e ) = 1)

It is essential for our proof to explicitly compute the kernels C2'¢ when 0 < ¢ <
n — 1. The case ¢ = 0 is given in [13] and we briefly recall the setup. Denote by
A:C" x C" — [0,00) the map

Aw,z) = 1 —wz]* — (1 — |w|2) (1 - \z|2) .

We compute that

31) Aw,z) = 1-2Rewz+ |wzl* - {1 —Jwl? = |2 + |z\2}
= |w— 2z’ + w2 - [w]’|2]?
= (1= 12P) = 2+ 2P (o = 21 = ) + w2
- (1 - |z|2> lw— 2 + |2* — 2Re |2 wZ + |wz|?
= (1= 12P) o =2 + 2w - 2,

and by symmetry
A(w, z) = (1 — |w|2) |w — z|2 + |w(w — z)|2
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We also have the standard identity
(3.2) A (w,2) = 1= 20 g, (2)I*,
where

Py (w—2) + /1= |w]*Qu (w — 2)

1—wz

Pw (2) =

Thus we also have
2

(3.3) A(w,z) = [Py(z—w)+\/1—|w]’Qu (z — w)

2

P.(z —w) 4+ /1 —|2]*Q. (z — w)

It is convenient to combine the many faces of A (w, z) in (3.1), (3.2) and (3.3) in:
(3.4) Aw,z) = |1—wz?— (1 - |w|2) (1 - |z\2)
(1= 12) fw = 2 + 2w — 2)

(1= lwf) fw = 2 + fw(w - 2)P

2 2
1 —wz["[p,, (2)]

2 2
= [1—wz"|p, (w)]

2
P,(z—w)+14/1— |w\2Qw (z —w)

2
P.(z —w)+1/1—|2[’Q. (z — w)

To compute the kernels C0? we start with the Cauchy-Leray form

n

D (1) [Ajrid€s] Ay d(w; — ),

i=1

1
w(& w, 2) =
(E(w —2))"
which is a closed form on C™ x C™ x C” since with ( = w — z, p is a pullback of
the form

1 & i— n
v(,¢) = o Z(—l) L [Agid€ ] Ny dC,
i=1
which is easily computed to be closed (see e.g. 16.4.5 in [24]).
One then lifts the form p via a section s to give a closed form on C™ x C".
Namely, for s : C* x C™ — C™ one defines,
1 - i—1 n

i=1

s*p(w, z) = (

Now we fix s to be the following section used by Charpentier:

(3.5) s(w, 2) = w(1l — wz) —2(1 — |[w]?).



10 3. COSTEA, E. T. SAWYER, AND B. D. WICK

Simple computations [20] demonstrate that

(3.6) s(w,2)(w—z) = {wu _wE) -7 (1 - W)} w— 2)
= {(ﬁ—z) (wz) W + |w|? }
= |w—z> = (w2) (\w| z) + |w)? (zw — |z|2)

w — 2" = (w2) [w]* + [@=]” + [w]* Zw - w]*|z]*

= Jw— 2 + [zl — |wl* |2 = A (w, 2),

by the second line in (3.1).

Definition 1. We define the Cauchy Kernel on B,, x B,, to be

(3.7 Cn (w,2) = s* p(w, 2)

for the section s given in (5.5) above.

Definition 2. For 0 <p <n and 0 < g <n —1 we let CE? be the component of
Crn (w, 2) that has bidegree (p,q) in z and bidegree (n — p,n —q — 1) in w.

Thus if n is a (p, ¢+ 1)-form in w, then C2?An is a (p, ¢)-form in z and a multiple
of the volume form in w. We now prepare to give explicit formulas for Charpentier’s
solution kernels C24(w, z). First we introduce some notation.

Notation 2. Let w, (z) = /\] 1 dzj. Forn a positive integer and 0 < ¢ <n—1 let
P2 denote the collection of all permutations v on {1,...,n} that map to {i,,J,,L,}
where J,, is an increasing multi-index with card(J,) =n—q—1 and card(L,) = q.
Let €, = sgn (v) € {—1,1} denote the signature of the permutation v.
n!
(¢+1)1(n—q—1)1"
while the number of increasing multi-indices of length ¢ are q,(#iq), Since we are

Note that the number of increasing multi-indices of length n—¢—1 is

only allowed certain combinations of J, and L, (they must have disjoint intersec-
tion and they must be increasing multi-indices), it is straightforward to see that
the total number of permutations in P? that we are considering is (n#_!l)!q!.

From @vrelid [22] we obtain that Charpentier’s kernel takes the (abstract) form

Cow, z) = W Z sgn (V) s;, /\ Ow$; /\ 0281 N wp(w).
veP] J€Jy leL,
Fundamental for us will be the explicit formula for Charpentier’s kernel given in the
next theorem. We are informed by Part 2 of Proposition I.1 in [13] that C29(w, z) =
0 for w € 0B, and this serves as a guiding principle in the proof we give in the
appendix. It is convenient to isolate the following factor common to all summands
in the formula:

(1 wz)" ™ ‘Z(1—|w|2)q

3.8 P (w,z) = - , 0<q¢g<n—1.

(33) 1 (w,2) o g<n
Theorem 4. Let n be a positive integer and suppose that 0 < g <n — 1. Then
(3.9)

€Ot (w,2) = 3 (1)1 (w, 2) sgn (v) (w5, — ;)\ dwy \\ dzi N\ wn (w

veP, JEJL leL,



THE CORONA THEOREM IN C" 11

Remark 2. We can rewrite the formula for C29 (w, z) in (5.9) as
(3.10)
CO (w,z) = BY (w, 2) ZZ u(kJ) Zkfwk)cf‘]/\d;(fu{k}) A wy (W),
|J|=q k¢ J
where J U {k} here denotes the increasing multi-index obtained by rearranging the
integers {k, j1,...q} as

JULEY = {J1, - Jue, =15 K Gue,gys --da | -

Thus k occupies the p (k,J)™ position in J U {k}. The notation (J U {k})" refers
to the increasing multi-index obtained by rearranging the integers in {1,2,..n}\
(JU{k}). To see (3.10), we note that in (3.9) the permutation v takes the n-tuple
(1,2,..n) to (iy,Jy,L,). In (3.10) the n-tuple (k,(JU{k}),J) corresponds to
(ty, Ju, L), and so sgn (v) becomes in (3.10) the signature of the permutation that
takes (1,2,..m) to (k,(JU{k}),J). This in turn equals (—1)"*7) with p (k,J)
as above.

We observe at this point that the functional coefficient in the summands in (3.9)
looks like

1—wz n—qg—1 1— 2\q

(1)1 (,2) 5y = 77) = (<) e C I

which behaves like a fractional integral operator of order 1 in the Bergman metric
on the diagonal relative to invariant measure. See the appendix for a proof of
Theorem 4.

Finally, we will adopt the usual convention of writing

Coef (z / fw) ACY (w,2),

when we wish to view CO? as an operator taking (0, ¢ + 1)-forms f in w to (0, q)-
forms C24f in 2.

3.1. Ameliorated kernels. We now wish to define right inverses with improved
behaviour at the boundary. We consider the case when the right side f of the 0
equation is a (p, ¢ + 1)-form in B,,.

As usual for a positive integer s > n we will "project" the formula dCP4f = f
in B, for a d-closed form f in B to a formula 5C£:‘§f = fin B,, for a d-closed form
J in B,,. To accomplish this we define ameliorated operators Ch'? by

Cr? = R,,CP

n,s

where for n < s, Es; (R;,) is the extension (restrlction) operator that takes forms
Q=3 n; dw’ Adw’ in B, (Bs) and extends (restricts) them to B, (B,,) by

Es (Zn[,del/\dEJ) = Z(UIJOR) de/\d@J,
Ry (ZnI,deI /\de) = Z (nI,JOE) dw’ A dw” .
I,Jc{1,2,..., n}

Here R is the natural orthogonal projection from C* to C™ and F is the natural
embedding of C" into C°. In other words, we extend a form by taking the coeflicients
to be constant in the extra variables, and we restrict a form by discarding all wedge
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products of differentials involving the extra variables and restricting the coefficients

accordingly.
For s > n we observe that the operator C}? has integral kernel

(3.11) Cot((w,w'), (2,0)dV (w),  zweB,,

Chi(w,z) = /
n,s ) T TwlE. .
where B;_,, denotes the unit ball in C*~" with respect to the orthogonal decompo-

sition C* = C" @ C°~", and dV denotes Lebesgue measure. If f(w) is a O-closed
form on B, then f (w,w’) = f (w) is a J-closed form on B, and we have for z € B,

fz) = f(z’0)=5/B Co? (w,w'), (2,0)) f (w) dV (w) dV (w')

- 9 CP ((w,w'), (2,0))dV (w' w)dV (w
/{/m ((w, ), (2,0)) dV ( >}f<> (w)

-7 / e (w, 2) f (w) dV (w).
B
We have proved that
Craf(z) = / e (w, 2) f (w) dV (w)
B,

is a right inverse for 0 on O-closed forms:

Theorem 5. For all s > n and O-closed forms f in B,,, we have

acLaf = f in By,

We will use only the case p = 0 of this theorem and from now on we restrict
our attention to this case. The operators Cg:g have been computed in [20] and are
given by

s—n+j
1) - [ 5 Sl M s
. ' zZ) = Cn.js -
" B T —we) T (1 -

n j=0

where

(1—wz)" ! _
{|1 —wz - (1 - |w|2) (1 - |z|2)}

XY (=17 @y - z) N\ dwg J\ dw.
j=1

k#j (=1

0270 (U], Z) = 0o
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A similar result holds for the operators C{y4. Define

(1= |w]?) 1f\z|2) !
= |1—wz|

(=2 (L= o) ) ) e 1) (1= 1)\
- A (w,2)" (1—wz> Zo jns( z|? )

|1 — wz]|
— |2f2)’

1 lwl? —q-
ot (w,2) = @ (w,2) <1|wwL> Z

+q+a
natl (1 wE)" T J( o2

q
= C,;
E : 7,1,8 —
= (1 s n+j A

Note that the numerator and denominator are balanced in the sense that the sum of
the exponents in the denominator minus the corresponding sum in the numerator
(counting A (w, z) double) is s+ n+j— (s+j—1) =n+ 1, the exponent of the
invariant measure of the ball B,,.

Theorem 6. Suppose that s >n and 0 < g <n—1. Then we have

s—n 1 7
1— |w]? & (1—Jwl?) (1= |27
CWOL’,Z(W,Z) = Cg’q(W,Z) <1—wz> Z Cim.s ) (72 )

|1 — wz|

— ns ’LU Z Z Z ll(k‘ J) w—k) d?']/\dﬁ(‘]u{k})c A wy, (w)
|J|=q k¢ J

Proof: For s > n recall that the kernels of the ameliorated operators Cp? are

given in (3.11). For ease of notation, we will set k = s—n, so we have C* = C"@®CF.
Suppose that 0 < ¢ <n — 1. Recall from (3.9) that

(- w2y~ (1= )’
A (w, 2)°

x > sgn () (Wi, —z,) N\ dwy N\ dz \ws (w

vePY jeJy leL,

Yot (wez) N\ dwg )\ da \ws (w)

vePd Jj€dy leL,

CH(w,z) = (~1)°

where

(1 —wz)*~ " 1(1—\w|2)q
A (w,2)°

Fii (w,2) =@ (w,2) (W, —7,) = Ws, — %)) -

To compute the ameliorations of these kernels, we need only focus on the func-
tional coefficient F 3,¢V (w, z) of the kernel. It is easy to see that the ameliorated
kernel can only give a contribution in the variables when 1 < i, < n, since when
n+ 1 <14, < s the functional kernel becomes radial in certain variables and thus
reduces to zero upon integration.
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Then for any 1 <4 < n the corresponding functional coefficient f I, (w, z) has
amelioration f !

n,s,t

(w, z) given by

/ ey, @ )

/ (L—w2) (1~ |w]? - Jw'[*)? (2 — W)
mﬁk A((wawl) >(Z70)>s

_ 5. W _wz s—q—1 (1 — ‘w|2 — |wl|2)q

= ( 7 z) (1 ) /\/mﬂ% A((w,w’) , (Z,O))S

Theorem 6 is a thus a consequence of the following elementary lemma, which will
find application in Section 4 below on integration by parts as well.

ng,s,i (’LU,Z) =

dv (w')

av (w').

Lemma 1. We have
)s—q—l/ (1 — |’U)|2 — |w/|2)q
V1—|w|?Bs_p A((wa 'wl) s (Zv 0))5
s—n 2\ ST n—g-1 2 2 J
_ T e 1—|wl (A=) (1= 12P)
et ()Y |

2
i |1 — wz|

(1-wz

dV (w")

See the appendix for a proof of Lemma, 1.

4. INTEGRATION BY PARTS

We begin with an integration by parts formula involving a covariant derivative in
[20] (Lemma 2.1 on page 57) that reduces the singularity of the solution kernel on
the diagonal at the expense of differentiating the form. However, in order to prepare
for a generalization to higher order forms, we replace the covariant derivative with
the notion of Z, ,,-derivative defined in (4.2) below.

Recall Charpentier’s explicit solution C%%n to the 0 equation C%%n = 7 in the
ball B,, when 7 is a d-closed (0, 1)-form with coefficients in C' (B,,): the kernel is
given by

1— _\n—1 n . n
€00 (w, 2) = o L= WE) ST (=) @y — ) N dw )\ duw,

n
A (w, Z) j=1 k#j =1

for (w, z) € B,, x B,, where

Aw,z) = |1 —wz]® - (1 - \w|2) (1 - |z|2> .
Define the Cauchy operator S,, on dB,, x B,, with kernel
1
Sn((,2)=c1——=x
CH=erey
Let n = 2?21 n,dw; be a (0,1)-form with smooth coefficients. Let Z = Z. ,,

be the vector field acting in the variable w = (wq, ..., w,) and parameterized by
z=(z1,..., 2n) given by

do (¢), (¢ 2) € By X By

(4.1) Z=Z,.=

J

- 0
(W) — %) —.
—~ J J 8711]'



THE CORONA THEOREM IN C" 15

It will usually be understood from the context what the acting variable w and the
parameter variable z are in Z, ,, and we will then omit the subscripts and simply
write Z for 2w

Definition 3. Form > 0, define the m'" order derivative ?mn of a (0,1)-formn =
vy M () dwy, to be the (0,1)-form obtained by componentwise differentiation
holding monomials in W — Z fized:

(12) Z7) =Y (Z"n) wam =33 > @2 D ) 4 d.

k=1 k=1 \ |a|=m

Lemma 2. (¢f. Lemma 2.1 of [20]) For all m > 0 and smooth (0,1)-forms n =

> ohe i i (w) dwy, we have the formula,

00n(2) = 0.0 (), 2 w
43) O (x) /c (w, 2) A (w)

= “il ¢ /8]Bg S (w, 2) (?%]) E] (w) do (w)

=0

—|—cm/ CO0 (w, 2) AN Z"n (w).
Bn

Here the (0, 1)-form ?jn acts on the vector field Z in the usual way:
(ZJW> 2] = (Z 2, (w) de) <Z (Wi — z) 8w> = Z (W, — Z5) 2’y (w).
k=1 i=1 ¢ k=1
We can also rewrite the final integral in (4.3) as

/ CO0 (w, 2) N2 (w) = / 30 (w, 2) (7"77) [Z] (w)dV (w).

n n

See the appendix for a proof of Lemma 2.

We now extend Lemma 2 to (0,q + 1)-forms. Let

n= > n(w)dw

[T|=g+1

be a (0, ¢ + 1)-form with smooth coefficients. Givena (0,¢ + 1)-formn =3, _ ., ndw’

and an increasing sequence J of length |.J| = ¢, we define the interior product 7_dw’
of n and dw’ by

(4.4) nodw’ = > pdw’ sdw’ =3 (1) 0 di,
[T]=q+1 k¢J

since dw! dw’ = (—1)#(k’J)de if ke I\Jis the u(k,J)" index in I, and 0
otherwise. Recall the vector field Z defined in (4.1). The key connection between
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nadw’ and the vector field Z

. N\ (= Bl
1) nJU{k}dwk> > (W -7) = o
j=1

M:

45) (ndw’) (Z) = <

k=1

= > @ —7) (D" 000
k=1

We now define an mi" order derivative D" of a (0,¢+ 1)-form 7 using the
interior product. In the case ¢ = 0 we will have D' = (2””77) E] for a (0,1)-
form 7.

Remark 3. We are motivated by the fact that the Charpentier kernel C24 (w, z)
takes (0,q + 1)-forms inw to (0, q)-forms in z. Thus in order to express the solution
operator CO9 in terms of a volume integral rather than the integration of a form in

w and z, our definition of 5m77, even when m = 0, must include an appropriate
exchange of w-differentials for z-differentials.

Definition 4. Letm > 0. For a (0,q+ 1)-formn = ZIIIIqH nrdw’ in the variable
w, define the (0,q)—f0rm fmn in the variable z by

Z z" (nodw’ ) [Z] (w) dz’.

|J1=q

“Again it is usually understood what the acting and parameter variables are in
D™ but we will write D, ,, 7 (w) when this may not be the case. Note that for a
(0,¢+1)-form n =37 7_ 11 ndw!, we have

n= Z (an@‘]) A dw?
|J1=q
and using (4.2) the above definition yields
(4.6) D" (w)
Z z" (nadw”’) [2] (w) dz’

[71=q

= Y @ - 0" (200 (w) dz’
|7|=q k=1

- Ty @m0t Y wmar T )
| 7|=q k=1 laj=m owe

Thus the effect of D" on a basis element nrdw’ is to replace a differential diwy from
dw! (I = JU{k}) with the factor (—1)" k) (g — Zr) (and this is accomplished
by acting a (0, 1)-form on Z), replace the remaining differential dw”’ with dz’, and
then to apply the differential operator Z™ to the coefficient 1. We will refer to the
factor (wy — ﬁ) introduced above as a rogue factor since it is not associated with a
derivative aj in the way that (w — 2)” is associated with a*a' The point of this
distinction will be explained in Section 8 on estimates for solution operators.
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The following lemma expresses C297 (2) in terms of integrals involving 5]77 for
0 < j < m. Note that the overall effect is to reduce the singularity of the kernel on
the diagonal by m factors of \/A (w, z), at the cost of increasing by m the number
of derivatives hitting the form 7. Recall from (3.8) that

(1—wz)" " (1 - |w\2)l
A (w, z)" ’

L (w,2) =
We define the operator ®¢ on forms 7 by

By (2) = / B (w, 2) 7 (w) dV (w).

n

Lemma 3. Let ¢ > 0. For all m > 0 we have the formula,

(4.7 Con(2) = El ckSn (fjn) (2) + i cr®’ <5m77) (2).
k=0 =0

The proof is simply a reprise of that of Lemma 2 complicated by the algebra
that reduces matters to (0, 1)-forms. See the appendix.

4.1. The radial derivative. Recall the radial derivative R = > " =1 Wj aw from
(6.4). Here is Lemma 2.2 on page 58 of [20]. See the appendix for a proof.

Lemma 4. Let b> —1. For ¥ € C (B,) N C* (B,,) we have

/ (1 - \w|2)b\11(w) v (w)

n

b (b1 1
= 1— |wf? I Y .
/B( wl*) ( T +bHR> () dV (w)

Remark 4. Typically the above lemma is applied with

1
v =
() = Tyt (:2)
where z is a parameter in the ball B,, and
1
RV (w) = Ry (w, z)

(1 —wz)”
since ﬁ is antiholomorphic in w.

We will also need to iterate Lemma 4, and for this purpose it is convenient to

introduce for m > 1 the notation
n+b+1 1

Ry, = Ry, — T R,
b b b+l Tbhr1

R = Ryim-1BRoim—2..Rp= HRHW@.
Corollary 3. Letb> —1. For ¥ € C (B,) N C> (B,,) we have
/ (1 — |w] ) U (w
- / (1P ) "R (w) dV (w).
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Remark 5. The important point in Corollary 3 is that combinations of radial
derivatives R and the identity I are played off against powers of 1 — |w|2 It will
sometimes be convenient to write this identity as

/ F (w)dV (w) :/ Ry F (w)dV (w)
B, B

n

where
b+m —b
(4.8) Ry = (1=Jwl) " Ry (1= wf?)
—b
and provided that ¥ (w) = (1 - |w|2) F (w) lies in C (B,) NC*> (By).

4.2. Integration by parts in ameliorated kernels. We must now extend Lemma
3 and Corollary 3 to the ameliorated kernels Cn 4 given by

0,9 _ 0,q
€O = R,COE,.

Since Corollary 3 already applies to very general functions ¥ (w), we need only
consider an extension of Lemma 3. The procedure for doing this is to apply Lemma
3 to C%? in s dimensions, and then integrate out the additional variables using
Lemma 1.

Lemma 5. SupposeLhat s>nand 0 < qg<n-—1. For all m > 0 and smooth
(0,q + 1)-forms n in B,, we have the formula,

Chitn (= chmns(vn) +Zcm (D) @),

where the ameliorated operators S,, s and <I>fLS have kernels given by,

s—n—1 n—1
1- 1 — |w|? 1
Sns(waz) = Cns( | |) ‘w| P
’ ’ (1 —wz) 1—wz (1-— @3)7”
“Mpn—t—1 2 2 J
1-— 1—|w 1—|z
PR ey e I f ol Kl
. 1—wz e |1 — wz|

Proof: Recall that for a smooth (0, ¢ + 1)-form n (w) = 3= 51—, 41 nrdw’ in B,
the (0, q)-form D™E,n is given by

DiEg(w) = Y D7 (nudw’)dz’ =Y D (Z(l)“““” Ny (W) dwk> dz’

[J]=q |J|=q k¢J
= Z Dm (Z (—1)H) Nyoky (W) dﬁ) dz’
|J|=q k¢J
_ (k J) = O™
= Z Z Z (wr — 2zi)(w — 2) ﬁmu{k} (w) ],
[T|=q k¢J lal=m

where J U {k} is a multi-index with entries in J,, = {1, 2, ...,n} since the coefficient
n; vanishes if I is not contained in J,,. Moreover, the multi-index « lies in (J,,)™
since the coefficients 7; are constant in the variable v’ = (w41, ..., ws). Thus

’Dm

(z,O),(w,w’)Es”7 = ’DZ}UJTI = Dfm”’
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and we compute that
R, ®" (D?Z’O)’(w’w,)Esn) (2)
@ (D™n) ((2,0))

= > > (D YT e <<wkzk><wz>awmu{k} <<w,w'>>) ((,0)),

|J|=q k€T \J lal=m
where J U {k} C J,, and o € (J,)"" and

! (= 2000 = 3 gtaogsy (0)) (0

(1 - wz)s—l—Z (1 . |’LU|2 _ ‘w/‘Q)Z _ 6m /
— /Bg A (w0, (20) (wr, — 2x)(w — 2) Fpa 10k} (w) dV ((w,w"))
¢
- e Py
— ‘/Bn (1—102) /]Bsn A((w,w/),(Z’O))S dV(w)

m

5 0
Xk = 200 (0 — )" 5oy (w) AV ().
By Lemma 1 the term in braces above equals

. 1 lwl? ST g1 1—|w\2 1—|z|2 J
«s—w@“w’z)(l—|wz> 2 <( g )> |

2
= |1 — wz|

and now performing the sum 3° ;_ > ic5 \; (—1)”““‘” 2 laj=m Yields

(49)  R®L (DE,Eum) (2) = @4 (DF) ((2,0) = @4, , (D) (2).
An even easier calculation using formula (1) in 1.4.4 on page 14 of [24] shows that
(4.10) RuS, (E.DEn) (,0)) = S, (DEn) ((2,0)) = Su.s (DEn) (2).

and now the conclusion of Lemma 5 follows from (4.9), (4.10), the definition C'¢ =
R,CY9E,, and Lemma 3.

5. THE KOSZUL COMPLEX

Here we briefly review the algebra behind the Koszul complex as presented for
example in [18] in the finite dimensional setting. A more detailed treatment in that
setting can be found in Section 5.5.3 of [25]. Fix h holomorphic as in (2.5). Now if

Jo%e) . 2 0o 2 2
9= (gj)j=1 satisfies [g|” = 23:1 lg;j|” > 07 >0, let

o0
] 95 )
| |91 j=1
which we view as a 1-tensor (in £2 = C*) of (0, 0)-forms with components Qf (j) =

%. Then f = Q}h satisfies M, f = f-g = h, but in general fails to be holomorphic.

The Koszul complex provides a scheme which we now recall for solving a sequence
of d equations that result in a correction term A,I'3 that when subtracted from f
above yields a holomorphic solution to the second line in (2.5). See below.
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The 1-tensor of (0, 1)-forms 9Qy = (5%)00

P (09 (j));il is given by

ol =T 909 — ol 1 N
90 (j) = 372 = 1 =1 ng{gkagj — 909k}
lg] gl |91 k=1

and can be written as
oo

ZQ% (.77 k) gk?‘| 5
k=1

j=1

30k = A,

where the antisymmetric 2-tensor Q% of (0, 1)-forms is given by

SE—— e
9 2/ e | 19r09; — 9509k}
0f = [f (jvk)]j7k:1 = [||4
9 Jk=1
and A,Q? denotes its contraction by the vector g in the final variable.

We can repeat this process and by induction we have

(5.1) 001 = A QT2 0<qg<n,

where Q4*! is an alternating (q + 1)-tensor of (0, g)-forms. Recall that h is holo-
morphic. When g = n we have that Q7*1h is 0-closed and this allows us to solve a
chain of 0 equations

ord_, =Qf_ h— AT
for alternating g-tensors Fg_2 of (0, g — 2)-forms, using the ameliorated Charpentier
solution operators C%4 defined in (3.11) above (note that our notation suppresses

n,s

the dependence of I" on h). With the convention that I'"™2 = 0 we have
(5.2) 0 (It h — A TIT?) = 0, 0<q<n,

Fpa+1

arity = Q'R — AT 1<g<n.

Now
f=Qh— AT}

is holomorphic by the first line in (5.2) with ¢ = 0, and since I'§ is antisymmetric,
we compute that A2 - g =T%(g,9) =0 and

Myf=Ffg=Qh-g—ATs-g=h—0=h.

Thus f = (fi);=, is a vector of holomorphic functions satisfying the second line in
(2.5). The first line in (2.5) is the subject of the remaining sections of the paper.

5.1. Wedge products and factorization of the Koszul complex. Here we
record the remarkable factorization of the Koszul complex in Andersson and Carls-
son [4]. To describe the factorization we introduce an exterior algebra structure on
¢? = C*. Let {ey, ea, ...} be the usual basis in C*°, and for an increasing multiindex
I = (i1,...,1¢) of integers in N, define
er =¢€;; Nejy, Ao Negy,

where we use A to denote the wedge product in the exterior algebra A* (C*) of
C®, as well as for the wedge product on forms in C". Note that {e; : |I| =7} is a
basis for the alternating r-tensors on C*°.

If f= lel:r frer is an alternating r-tensor on C* with values that are (0, k)-
forms in C™, which may be viewed as a member of the exterior algebra of C* ® C",
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and if g = ZI J|=s 97€J is an alternating s-tensor on C* with values that are
(0, £)-forms in C™, then as in [4] we define the wedge product f A g in the exterior
algebra of C* ® C™ to be the alternating (r + s)-tensor on C*> with values that
are (0, k + ¢)-forms in C™ given by

Zf]ez A ZgJeJ

[ I|=r |J|=s
> (fings)(erney)

|I]=r[J]=s

5 (i 5 fIAgJ>eK

|K|=r+s I+J=K

(5-3) frg

Note that we simply write the exterior product of an element from A* (C*°) with an
element from A* (C™) as juxtaposition, without writing an explicit wedge symbol.
This should cause no confusion since the basis we use in A* (C*) is {e; };-, while
the basis we use in A* (C") is {dz;, d%; }?:1, quite different in both appearance and
interpretation.

In terms of this notation we then have the following factorization in Theorem
3.1 of Andersson and Carlsson [4]:

oo

V4 4 =
et Tko dg 1
(5.4) QA \ Qb= ( ko ko) /\ <Z » |’“ ) zfﬁlﬂﬁ“,
=1 i=1

ko=1 9 ki=1

lal” ) ., 91" ) .,

The factorization in [4] is proved in the finite dimensional case, but this extends to
the infinite dimensional case by continuity. Since the £? norm is quasi-multiplicative
on wedge products by Lemma 5.1 in [4] we have

where

(5.5) P <al @ o<e<n,

where the constant Cy depends only on the number of factors £ in the wedge product,
and not on the underlying dimension of the vector space (which is infinite for
0?2 = C).

It will be useful in the next section to consider also tensor products

>~ 9g; = 09, =~ Jgi ® Jg;
(5.6) Qe Q) = (Z TQel-) ® %ej =y 9®|497ei®ej,
i=1 19 j=119

= g

and more generally XY*Q} ® XPQ} where X™ denotes the vector derivative defined
in Definition 7 below. We will use the fact that the #2-norm is maultiplicative on
tensor products.
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6. AN ALMOST INVARIANT HOLOMORPHIC DERIVATIVE

In this section we continue to consider £2-valued spaces. We refer the reader to
[6] for the definition of the Bergman tree 7,, and the corresponding pairwise disjoint
decomposition of the ball B,,:

B, = U Kou

a€eT,

where the sets K, are comparable to balls of radius one in the Bergman metric 5 on
the ball B,,: 8 (z,w) = %ln % (Proposition 1.21 in [36]). This decomposition
gives an analogue in B, of the standard decomposition of the upper half plane
C. into dyadic squares whose distance from the boundary 0C. equals their side
length. We also recall from [6] the differential operator D, which on the Bergman
kube K, and provided a € K,, is close to the invariant gradient 6, and which
has the additional property that D" f (z) is holomorphic for m > 1 and z € K,
when f is holomorphic. For our purposes the powers D7 f, m > 1, are easier to
work with than the corresponding powers v f, which fail to be holomorphic. It is
shown in [6] that D”* can be used to define an equivalent norm on the Besov space
B, (Bn) = B) (B,,), and it is a routine matter to extend this result to the Besov-
Sobolev space By (B,,) when o > 0 and m > 2 (% — 0). The further extension to
£? —valued functions is also routine.

We define
0 0 — 0 0
VZ = (azl”azn) and VZ = (azl”azn>

so that the usual Euclidean gradient is given by the pair (vz,vi). Fix a € 7,, and
let a = c,. Recall that the gradient with invariant length given by

Vi@ = (few,) (0)=f (a)¢,(0)

@ {(1-1R) 2ot (1-10F) 0.}

fails to be holomorphic in a. To rectify this, we define as in [6],

(6.1) Daf(z) = f'(2)¢,(0)

1@ { (1= 1) P+ (1-10) @

for 2 € B,,. Note that V. (@-z) = @ when we view w € B,, as an n x 1 complex
matrix, and denote by w' the 1 x n transpose of w. With this interpretation, we
a aa’

_ az : : _ pl. _ _ el P
observe that Pyz = i a has derivative Py = Pyz = s = la| " [aia], < <

The next lemma from [6] shows that D!* and D}* are comparable when a and b
are close in the Bergman metric.

Lemma 6. (Lemma 6.2 in [6]) Let a,b € B, satisfy 8 (a,b) < C. There is a
positive constant Cy, depending only on C' and m such that

Crl IDY [ (2)| < D f (2)] < Con | DY £ (2)]
forall f e H (Bn;ﬁz),
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We remind the reader that [ D' f ()] = /3302, |D2 i () if £ = (£)32,. The
scalar proof in [6] is easily extended to £2-valued f.

Definition 5. (see [6]) Suppose 0 >0, 1 <p < oo and m > 1. We define a “tree

. 2 *
semi-norm ||-||B;m(3n;€2) by
1
P P
d\, (z)) .

62)  fllhy e = /
B vn(IBn"e) a; Bd Cu,CZ)

We now recall the invertible “radial” operators R”* : H (B,,) — H (B,,) given in
[36] by

(1-12P%) D s 2)

)

F1+NT (n+14k+7y+1)
R "
I ZF R e e ey e S

provided neither n + v nor n + v + t is a negative integer, and where f(z) =
> neo fr (2) is the homogeneous expansion of f. This definition is easily extended
to fe H (Bn;fz). If the inverse of R is denoted R, ;, then Proposition 1.14 of
[36] yields

1 1
it _
(6.3) ’ ((1 — wz)" T ) C (L—w)" T

1 1
Ryt <(1 wz)n+1+v+t> - W’

for all w € B,,. Thus for any v, R is approximately differentiation of order t.
The next proposition shows that the derivatives RY™ f (z) are “LP norm equivalent”
to {f(0),..., V™ f(0),V™f(2)} for m large enough. The scalar case o = 0 is
Proposition 2.1 in [6] and follows from Theorems 6.1 and Theorem 6.4 of [36]. The
extension to o > 0 and ¢?-valued f is routine. See the appendix and also [11].

Proposition 1. Suppose that o > 0, 0 < p < 00, n + v is not a negative integer,
and f € H (]B%,L;KQ). Then the following four conditions are equivalent:

(1 - |z\2)m+a V™f(z) e L (d)\n;ﬂz) for some m > % —o,meN,
2 m-4o m » 9 n
(1f|z\) VTf(z) €L (d)\n;é)forallm>57cr,m€N,
(1 - |z\2)m+g RY™f(2) € LP (dA; ) for some m > % —o,m+n+y¢-N,
(1 — |z\2)m+" RV f () € LP (dAn; €%) for all m > % —o,m+n+vy¢-—-N

Moreover, with 1/1 (z) =1 —|2|?, we have for 1 < p < oo,

—1 me1+0’R’Y mlfHLP(d)\n,é

Z()\V’“f (/ ‘ =) v (2)

¢ w7

IN

@))i

IN

" o an,en)
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for all my,my > % —o,m+n+vy ¢ —N, mg € N, and where the constant C
depends only on o, my, ma, n, v and p.

There is one further equivalent norm involving the radial derivative

)
(6.4 Ri()=2 V() =Y 500 2,
=1 !
and its iterates R¥ = Ro Ro...o R (k times).

Proposition 2. Suppose that c > 0,0<p<ococ and f € H (BH;EQ). Then

(1.

k=0
N (
> Vhr )]+ /B

for all my,my > % —o,m1+n+7v ¢ —N, my € N, and where the constants in the
equivalence depend only on o, m1, mo, n and p.

1
P

(1-1e8)""" Bhp )

i, (z))

1
P P

(1= 1) ™" g )

dhn (z))

The seminorms ||| 5, (B,,¢2) turn out to be independent of m > 2 (% - a). We
2 (Bns

will obtain this fact as a corollary of the equivalence of the standard norm in (2.4)

with the corresponding norm in Proposition 1 using the “radial” derivative R%™.

Note that the restriction m > 2 (% - a) is dictated by the fact that |D;’if (z)‘

m

involves the factor (1 — |z|2> * times m' order tangential derivatives of f, and so
(3+)

n —1 > —1. The case scalar ¢ = 0 of the following lemma is Lemma 6.4 in [6].

P
we must have that (1 —|z|? dX, (2) is a finite measure, i.e. (2 +0)p—

Lemma 7. Let 1 <p < oo, 0 >0 and m > 2 (% - 0), Denote by Bg (¢, C) the
ball center ¢ radius C in the Bergman metric 3. Then for f € H (Bn;€2),

m—1

(651 F 155, 2y T D [V £ (0)]
=0

(ag’;ﬂ /Bﬁ(cmcz)

m—1

(1-1:%) Dy ()| <z>> " > [vr0)
j=0

m—+o p % m—1 4
~ (/}B (1 - |z|2) + RT™f(2)| dAn (z)> + ) |VF(0)] = 1flls . @.02) -
. par

See the appendix for an adaptation of the proof in [6] to the case ¢ > 0 and
?-valued f.

We will also need to know that the pointwise multipliers in M BZ (B,)—Bg (Bu;l?)
are bounded. Indeed, standard arguments show the following.

Lemma 8.
(6.6) Mpe(®,)—Bg 5,:2) C H™ (Bn; €%) N BY (B %) .
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Proof: If € Mpo(s,) Bz (8,:2), then ¢ € By (Bn; 2) since 1 € B (By,), and
M, : B (B,) — By (By;¢*) and M, : B (B,; ()" — BY (B,)".

If e. denotes point evaluation at z € B,, x € ¢? and f € By (By), then the
calculation

00

<f7 (mez)>Bg(Bn) = < safaxez B3 (Bn3¢2) Z @Lfaxzez B3 (By)
i=1

= ZTZ le‘»pz fveZ>Bg(IBn)

@
Il
-

I
NE

(o Gmies), =@ e Ea e,

1 p

-
I

shows that
M?; (ze.) = (z, ¢ (Z)>e2 €z-

This yields
(@@ Nl lleslpg ey = M5 @e) |y s, -
[

||B°‘ B,,;62)* —Bg (By)" MZHB"(IB e2)”

= Myl gy s,)— 5y @0 |21 ezl 5y @,
which gives

[(z, ¢ (2))

el
< ‘|M59HB1‘,’(IBH)~>B1‘,’(IB,,;Z2) 5 A ]Bn,

|# ()] = sup

2£0 ||

and completes the proof of Lemma 8.

In order to deal with functions f on B, that are not necessarily holomorphic,
we use a notion of higher order derivative D™ introduced in [6] that is based on

iterating D, rather than V.

Definition 6. Form € N and f € C* (]B%n;fz) smooth in B,, we define ©™ f (a,z) =
D f (z) for a,z € B, and then set

D"f(z)=0"f(z,2) =DI"f(2), z € B,.

Note that in this definition, we iterate the operator D, holding z fixed, and then
evaluate the result at the same z. If we combine Lemmas 6 and 7 we obtain that
for fe H (Bn;€2),

m_1 . o P %
£l s = 2 19O+ ([ [(1-12) D7 ) ara )
=0 Bn

6.1. Real variable analogues of Besov-Sobolev spaces. In order to handle
the operators arising from integration by parts formulas below, we will need yet
more general equivalent norms on By, (IEBn; 62).
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Definition 7. We denote by X™ the vector of all differential operators of the form
X1X5...X,, where each X; is either 1 — |z|2 times the identity operator I, the op-

erator D, or the operator (1 — |z\2) R. Just as in Definition 6, we calculate the
products X1 Xs...X,, by composing D, and <1 — |a|2> R and then setting a = z at

the end. Note that D, and (1 - \a|2) R commute since the first is an antiholo-
morphic derivative and the coefficient z in R = z -V is holomorphic. Similarly
we denote by Y™ the corresponding products of (1 — |z|2) I, D (instead of D) and

(1 - |z\2) R.
In the iterated derivative X™ we are differentiating only with the antiholomor-
phic derivative D or the holomorphic derivative R. When f is holomorphic, we thus
m m
have X™ f ~ {(1 — |z|2> ka} . The reason we allow 1 — |z|* times the iden-
k=0
tity I to occur in X™ is that this produces a norm (as opposed to just a seminorm)

vk f (0)‘ We define the norm [|-||5, (g .42y for
smooth f on the ball B,, by Y

m » >
1l 5, B sey = (Z / d\, <z>> :
’ k=0"Bn

and note that provided m + ¢ > o this provides an equivalent norm for the

without including the term Y7 '

(1-1e2)"" REF (2)

Besov-Sobolev space By (En; 62) of holomorphic functions on B,,. These considera-
tions motivate the following two definitions of a real-variable analogue of the norm

T
Definition 8. We define the norms ”'”Ag,m(Bn;éz) and ”'”@Z,m(BnW) for f=(fi)iey
smooth on the ball B, by
— 2\7 ym P B
61 Wl = ([ |0-1F) 2@ )

p,m

Flag s = ([ \(1—|z2)"w<z>\”cw<z>)‘i

It is not true that either of the norms |||y (g 2) o ||'llgs (5, .¢2) are indepen-
Py AT p,m PN

dent of m for large m when acting on smooth functions. However, Lemmas 6 and
7 show the equivalence of norms when restricted to holomorphic vector functions:
Lemma 9. Letl <p<oo,0>0andm > 2 (% — 0‘). Then for f a holomorphic
vector function we have

(6.8) 1fllBs . @2y 1y @) = 1 llog (.02,

o.m

The norms ||| AZ (Bait?) arise in the integration by parts in iterated Charpentier
kernels in Section 8, while the norms ||'||<I>g L (Bnye2) A€ useful for estimating the
holomorphic function g in the Koszul comf)lex. For this latter purpose we will
use the following multilinear inequality whose scalar version is, after translating
notation, Theorem 3.5 in [20]. The extension to £?-valued functions is routine but
again, for the convenience of the reader, we give a detailed proof in the appendix.
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Proposition 3. Suppose that 1 < p< oo, 0 <o <oo, M >1,m > 2 (% — 0)

and a = (ag,...,apy) € Zf“ with |a| = m. For g € Mps®,)—pg(B,2) and
h € By (B,) we have,

po
]g (1= 12P) 7 10 9) )P - [ g) ()7 120 h) ()7 dn (2)
< CnMop (HMg”ABép(]Bn)HBg(Bn;ez)) ||hH%g(Bn) :

Remark 6. The inequalities for M = 1 in Proposition 3 actually characterize
multipliers g in the sense that a function g € By (Bn;EQ) N H> (Bn;EQ) 8 in
MB; (Bn)— B (Bn;62) if and only if the inequalities with M = 1 in Proposition 3 hold.
This follows from noting that each term in the Leibniz expansion of Y™ (gh) occurs
on the left side of the display above with M = 1.

6.1.1. Three crucial inequalities. In order to establish appropriate inequalities for
the Charpentier solution operators, we will need to control terms of the form

(z—w)" %F (w), Diy A (w, 2), D, {(1 — w?)k}and R {(1 —@z)k} inside
the integral for T' as given in the integration by parts formula in Lemma 3 above.
Here we are using the subscript (z) in parentheses to indicate the variable being
differentiated. This is to avoid confusion with the notation D, introduced in (6.1).
We collect the necessary estimates in the following proposition.

Proposition 4. For z,w € B, and m € N, we have the following three crucial
estimates:

(6.9)
(z—w)” ;:;F(w)‘ <C ("IA(;U]QZ)) ‘EmF (w)|, Fe€HB,;),m=lal.
(6.10) Doy A (w,2)] < C{(l - |z|2> A (w,z)% +A (w,z)} )
(1= 1P) By A w,2)| < € (1-12P) VB (w,2),
(6.11) ‘Dg) {(1 —mz)’“}’ < Cll-w (|11 ZZ)

IN

(0-1e8)" e {-mr)| < on-mt (1=EE)

Proof: To prove (6.9) we view D, as a differentiation operator in the variable
w so that

Do ==V { (1-1P) Pu+\/1 -l Qu
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A basic calculation is then:
(1-az2) ¢, (2) - (Da)’

= {Pa (z—a)+4/1— \a|2Qa (z — a)}
: {(1 - |a|2> PV + /1 a|2Qan}
— P, (2 —a) (1 - |a|2) PV,

+1/1 = a|*Qq (z — a) \/1 — |a|*Qa Ve
- (1 - |a|2) (z —a) V.

From this we conclude the inequality

0

C_a) < —a)-
(=) 5o F ()| < |(z=a)- VF (w)
1—-az
—5%a (2)| [DaF (w)]
1—|al
Ala,z
= Y2l pw),
1—1a
as well as its conjugate
G a) L) < oY 15 ).
ow; 1—al

Moreover, we can iterate this inequality to obtain

(Z — a)a ;TmaF (’LU)‘ < C <A(a,z)> ‘(Dia)mF(w)

w 1~ af”

)

for a multi-index of length m. With a = w this becomes the first estimate (6.9).

To see the second estimate (6.10), recall from (6.1) that

Daf (2) = - { (1= 1) PV S () + (1= 1af)" QuV (z)} .
We let a = z. By the unitary invariance of
A(w,z) =1 —wz|* — (1 - \z|2> (1 - |w|2) )

we may assume that z = (|z|,0,...,0). Then we have

0 0

gy Awe) = %{(lfﬁz)(lfzw)f(lf%) (17|w\2)}
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Now Q. Vf = (0 2F of ) and thus a typical term in Q,VA is B%j A (w, 2)

? 0zp? "7 Ozp

with j > 2. From z = (|2],0,...,0) and j > 2 we have z; = 0 and so

0 . . .
AW = (G-m) (1- ) - G -7 Gw-2), =2
Now (3.4) implies

(6.12) A (w,z) = (1 - |z|2> lw— 2|? + [Z(w — 2)|?,
which together with the above shows that

3

(6.13) \/1— |22 |Q.V A (w,2)] < Clz—wl (1—|z|2)E

+C\/1 =22 |z —w| |z (w — 2)|

< C<1f|z|2) A (w,2)% +C A (w,2).

As for P,VD = (%, 0, ...,O) we use (6.12) to obtain

PV A w2 = |G —w1) (1= [af) + 71 (Jaf = ol ) + 272 (w - 2)
< Jz=wl (1= 12 + [I2 = ol | + 2 (w - 2)
< CVBw2) + 2|2 - full.
However,
Awz) = (1=l = (1=12) (1 - ul?)

2,2 2 2 2, 12
1= 2w |2l + [l |21 = {1 = |2 = wf® + |2I? o]’}
2 2 2
= [2" + [w]” = 2]w| [2] = (|2] = |w])
and so altogether we have the estimate

(6.14) |P.,V A (w,z)| < C/ A (w, 2).

Combining (6.13) and (6.14) with the definition (6.1) completes the proof of the
first line in (6.10). The second line in (6.10) follows from (6.14) since R,y = P, V.

To prove the third estimate (6.11) we compute:
Dy (1-w2)* = k(1—w2)""Dp) (1 —w2)

= k(l—w2)*! {(1 - |z|2> PV +4/1 - |z|2sz} (1—w2)

= —k(1-w2)"! {(1 - |z|2) P+ /1 - |z2sz} ;

Ry (1 —wz)" k(1 —w2)"" (—wz).

Since |w|® + |a> < 2 we have
Q> = 1Q.(@-2)" < [w-z7,
= |w|’ + |2* = 2Re (w?)
2Re (1 —wz) < 2|1 —wz|,

IN
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which yields

(1 - |z|2) + \/(1 - |z|2) 11— w2

|1 — wz|

IA

Cl1—wzlf

‘D(z) {(1 — @z)k}‘

ok 1=z
< CN—wz|" | ——.

|1 —wz|
Iteration then yields (6.11).

7. SCHUR’S TEST

Here we characterize boundedness of the positive operators that arise as majo-
rants of the solution operators below. The case ¢ = 0 of the following lemma is
Theorem 2.10 in [36].

Lemma 10. Let a,b,c,t € R. Then the operator

— 22 “(1- wl? ’ w, z ‘
Tose () = [ (1) (1=l (vaT:9) £ (w)dv (w)

|1 _ wz|n+1+a+b+c

t
is bounded on LP <Bn; (1 - \w|2) av (w)) if and only if ¢ > —2n and

(7.1) —pa<t+1<p(b+1).

We sketch the proof for the case ¢ # 0 when p = 2 and t = —n — 1. Let
P (¢) = (1 - |§\2)6 and recall that /A (w,z) = |1 —wZ||p, (w)|. We compute
conditions on a, b, ¢ and ¢ such that we have

Tap,cte (2) < C. (2) and T3y, @, (w) < CY, (w),  z,w € By,

%
where Tmb’c

compute

denotes the dual relative to L% ()\,). For this we take ¢ € R and

2\ @ 9 n+1+b+e c
s )= | (1= 1) (1wl . (w)]
a,b,c z) = n a
€ B, ‘1 _wz‘ +1+a+b

Note that the integral defining Ty, 5 .1, (2) is finite if and only if e > —b—1. Now
in this integral make the change of variable w = ¢, (¢) and use that )\, is invariant
to obtain

d\, (w).

2)n+1+b+s

(1= 122)" (1= I (O ¢l

n+1+4a+b
- @ (1= g2y

Top,ce (2) = / av (¢).

Plugging the identities

_ 12

17@z(§)2 = 17<<Pz(<)a<)0z(0)>* 1_4-27

(1= 17) (1= 1¢P)

11— ¢z

L=l (QF = 1-(p.(¢),0. () =

)
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into the formula for T, ; .9, (2) we obtain

(1-1¢P) " 1er

‘1 _ <E|n+1+b—a+28 av (C) :

Tosctre ()= 0. () [

B

Then from Theorem 1.12 in [36] we obtain that

sup /[Bn (1|C|>dV(C) < oo

2€B, I1—¢z”

if and only if § — a < n+ 1. Provided ¢ > —2n it is now easy to see that we also
have

(1-1¢7)" 1ere
ﬂ AL
‘e, /B P ) <ee

if and only if 5 — o <n + 1. It now follows from the above that

Tapche (2) S CY.(2), z€By,
if and only if
-b-1l<e<a.

Arguing as above and provided ¢ > —2n, we obtain
T;,b,c’lpe (w) S Cws (w) ’ w e an

if and only if
—a+n<e<b+n+1

Altogether then there is ¢ € R such that h = /1, is a Schur function for 75 p .
on L% (),) in Schur’s Test (as given in Theorem 2.9 on page 51 of [36]) if and only
if

max{—a+n,—b—1} <min{a,b+n+1}.

This is equivalent to —2a < —n < 2(b+ 1), which is (7.1) in the case p = 2,t =
—n — 1. This completes the proof (in this case) that (7.1) implies the boundedness
of Ty p. on L% (X,). The converse is easy - see for example the argument for the

case ¢ = 0 on page 52 of [36].
See the appendix for a more detailed proof of Lemma 10.

Remark 7. We will also use the trivial consequence of Lemma 10 that the operator

—|2)? “(1- wl? ’ w, 2z ‘
Toeaf ()= | (1) (1) (VAG2) £ (w)dV (w)

B, |1 _ w§|n+1+a+b+c+d

¢
is bounded on LP (Bn; (1 = |w|2) av (w)) ifc>—2n,d <0 and (7.1) holds. This

is simply because |1 — wz| < 2.
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8. OPERATOR ESTIMATES

We must show that f = Qjh— A, € By (Bn; €%) where I'Z is an antisymmetric
2-tensor of (0,0)-forms that solves

OTg = Q3h — A T3,

and inductively where I'$*? is an alternating (q + 2)-tensor of (0,¢)-forms that
solves

a2 = QI 3h — A IO
up to ¢ = n — 1 (since I'"*2 = 0 and the (0,n)-form Q"*! is d-closed). Using the
Charpentier solution operators C4 on (0, ¢ 4 1)-forms we then get

[ = Qlh—ATE
Qoh — A0 (QFh — A TY)

n,s1

= Qoh— A,Crl, (0 = Aoy, (k= AgT3))

n,s2

= Qfh — ALC20 OFh + A, CO0 ACOL O3h — A,CO0 A, COL ALCO2 Q3h — ..

n,s1 n,s1 n,s2 n,s1 n,sa0gbnlsy
+(=1)" Al A C T R
= FO4+F 4+
The goal is to establish
Hf“Bg(Bn;ﬁ) < Chops(9) ||h’||Bg(]E§n) )
which we accomplish by showing that
(8.1) HJ:MHB;ml(]Bn;Z?) < Cnops(9) Hh”AgM B> O=p=smn,

for a choice of integers m,, satisfying

n
——o<mi <My < ... <My < . < M.
p

Recall that we defined both of the norms [|[Fl|gz, (g 42y and [[Fllyo (g, 2 for
smooth vector functions F in the ball B,,. l '

Note on constants: We often indicate via subscripts, such as n, o, p,d, the
important parameters on which a given constant C depends, especially
when the constant appears in a basic inequality. However, at times in mid-
argument, we will often revert to suppressing some or all of the subscripts
in the interests of readability.

The norms |[+[|ys (s, .2 in (6.7) above will now be used to estimate the compo-
¢ m(Bnj

m

sition of Charpentier solution operators in each function

Fr= A0 A COEL

n,s1"*

as follows. More precisely we will use the specialized variants of the seminorms

given by
2N\ 9 m’ ot | ssm’
1Py, s = [ (1= 1) { (1=12) " R} D™ P )

P
d\, (2),

n
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where we take m’ derivatives in D followed by m’ derivatives in the invariant
radial operator (1 - |z|2) R. Recall from Definition 7 that X™ denotes the vector
of all differential operators of the form X;Xs...X,, where each X; is either I, D,

r (1 - |z|2) R, and where by definition 1 — |2|* is held constant in composing

operators. It will also be convenient at times to use the notation

(8.2) R = (1— B ) (R,

which should cause no confusion with the related operators Ry* in (4.8) introduced
in the remark following Corollary 3. Note that R™ is simply A when none of
the operators D appear. We will make extensive use the multilinear estimate in
Proposition 3.

Let us fix our attention on the function F# = F}' and write

Fyo= MO0 AL, Ao ) = 2,000 (LY,
Fio= MO, {AC02 Ao ) = A,ChL, (7Y,
Fro= ACg’qu{ +1} etc,

where F}' is a (0, g)-form. We now perform the integration by parts in Lemma 5 in
each 1terated Charpentier operator Ft = A,Cod  {F, 1} to obtain

,8q+1
(8'3) f; = A CTOL 5q+1 M +1
Mg =1 _
7~/
- Z c;v”xSqulAgS"’SqH (D ‘7:5-&-1) (2)
7=0

,J/ 7
+ Z ce’“quA (bfl »Sq+1 (D Hlf;-i-l) (Z> :
=0

Now we compose these formulas for F}' to obtain an expression for F# that is a
complicated sum of compositions of the individual operators in (8.3) above. For now

we will concentrate on the main terms A,®% ( m’““]-"kH) that arise in the

second sum above when ¢ = u. We will see that the same considerations apply to
any of the other terms in (8.3). Recall from Lemma 5 that the "boundary" operators

Sn,s,.1 are projections of operators on 0B, to the ball B, and have (balanced)
kernels even simpler than those of the operators (I>fl s441- The composition of these
main terms is

(8.4) (a,02.,D")

= (a,@n, D) (A28, D7) 7
= (a0, D" ) (A,®2 H”) (qu%%fm@) QL

n 91 n,s2

At this point we would like to take absolute values inside all of these integrals
and use the crucial inequalities in Proposition 4 to obtain a composition of positive
operators of the type considered in Lemma 10. However, there is a difficulty in
using the crucial inequality (6.9) to estimate the derivative D" on (0,q + 1)-forms
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71 given by (4.6):

mn

D)= Y S 1 (e () gy ().

|J|=q k¢ J |a|=m

The problem is that the factor (wx — 2x) has no derivative 5 8 = naturally associated
with it, as do the other factors in (w — 2)*. We refer to the factor (w, — 2x) as a
rogue factor, as it requires special treatment in order to apply (6.9). Note that we
cannot simply estimate (wy — zi) by |w — z| because this is much larger in general
than the estimate /A (w, z) obtained in (6.9) (where the difference in size between
|lw — z|] and /A (w, z) is compensated by the difference in size between 8% and

D).

‘We now describe how to circumvent this difficulty in the composition of operators
n (8.4). Let us write each D Mt i o1 as

Z Z Z (—1)“(k’J) (wr — 2zx)(w — Z)a% (]:5+1)Ju{k} (w),

[J|=q k¢J |a|=m

where (}_;-H)Ju{k} is the coefficient of the form %, with differential dw’“{*}.

We now replace each of these sums with just one of the summands, say

m

(8.5) (wr, — 2zx) (w — Z)aﬁ (‘7-—<7+1)Ju{k} (w).

Here the factor (wy — z) is a rogue factor, not associated with a corresponding

derivative %. We will refer to k as the rogue index associated with the rogue

factor when it is not convenient to explicitly display the variables.
The key fact in treating the rogue factor (wy — zx) is that its presence in (8.5)
means that the coeflicient (f I ) of the form F/', | that multiplies it must have &

in the multi-index I. Since Fp',; = A,Cpdt] +2} the form of the ameliorated
Charpentier kernel C;»2! in Theorem 6 shows that the coefficients of C:41! (w, 2)

that multiply the rogue factor must have the differential dz; in them. In turn, this
means that the differential dwy must be missing in the coefficient of C?L:g;lz (w, z),
and hence finally that the coefficients (]—'5 +2) 5 with multi-index H that survive
the wedge products in the integration must have k € H. This observation can be

repeated, and we now derive an important consequence.

Returning to (8.4), each summand in 57%“}'5“ has a rogue factor with as-
sociated rogue index kqyi. Thus the function in (8.4) is a sum of terms of the
form

(qu)lri,m (wkl — Rk )?m ) (A (I)n ,82 (ka — Zks )?mQ)

(A @y ., (wr, — Zk,,)zm/y)ju ) °©

o (Mg wn, — 5, ) Z™) o (),

n,s
W
I, 1

I

’

where the subscript [, on the form A,®} . (wp, — 2, )Z™" indicates that we are

Sy

composing with the component of Ay®} . (wg, — zky)?"" corresponding to the



THE CORONA THEOREM IN C" 35

multi-index I,,_, i.e. the component with the differential dz/»-*. The notation
will become exceedingly unwieldy if we attempt to identify the different variables
associated with each of the iterated integrals, so we refrain from this in general. The
considerations of the previous paragraph now show that we must have {k;} = I,
{k2} U I; = I and more generally

{k,JUl,_1 =1, l<v <.

In particular we see that the associated rogue indices ki, ko, ...k, are all distinct
and that as sets

{ki, ko, ... kp} =1,
If we denote by ( the variable in the final form QZ*lh, we can thus write each

rogue factor (wg, — 2, ) as

(wk, — 2,) = (wr, = Cx,) = (2k, = Ck,)
. . 1Bl .
and since k, € I,, there is a factor of the form 8%% in each summand of
Ky

the component (Q4F'h), of QT h. So we are able to associate the rogue factor
©w

(wg, — 2k, ) with derivatives of g as follows:
S a8l g, — 9 ol
(86) wk,,_C,,i —7 Zky—cyi .
o A R o
Thus it is indeed possible to

(1) apply the radial integration by parts in Corollary 3,
(2) then take absolute values and ¢?-norms inside all the integrals,
(3) and then apply the crucial inequalities in Proposition 4.

One of the difficulties remaining after this is that we are now left with additional

factors of the form
VAW, Q) VA(z0)
L—fwl* 7 1=z

that result from an application of (6.9) to the derivatives in (8.6). These factors
are still rogue in the sense that the variable pairs occurring in them, namely (w, ¢)
and (z, (), do not consist of consecutive variables in the iterated integrals of (8.4).
This is rectified by using the fact that d (w, z) = /A (w, z) is a quasimetric, which
in turn follows from the identity

_ 2
A (w,z) = 1 —wzl g, (w)] = 6 (w,2)" p(w,2),
where p(w,z) = |p, (w)| is the invariant pseudohyperbolic metric on the ball
1
(Corollary 1.22 in [36]) and where § (w,z) = |1 — wZ|? satisfies the triangle in-
equality on the ball (Proposition 5.1.2 in [24]). Using the quasi-subadditivity of
d(w,z) we can, with some care, redistribute appropriate factors back to the it-
erated integrals where they can be favourably estimated using Lemma 10. It is
simplest to illustrate this procedure in specific cases, so we defer further discussion
of this point until we treat in detail the cases p = 0, 1,2 below. We again emphasize
that all of the above observations regarding rogue factors in (8.4) apply equally well

to the rogue factors in the other terms ®? (ﬁmquﬂ) (z) in (8.3), as well as

,8q+1

to the boundary terms S, s, , <D féﬁrl) (2) in (8.3).
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The other difficulty remaining is that in order to obtain a favourable estimate
using Lemma 10 for the iterated integrals resulting from the bullet items above, it

. oy 2 . .
is necessary to generate additional powers of (1 — |2 ) (we are using z as a generic

variable in the iterated integrals here). This is accomplished by applying the radial
integrations by parts in Corollary 3 to the previous iterated integral. Of course
such a possibility is impossible for the first of the iterated integrals, but there we
are only applying the radial derivative R thanks to the fact that our candidate
f from the Koszul complex is holomorphic. As a result, we see from (6.10) that

(1 — |z\2> R, unlike D, generates positive powers of 1 — |z\2 even when acting on

A (w, z). This procedure is also best illustrated in specific cases and will be treated
in the next subsection.

So ignoring these technical issues for the moment, the integrals that result
from taking absolute values and ¢?>-norms inside (8.4) are now estimated using
Lemma 10 and Remark 7. Note that we only use scalar-valued Schur estimates
since all the integrals to which Lemma 10 and Remark 7 are applied have posi-
tive integrands. Here is the rough idea. Suppose that {I1,T5,...,T},} is a collec-
tion of Charpentier solution operators and that for a sequence of large integers
{m’l, My, My, , My ey M4y, mZH}, we have the inequalities
(8.7) IT5Fle B2y < Cj IFllae @) 1<i<6+1,

Pom gy P10y
for the class of smooth functions F' that arise as T'G for some Charpentier solution
operator T' and some smooth G. Then we can estimate |73 0 Ty o ... 0 T#QHBg (Bast2)

by
ITioTo0...0 T o L (Bail?)
1

p,mf,m
< Ci|Tzo..0 T£Q||A;m,2,m,2,(lﬂ%n;€2)
< 0102 HT3 o...0 TgQHAg ;. (Bai?)
p,ml,mY
< O Celne | e
Py 0™

Finally we will show that if €2 is one of the forms Qg“ in the Koszul complex, then

Qe

P11

B2y < 19250 ®2) < Crops (9) 10l g (8,9

p,m/, "

rr1t™meqa

and so altogether this proves that

”f”Bg(IBn;éz < Chops(9) ”hHBZ,m(IBn) :

We now make some brief comments on how to obtain the inequalities in (8.7).
Complete details will be given in the cases p = 0,1,2 below, and the general case
0 < p < n is no different than these three cases. We note that from (3.9) the kernel
of C%9 typically looks like a sum of terms

(1—wz) " (1- |w\2)q
A (w, z)" (

times a wedge product of differentials in which the differential dw; is missing. We
again emphasize that the rogue factor (Zj — w;) cannot simply be estimated by

(8.8) zZj — w;)
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Z; — w;| as the formula (3.4) shows that

VA (w,z) =

can be much smaller than |z — w|. As we mentioned above, it is possible to exploit
the fact that any surviving term in the form Qﬁ"'l must then involve the derivative

P.(z —w)+/1—|2[’Q. (z w)'

8%7 hitting a component of g. This permits us to absorb part of the complex
tangential component of z — w into the almost invariant derivative D which is
larger than the usual gradient in the complex tangential directions. This results in
a good estimate for the rogue factor (zZ; — wj;) in (8.8) based on the smaller quantity

VA (w, z). We have already integrated by parts to write (8.8) as (recall that the
factors z; — w; are already incorporated into D7 (w))

[ S (wé)l,f ) v ),

plus boundary terms which we ignore for the moment. Then we use the three
crucial inequalities (6.9), (6.10) and (6.11);

|(z7 — @) Dz, (w)] < (f_jﬁ’?)mﬂ DRy (w)|.
D & w,2)| < € (1= ) A @w2)* + 8 w,2),
(1= 12P) By 8 (w,2)| < C(1=12P) & (w,2)?,
m Lk w112 B
‘D(z){(l—wz)} < Ol —wz| <|1_wz|>

((1 - W)m ry {a-w)'}| < cp-wmt <|11__|;|Z2|>m

to help show that the resulting iterated kernels can be factored (after accounting
for all rogue factors Z; — w;) into operators that satisfy the hypotheses of Lemma
10 or Remark 7 above.

Definition 9. The expression Qﬁ“ denotes the form Qﬁ"'l but with every occur-

rence of the derivative % replaced by the derivative ﬁj
J

Recall that each summand of Qg“ includes a product of exactly ¢ distinct deriv-

atives % applied to components of g. Thus the entries of Dme;+1 (w) consist of
J
m + ¢ derivatives distributed among components of g. Using the factorization of

Qf“ in (5.4), we obtain the corresponding factorization for Qﬁ“:

l
o~ 1 —
8.9 QAN QL= —— it
( ) 0 l:/\l £+1 ¢ )

oo

whereQéz(E> andég:(DT”)oo :
1 i=1

lg1* ) ;— lgl®
It is important for this purpose of using Lemma 10 and Remark 7 to first apply
the integration by parts Lemma 3 to temper the singularity due to negative powers
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of A (w, z), and to use the integration by parts Corollary 3 to infuse enough powers
of (1 - |w\2) for use in the subsequent iterated integral.

Finally it follows from Lemma 7, Proposition 2 and Proposition 3 together with
the factorization (5.4) that
(8.10)

2\ m/\ m
[CER e < O35, g e s

Lp()‘n §€2)

We defer the proof of (8.10) until Subsubsection 8.1.1 when further calculations are
available.

Remark 8. At this point we observe from (8.1) that the exponent m+ u in (8.10)
is at most my, +n, and thus we may take kK = m,, +n. We leave it to the interested
reader to estimate the size of my,.

Taking into account all of the above, the conclusion is that with kK = m,, + n,
”fHBg(IBmW < Chops |‘Mg||;g([3,l)_>33([3n;22) ”hHBg([Bn) :

As the arguments described above are rather complicated we illustrate them by
considering the three cases p = 0,1,2 in complete detail in the next subsection
before proceeding to the general case.

8.1. Estimates in special cases. Here we prove the estimates (8.1) for u =0, 1, 2.
Recall that

FO o= Qgh,
F'o= A0 Q1h,
F2 o= A ACYL Q3.

To obtain the estimate for F° we use the multilinear inequality in Proposition 3.
In estimating F' we confront for the first time a rogue factor z — wy that we
must associate with a derivative 8%7 occurring in each surviving summand of the

kth component of the form Q2. After applying the integration by parts formula
in 5 as in [20], we use the crucial inequalities in Proposition 4 and the Schur type
operator estimates in Lemma 10 with ¢ = 0 to obtain the desired estimates. Finally
we must also deal with the boundary terms in the integration by parts formula
for ameliorated Charpentier kernels in Lemma 5. This requires using the radial
derivative integration by parts formula in Corollary 3 as in [20], and also requires
dealing with the corresponding rogue factors.

The final trick in the proof arises in estimating F2. This time there are two
iterated integrals each with a rogue factor. The problematic rogue factor 2k — Cp,
occurs in the first of the iterated integrals since there is no derlvatlve hlttmg the

second iterated integral with which to associate the rogue factor z — C k- Instead we
decompose the factor as z; — wg — ¢, — wi and associate each of these summands
with a derivative 8%7 already occurring in Q3. Then we can apply the crucial
inequality (6.9) and use the fact that \/A (w, z) is a quasimetric to redistribute
the estimates appropriately. As a result of this redistribution we are forced to
use Lemma 10 with ¢ = %1 this time as well as ¢ = 0. In applying the Schur type
estimates in Lemma 10 to the second iterated integral, we require a sufficiently large
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power of (1 — |w|2) to be carried over from the first iterated integral. To ensure

this we again use the radial derivative integration by parts formula in Corollary 3.

The estimate (8.1) for general p involves no new ideas. There are now p rogue
terms and we need to apply Lemma 10 with ¢ = 0,41, ...,£ (. —1). With this
noted the arguments needed are those used above in the cases p = 0,1, 2.

8.1.1. The estimate for F°. We begin with the estimate

||f’0||Bg,m(IB";ZQ) - ||Q(1)hHBg,m(an;€2)
S Cnops |Mg|g (Bn)—Bg (Bn;¢2) ”h”Bgm(Bn)y

for m 4+ o > 2. However, for later use we prove instead the more general estimate
with X in place of R, except that m must then be chosen twice as large:

(8.11) / ‘(1 - |z\2)” X (Qbh) (z)‘p A, (2)

< Cn ,0,D,8 ||M ||Ba(]3” )—Bg (By;£2) ||h||%g(]3n) y

for m > 2 (% — 0). Recall that X™ is the differential operator of order m given in

Definition 7 that is adapted to the complex geometry of the unit ball B,,. It will
be in estimating iterated Charpentier integrals below that the derivatives R and
D™ will arise from integration by parts in the previous iterated integral, and this
will require estimates using X™.

By Leibniz’ rule for X we have

x™ (Qh) = f: (XFQg) (Xx™ *h),
and
(8.12) Xt () = &* (“’) = Z (x~1g) (x"19%).

It suffices to prove

/Bn (1—|z|2)0 (ZZCW (xk-tg (Xz |g|_2) (Xm—kh)>

k=0 ¢=0
and hence

(8.13) (=) gl o el a,
B

n

i,

< Chops Mg HBG(B )= Bg (B, 302) ||hH1173;(Bn) )

< Chops HM HBU([B )= Bg (B,.;02) ”hH%g(]}gn)a
for each fixed 0 </ < k < m.
Now we can profitably estimate both |Xm’kh| and |Xk*£§| as they are, but we

. -2 .
must be more careful with ‘X 19| ‘ In the case £ = 1, we assume for convenience
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that X annihilates g; (if not it will annihilate g; unless X = I') and obtain,

—4 _

= '— 917" gixa
i=1

—8 2 — 2 —6 — 2
< (zm)(zm)gm S gl
=1 =1 =1

Similarly when ¢ = 2,

2

2
X197

2

(oo}
—4 _ -6 _ _
= |=lg™ aX°q + 20917 (6:X7) (9;X7))
i=1 i£]

< 2097 |G + 49" (ZI?@F) :
=1 =1

and the general case is

2
-2
219

(814)  |af |g\_2‘2
< Culol > |¥ 0 + Ol (Z <Xf-1m|2> (Z 'X“E)
i=1 i=1 i=1
00 14
ot Colgl ™% (Z |Xgi|2>
=1

M oo
S ol ] (z wamgiﬁ) |
m=1 =1

1<ai<az<..<amrartaz+...fapy=¢

We can ignore the powers of |g| since |g| is bounded above and below by Lemma
8 and the hypotheses of Theorem 2. Fixing « we see that the left side of (8.13) is
thus at most

M
Crops / (1f|z|2)p || | ym=kal” [ TT 1A gl | daa.

n j=1

Since |Xk_e§|2 =37, }X’“ZEF and k — £ could vanish (unlike the exponents ay
which are positive), we see that altogether after renumbering, it suffices to prove

po
(8.15) /(1—|z|2) YR Vgl [V gl dA,

M
< Cnops ||Mg||B;(Bn)HBg(Bn;ez) ”h”%g(lﬂén)

for each fixed @ = (a1,a9,..,ap) with M > 2, |a] = m and at most one of
g, ..., ayy is zero. We have used here that ‘ﬁ§| = |Dg|. Now Proposition 3 yields
(8.15) for each 0 < k < m and |a| = m — k. Summing these estimates completes
the proof of (8.11).
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We can now prove the more general inequality (8.10). Indeed, using the factor-

—

ization (5.4) of Q4" together with the Leibniz formula gives

xm <S§ﬁmh> = xm (Q(l) A ((/2\(1))# h)
I —
= Y (e A A (x9h) (e
aEZi+2:\a|:m Jj=1
= > (xoQg) /M\ XOIOE) b (Xth)

aEZi+2:\o¢|:m =

where we have used that K/Z\(l) already has an X derivative in each summand, and
so X% Ql can be written as X*T1Ql. Now use (8.12) and (8.14) to see that

xm (Qﬁ“h)

then apply Proposition 3 as above to complete the proof of (8.10).

is controlled by a tensor product of at most m + u factors, and

8.1.2. The estimate for F*. The estimate in (8.1) with u = 1 will follow from (8.10)
and the estimate

(8.16) H(1—|z|2)"yml( A,C0002), )‘

LP(An)
< C/IBn (1-128)" 2 (93n) ()] dnn ),

where as in Definition 9, we define S/Q\% to be Q2 with 9 replaced by D throughout:

N
—~ «Da. — g:Dgr
@=3 {9eDg; — 9093, o,
= 9]

and where Dh = Y"/'_, (Dyh) dz and Dy, is the k' component of D. We are using
here the following observation regarding the interior product Q2h_.dwy:
(8.17)  For each summand of Q?h,dwy, there is a unique 1 < i < N so that

Sas

99i oceurs as a factor in the summand.

owy,
We rewrite (8.16) as

(8.18) I(1- W)a R D™ (A, CO OQQh)‘

Lr(An)
< C/Bn ‘(1 - |z|2)”7zmé’pm'2 (th) (z)‘pd)\n (),

where R™ = (1 - |z\2) (Rk)m as in (8.2). As mentioned above, we only need

to prove the case m} = 0 since (8.1) only requires that we estimate H]—' HBU (B

However, when considering the estimate for 72 in (8.1) we will no longer have the

luxury of using the norm [|-|| 5 (5 ) in the second iterated integral occuring there,
7 m(Bn

and so we will consider the more general case now in preparation for what comes

later. As we will see however, it is necessary to choose m/ sufficiently large in order
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to obtain (8.18). It is useful to recall that the operator (1 — \z|2) R is "smaller"
than D in the sense that

D (1 - |z|2) PV +4/1-|2]?Q.V,
(1 - |z|2) R = (1 - |z|2) PV

To prove (8.18) we will ignore the contraction A, since if derivatives hit ¢ in the
contraction, the estimates are similar if not easier. Note also that |[A,F| < |g| |F)|
for the contraction AgF of any tensor F.

We will also initially suppose that m} = 0 and later take m/ sufficiently large.
Now we apply Lemma 5 to C9Q3h and obtain

(8.19) CroQih(z) = coCpl (5m2 th) (2) + boundary terms

n,s

/ B0, (w,2) D" (92h) dV (w)

n

+ boundary terms.

A typical term above looks like

(8.20) /B n (11_Z|Z> OA(Z,ZQ)” D™ (Q2h) dV (w)

where we are discarding the sum of (balanced) factors % for 1 <

7 <n —1in Lemma 5 that turn out to only help with the estimates. This can be
seen from (6.11) and its trivial counterpart

2 { (=) | ) e { () < 0 (1)

Recall from the general discussion above that in the integral (8.20) there are rogue

factors zj —wy, in D2 (Q%h) (w) that must be associated with a af derivative
that hits some factor of each summand in the k** component Q?.dwg of Q2 ~
{gi0g; — g;0g;}. Thus we can apply (6.9) to the components of 3k (z) to obtain

(8.21) ‘5’”""9% (z))

> Z wr, — z) (w—2)" 8;1 (Qthodwy)

k=1 Jal=m

mh+1
o <1A—(Z|)> D7 () ().

Q

IN
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Thus we get
(8.22) (1- |z|2)” |Dries0tn ()
A=) !
= /ma (1-1P)" |2 ( (1 —wz))s—" A (w,2)"
mh+1
X (W) ]ﬁ (@h) (w)‘dV (w)

= Svsn’l,méf(z)7
where
(8.23) fw)=(1- \w|2>0 \W (23n) (w)‘ .

Now we iterate the estimate (6.10),
Doy & (w,2)] < C (1= 12P) & (w,2)* + A (w, 2),
to obtain

(- W)H (1 - wz)"
DM _
(=) (1—w2)""" A (w,2)"

(1- |z|2>mll (1- |w\2)H A (w,2)®

11— w2z 2" A (0, 2)" ™

2 s—n
(1= JwP)
+ OK,
11— wz]" " A (w,2)"

where the terms in OK are obtained when some of the derivatives D hit the factor
W or factors D A (w, z) already in the numerator. Leaving the OK terms
for later, we combine all the estimates above to get that if we plug the first term

on the right in (8.24) into the left side of (8.18), then the result is dominated by

(8.24)

+...+

m)+o s—n—mb—1—0o mi +mb+1
(L=1F)" (= wP) T AW

7 f w)dV (w
/IBn 11— wz]* 2" A (w, 2)" ™ (w) v (w)
mi+o s—n—l-my—o
(1 B |Z‘2) (1 B |w‘2) mo—m)—2n+1
- / —ps—2ntl A(w,z) f(w)dV (w).

Now for convenience choose m}, = m) + 2n — 1 so that the factor of /A (w, 2)
disappears. We then get
(8.25)

(1-12P)" |pmicoootn )

m,+o s—3n—m' —o
() (mwr)
<]
B

T wE|s_2"+1 f(w)dV (w).
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Lemma 10 shows that the operator

B 2\ @ B 9 b
Tonaf ()= [ ¢ |1|Z 3|(i+|f| )t orav o

t
is bounded on LP (IB"; (1 - |w|2) v (w)> if and only if

—pa<t+1l<p(b+1).
We apply this lemma with ¢ = —n—1, a = m} +0 and b = s—3n—m/ —o. Note that
the sum of the exponents in the numerator and denominator of (8.25) are equal if we
—n—1

write the integral in terms of invariant measure dA,, (w) = (1 - |w\2) dV (w).
We conclude that S, ., is bounded on L? (dA\y,) provided T is, and that this latter
happens if and only if

—p(mi+0o)<-n<p(s—3n+1-m)—o).
This requires mj + 0 > 2 and s > 3n —1+m} + 0 — 2.
Remark 9. Suppose instead that we choose ml, above to be a positive integer sat-
isfying c = mh —m) —2n+ 1 > —2n. Then we would be dealing with the operator
Top,c where a =my + o and

b=s—-n—-1-my—oc=s5—3n—c—m) —o.
By Lemma 10, Ty p.. is bounded on LP (d),,) if and only if

—p(m) +0)<-n<p(s—3n+1l—c—m)—o0),

ie.my+o>% ands>c+3n—1+mi+o— 2. Thus we can use any value of
¢ > —2n provided we choose my > m/ and s large enough.

Now we turn to the second displayed term on the right side of (8.24) which leads
to the operator Tg 0 with a = 0, b = s —3n — 0. This time we will not in general
have the required boundedness condition o > % It is for this reason that we must
return to (8.18) and insist that my be chosen sufficiently large that my + o > 2.
For convenience we let m}j = 0 for now. Indeed, it follows from the second line

in the crucial inequality (6.10) that the second displayed term on the right side of
(8.24) is

mY s—n mY/
(1=12P) " (1= 1wlP) A=
11— w2z 2" A (w, 2)" ™
Using this expression and choosing mf = m{ + 2n — 1 so that the term /A (w, 2)

disappears from the ensuing integral, we obtain the following analogue of (8.25):

(1= 1=P)" (1= 1) ™[R cnoain )

+ better terms.

my+o s—3n—mfy—c
< / Gl Gl f (w)dv (w).

|1 7 wz|572’n+1

The corresponding operator Tj, ;0 has a = m{ + o and b = s — 3n — m{ — o and
is bounded on L? (X,) when —p(m{ +0) < —n < p(s—3n+1—m{ — o). Thus
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there is no unnecessary restriction on o if m/ and s are chosen appropriately large.
Note that the only difference between this operator T, ;¢ and the previous one is
that m/] has been replaced by m/.

The above arguments are easily modified to handle the general case of (8.18)
provided mY + o > % and s is chosen sufficiently large.

Now we return to consider the OK terms in (8.24). For this we use the inequality

(6.11): .
{0 -wer) vt (=)

We ignore the derivative (1 — |z|2) R as the second line in (6.11) shows that it

satisfies a better estimate. We also write m; and mg in place of mj and m} now.
As a result, one of the extremal OK terms in (8.24) is

' s—n
(1= 7 (=)
11— w2 2T A (w0, 2)"
which when combined with the other estimates leads to the integral operator

LU s—n—1—mo—0o
2 2 2
/ (1 - ‘Z| ) (1 - |’LU| ) A mo—2n—1
B

1 7|s—2n+1+u (w,2) f(w)dV (w).
—wz 2

This is Ty p,c witha ="t +0,b=5s—n—1—mg — 0 and ¢ =my — 2n — 1. This
is bounded on L? ()\,,) provided ms > 2 and
my
_p(7+0> <—n<p(s—n—mg—o),
ie. Gt +o0 > 2 and s > n+msg+ 0o — 2. The intermediate OK terms are handled
similarly. Note that the crux of the matter is that all of the positive operators have

the form T 5 ., and moreover, if s and the m’s are chosen appropriately large, then
Topc is bounded on LP (A,,).

8.1.3. Boundary terms for F'. Now we turn to estimating the boundary terms in
(8.19). A typical term is

820) 5. (0" (a0)) [2] ()= | ¢ [ﬂf'w)z)s D" (@3h) (2] (w)aV (),

with 0 < k < m — 1 upon appealing to Lemma 5.
mi1+o
We now apply the operator (1 — |z|2> R™ to the integral in the right side

of (8.26) and using Proposition 4 we obtain that the absolute value of the result is
dominated by

N 9\ s—n—1 1
/ (1— 2| ) (1—|w‘ ) ( A(waz)>k+ ‘5’“ (g’z?h)‘dv (w)
B,

|1 — @z 1— |w)?

mi+o s—n—2—k—o
(1—|z\2)1 (1—|w\2) Aw, )

s+mq

‘(1 - |w\2)”5k (%3n) (w)‘ dv (w).

|1 — wz|

n
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The operator in question here is T, . witha =mq +0,b=s—-—n—-2—-k—o0 and
¢ =k + 1 since
at+b+c+n+1=s+m.

Lemma 10 applies to prove the desired boundedness on L? (\,,) provided m; + o >
n

;.
However, if k fails to satisfy k +1 > 2 (% — 0’), then the derivative DF+1Q)
cannot be used to control the norm |||z, ). To compensate for a small &,
P n

we must then apply Corollary 3 to the right side of (8.26) (which for fixed z is
in C (B,) N C*> (B,)) before differentiating and taking absolute values inside the
integral. This then leads to operators of the form

B 9 s—n—1
Ry

< (1- w?)" R D" (@30) (w)] v (w)},

which are dominated by

mi+o s—n—1
(=) (1= lwP)
A

—wTt™

k+1

A o

o vAalez) RD" (93h) (w)] aV (w),
1 = [w]

which is

)S_n_Q_k_o A (w, 2)

s+my

mi+o
(1=17)" " (1= P
J.

|1 —wz|
«|(1- |w|2)g7em§’“ (@20) (w)|av (w).
This latter operator is Ty H (2) with
a=mi+o,b=s—-n—-2—k—o,c=k+1
and H (w) = ’(1 — |w|2)0RZ,‘5k (S/Zah) (w )’ Note that for m > 2 (% — 0) we do
indeed now have |[H||,, ) ~ HQ h)

( . The operator here is the same as that
Bg (Bn)
above and so Lemma 10 applies to prove the desired boundedness on L? ();,).

8.1.4. The estimate for F2. Our next task is to obtain the estimate (8.1) for u = 2,
and for this we will show that

(8.27) /B "
< C/ '(1 \z|2)” (1- |z|2)m/3/ R D™ (23n) (=) ’

Unlike the previous argument we w111 have to deal with a rogue term (22 — 52) this

(1_|z|2)"“+ R0 2,0 03

d, (2)

dX, (2).

time where there is no derivative -= = 5 to associate to the factor (22 — 52) Again we
2
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1gn0re the contractions Ay. Then we use Lemma 5 to perform integration by parts
m4 times in the first 1terated integral and mj times in the second iterated integral.
We also use Corollary 3 to perform integration by parts in the radial derivative
mY4 times in the first iterated integral (for fixed z, CO'L Q3 € C (B, ) NnC*>(B,)

n,sa

by standard estimates [13]), so that the additional factor (1 — ¢ ) : can be used

crucially in the second iterated integral, and also mY times in the second iterated
integral for use in acting on 3.
Recall from Lemma 5 that

C?L’gn (z) = boundary terms (depending on m)

lfwz)nlg 1*|w|2é — |w)? o
+Z/ (w,z()" ) (11—ij>
nflcj,z,n,s (1 _ |w|2) (1 _ |z|2) J D"n(z).

=0

11— wz)?

X

Recall also that that D™ already has the rogue terms built in, as can be seen from
(4.6). Now we use the right side above with ¢ = ¢ =5 =0 to substltute for 00 o
and the right side above with ¢ = ¢ = 1 and j = 0 to substitute for C% ,52- Then a
typical part of the resulting kernel of the operator ;9 C-i Q3 (2) is

- (11—
(8'28) An (57 Z)n ( 1— EZ ) (22 - 52)

s —w —fwl?) (1—fw)""
x(l—\a) RD™ / (1 5)(w§)1 )<1l_lw|£>

x (w7 - §)) (1—|w|) * R *(Q3h) (w) dV (w) dV (€),

where we have arbitrarily chosen (5 — 5) and (UTl — 5) as the rogue factors.

Remark 10. It is important to note that the differential operators DE"Q are con-
jugate in the wvariable z and hence vanish on the kernels of the boundary terms

Sn, (§k93h> (2) in the integmtz'on by parts formula (4.7) associated to the Char-

pentzer solution operator CO'1  since these kernels are holomorphic. As a result the

77,62

operator D m2 hits only the factor 5kQ§h and a typical term is

0 I
(zi — Ci)% {(wi - Zz‘)ﬂgh} =—(zi — Ci)Qgh,

T

where the derivative 6& must occur in each surviving term in Q3h, and this term

which is then handled like the rogue terms.

Now we recall the factorization (5.4) with ¢ = 2,

Q§:74Q(1)/\§g/\§-(1;a
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and that Q3 (w) must have both derivatives aa—i and ;—i occurring in it, one sur-
w1 wo

viving in each of the factors 537 along with other harmless powers of g that we

ignore. Thus we may replace Q} A Q} with %Qé A %Q}J If we use
m-&=(Zm-mm) — (& ),
we can write the above iterated integral as

/ o A
B, A(gaz)n 1_EZ

2 my mlzl—mf‘, (1 7105)”_2 (1 — |w\2) 1-— |’lU|2 w
X/B (1—|5| ) R™D

A(wvg)n 1 —Ef

n

(1= ol) ™ RS € - ) 5

—mh—¢
— D" 0l
g 0]

A [(1 ~ )™ B (€ - ) 83}79593} v (w)dV (€)
minus

/ (-2 (1-le?\" "
B, A(£7Z)n 1—52

m'2' R 1— -\ n—2 1— 2 1_ 2\ S2—n
oy s [0t (1)

A(wag)n 1 _Eg

my ” 0 —m,—
x [(1—w|2) CRM (3 ) 5D KQ}J}

A= )™ e (€ ) D 0] av wyav (o).

where we have temporarily ignored the wedge products with terms that do not
include derivatives of g, as these terms are bounded and so harmless.

4 m// " ’
Now we apply (1 - \z|2) (1 - |z|2> " R™Y D™ to these operators. Using the

crucial inequalities in Proposition 4 together with the factorization (8.9) with £ = 2,

—

Q3 = —4Q5 A QL A QY
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the result of this application on the first integral is then dominated by

@w>4(1k)uw_[0—ﬁhﬂmﬂw

A (g, )mitmitn

S1—n
1- ¢
1—¢z

y (1_|§|2)’”'2'11_wg]"‘2(1—|w2)< A(@z))mé
B

A (w, €)matmatn 1- ¢

%@wﬁ)AW@r%Khﬁﬁ Amﬂ%+Am@%}

””(AW@y%<Am@f
1—|w)? 1—|wl?

(1= )™ R D7 (80) (0] av () av (0.

- {Kl ~1=*) VB (€2 A (gvz)m’l}

1 —|w|”

1 —wé

X

and the result of this application on the second integral is dominated by

(8.30) /B (o) o [(1-12) A(g,z)}m'f

N

- [gP|" "

1-&
2\ ™2 =|n—2 2 ms

X/ (1-16P) " =" (= ) A\

B,

A (w, &)t Lo lef
<[(1- 1) vETwa] " {[(1- 1) vAwS)
( m) (w <w,z>) <¢A w)

L~ fwf? L= fwf? L= fwf?

x {[(1 ~12*) mﬁ* LA (g,z)mi}

" A w8 )

1—Jwl”

1—w5

X

(1_|wﬁ)mg3méaw%(§§Q<wﬂdV<wwﬂf@>

The only difference between these two iterated integrals is that one of the factors

Vlfl(g"f) that occur in the first is replaced by the factor Vli(g‘f) in the second.

Note that the ignored wedge products have now been reinstated in 3.
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Now for the iterated integral in (8.29), we can separate it into the composition
of two operators of the form treated previously. One factor is the operator

ooy [ STy e

A (é—, z)’m/l-‘rm’l’_;’_n

: {[(1 1) VAED] " +a (g,z)m’l}

VEET\"™ Lol [" .
X( 1—5|2> 1-¢éz (1-1*)  Fav e,

and the other factor is the operator

17
my

(8.32) F(g):/ (17|5|2> 1 —wg[" (1 Jul)

B, A (w, €)matmatn

[(1-1¢P) VA9

x <W>mm (1= wl?) " @)av @)
1-— |w|2 7

where f (w) = (1 — |w\2)
Lemma 10 applies to obtain the appropriate boundedness.
We will in fact compare the corresponding kernels to that in (8.25). When we

consider the summand A (€, z)m,1 in the middle line of (8.31), the first operator has
kernel

o+my s1—n—mh—o
(L=12P) " (-ger)
(8.33)

T e

9 o+mY 9 s1—3n—mfy —o
(=17) " (1-1eP)

|1 . £E|5172n+1

(1 - |w|2>m3 R™3 D™ (S/l\gh) (w)‘ We now show how

Y

if we choosem!, = m! + 2n so that the factor A (¢, z) disappears. This is exactly
the same as the kernel of the operator in (8.25) in the previous alternative argu-
ment but with mY in place of m} there. When we consider instead the summand

[(1 - \z|2> A (€, z)} " in the middle line of (8.31), we obtain the kernel in (8.33)

but with m/ + m} in place of m/.
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When we consider the summand A (w@)ml2 in the middle line of (8.32), the
second operator has kernel

ml 4o R W
(1_‘€|2) 2 (1_|w‘2)1+32 n—ms—2—o

my +2mb+mh42
2

(8.34) T
‘1_ €|52 n+ (w’g)mQ-i-mZ-l-n—

(1 B ‘§|2) Y+o (1 B |w‘2)s273n+17m'2'70
|1 . wg|$2—2n+2 :

if we choose mj = mf4 + 2n — 2, and this is also bounded on L? (d),,) for m4 and
so sufficiently large.

Note: It is here in choosing m/ large that we are using the full force of Corollary
3 to perform integration by parts in the radial derivative m} times in the first
iterated integral.
m/
When we consider instead the summand [(1 — |z|2) A€, z)} * in the middle

line of (8.32), we obtain the kernel in (8.34) but with mf 4+ m/, in place of m}.

To handle the iterated integral in (8.30) we must first deal with the rogue factor
VA (w, z) whose variable pair (w, z) doesn’t match that of either of the denomi-
nators A (&, z) or A (w,£). For this we use the fact that

A(w,z) = |1 = w2 g, ()| = 6 (w,2)" p(w, 2),
where p(w,z) = |p, (w)| is the invariant pseudohyperbolic metric on the ball
1

(Corollary 1.22 in [36]) and where 0 (w,z) = |1 — wZz|? satisfies the triangle in-
equality on the ball (Proposition 5.1.2 in [24]). Thus we have

p(w,z) < p(&2)+pwg),

d(w,z) < 6(&2)+6(w,8),
and so also

A (w, 2)

IA

2[3(€,2)° +0 (w,8)?] (e ()1 + | (w)])
2(1+} w£|>\/T+2<1+| fz) A (w,€).

1= wg|

Thus we can write

A (w, 2)

1= |w]?
< 1P VAER) | [L-wg1- | VA )
A e L e S T i e A T 1
Awg - 1-[¢f VAW
L—[wf 1= ¢ [1—wE] 1w

(8.35)

+

All of the terms on the right hand side of (8.35) are of an appropriate form to
distribute throughout the iterated integral, and again Lemma 10 applies to obtain
the appropriate boundedness.
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Aw,8)
1—|w|?
are handled in the same way as the operator in (8.29) by taking m4 = m4 + 2n — 2
and m, = mY + 2n, and taking s; and s large as required by the extra factors

‘11:‘;24 |11:‘i§| . With these choices the first two terms on the right side of (8.35) that
A(6:2)
1-[¢l?

If we substitute the first term 11:”5; Vli(;f) on the right in (8.35) for the factor
Nxess)

1—|wl|?

with the kernel in (8.31) multiplied by

For example, the final two terms on the right side of (8.35) that involve

involve are then handled using Lemma 10 with ¢ = 41 as follows.

in (8.30) we get a composition of two operators as in (8.31) and (8.32) but

A(,2)

1-¢?
2 w . ’rn, .

by 11—_||§;|\2 and divided by 726\(1145) If we consider the summand A (§,2)""* in the

middle line of (8.31), and with the choice m} = m{ + 2n already made, the first

operator then has kernel

and the kernel in (8.32) multiplied

"

VEGEy  (1-ER)" (1-keP)

X
1l 1=gz

(1= 1:P)"™ 7 (1) T VEES

|1 _ 62‘81721'7,4»1

"
s1—3n—mj —o

)

and hence is of the form T3 . with

a = mi+o,
b = s1—3n—1-—mj —o,
c = 1,

since a+b+c+n+1=s; —n—1. Now we apply Lemma 10 to conclude that this
operator is bounded on L? (A,) if and only if
—p(m{ +0)<-n<p(s1—3n—m{—o),
iLe. m{+o>2%and sy >mi+o+3n—7.
If we consider the summand A (w,f)m,2 in the middle line of (8.32), and with
the choice m4 = m4 + 2n — 2 already made, the second operator has kernel

my +o sa—3n+1-my—o
1— ¢ y ( A(w,§)>_1 y (1— |£|2) (1= Jw?)=""

1— |wf 1— |wf |1 —wg|=

my +o+1 s2—3n+1—ml —o -1
(1-1¢P) (1 fwf?)* A w,E)

|1 . wg|5272n+2 )
and hence is of the form Ty, ; . with
a = mhj+o+1,
b = ss—3n+1-—mj—o,

c = —1.
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This operator is bounded on L? (\,,) if and only if
—p(my+o+1)<-n<p(ss—3n+2-—mh —o),

ie.my+o>%—landsy>my+o+3n—2—12.

[L1-wé| 112 VAE2) on the right in (8.35)

If we now substitute the second term Tl =22 1-]¢]°

VA (w,z) .

w0 (8.30) we similarly get a composition of two operators

that are each bounded on L? (),,) for m; and s; chosen large enough.

for the factor

8.1.5. Boundary terms for F2. Now we must address in F? the boundary terms that
arise in the integration by parts formula (4.7). Suppose the first operator C?L’g L s

replaced by a boundary term, but not the second. We proceed by applying Corollary

mi+o
3 to the boundary term. Since the differential operator (1 — \z|2 R™ hits

only the kernel of the boundary term, we can apply Remark 7 to the first iterated
integral and Lemma 10 to the second iterated integral in the manner indicated in
the above arguments. If the second operator Cg’é , is replaced by a boundary term,

then as mentioned in Remark 10, the operators D™ hit only the factors 5m3, and
this produces rogue terms that are handled as above. If the first operator 62:2 | was
also replaced by a boundary term, then in addition we would have radial derivatives
R™ hitting the second boundary term. Since radial derivatives are holomorphic,
they hit only the holomorphic kernel and not the antiholomorphic factors in @mg',

and so these terms can also be handled as above.

8.2. The estimates for general F*. In view of inequality (8.10), it suffices to
establish the following inequality:

(8.36) 1 s

s
Co‘,n,p,tS/ ’(1 — |Z|2) XM (Qﬁ-‘rlh) (Z)
B

Recall that the absolute value |F| of an element F' in the exterior algebra is the
square root of the sum of the squares of the coefficients of F' in the standard basis.

The case p > 2 involves no new ideas, and is merely complicated by straight-
forward algebra. The reason is that the solution operator Agcg;gl...Agcgggl acts

’ A\, (2)

n,81°

2\t my 0,0 0,u—1yp+1
(1—|z|) R™ACO0, A COEIQE T

’ dA, (2).

IN

separately in each entry of the form Qﬁ“h, an element of the exterior algebra of
C> ® C™ which we view as an alternating ¢-tensor of (0, ) forms in C*. These
operators decompose as a sum of simpler operators with the basic property that
their kernels are identical, except that the rogue factors in each kernel differ accord-
ing to the entry. Nevertheless, there are always exactly p distinct rogue factors in
each kernel and after splitting, the p rogue factors can be associated in one-to-one

fashion with each of the % derivatives in the corresponding entry of
J

o0 R 12 oo 5
Qﬁ—o—lh = —(u+1) < %%) A /\ ( gk, eh) h.
ko=1 |9|

2
i=1 \k;=1 |9
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After applying the crucial inequalities, this effectively results in replacing each
derivative % by the derivative D;, and consequently we can write the resulting
J

—

form as Qﬁ'Hh.
This completes our proof of Theorem 2.

9. APPENDIX

Here in the appendix we collect proofs of formulas and modifications of argu-
ments already in the literature that would otherwise interrupt the main flow of the
paper.
9.1. Charpentier’s solution kernels. Here we prove Theorem 4. In the compu-
tation of the Cauchy kernel C,, (w, z), we need to compute the full exterior derivative
of the section s(w, z). By definition one has,

si(w,2) = Wil —wz) =71 - wl),
dsi(w,z) = (0w + 0w + 0. +0.)si(w, 2)

Straightforward computations show that

n

(91) 8wsi (w7 Z) = Z (Eiﬁj - Eﬁj) dwj
j=1
Owsi (w,2) = (1 —wz)dw; + ijiidﬁj
=1
5381' (w7 Z) = — Zﬁiwjdéj — (1 — |w|2) dz;
j=1
0,8 (w,z) = 0,
as well as
Owsy = (1 —wZ)dwy + Zx0y|w|?
5Z8k = —(1 — |w|2)d7k — @kgz(wé)

We also have the following representations of si, again following by simple com-
putation. Recall from Notation 2 that {1,2,...,n} = {i,} U J, U L, where J, and
L, are increasing multi-indices of lengths n — ¢ — 1 and q. We will use the following
with k& =i,.

s, = (Wr—7Zk)+ sz (W1Z) — Wr7Z;)
1#k
= (@k - Zk) + Z wj (@jfk - @kfj) + Z wl(@ﬁk — @kzl)
jeJL leL,
= (@k —Zk) + Zk Z |wj|2 — Wi Z w;Zj + Zk Z |wl|2 — W Z wiz].
jedy JjeJ, leL, leL,

Remark 11. Since AN A =0 for any form, we have in particular that %|w|2 A
By |w|” =0 and 3, (wz) A B, (wz) = 0.
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Using this remark we next compute A e, Owsj. We identify J, as j1 < ja <
- < jn—g—1 and define a map 2(j,) = r, namely ¢ says where j, occurs in the

multi-index. We will frequently abuse notation and simply write (7).

Because

Ow|w|? ADy|w|? = 0 it is easy to conclude that we can not have any term in 9,,|w|?

of degree greater than one when expanding the wedge product of the %sj.

/\ ngj = /\ {(1 7105)de +§j5u,|w|2}
jed, jed,
= (l—wz"ql/\aﬁ—l—(l—wz"q22
JEJy jeJ,

= (1—-wz)"" " 2

1—w2+2wﬂj /\dw]—f'Z(—

Jj€Jy j€Jy jE€J,
The last line follows by direct computation using
By |w|* = Z w;dw; + Z Wi dWy.
jE€JL keL,U{i,}

A similar computation yields that

/\ 5281

leL,

= (—1)q /\ {(1 — |w|2)d§l —I—ﬁgéz(wf)}
leL,

leL, leL,

(171~ fuwf)r?
<1_w|2+ > |wz|2> Azt Y ()0

leL,

>

l(]) 12 a

D

wPA N\ dwy
j e \{j}

wkdwk /\ d@j/

keL,U{i,} Jj'ed\ {5}

(D[ @ =) A dz+ (1= )t Y (1) 07w, (wz) A

Wy dZy,

€L, leL, keJ,,u{iV}

/\ dzy

'eL, \{l}

A

reL, \{l}

An important remark at this point is that the multi-index J, or L, can only
appear in the first term of the last line above. The terms after the plus sign have
multi-indices that are related to J, and L,, but differ by one element. This fact

will play a role later.
Combining things, we see that

N\ Ows; J\ O=s5 = (—1)7(1 —w2)" " >(1 = |w[*)* (I, + 1T, + I11, + IV,,),
jeJ, leL,
where

I,=11—wz+ Z W;Z; (1 - |w|2 + Z ’LU[Q) /\ d@j /\ dzy,

Jjedy leL,

Jjedy

II,=|1—wz+ Z W;Z; /\ dw; Z (_1)1(0*1@[ Z

Jj€Jy Jj€d, leL, keJ,u{i,}

leL,

W dZy,

/\ d?l i

l'eL, \{l}
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L, = | Y (-0)97% > wdwe N\ dwy (1—|w|2+z|“’l|2>

JjE€Jy keL,U{i,} jreJ \{j} leLl,

w, = [ DY 09 > wdwe )\ dwy

GET, keL,U{i,} i€\ {5}
X Z (—1)1(”_1@[ Z wdZy, /\ dzy
leLl, keJ,u{i,} 'eL,\{l}

We next introduce a little more notation to aid in the computation of the kernel
Co4(w,2). For 1 <k <n welet Pi(k) ={v € P?:v(l) =i, =k}. This divides

the set P? into n classes with % elements. At this point, with the notation

1
introduced in Notation 2 and computations performed above, we have reduced the

calculation of C%4(w, 2) to

Cg’q(w,z) = m Z €S, /\ gwsj /\ gzslAw(w)

veP] jeJy leL,

~1)4(1 — wz n—q—2 1— 2\q—1 ™
- (V% "“2( )75 Ll oo 30 el LI,
w,z k=1 veP(k)

(=17 —wz)" 1721 — Jw|?)"
A(w, z)" Zsk

_ (=D — w1 — Jwf?)
A(w,z)" ZSkC(k)

Here we have defined C(k) = I(k) + II(k) + I1I(k) + IV (k), and

Iky= Y &l k)= > ell,

ve P (k) veP (k)
HI(k)y= Y eI, k)= > elV,.
veP(k) veP(k)

For a fixed 7 € P we will compute the coefficient of A\, dw; /\,c; dzi. We
will ignore the functional coefficient in front of the sum since it only needs to
be taken into consideration at the final stage. We will show that for this fixed
7 the sum on k of s, times I(k), I1(k), I1I(k) and IV (k) can be replaced by
er(1—w2)(1 = |w?) (@i, —Zi,) \jes, d0j N\iey,. dZ1- There will also be other terms
that appear in this expression that arise from multi-indices J and I that are not
disjoint. Using the computations below it can be seen that these terms actually
vanish and hence provide no contribution for C%%(w, z). Since 7 is an arbitrary
element of PJ this will then complete the computation of the kernel.

/\ dzla

leL,

+1V,)

)+ I1(k) + III(k) + IV (K))



THE CORONA THEOREM IN C" 57

Note that when k = ¢, then we have the following contributions. It is easy to
see that II(i;) = III(i;) = 0. It is also easy to see that

I(i;) = e |1—wz+ Z W57 (1— |w|2—|— Z wﬂ) /\ dw; /\ dz

jed, leL, jed- leL,

= (1 —wz)(1—|wP?) /\f /\dzl

JE€EJIr lel,

(=wz) Yl + (1= ) Y wiz+ Yl Y wiz; | N dw; N dz

lEL, jed, leL, jeT- jed- leL,

We also receive a contribution from term IV (i,) is this case. This happens by
interchanging an index in the multi-index J. with one in L,. Namely, we consider

the permutations v : {1,...,n} — {ir,(J: \ {5}) U {{},(L- \ {I}) U {j}}. This
permutation contributes the term Zjw;w;w;. After summing over all these possible
permutations, we arrive at the simplified formula,

IV(iT> = —€r Z |wj|2 (Z wlzl> /\ d@j /\ dz.
jed, leL, jed, L.

Collecting all these terms, when k = 7. we have that the coefficient of €, /\j e, dw; Nic . 4z
is:

Cli) = (L—w)(1—uP)+Q-wz+ Y wz) Y ful

jed, leL,
FA =l + > o) Y wiz = > wl? Y wiE = Y w* Y wiE,
leL, jed, leL, jed, jed, leL,

We next note that when k # i it ib still possible to have terms which contribute
to the coefficient of A jes, dw; Nier, dzi. To see this we further split the conditions
on k into the situations where ke J and k € L,. First, observe in this situation
that if k£ # i, then term I(k) can never contribute. So all contributions must come
from terms II(k), ITI(k), and IV (k). In these terms it is possible to obtain the
term /\jeJ, dw; /\leLT dz; by replacing some index in v. Namely, it is possible to
have v and 7 differ by one index from each other, or one by replacing an index with
ir.

Next, observe that when k € L, there exists a unique v € PJ(k) such that
Jy, = J;. Namely, we have that v : {1,...,n} — {k, J-, (L, \ {k}) Ui, }. Here, we
used that ¢, = k. Terms of this type will contribute to term II(k) but will give no
contribution to term ITI(k). However, they will give a contribution to term IV (k).

Similarly, when k € J; there will exist a unique p € P2(k) with L, = L,.
This happens with u : {1,...,n} — {k,(J; \ {k}) Ui, L;}. Here we used that
i, = k. Again, we get a contribution to term ITI(k) and IV (k) and they give no
contribution to the term I7(k).
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Using these observations when k € L, we arrive at the following for I(k), I1(k),
111(k), and IV (k):

I(k:) =0
II(/C) = —¢ |1—-—wz+ Z W;Zj | Wi, Wy /\ d@j /\ dz;
JEJ- j€J, leL,
III(k) = 0

k) = ezw| Y |lwl | A do; \ dz

jeJ, jed, leL,

Similarly, when k € J, we arrive at the following for I(k), II(k), II11(k), and
IV (k):

I(k) = 0
If(k) =0
II(k) = —e <1 w + > |w,|2> zwe N\ dw; )\ dz
lIeL, jed, leL,
IV(k) = € W; Wk (Z wlzl> /\ d@j /\ dz;.
€L, jed, leL.,

Collecting these terms, we see the following for the coefficient of e; A\ ;¢ ; dw; Ao dzi:
C(k) = —wg (zif (1 — |w|2 + ZleLT |wl|2) — W, (ZlELT wlfl)) Vk € Jr,
C(k) = —wy, (mT (1 —WZ+ Y wjzj) — %, (ZjEJT \wj|2)) Vk € L,.

This then implies that the total coefficient of e; A ;¢ ; dw; /\;c; dz is given by

si,Clir)+ Y siC(k)+ Y skC(k).

keJ, keL,
At this point the remainder of the proof of the Theorem 4 reduces to tedious
algebra. The term s;_ C/(i,) will contribute the term (1—wz)(1—|w|?)(w;, —%;.) and

a remainder term. The remainder term will cancel with the terms >, ,; sxC(k).
We first compute the term s,C(k) for k € J.. Note that in this case, we have

that
Ck) = wyg (wiT (Z wlzl> — Zi, <]. — \w|2 + Z |wl|2>>
leL, leL,

= wg (wiT (Z wlzl> — Zi, <1 - Z wﬂ)) +wkZiT|wiT\2.
leL, led-
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Multiplying this by s; we see that

Sko(k‘) = (1 — wZ) (wiT (Z wlzl> —Zi, <1 — Z wﬂ)) |wk|2
leL, led,
—(1 = |w]?) (wz; (Z wm) - Zi, (1 - Z |wl|2>> WEZk
leL, led.
(1= w2)Z;, |wi, [Plwe]* = (1= [w]*)Zs, Jwi, [P0z
Upon summing in k € J; we find that

Z skC(k) = (1—wz) | w;, (Z wm) —Zi, | 1= Z Jw,[? Z jwi]?

keJ, leL, eI, keJ,

—(1 = |wl) | @, (Z wm) b Z lw;|? Z Wk Zk

leL, i€l ke
(1= w2)zi, |wi, Y o = (U= )z, |wi, 2 Y wizs.

keJ, ke,

Performing similar computations for k € L. we find,

X wet) = 0-u) (5 (Dt ) -m (1 T wn)) Tt

keL, ked. leL, keL,
—(1—|w]?) (Zz; (Z |wj|2> — Wi, <1 - Z wm)) Z WEZk
ked, leL, keL.
+(1—w2)Zi Jwi |* Y fwkl? = (1= [w]*)Zi Jwi, |* Y wiZ.
keL. keL.

Putting this all together we find that

> skC(k)

ktir

(g (50 (o) (2

—Zi. (1 —w2)(1 — |w]?) <Z|w]|>+wl (1 —wz)(1 - |w]?) (Zwkzk>

kedJ kel
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We next compute the term s; C(i.). Using the properties of s we have that
$i.Clir) is
(@i, —Zi,) (1 = w2)(1 = [w])

+Z;. (1 —wz)(1 — |w|?) <Z|wk>—wh(1—wz (1— |w]?) (Z wkzk>

kedJ keL

o= {00 (3 ot )+ (2 ) (3 s
keL keL, ke,
keJ- keL,
+7i (1 - |w2){ — w|?) (Z wk%) - (Z |wk|2> (Z wka>
keJ, keL, ke,

(S ) (3 e |

From this point on it is simple to see that the remainder of the term s; C(i,)
cancels with ), 2i, 5kC (k). One simply adds and subtracts a common term in parts

of >4z, skC(k). The only term that remains is (w;, —Z;;)(1—w?)(1— |w|?). Thus,
we see that the term corresponding to 7 in the sum C%4(w, 2) is

—1)4(1 — 7n—q—21_ 2\q—1
eT( ) wZA)(w,z)fg o)) (1—wz)(1—|w|?*)(W;, —Z;. ) /\ dw, /\ dziAw(w

JEJ- leL,

Since T was arbitrary we conclude that C9(w, z) equals

(1—wz)" 1! (1 - |w|2)q

A (w, z)"
times
Y e, —z,) N\ do; N dzAww)
veP) JEJT, leL,

which completes the proof of Theorem 4.

9.1.1. Ezplicit formulas for kernels in n = 2 and 3 dimensions . Using the above
computations and simplifying algebra we obtain the formulas

(9.2) Cy°(w, 2)

1 —wz
(A(wz)i [(Z2 — Wa)dwy A dwy A dwy — (Z1 — W1 )dwa A dwy A dws],
and
(9.3) Cg’l (w, 2)

1— |w|?
— (A(wz|)2) [(Wy — Z2)dz1 A dwy A dwy — (W1 — Z1)dZ2 A dwy A dws],
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and

(9.4) €3 (w, 2)

= Z sgn (o) (- wz)™ (1 - |w|2>‘1 (Zo() — Wo(n))

c€S3 A('UJ7Z)3

dCo(2) N dCo(3) A ws (W),

where S denotes the group of permutations on {1,2,3} and ¢ determines the
number of dz; in the form d(, o) A dC, ()

dwa(g) A dw0(3) if ¢g=0
d<0(2) A dCo.(3) = dZU(Q) A d’wa.(g) if q= 1
dZU(Q) AN dzg(g,) if g=2

9.1.2. Integrating in higher dimensions. Here we give the proof of Lemma 1. Let

(=)
=————%and R= V1= |w|?,

1 — w3z
so that

1—Jwl?) (1- |22

pr2 =
11— wz|?

=1- |<pw(z)|2 :

Then with the change of variable p = Br? we obtain

s—q—1 (1= Jw* = [w'|*)? /
- ST @)
(1—wz)* 9" / (1 —[w]? - Iw’IQ)q

11— wzl®*  J/i e, (1__L;EE)(1__M42_|U/F))S

1
[1—wz|?
(1—wz) ™" /R (R* —r?)" 2k-1g
ST r
11— w§|28 o (1—BR?+ Br?)

S—qg— 2
(1 - wz)* 4 /BR (BR2 - p)* P
2Bk+a |1 — wz|** Jo (1-BR*+p)’ 7

av (w')

which with

1=t)" [t (t-p)F
v o= U [0,
"  Jo (1—t+p)"*F
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we rewrite as
(1-wz)* """ (BR2)*
2B+ |1 — wz|™ Jp,, (2)[*"
(1—wz)* 4" (1 |w|2)lC 2q
_ _ | — wz
= q | w2|2n W?{gﬂ (BRQ)
2(1f |z\2) 11— wzl*  lpw(2)l

v, (BR?)

k
(1—wz)* 4" (1 — |w|2) 1wz )
= q Yok (BR )
2 (1 - |z\2) Aw,z)" ™

1 1-— ‘ |2 ko 1-— !
w wz 0 2
2 n(w,2)<1 ’U)Z) <1|Z|2> n,k( )

(1-wz)" (1= |w|*)’

since @I (w, z) = Ao
At this point we claim that
I Y A (R
(9.5) e () = ( - ) / (t=r) —r T ldr
' t o (1—t+r)

is a polynomial in
t=BR>=1—lp,(2)|"
of degree n — 1 that vanishes to order g at ¢ = 0, so that

W40 =3 e, <(1 —lwl?) (- Izl2>>j,

11— wz|?

With this claim established, the proof of Lemma 1 is complete.
To see that \Ilg .. vanishes of order ¢ at t = 0 is easy since for ¢ small (9.5) yields

tq
’\p,‘,}i (t)’ < Ct”“/ Eok=tar < cta.
) 0 C

To see that\I’?L’ffc is a polynomial of degree n — 1 we prove two recursion formulas
valid for 0 <¢ < 1 (we let £ — 1 at the end of the argument):

(9.6) () — U0 = (1—t) B0 (1),
1 n n+k
\I/%,?c t) = T (1-t)"+ 2 t\IISLﬁHl ().

The first formula follows from
(t—r)!—(t—r) T = =) (1 —t+7),

while the second is an integration by parts:

/t rk=1 J 1 rk |t
——dr = -—
0 (1—t—+r)"t* k(1—t+r)
+n+k/t rk d
-
kooJo (1—t+r)nthtt
1, n+k t rk
= "+ dr.
TR o (g
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mi i

in (9.6).

The recursion formulas in (9.6) reduce matters to proving that ‘Ilml is a poly-
nomial of degree n — 1. Indeed, once we know that \I/?L(i is a polynomial of degree
n — 1, then the second formula in (9.6) and induction on k shows that ¥ k is as
well. Then the first formula and induction on ¢ then shows that \IJ?{,,c is also. To

see that \IJSL’E is a polynomial of degree n — 1 we compute

. n t
o = 170 / : L
0

t 1—t+r)"
(11 | ,
B t {_n(ltJrr)n} 0
1-(1-t)"
- nt ’

which is a polynomial of degree n — 1. This finishes the proof of the claim, and
hence that of Lemma 1 as well.

9.2. Integration by parts formulas in the ball. We begin by proving the gen-
eralized analogue of the integration by parts formula of Ortega and Fabrega [20] as
given in Lemma 3. For this we will use the following identities.

Lemma 11. For ¢ € Z, we have

(9.7) ?{A(w,z)e} - (A w2,
{l—wz } = 0,
z{ 1— |w]? } - Z(l—|w|2>z—€(l—\w|2)£71(1—2w).

Proof: (of Lemma 11) The computation

oA 0

= 8—@{|17w2|27(17|w|2) (1f\z|2)}
= (wE—l)zj+(1—|z|2)wj,

shows that ZA = A:

3

ZA(w,z) = (@5 —75) 8% {|17w§|27(17|w|2> (17|z|2)}

j=1
_ 2
wj — %5 { Z—l)zj+(1—|2| )wa}
j=1

= (w2 = 12P) (wz = 1)+ (1= 2) (ol - 20)

= —wz+ 2P+ [wz)? — |2 wz + jw]’ — wz — |2 |w]® + |2]P wE

—2RewZ + |2|* + [wz® + |w|® — |2[* |w]?

|

= Jw— 2’ + [wzl” — |2 [w]” = A (w, 2)
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by the second line in (3.1) above. Iteration then gives the first line in (9.7). The
second line is trivial since 1 — wZ is holomorphic in w. The third line follows by
iterating

Z (1 - |w\2> =zw— |w|® = (1 - |w|2) —(1-zw).

Proof of Lemma 3: We use the general formula (3.10) for the solution kernels
C%4 to prove (4.7) by induction on m. For m = 0 we obtain
(9.8)

o (z) = co/ DI (w, z) Z Do (anWJ) dz’ 5 dV (w) = co®Y (ﬁn) (2),
B
" [J1=q
from (4.5) and the following calculation using (3.9):

Co7 (z)
= [ erwa)anw)
B,

/ Yo 0 (w,2) Y (1) (7 =) dz A dw D Ay, (w) A | mpdar

™ | J]=q k¢J [I]=q+1

/ ¥ (w,2) Z Z (~)"*7 (z —wy) Nrugmdz’ | dV (w)

Br | J|=q k]

Now we consider the case m = 1. First we note that for each J with |J| =g,
(9.9) ZD0 (nadw”) — DO (nudw”’) = D (nudw”’) .
Indeed, we compute

?ﬁ(mdm’) = Z(wj—zj)gfuj Z(W—%) Z (_1)u(k7J)nI

kg J I\J={k}

ZZ Z #(kJ (w; —7;) (wr, — %)6%771

j=1keJ I\J={k}

w3 @ - Y, (),

kéJ NJ={k}

so that
ZD0 (nadw”) — DO (nadw”)
) __
ZZ Z n ) ( j _ZJ)(W—ﬁ)%mzpl(md@J)-
j=1ke¢J I\J={k} J

For |J| = ¢ and 0 < ¢ < q define

14
S o | w2 (1 )
]:;/Bnaw—J A(’LU,Z)n (

w; — %;) D (nadw’) p w (W)Aw (w).
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y (3) and (4) of Proposition 16.4.4 in [24] we have

(- w; - %) \ dwr Aw () |os, = ¢ (1 - Zw) do (w),
j=1 k#j

and Stokes’ theorem then yields

o £
o (1= wz)" ™ (1= [wf*) e
J_C/{)[Bn A(’UJ,Z)n (an) O'(UJ)— )

since ¢ > 1 and 1 — |w|* vanishes on dB,,. Moreover, from Lemma 11 we obtain

(1 . wz)n 1—¢ (1 _ ‘w|2)€7 B
15 = n/IB G DO (nodw”) dV (w)

n

| a—we)ms f(1-|w\2)670 ,
_5_/]3 Z INERDR DO (nadw”’) ¢ dV (w)

n

—wz)" w !
_ /B a )A(z,w() ) ZD0 (ndw’) dV (w)

—wz)" 1-¢£ _w2
+£/B ! )A(wj()ln | |)D°(mdﬁ‘])dV(w)

(1 1 -
—E/ ) (_|w|) DO (nadw” ) dV (w) .

A (z,w)"

Combining this with (9.9) and (9.8) yields
@ﬁ(ﬁn)(z) = Z/ ®f (w, z) (nJCFJ)dV( )dz’

_ Z,: /B " &, (w, 2) ZD0 (nadw”) dV (w) dz’
—Z / ®! (w,z) Dt (nudw”) dV (w) dz”

— —Z / D (nadw”) dV (w) dz’
—ez / ®f (w,2) DO (nadw’) AV (w) dz’
+£Z/ DLt (w,2) DO (nadw” ) dV (w) dz”

:_cpf;(pl) —€<I>( ) +£<I>“(D°)()

Thus we have

(9.10) oL (ﬁn) (z) = —mq% (Dln)( )+€+qu>f L (DO )( ).
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From (9.8) and then iterating (9.10) we obtain

(9. 11)0(07(1) (2)
1 — q 1 (=
— q 1 _ 1 pa-1 0
@1 (D) (2) = ~ 594 (D) (2) + ;247 (D) (=)
1 1 g—1_
_ q 1 _—pa-1 1 q—2 0
2 () 0+ e {ter (1) )+ L ter (07 ()
1 < -
= 0 1 (I)fL (Dln) (2) + boundary term.
Thus we have obtained the second sum in (4.7) with ¢, = —qﬁ for 1 </ <gqin

the case m = 1.
We have included boundary term in (9.11) since when we use Stokes’ theorem

on ®? (ﬁn) the boundary integral no longer vanishes. In fact when ¢ = 0 the
boundary term in Stokes’ theorem is

0 = C (1_C2)7 Jaw ag
79 = /OBn R e () do ()

1
C/man o) DO (nudw”) do (Q),

since from (3.4) we have

(1—wz)" (1 —wz)" B 1
Alzw)" L= wz e, (w)" (L)

w € IB,,.

Thus the boundary term in (9.11) is

CZ/ - CZ DO (nudw’) do (¢) dz” = ¢S, (ﬁn) (2).

This completes the proof of (4.7) in the case m = 1. Now we proceed by induction
on m to complete the proof of Lemma 3.

Finally here is the simple proof of the integration by parts formula for the radial

derivative in Lemma 4. bit
Proof of Lemma 4: Since (1 - \w|2) vanishes on the boundary for b > —1,

and since

R(1=0P) ™ = Yy (1= ) T == o) (1= )
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the divergence theorem yields

0 :/ (1—|w|2)b+1\11(w)w~nda(w)

Il
—
[~]=
Q
—
&
i /N
—
|
£
N
S
S
——
ISH
<
S

+1
U (w)dV (w)

I
3
w\j
—
—_
|
£
1)
N

+(b+ 1)/B (1= 1wP)” (= P @ (w) av ()

n

+/IB (17 |w|2>b+1R\Il (w)dV (w),

n

which after rearranging becomes

(n—|—b+1)/

Bn

(1- W)bﬂ U (w) dV (w)

+/B (1- W)b+1 RU (w) dV (w).

n

_ (b+1)/]B (1—|w|2)b\11(w)dV(w).

n

9.3. Equivalent seminorms on Besov-Sobolev spaces. It is a routine matter
to take known scalar-valued proofs of the results in this section and replace the
scalars with vectors in £? to obtain proofs for the ¢?-valued versions. We begin
illustrating this process by proving the equivalence of norms in Proposition 1.

Proof of Proposition 1: First we note the equivalence of the following two
conditions (the case o = 0 is Theorem 6.1 of [36]):

(1) The functions

|k|+o glkl
(1-1F) T 5Er ), =N

are in L? (dA; (%) for some N > % —o,
(2) The functions

|k|+o Ikl
(1-12F) 3RS, k=N

are in LP (d\,; (%) for every N > 2 —o.

lkl+o 1,
Indeed, L? (d/\n;EQ) =[P (Z/_n_l;EQ) and (1 - |z|2) i glz,l () e LP (1/_"_1;€2)

if and only if % (2) € L? (Vp( k| +0)—n—1; £?). Provided p (|k| +0) —n—1> —1,
¢

Theorem 2.17 of [36] shows that (1 - |z\2) % (g‘:kl ) (2) € L (Vp(jk|+0)—n—1:£2),

which shows that (2) follows from (1).

From the equivalence of (1) and (2) we obtain the equivalence of the first two
conditions in Proposition 1. The equivalence with the next two conditions follows
from the corresponding generalization to o > 0 of Theorem 6.4 in [36], which in
turn is achieved by arguing as in the previous paragraph.
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Next we prove Lemma 7 by adapting the proof of Lemma 6.4 in [6].
Proof of Lemma 7: We have

(9.12) 1
rO{ () Pt (1-18) @i} 2| (1- 1) £ )

[Daf (2)] =
and iterating with f replaced by (the components of) D, f in (9.12), we obtain

D27 ()] = |(1=1aP) (Duf) (2)].

Applying (9.12) once more with f replaced by (the components of) f’, we get

)

)

(1= 10l*) (Dup) )] = | (1 = 1aP) Da (/) () 2 \(1 o) 1 (2)

which when combined with the previous inequality yields

D2 )] = |(1- ) £ ).

Continuing by induction we have

(9.13) D7 f )] = | (1= 1al?) " 7o) (2)

Proposition 1 and (9.13) now show that

(f |1y moms o]

, m2>1.

<z>)3’

m+o P : om-1
< C (/]Bn (1 — ‘Z|2) f(m) (z)| dAn (Z)) + jz::o |ij(0)|
m+o p P m—1 A
< C 12 £ (2)| dh, (z)) + Vi £ (0)
Q;L /Bﬂ(cmcz) ( ) ; ’ |
m+o '4 P m—1 4
= ¢ (a;n /BB(CCMCQ) (1 o ‘Ca‘g) f( ) (2)| d\, (Z)) + jZ:;) |ij (O)’

% m—1
C — 2 7 m p n _]
- (2/B<c> (1= 1) prs ) ax <Z>> +§OW £ (0)

m—1
= Clfls;, @)+ > V().

=0

For the opposite inequality, just as in [6], we employ some of the ideas in the
proofs of Theorem 6.11 and Lemma 3.3 in [36], where the case 0 =0 and m =1 >

% is proved. Suppose f € H (B,,) and that the right side of (6.5) is finite. By

Proposition 1 and the proof of Theorem 6.7 of [36] we have

(9.14) f(z)= C/B &dv (w), ze€B,,

(1 _ wz)'ll—‘rl—‘ra

n
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for some g € LP ()\,,) where

m—1

(915) lgllzoir,y > D [V FO) + (/B

=0

1
p P

(1= )" RO ()

d\, (z)>
Indeed, Proposition 1 shows that

2 m-+o
foe BpBa e (1-127) RTMf() € L (M)
& RO™f (Z) e L? (Vp(m—i-a)—n—l) NH (Bn) R

«
where as in [36] we write dv, (2) = (1 - |z|2) dV (z). Now Lemma 10 above (see

also Proposition 2.11 in [36]) shows that

To,p,0L? (V'y) Ly (V’y) NH (B,)

ifand only if p(84+ 1) > v+ 1. Choosing 8=m+ocandy=p(m+o)—n—1we
see that p(8+1) >~ + 1 and so f € By (B,,) if and only if

(1- |w|2>m+ah(w)

(1 B wz)nJrlerJrU

RO f(2) = c/

IB'I?,

AV (w)

m—+to
for some h € L? (Vp(mto)—n—1)- If we set g (w) = (1 - |w|2) h (w) we obtain

(9.16) RO™f(2) =c / 9(w) AV (w)

B, (1 _ wz)n+l+m+a

with g € LP (\,,). Now apply the inverse operator R, ., = (R"’m)_1 to both sides
of (9.16) and use (6.3),

1 1
Rom ; p = ; s
) <(1 _wz)n+1+m+a> (1 _wz)rl+1+0

to obtain (9.14) and (9.15).
Fix a € 7,, and let a = ¢, € B,,. We claim that
(9.17)
2O (1-1oP)” [ — 2 v, mz1seBi@O).

— atitm
B, |1 —wz[" T T2t

To see this we compute D' f (2) for z € Bg (a,C), beginning with the case m = 1.
Since

Daws) = (@) el 0 = - { (1-1af) P+ (1- 1) Q]

t
t

_ {(1 ~Jaf*) Paw+ (1 - IaIQ)% Qaw} :
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we have

(9.18) Daf (2)
_ / Do (1= 2)~ ") g (w) dV (w)
Bn

. /B (1= 2)" 2+ D (@2) g (w) AV (w)

n
1
T

cn/B (1 —wz)” (H2+o) {(1 - \a|2) P,w + (1 — |a|2)% Qaw} g (w)dV (w).

n

Taking absolute values inside, we obtain

;/wﬁ—wﬁﬂaw+@m|
B

(9.19) Daf () < C (1) s g (w)]dV (w).

|1 — wz|

From the following elementary inequalities

(9.20) Quuwl” = 1Qu(w—a)f® <|w—al”,
= |w|’ + |a* = 2Re (wa)

2Re (1 —wa) < 2|1 —wal,

IA

we obtain that |Q.w| < C'|1 — Ea|%. Now

1
- wal ~ |1 - w3 > 5 (1—|z\2) ~ (1—|a\2), 2 € By (a,C)

(117

and so we see that

(1= 1) " |Patw] + | Quul __ ¢

n—+2

shows that

[N

+1—wal? <C1-wz|?, z€Bs(a,C)),

N|=

|1 — wz|

Plugging this estimate into (9.19) yields

WJ@HSC@—WﬁéA”Im@ﬂMﬂVW%

which is the case m =1 of (9.17).
To obtain the case m = 2 of (9.17), we differentiate (9.18) again to get

D2f(z)=c /B (1 —@2)" "D W g (w) dV (w) .

1
where we have written W = {(1 - |a|2) Paw + (1 - |a\2) ’ Qaw} for convenience.

Again taking absolute values inside, we obtain

(1-10) " 1o + )
9 )]V ().

n+34o

Wﬁ@NSCOfMﬂA (

n

|1 — wz|
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1
Once again, using |Q.w| < C'|1 —Eaﬁ and (1 - |a|2> S - Ea|% <C1 —Ez|%
for z € Bg (a,C), we see that

(1= 1) 1Pt + |Qaw)2 e

n+3+o

n+2+4o’ z e Bﬂ (CL, C) )

|1 — wz| 1 —wz

which yields the case m = 2 of (9.17). The general case of (9.17) follows by induction
on m.

The inequality (9.17) shows that (1 . \z|2>(7 {D(’:’;f(z)| < Cp Syl (2) for z €
Bg (cq, C), where

L)
Sg(z)—/B" (1 | ‘) (w)dV (w).

— Tz1c 9
R e

We will now use the symbol a differently than before. The operator S is the operator
Ty p,c in Lemma 10 above (see also Theorem 2.10 of [36]) with parameters a = 3 +o

and b = ¢ = 0. Now with ¢t = —n — 1, our assumption that m > 2 (% — U) yields
—p(B+0)<-n<p(0+1),ie.
—pa<t+1<p(b+1).

Thus the bounded overlap property of the balls Bg (ca, C2) together with Lemma
10 above yields

T (Z/
p,wt( ) aeT, BB(COL7C2)

cn (] IS9P, <z>)'ﬁ

1
P

(1- |z\2)” D f (z)‘p d\, (z))

<
< a/ lgra, <z>)’i
< af/ n \(1 )" R g ) <z>)’1’

by (9.15). This completes the proof of Lemma 7.

9.3.1. Multilinear inequalities. Proposition 3 is proved by adapting the proof of
Theorem 3.5 in Ortega and Fabrega [20] to ¢*-valued functions. This argument
uses the complex interpolation theorem of Beatrous [11] and Ligocka [17], which
extends to Hilbert space valued functions with the same proof. In order to apply
this extension we will need the following operator norm inequality.

Ifpe MB;}(]BS”)HB;;(]B”;Z?) and f = lel:K Jrer € By (IB”;®”‘_1€2), we define

Myf=p@f=¢| > fier|= > (pf))@er,

| Il=k—1 [I|l=k—1

where I = (iy,...,i,_1) EN " lander=¢;, ®...®¢;,_,.
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Lemma 12. Suppose that 0 > 0, 1 < p < o0 and k > 1. Then there is a constant
Ch,o.p,x Such that

(921) ||MgHBg(B,L;®N*1£2)HBZ(]Bn;®”€2) < Cn,o’,pﬂi HMQ||Bg(]B,L;Z2)*>Bg(]B,L;£2) .

In the case p = 2 we have equality:
(922) HM(pHBQU(IB"L;®K/—162)HB§T(IB‘,L;@K/ZQ) - HM@||Bg(]B,L)—>B§(]B,L;€2) .

It turns out that in order to prove (9.21) for p # 2 we will need the case M =1
of Proposition 3. Fortunately, the case M = 1 does not require inequality (9.21),
thus avoiding circularity.

Proof of Proposition 3 and Lemma 12: We begin with the proof of the case
M =1 of Proposition 3. We will show that for m = ¢ + k,
(9.23)

o p
/]B )(1 - ‘Z|2> (yég) (ykh)‘ d)‘n (Z) < Cn7<77p ||M!1H1ég(]}i%n)—>Bg(]Bn;€2) Hh”%g(]ﬂ%n) .

Following the proof of Theorem 3.1 in [20] we first convert the Leibniz formula
(V) (V*h) = Y* (9V"*h) — § ( i ) (Vg) (PFHn)
to "divergence form" =
) ) = 7 (L ) .
a=0

This is easily established by induction on ¢ with k held fixed and can be stated as

14
(024 (99) (1) = D by (@),

a=0
Next we note that for s > %, By (Bn; 62) is a Bergman space, hence MB;)(BW)_,B; (Bn:02) =
H*> (B,;(?). Thus using (6.6) we have for s > 2,

9 € Mpew,) By (B,02) N H™ (By; €2) = Mpe(s,)— Bz (B,:2) N MBs(8,)— B3 (B,:42)-

Then, still following the argument in [20], we use the complex interpolation theorem
of Beatrous [11] and Ligocka [17] (they prove only the scalar-valued version but the
Hilbert space valued version has the same proof),
n —0)o+0(2
(Bp BB BY) = B 7 G+ @®,), o0<o<t,

(87 Bu:).BS 7 Bue)), = B0 @), 0s<es<h,

to conclude that g € MB;(]Bn)_,B;(Bn;p) for all s > o, and with multiplier norm
||Mg|\B;(Bn)HB;(Bn;£2) bounded by ||M9HB;{(B”)HB§(B”;E2). Recall now that

hlE. :/ﬁlleQUymhz
Iy, = [, |(1=1F) v

and similarly for || f||, g, 42y, provided m satisfies
< (B

P
di, (2),

(9.25) (J + %) p>n,



THE CORONA THEOREM IN C" 73

where % appears in the inequality since the derivatives D that can appear in ™
1

only contribute (1 - |z|2) ® to the power of 1 — |z|? in the integral (see Section 6).

Remark 12. At this point we recall the convention established in Definitions 6 and
7 that the factors of 1 — \z|2 that are embedded in the notation for the derivative Y
are treated as constants relative to the actual differentiations. In the calculations

S
below, we will adopt the same convention for the factors (1 — \z|2 that we

introduce into the integrals. Alternatively, the reader may wish to write out all the

derivatives explicitly with the appropriate power of 1 — |z|2 set aside as is done in
[20].

So we have, keeping in mind Remark 12,
o p
AR —
B,

[0 e

= ot (1= ta) " e

P
d\,

B;)Q(IBTL;ZQ) '
Here the function
H(z) = (1-:P) o)

is not holomorphic, but we have defined the norm [|-| 5. (5 .42) on smooth functions
p,a\Pns

anyway. Now we would like to apply a multiplier property of g, and for this we
must be acting on a Besov-Sobolev space of holomorphic functions, since that is
what we get from the complex interpolation of Beatrous and Ligocka. Precisely, we
get that My is a bounded operator from B (B,,) to By (By; (%) for all s > o.

Now we express Y*T#~%h (2) as a sum of terms that are products of a power of
1 — |2|* and a derivative R‘L/h (z) where i +j = k + £ — a and R is the radial
derivative and L denotes a complex tangential derivative a%j — Z;R as in [20].

However, the operators RL’ have different weights in the sense that the power of

2 . : . T 2\ 3
1 — |z|” that is associated with R*L’ is (1 — |2 ) , ie.
" o\itE
VR (z) = (1 ] ) RILih(z).
2\ tE . .
It turns out that to handle the term (1 — |z ) R'LIh (2) we will use that g is
a multiplier on B5 (B,,) with
sl
S=0+1+ 9

an exponent that depends on i + % and notoni+j=k+/{— .
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Indeed, we have using our "convention" that

p

Hg(z) (1- \z|2)H (1- |z|2)i+% RLIK ()

Bga(]Bnaé2)

1= 12P) Y {g<z> (1= 1) (1= 1) R"Lf‘h(z)}

P
d\n

p

i,

@\S@\

|
(1 \z|) ya{g YRILh(2)}
)

= ||9( R'L7h (= ||B< L (Bose2)

Now the function g (z) R'L7h (2) is holomorphic and s = o + i + 4 > o so that we
can use that g is a multiplier on B; (B,) = B, , (B,,) (this latter equality holds
because (s + %) p > n by (9.25)). The result is that

Hg( RzLjh( >‘ B (Bnif?)
< Bn)—>B (Bn;2?) ||R L’ h )’ B:, “(Br)
+it+d o p
< | . /B (1- ) *YORILIK(2)| d\,
o J p
2 2
= 2 (B,)— Ba (Bn,p)/B ( ) [( |2 ) } [\/1— |2 L] h(z)| d\n
2\7 yyati P
< ‘ 5 (Bn)—Bj (B"’p),/mg ( |Z| ) Yy +i -Hh ‘ d\,
2\ 7 Nym
= 5 (B, ) — B3 (B2 )/ (1 — |2| ) Y™h(z ’ An
< HMQHP;{(Bn)HBg(Bn;Z?) 115 5, -

and the case M = 1 of Proposition 3 is proved.

Now we turn to the proof of the operator norm inequality (9.21) in Lemma 12.
The case p = 2 is particularly easy:

20
Mo F gy = [ (1=1F) 7 3 ™ et an,

[I|l=k—1
2
= Z HwaI”Bg(]B;mp)
[I|=k—1
2
< IMolg@—psEae D Ifilbm,)
[I|=k—1

20 m 9
= Ml -ngmen [ (1=1) S Al an,

[I|l=k—1
2 2
= HMS"|‘B§'(BH)~>BZU(IB,L;E2) HfHBg(Bn;@N—le?) )

and from this we easily obtain (9.22).
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For p # 2 it suffices to show that

(9'26) ||M<,0HBZ(Bn;Cv)ﬁBg(]Bn;Cu@)(cv) < Cn,o',P |M9"HBZ(Bn)—>BZ(IBn;<C“)

for all p,v > 1 where the constant C,, , , is independent of y,v. Indeed, both ¢
and ®" 12 are separable Hilbert spaces and so can be appropriately approximated
by C* and C” respectively. For each z € B,, we will view ¢ (z) € C* as a column
vector and f(z) € C” as a row vector so that (M, f) (z) is the rank one p x v
matrix
(rf1)(z) - (e1fo) (2)
(Mo f) (2) = ! : =¢(2) 0 f(2),
where we have inserted the symbol ® simply to remind the reader that this is not
the dot product ¢ (2) - f (2) = f (2) ¢ (2) of the vectors ¢ (z) and f (z).

Now we consider a single component X™ of the vector differential operator )"

for some m > 2 (% — 0), which can be chosen independent of x4 and v. The main

point in the proof of the lemma is that the matrix X™ (M, f) (z) has rank at most
m + 1 independent of y and v. Indeed, the Leibniz formula yields

X™ (Mpf)(2) = X" (9 (2) © [ (2)) = Y cemX™ 0 (2) © X [ (2),
£=0

where each matrix X™ ¢ (2) © X¢f (z) is rank one, and where the Hilbert Schmidt
norm is multiplicative:

| X" o (2) @ XUf ()] = [ X" 0 ()] | X7 F (2)]-
Momentarily fix 0 < ¢ < m and define

Th(z) = X" ‘o(2)h(2), h(z)eC,

Tlg(z) = X" “p(x)0g(z), gz eC.
For x € 0B,,, which we view as a row vector, define

Trg(z) =2T'g(z) =2 (X" "p) (2) © g (2).
Now choose z (2) € 9B, such that z (z) (X" %) (z) = ‘Xm_zgo (z)| so that
Ty9(2) = (2) (X" ) (2) © 9 (2) = [X™" "0 (2)] 9 (),

and hence

T! ) (X1F) (2)] = |57 ()] [XEF ()] = [ X7 () © X1F (2)] = [ (1) (2).

Now we follow the well known argument on page 451 of [26]. For y € 9B,,, which
we view as a column vector, and g (z) € C¥ define the scalars

9y (2) = 9(2)y,
(Tw9) () = TiogGu=2()(X"9) () 09y,
and note that
Tl (X45) ()y = 2 () (X" 7) (2) © (K1) (2)y = Tie,) (X'F),, (2).
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Thus we have with do, surface measure on 0B,

p » T (XEf) (2) !
¢ Y do, 0 ¢ z(z) . do, :
L 1z @t @l anw = [z e @ [ e wne] Y| © v)
as well as
¢ P iyt p Xf(z) Jf
Lo, o ww=1xrel [ g de o
The crucial observation now is that
T, (X)) | Xf(z) |
z(z) . do, — B do, =
I e oene) o \Ercr ] e =

is independent of the row vector in OB, that is dotted with y. Thus we have

X @ =t (D @f = [ () @] e ),
¢ — ! ¢ z 3 g
xr@f = o= e, ef do.

So with dwp, (2) = (1 - |z|2>m d\, (z), we conclude that

| X7 QP o (2

]Bn

< oo [ 1T (K)o 2

_ m=L ) (4 t P dw,y (2)do,

_ Wm;%% /8/ (X™) (2) (X'f,) (2)]" dwpo (2) der, (3)
m— z ) P

S n,a,p,m % 'Yp) /a]B / X ) (X f) (Z) dwpff (Z) dGV (y)

< n ,o,p,m §

5017,

= L Ml e [ |70, ) dene () dou )

by the case M = 1 of Proposition 3, where ¢? there is replaced by C”, g by ¢ and
h by f,. Now we use the equality

[ J@emn, @ dow ) =, xms @F
OB,
to obtain

/ X (M, £)? drpe (2)
B

IN

o Ml o, g ooy [ 1X™F (I i (2

IN

Cropim Mo 5, 5y @iy 11 5, 00 -

Since m depends only on n, o and p, this completes the proof of (9.26), and hence
that of Lemma 12
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Finally we return to complete the proof of Proposition 3. We have already proved
the case M = 1. Now we sketch a proof of the case M = 2 using the multiplier
norm inequality (9.21) with x = 2. By multiplicativity of || on tensors, it suffices
to show that for m = £ + {5 + k,

(9.27) [ (=) 0 @ 00) 040 ar )

n

2
< Cnop Myl 50 8, B3 (8,:02) 1PlBg ,.) -

This time we write using the divergence form of Leibniz’ formula on tensor products
(c.f. (9.24)),

e %) ) = (%) e {35 o @

a=0
Lo
= 3 )@ D (@)
a=0
12 l1
= Sl Doy gy (g )
a=0 B=0

We first use the Hilbert space valued interpolation theorem together with the
case £ = 2 of Lemma 12 to show that g € Mps (g, 2)_p:1 (s, wee) and g €
Mps2 (s ) g2 (B, 2) for appropriate values of s; and s3. Assuming for convenience

that Y = (1 - |z|2) R, and keeping in mind Remark 12, we obtain

o—81 p
o) (1= BI2) 7yt (gt

Bil (B, :£2®2)
r

IN

p
M ”Bf,l (B 3£2)— Byt (B ;£2@02)

‘(1 B |Z|2>"*51 yati—p (gykwrah)

Bgl (IBn?p)
p

M 2 A,

(1 14) 97 (1) s g

(Br362)— By (B3 02®12) /B

n

which by (9.21) is at most

- P
2\%2 L., . 5\ TSz .
Crop "Mg||%z<ﬁn>~Bz<Bmf2>/B ’(1‘Z|> e (9 (1-1e) e h) dA,
/ _ p
9\ 752 W
T PICR M
’ ’ By? (Bn;t?)
- p
2\ e
< Cnop Mol 8,05 8oy Mol w,) 52 8,2) ‘(1_|Z| ) A
By? (Bn)
<

2
Cro Mg 12 5. 5 oy 1l 5

Summing up over « and § gives (9.27).
Repeating this procedure for M > 3 and using (9.21) with k = M finishes the
proof of Proposition 3.
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9.4. Schur’s test. We prove Lemma 10 using Schur’s Test as given in Theorem
2.9 on page 51 of [36].

Lemma 13. Let (X, u) be a measure space and H (x,y) be a nonnegative kernel.
Let1l <p< oo and%Jr%:l. Define

Tf(2) = /XH<w,y>f<y>du<y>,

') = [ H@w)g@di).
If there is a positive function h on X and a positive constant A such that
Thi(x) = / H(z,y)h(y)'du(y) < Ah(2)?, p—aex € X,
b'e
) = [ HEph@) di) <A@, u-aeyeX,
X

then T is bounded on L? (u) with ||T| < A.

Now we turn to the proof of Lemma 10. The case ¢ = 0 of Lemma 10 is Lemma
2.10 in [36]. To minimize the clutter of indices, we first consider the proof for the
case ¢ # 0 when p =2 and t = —n — 1. Recall that

A(w,z) = |1—w§||<pz(w)|7
v (© = (1-1P)
and

B 9 a B 2 b+n+1 c
Tap,cf (Z)Z/B’ (1 7 ) |<11,L|:;|n)+1+a+b+(c A(WZ)) f(w)di, (w).

We will compute conditions on a, b, ¢ and € such that we have
(928) Ta,b,cwa (Z) S 07/’5 (Z) and T;,b,cws (’LU) g Cwe (w) ) Z, W € an

where T, . denotes the dual relative to L? (\,). For this we take ¢ € R and
compute
a n+1+b+e
(1= 1) (1= wl?) s ()l

Top e, (2 z/ dA, (w) .
,b, ¢ ( ) - \1—w2\"+1+a+b ( )

Note that the integral is finite if and only if ¢ > —b — 1. Now make the change
of variable w = ¢, (¢) and use that A, is invariant to obtain

2\ @ 9 n+1+b+e c
(1= 1) (1= fwl?) s (w)]

Ta,b,cws (Z) = /IB%n |1 _ wE|"+1+a+b d/\n (’LU)
- / F (w) dAn (w) = / F (. (0)) dAn (€)
B. B,
n+1+b+e
=1 (1= le. @F) Kl
= / n+ltatb ) av (¢).
S EAGE (1= [¢[2)m*
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From the identity (Theorem 2.2.2 in [24]),

(1—({a,a)) (1 = (B,7))
(1= (8,a)) (1 —{a,7))’

1- <<)0a (ﬁ)a‘pa (’Y)> =

we obtain the identities

1-6.(07 = 1-(0. (0.0, (0) = = L

I
—_
—
)
n
—
I
~
)
0
—
I
~
~

|

_ 2
L= le. (Ol 1 caf

Plugging these identities into the formula for T, p .1, (#) we obtain

5 5 n+1+b+e
(1—|22)° ((1")(1”) cI°

I1-¢zI?
n+l+a+b

(9.29) Tup. b, () = /B av ()

(1— ¢

1—]z]2
1-Cz

(1-1¢)" ket
= 4.(2) / av (Q).

| 1— Cz|n+1+b7a+26

Now from Theorem 1.12 in [36] we obtain that

— 2 “
zsélJBEl/B (|11 EL% dV (¢) < o0

if and only if 5 — a < n+ 1. Provided ¢ > —2n it is now easy to see that we also
have

V() <0

A2\ e
an / (1-16) et

1=z’
if and only if 5 — a < n + 1. It now follows from the above that

TCLJLC’[/)E (Z) S Cws (Z) ) KAS Bna

if and only if

-b—1l<e<a.
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Now we turn to the adjoint T;’b’c = Tpin+t1,a—n—1,c With respect to the space

L? (\,). With the change of variable z = ¢, (¢) we have

2 a+te 7 w2 b+n—+1 ; ¢
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Arguing as above and provided ¢ > —2n, we obtain
T:,b,cwa (U)) S 01/)5 (’LU) ’ w e ]Env
if and only if
—a+n<e<b+n+l.
Altogether then there is € € R such that h = /%, is a Schur function for T, p .
on L? ()\,) in Lemma 13 if and only if
max{—a+n,—b—1} <min{a,b+n+1}.

This is equivalent to —2a < —n < 2(b+ 1), which is (7.1) in the case p = 2,t =
—n — 1. Thus Lemma 13 completes the proof that this case of (7.1) implies the
boundedness of T}, ; . on L? ()\,). The converse is easy - see for example the argu-
ment for the case ¢ = 0 on page 52 of [36].

We now turn to the general case. The adjoint 77, . relative to the Banach space
LP (v;) is easily computed to be T be = Lo—t,atte (see page 52 of [36] for the case

¢ =0). Then from (9.29) and (9.30) we have
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Let % + % = 1. We apply Schur’s Lemma 13 with h (¢) = (1 — |C|2) and
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Using Theorem 1.12 in [36] we obtain for h with s as in (9.31) that

Tap,ch? < Ch? and T, hP < ChP.

Schur’s Lemma 13 now shows that Ty, . is bounded on LP (v4). Again, the converse
follows from the argument for the case ¢ = 0 on page 52 of [36].
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