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Abstract. We prove that the multiplier algebra of the Drury-Arveson Hardy
space H2

n on the unit ball in Cn has no corona in its maximal ideal space,
thus generalizing the Corona Theorem of L. Carleson to higher dimensions.
This result is obtained as a corollary of the Toeplitz corona theorem and a
new Banach space result: the Besov-Sobolev space B�p has the "baby corona
property" for all � � 0 and 1 < p <1. In addition we obtain in�nite generator
and semi-in�nite matrix versions of these theorems.
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1. Introduction

In 1962 Lennart Carleson demonstrated in [12] the absence of a corona in the
maximal ideal space of H1 (D) by showing that if fgjgNj=1 is a �nite set of functions
in H1 (D) satisfying

(1.1)
NX
j=1

jgj (z)j � c > 0; z 2 D;

then there are functions ffjgNj=1 in H1 (D) with

(1.2)
NX
j=1

fj (z) gj (z) = 1; z 2 D;

In 1968 Fuhrmann [14] extended Carleson�s corona theorem to the �nite matrix
case. In 1980 Rosenblum [23] and Tolokonnikov [27] proved the corona theorem for
in�nitely many generators N = 1. This was further generalized to the one-sided
in�nite matrix setting by Vasyunin in 1981 (see [28]). Finally Treil [30] showed
in 1988 that the generalizations stop there by producing a counterexample to the
two-sided in�nite matrix case.
Hörmander noted a connection between the corona problem and the Koszul

complex, and in the late 1970�s Tom Wol¤ gave a simpli�ed proof using the theory
of the @ equation and Green�s theorem (see [15]). This proof has since served as a
model for proving corona type theorems for other Banach algebras.
While there is a large literature on corona theorems in one complex dimension

(see e.g. [19]), progress in higher dimensions has been limited. Indeed, apart from
the simple cases in which the maximal ideal space of the algebra can be identi�ed
with a compact subset of Cn, no corona theorem has been proved until now in
higher dimensions. Instead, partial results have been obtained, such as the beautiful
Toeplitz corona theorem for Hilbert function spaces with a complete Nevanlinna-
Pick kernel, the Hp corona theorem on the ball and polydisk, and results restricting
N to 2 generators in (1.1) (the case N = 1 is trivial). In particular, Varopoulos [35]
published a lengthy classic paper in an unsuccessful attempt to prove the corona
theorem for the multiplier algebra H1 (Bn) of the classical Hardy space H2 (Bn)
of holomorphic functions on the ball with square integrable boundary values. His
BMO estimates for solutions with N = 2 generators remain unimproved to this
day. We will discuss these partial results in more detail below.
Our main result is that the corona theorem, namely the absence of a corona in

the maximal ideal space, holds for the multiplier algebra MH2
n
of the Hilbert space

H2
n, the celebrated Drury-Arveson Hardy space on the ball in n dimensions.

Theorem 1. If fgjgNj=1 is a �nite set of functions in MH2
n
satisfying (1.1), then

there are functions ffjgNj=1 in MH2
n
satisfying (1.2).

In many ways H2
n, and not the more familiar space H

2 (Bn), is the natural
generalization to higher dimensions of the classical Hardy space on the disk. For
example, H2

n is universal among Hilbert function spaces with the complete Pick
property, and its multiplier algebra MH2

n
is the correct home for the multivariate

von Neumann inequality (see e.g. [9]). See Arveson [8] for more on the space H2
n,

including the model theory of n-contractions.
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More generally, the corona theorem holds for the multiplier algebras MB�
2 (Bn)

of the Besov-Sobolev spaces B�2 (Bn), 0 � � � 1
2 , on the unit ball Bn in C

n. The
space B�2 (Bn) consists roughly of those holomorphic functions f whose derivatives
of order n

2 � � lie in the classical Hardy space H2 (Bn) = B
n
2
2 (Bn), and is normed

by

kfkB�
2 (Bn)

=

(
m�1X
k=0

���f (k) (0)���2 + Z
Bn

�����1� jzj2�m+� Rmf (z)����2 d�n (z)
) 1

2

;

for some m > n
2 � � where R =

Pn
j=1 zj

@
@zj

is the radial derivative. In particular

H2
n = B

1
2
2 (Bn). Finally, we also obtain semi-in�nite matrix versions of these results.

Note: Our techniques also yield BMO estimates for the H1 (Bn) corona
problem, which will appear elsewhere.

2. The corona problem in Cn

Let X be a Hilbert space of holomorphic functions in an open set 
 in Cn that
is a reproducing kernel Hilbert space with a complete irreducible Nevanlinna-Pick
kernel (see [9] for the de�nition). The following Toeplitz corona theorem is due to
Ball, Trent and Vinnikov [10] (see also Ambrozie and Timotin [2] and Theorem 8.57
in [9]).
For f = (f�)

N
�=1 2 �NX and h 2 X, de�ne Mfh = (f�h)

N
�=1 and

kfkMult(X;�NX) = kMfkX!�NX = sup
khkX�1

kMfhk�NX :

Note that max1���N kMf�kMX
� kfkMult(X;�NX) �

qPN
�=1 kMf�k

2
MX
.

Toeplitz corona theorem: LetX be a Hilbert function space in an open set

 in Cn with an irreducible complete Nevanlinna-Pick kernel. Let � > 0
and N 2 N. Then g1; :::; gN 2 MX satisfy the following "baby corona
property"; for every h 2 X, there are f1; :::; fN 2 X such that

kf1k2X + :::+ kfNk
2
X � 1

�
khk2X ;(2.1)

g1 (z) f1 (z) + :::+ gN (z) fN (z) = h (z) ; z 2 
;
if and only if g1; :::; gN 2MX satisfy the following "multiplier corona prop-
erty"; there are '1; :::; 'N 2MX such that

k'kMult(X;�NX) � 1;(2.2)

g1 (z)'1 (z) + :::+ gN (z)'N (z) =
p
�; z 2 
:

The baby corona theorem is said to hold for X if whenever g1; :::; gN 2MX satisfy

(2.3) jg1 (z)j2 + :::+ jgN (z)j2 � c > 0; z 2 
;
then g1; :::; gN satisfy the baby corona property (2.1). The Toeplitz corona theorem
thus provides a useful tool for reducing the multiplier corona property (2.2) to the
more tractable, but still very di¢ cult, baby corona property (2.1) for multiplier
algebras MB�

p (Bn) of certain of the Besov-Sobolev spaces B
�
p (Bn) when p = 2 - see

below. The case ofMB�
p (Bn) when p 6= 2 must be handled by more classical methods

and remains largely unsolved.
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Remark 1. A standard abstract argument applies to show that the absence of a
corona for the multiplier algebra MX , i.e. the density of the linear span of point
evaluations in the maximal ideal space of MX , is equivalent to the following asser-
tion: for each �nite set fgjgNj=1 � MX such that (2.3) holds for some c > 0, there

are
�
'j
	N
j=1

� MX and � > 0 such that condition (2.2) holds. See for example
Lemma 9.2.6 in [19] or the proof of Criterion 3.5 on page 39 of [25].

2.1. The Baby Corona Theorem. To treat N > 2 generators in (2.1), it is just
as easy to treat the case N = 1, and this has the advantage of not requiring
bookkeeping of constants depending on N . We will

(1) use the Koszul complex for in�nitely many generators, and
(2) invert higher order forms in the @ equation, and
(3) devise new estimates for the Charpentier solution operators for these equa-

tions including,
(a) the use of sharp estimates on Euclidean expressions

��(w � z) @
@wf

�� in
terms of the invariant derivative

��� erf ��� (see Proposition 4),
(b) the use of the exterior calculus together with the explicit form of Char-

pentier�s solution kernels in Theorems 4 and 6 to handle rogue Euclid-
ean factors wj � zj (see Section 8), and

(c) the application of generalized operator estimates of Schur type in
Lemma 10 to obtain appropriate boundedness of solution operators.

In addition to these novel elements in the proof, we make crucial use of the
beautiful integration by parts formula of Ortega and Fabrega [20], and in order to
obtain `2-valued results, we use the clever factorization of the Koszul complex in
Andersson and Carlsson [4] but adapted to `2.

Notation 1. For sequences f (z) = (fi (z))
1
i=1 2 `2 we will write

jf (z)j =

vuut 1X
i=1

jfi (z)j2:

When considering sequences of vectors such as rmf (z) = (rmfi (z))1i=1, the same
notation jrmf (z)j =

qP1
i=1 jr

mfi (z)j2 will be used with jrmfi (z)j denoting the
Euclidean length of the vector rmfi (z). Thus the symbol j�j is used in at least three
di¤erent ways; to denote the absolute value of a complex number, the length of a
�nite vector in CN and the norm of a sequence in `2. Later it will also be used to
denote the Hilbert-Schmidt norm of a tensor, namely the square root of the sum of
the squares of the coe¢ cients in the standard basis. In all cases the meaning should
be clear from the context.

Recall that B�p
�
Bn; `2

�
consists of all f = (fi)

1
i=1 2 H

�
Bn; `2

�
such that

(2.4)

kfkB�
p (Bn;`2)

�
m�1X
k=0

���rkf (0)���+ �Z
Bn

�����1� jzj2�m+�rmf (z)����p d�n (z)�
1
p

<1;

for some m > n
p � �. By Proposition 1 below (see also [11]), the right side is �nite

for some m > n
p � � if and only if it is �nite for all m > n

p � �. As usual we will
write B�p (Bn) for the scalar-valued space.



THE CORONA THEOREM IN Cn 5

We now state our baby corona theorem for the `2-valued Banach spacesB�p
�
Bn; `2

�
,

� � 0, 1 < p < 1. Observe that for � < 0, MB�
p (Bn) = B�p (Bn) is a subalgebra

of C
�
Bn
�
and so has no corona. The N = 2 generator case of Theorem 2 when

� 2
h
0; 1p

�
[
�
n
p ;1

�
and 1 < p < 1 is due to Ortega and Fabrega [20], who

also obtain the N = 2 generator case when � = n
p and 1 < p � 2. See Theorem

A in [20]. In [21] Ortega and Fabrega prove analogous results with scalar-valued
Hardy-Sobolev spaces in place of the Besov-Sobolev spaces.
Let kMgkB�

p (Bn)!B�
p (Bn;`2)

denote the norm of the multiplication operator Mg

from B�p (Bn) to the `2-valued Besov-Sobolev space B�p
�
Bn; `2

�
.

Theorem 2. Let � > 0, � � 0 and 1 < p < 1. Then there is a constant Cn;�;p;�
such that given g = (gi)

1
i=1 2MB�

p (Bn)!B�
p (Bn;`2) satisfying

kMgkB�
p (Bn)!B�

p (Bn;`2)
� 1;

1X
j=1

jgj (z)j2 � �2 > 0; z 2 Bn;

there is for each h 2 B�p (Bn) a vector-valued function f 2 B�p
�
Bn; `2

�
satisfying

kfkB�
p (Bn;`2)

� Cn;�;p;� khkB�
p (Bn)

;(2.5)
1X
j=1

gj (z) fj (z) = h (z) ; z 2 Bn:

Corollary 1. Let 0 � � � 1
2 . Then the Banach algebraMB�

2 (Bn) has no corona, i.e.
(2.1) implies (2.2). In particular this includes Theorem 1 that the multiplier algebra

of the Drury-Arveson space H2
n = B

1
2
2 (Bn) has no corona (the one-dimensional case

is Carleson�s corona theorem), and also includes that the multiplier algebra of the n-
dimensional Dirichlet space D (Bn) = B02 (Bn) has no corona (the one-dimensional
case here is due to Tolokonnikov [29]).

The corollary follows immediately from the �nite generator case p = 2 of Theo-
rem 2 and the Toeplitz corona theorem (and Remark 1) since the spaces B�2 (Bn)
have an irreducible complete Nevanlinna-Pick kernel when 0 � � � 1

2 ([7]).
We also have a semi-in�nite matricial corona theorem.

Corollary 2. Let 0 � � � 1
2 . Let H1 be a �nite m-dimensional Hilbert space

and let H2 be an in�nite dimensional separable Hilbert space. Suppose that F 2
MB�

2 (Bn)(H1!H2) satis�es �
2Im � F �(z)F (z) � Im. Then there is G 2MB�

2 (Bn)(H2!H1)

such that

G(z)F (z) = Im;

kGkMB�2 (Bn)(H2!H1)
� C�;n;�;m:

This corollary follows immediately from the case p = 2 of Theorem 2 and the
Toeplitz corona theorem together with Theorem (MCT) in Trent and Zhang [34].
See [34] for the notation used here. We already commented above on the special

case of this corollary for the Hardy space B
1
2
2 (B1) = H2 (D) on the disk. The case

m = 1 of this corollary for the classical Dirichlet space B02 (B1) = D (D) on the disk
is due to Trent [33]. It would be of interest to determine the dependence of the
constants on p and � in Theorem 2.
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2.1.1. Prior results. In [4] Andersson and Carlsson solve the baby corona problem
for H2 (Bn) and obtain the analogous (baby) Hp corona theorem on the ball Bn for
1 < p < 1 and with constants independent of the number of generators (see also
Amar [1], Andersson and Carlsson [5],[3] and Krantz and Li [16]). Partial results
on the corona problem restricted to N = 2 generators and BMO in place of L1

estimates have been obtained for H1 (Bn) (the multiplier algebra of H2 (Bn) =
B

n
2
2 (Bn)) by N. Varopoulos [35] in 1977. This classical corona problem remains

open (Problem 19.3.7 in [24]), along with the corona problems for the multiplier
algebras of B�2 (Bn), 12 < � < n

2 .
More recently in 2000 J. M. Ortega and J. Fabrega [20] obtain partial results

with N = 2 generators in (2.1) for the algebras MB�
2 (Bn) when 0 � � < 1

2 , i.e.
from the Dirichlet space B02 (Bn) up to but not including the Drury-Arveson Hardy
space H2

n = B
1
2
2 (Bn). To handle N = 2 generators they exploit the fact that

a 2 � 2 antisymmetric matrix consists of just one entry up to sign, so that as a
consequence the form 
21 in the Koszul complex below is @-closed. The paper [20]
by Ortega and Fabrega has proved to be of enormous in�uence in our work, as the
basic groundwork and approach we use are set out there.
In [31] S. Treil and the third author obtain the Hp corona theorem on the poly-

disk Dn (see also Lin [18] and Trent [32]). The Hardy space H2 (Dn) on the polydisk
fails to have the complete Nevanlinna-Pick property, and consequently the Toeplitz
corona theorem only holds in a more complicated sense that a family of kernels
must be checked for positivity instead of just one. As a result the corona theorem
for the algebra H1 (Dn) on the polydisk remains open for n � 2. Finally, even the
baby corona problems, apart from that for Hp, remain open on the polydisk.

2.2. Plan of the paper. We will prove Theorem 2 using the Koszul complex and
a factorization of Andersson and Carlsson, an explicit calculation of Charpentier�s
solution operators, and generalizations of the integration by parts formulas of Or-
tega and Fabrega, together with new estimates for boundedness of operators on
certain real-variable analogues of the holomorphic Besov-Sobolev spaces. Here is a
brief plan of the proof.
We are given an in�nite vector of multipliers g = (gi)

1
i=1 2 MB�

p (Bn)!B�
p (Bn;`2)

that satisfy kMgkB�
p (Bn)!B�

p (Bn;`2)
� 1 and infBn jgj � � > 0, and an element

h 2 B�p (Bn). We wish to �nd f = (fi)
1
i=1 2 B�p

�
Bn; `2

�
such that

(1) Mgf = g � f = h;

(2) @f = 0;
(3) kfkB�

p (Bn;`2)
� Cn;�;p;� khkB�

p (Bn)
:

An obvious �rst attempt at a solution is

f =
g

jgj2
h;

since f obviously satis�es (1), can be shown to satisfy (3), but fails to satisfy (2)
in general.
To rectify this we use the Koszul complex in Section 5, which employs any

solution to the @ problem on forms of bidegree (0; q), 1 � q � n, to produce a
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correction term �g�
2
0 so that

f =
g

jgj2
h� �g�20

now satis�es (1) and (2), but (3) is now in doubt without specifying the exact
nature of the correction term �g�

2
0.

In Section 3 we explicitly calculate Charpentier�s solution operators to the @
equation for use in solving the @ problems arising in the Koszul complex. These so-
lution operators are remarkably simple in form and moreover are superbly adapted
for obtaining estimates in real-variable analogues of the Besov-Sobolev spaces in
the ball. In particular, the kernels K (w; z) of these solution operators involve
expressions like

(2.6)
(1� wz)n�1�q

�
1� jwj2

�q
(w � z)

4 (w; z)n ;

where p
4 (w; z) =

����Pz (w � z) +q1� jzj2Qz (w � z)����
is the length of the vector w � z shortened by multiplying by

q
1� jzj2 its pro-

jection Qz (w � z) onto the orthogonal complement of the complex line through z.
Also useful is the identity

p
4 (w; z) = j1� wzj j'z (w)j where 'z is the involutive

automorphism of the ball that interchanges z and 0; in particular this shows that
d (w; z) =

p
4 (w; z) is a quasimetric on the ball.

In Section 6.1 we introduce real-variable analogues ��p;m (Bn) of the Besov-
Sobolev spaces B�p (Bn) along with `2-valued variants, that are based on the geom-
etry inherent in the complex structure of the ball and re�ected in the solution
kernels in (2.6). In particular these norms involve modi�cations D of the invariant
derivative er in the ball:

Df (w) =
�
1� jwj2

�
Pwr+

q
1� jwj2Qwr:

Three crucial inequalities are then developed to facilitate the boundedness of the
Charpentier solution operators, most notably

(2.7)

����(z � w)� @m

@w�
F (w)

���� � C 4 (w; z)
m
2

�����1� jwj2��mDm
F (w)

���� ;
for F 2 H1 �Bn; `2�, which controls the product of Euclidean lengths with Euclid-
ean derivatives on the left, in terms of the product of the smaller length

p
4 (w; z)

and the larger derivative
�
1� jwj2

��1
D on the right. We caution the reader that

our de�nition of D
m
is not simply the composition of m copies of D - see De�nition

6 below.
In Section 4 we recall the clever integration by parts formulas of Ortega and

Fabrega involving the left side of (2.7), and extend them to the Charpentier solution
operators for higher degree forms. If we di¤erentiate (2.6), the power of 4 (w; z) in
the denominator can increase and the integration by parts in Lemma 3 below will
temper this singularity on the diagonal. On the other hand the radial integration
by parts in Corollary 3 below will temper singularities on the boundary of the ball.
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In Section 7 we use Schur�s Test to establish the boundedness of positive opera-
tors with kernels of the form�

1� jzj2
�a �

1� jwj2
�bp

4 (w; z)c

j1� wzja+b+c+n+1
:

The case c = 0 is standard (see e.g. [36]) and the extension to the general case
follows from an automorphic change of variables. These results are surprisingly
e¤ective in dealing with the ameliorated solution operators of Charpentier.
Finally in Section 8 we put these pieces together to prove Theorem 2.
The appendix collects technical proofs of formulas and modi�cations of existing

proofs in the literature that would otherwise interrupt the main �ow of the paper.

3. Charpentier�s solution kernels for (0; q)-forms on the ball

In Theorem I.1 on page 127 of [13], Charpentier proves the following formula for
(0; q)-forms:

Theorem 3. For q � 0 and all forms f (�) 2 C1
�
Bn
�
of degree (0; q + 1), we have

for z 2 Bn:

f (z) = Cq

Z
Bn
@f (�) ^ C0;q+1n (�; z) + cq@z

�Z
Bn
f (�) ^ C0;qn (�; z)

�
:

Here C0;qn (�; z) is a (n; n� q � 1)-form in � on the ball and a (0; q)-form in z
on the ball that is de�ned in De�nition 2 below. Using Theorem 3, we can solve
@zu = f for a @-closed (0; q + 1)-form f as follows. Set

u(z) � cq

Z
Bn
f(�) ^ C0;qn (�; z)

Taking @z of this we see from Theorem 3 and @f = 0 that

@zu = cq@z

�Z
Bn
f(�) ^ C0;qn (�; z)

�
= f(z):

It is essential for our proof to explicitly compute the kernels C0;qn when 0 � q �
n � 1. The case q = 0 is given in [13] and we brie�y recall the setup. Denote by
4 : Cn � Cn ! [0;1) the map

4(w; z) � j1� wzj2 �
�
1� jwj2

��
1� jzj2

�
:

We compute that

4 (w; z) = 1� 2Rewz + jwzj2 �
n
1� jwj2 � jzj2 + jwj2 jzj2

o
(3.1)

= jw � zj2 + jwzj2 � jwj2 jzj2

=
�
1� jzj2

�
jw � zj2 + jzj2

�
jw � zj2 � jwj2

�
+ jwzj2

=
�
1� jzj2

�
jw � zj2 + jzj4 � 2Re jzj2 wz + jwzj2

=
�
1� jzj2

�
jw � zj2 + jz(w � z)j2 ;

and by symmetry

4(w; z) =
�
1� jwj2

�
jw � zj2 + jw(w � z)j2 :
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We also have the standard identity

(3.2) 4 (w; z) = j1� zwj2 j'w (z)j
2
;

where

'w (z) =
Pw (w � z) +

q
1� jwj2Qw (w � z)

1� wz :

Thus we also have

4 (w; z) =

����Pw (z � w) +q1� jwj2Qw (z � w)����2(3.3)

=

����Pz (z � w) +q1� jzj2Qz (z � w)����2 :
It is convenient to combine the many faces of 4 (w; z) in (3.1), (3.2) and (3.3) in:

4 (w; z) = j1� wzj2 �
�
1� jwj2

��
1� jzj2

�
(3.4)

=
�
1� jzj2

�
jw � zj2 + jz(w � z)j2

=
�
1� jwj2

�
jw � zj2 + jw(w � z)j2

= j1� wzj2 j'w (z)j
2

= j1� wzj2 j'z (w)j
2

=

����Pw (z � w) +q1� jwj2Qw (z � w)����2
=

����Pz (z � w) +q1� jzj2Qz (z � w)����2 :
To compute the kernels C0;qn we start with the Cauchy-Leray form

�(�; w; z) � 1

(�(w � z))n
nX
i=1

(�1)i�1�i
�
^j 6=id�j

�
^ni=1 d(wi � zi);

which is a closed form on Cn � Cn � Cn since with � = w � z, � is a pullback of
the form

�(�; �) � 1

(��)n

nX
i=1

(�1)i�1�i
�
^j 6=id�j

�
^ni=1 d�i;

which is easily computed to be closed (see e.g. 16.4.5 in [24]).
One then lifts the form � via a section s to give a closed form on Cn � Cn.

Namely, for s : Cn � Cn ! Cn one de�nes,

s�� (w; z) � 1

(s (w; z) (w � z))n
nX
i=1

(�1)i�1si (w; z) [^j 6=idsj ] ^ni=1 d (wi � zi) :

Now we �x s to be the following section used by Charpentier:

(3.5) s(w; z) � w(1� wz)� z(1� jwj2):
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Simple computations [20] demonstrate that

s(w; z)(w � z) =
n
w (1� wz)� z

�
1� jwj2

�o
(w � z)(3.6)

=
n
(w � z)� (wz)w + jwj2 z

o
(w � z)

= jw � zj2 � (wz)
�
jwj2 � wz

�
+ jwj2

�
zw � jzj2

�
= jw � zj2 � (wz) jwj2 + jwzj2 + jwj2 zw � jwj2 jzj2

= jw � zj2 + jwzj2 � jwj2 jzj2 = 4 (w; z) ;
by the second line in (3.1).

De�nition 1. We de�ne the Cauchy Kernel on Bn � Bn to be
(3.7) Cn (w; z) � s��(w; z)

for the section s given in (3.5) above.

De�nition 2. For 0 � p � n and 0 � q � n � 1 we let Cp;qn be the component of
Cn (w; z) that has bidegree (p; q) in z and bidegree (n� p; n� q � 1) in w.

Thus if � is a (p; q+1)-form in w, then Cp;qn ^� is a (p; q)-form in z and a multiple
of the volume form in w. We now prepare to give explicit formulas for Charpentier�s
solution kernels C0;qn (w; z). First we introduce some notation.

Notation 2. Let !n (z) =
Vn
j=1 dzj. For n a positive integer and 0 � q � n� 1 let

P qn denote the collection of all permutations � on f1; : : : ; ng that map to fi� ; J� ; L�g
where J� is an increasing multi-index with card(J�) = n� q� 1 and card(L�) = q.
Let �� � sgn (�) 2 f�1; 1g denote the signature of the permutation �.

Note that the number of increasing multi-indices of length n�q�1 is n!
(q+1)!(n�q�1)! ,

while the number of increasing multi-indices of length q are n!
q!(n�q)! . Since we are

only allowed certain combinations of J� and L� (they must have disjoint intersec-
tion and they must be increasing multi-indices), it is straightforward to see that
the total number of permutations in P qn that we are considering is

n!
(n�q�1)!q! .

From Øvrelid [22] we obtain that Charpentier�s kernel takes the (abstract) form

C0;qn (w; z) =
1

4(w; z)n
X
�2P q

n

sgn (�) si�
^
j2J�

@wsj
^
l2L�

@zsl ^ !n(w):

Fundamental for us will be the explicit formula for Charpentier�s kernel given in the
next theorem. We are informed by Part 2 of Proposition I.1 in [13] that Cp;qn (w; z) =
0 for w 2 @Bn, and this serves as a guiding principle in the proof we give in the
appendix. It is convenient to isolate the following factor common to all summands
in the formula:

(3.8) �qn (w; z) �
(1� wz)n�1�q

�
1� jwj2

�q
4 (w; z)n ; 0 � q � n� 1:

Theorem 4. Let n be a positive integer and suppose that 0 � q � n� 1. Then
(3.9)
C0;qn (w; z) =

X
�2P q

n

(�1)q �qn (w; z) sgn (�) (wi� � zi� )
^
j2J�

dwj
^
l2L�

dzl
^
!n (w) :
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Remark 2. We can rewrite the formula for C0;qn (w; z) in (3.9) as
(3.10)
C0;qn (w; z) = �qn (w; z)

X
jJj=q

X
k=2J

(�1)�(k;J) (zk � wk) dzJ ^ dw(J[fkg)
c

^ !n (w) ;

where J [ fkg here denotes the increasing multi-index obtained by rearranging the
integers fk; j1; :::jqg as

J [ fkg =
�
j1; :::j�(k;J)�1; k; j�(k;J); :::jq

	
:

Thus k occupies the � (k; J)th position in J [ fkg. The notation (J [ fkg)c refers
to the increasing multi-index obtained by rearranging the integers in f1; 2; :::ng n
(J [ fkg). To see (3.10), we note that in (3.9) the permutation � takes the n-tuple
(1; 2; :::n) to (i� ; J� ; L�). In (3.10) the n-tuple (k; (J [ fkg)c ; J) corresponds to
(i� ; J� ; L�), and so sgn (�) becomes in (3.10) the signature of the permutation that
takes (1; 2; :::n) to (k; (J [ fkg)c ; J). This in turn equals (�1)�(k;J) with � (k; J)
as above.

We observe at this point that the functional coe¢ cient in the summands in (3.9)
looks like

(�1)q�qn (w; z) (wi� � zi� ) = (�1)q
(1� wz)n�q�1(1� jwj2)q

4(w; z)n (wi� � zi� ) ;

which behaves like a fractional integral operator of order 1 in the Bergman metric
on the diagonal relative to invariant measure. See the appendix for a proof of
Theorem 4.
Finally, we will adopt the usual convention of writing

C0;qn f (z) =

Z
Bn
f (w) ^ C0;qn (w; z) ;

when we wish to view C0;qn as an operator taking (0; q + 1)-forms f in w to (0; q)-
forms C0;qn f in z.

3.1. Ameliorated kernels. We now wish to de�ne right inverses with improved
behaviour at the boundary. We consider the case when the right side f of the @
equation is a (p; q + 1)-form in Bn.
As usual for a positive integer s > n we will "project" the formula @Cp;qs f = f

in Bs for a @-closed form f in Bs to a formula @Cp;qn;sf = f in Bn for a @-closed form
f in Bn. To accomplish this we de�ne ameliorated operators Cp;qn;s by

Cp;qn;s = RnCp;qs Es;

where for n < s, Es (Rn) is the extension (restriction) operator that takes forms

 =

P
�I;Jdw

I ^ dwJ in Bn (Bs) and extends (restricts) them to Bs (Bn) by

Es
�X

�I;Jdw
I ^ dwJ

�
�

X�
�I;J �R

�
dwI ^ dwJ ;

Rn

�X
�I;Jdw

I ^ dwJ
�

�
X

I;J�f1;2;:::;ng

�
�I;J � E

�
dwI ^ dwJ :

Here R is the natural orthogonal projection from Cs to Cn and E is the natural
embedding of Cn into Cs. In other words, we extend a form by taking the coe¢ cients
to be constant in the extra variables, and we restrict a form by discarding all wedge
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products of di¤erentials involving the extra variables and restricting the coe¢ cients
accordingly.
For s > n we observe that the operator Cp;qn;s has integral kernel

(3.11) Cp;qn;s (w; z) �
Z
p
1�jwj2Bs�n

Cp;qs ((w;w0) ; (z; 0)) dV (w0) ; z; w 2 Bn;

where Bs�n denotes the unit ball in Cs�n with respect to the orthogonal decompo-
sition Cs = Cn � Cs�n, and dV denotes Lebesgue measure. If f (w) is a @-closed
form on Bn then f (w;w0) = f (w) is a @-closed form on Bs and we have for z 2 Bn,

f (z) = f (z; 0) = @

Z
Bs
Cp;qs ((w;w0) ; (z; 0)) f (w) dV (w) dV (w0)

= @

Z
Bn

(Z
p
1�jwj2Bs�n

Cp;qs ((w;w0) ; (z; 0)) dV (w0)

)
f (w) dV (w)

= @

Z
Bn
Cp;qn;s (w; z) f (w) dV (w) :

We have proved that

Cp;qn;sf (z) �
Z
Bn
Cp;qn;s (w; z) f (w) dV (w)

is a right inverse for @ on @-closed forms:

Theorem 5. For all s > n and @-closed forms f in Bn, we have

@Cp;qn;sf = f in Bn:

We will use only the case p = 0 of this theorem and from now on we restrict
our attention to this case. The operators C0;0n;s have been computed in [20] and are
given by

(3.12) C0;0n;sf (z) =
Z
Bn

n�1X
j=0

cn;j;s

�
1� jwj2

�s�n+j �
1� jzj2

�j
(1� wz)s�n+j (1� wz)j

C0;0n (w; z) ^ f (w) ;

where

C0;0n (w; z) = c0
(1� wz)n�1n

j1� wzj2 �
�
1� jwj2

��
1� jzj2

�on
�

nX
j=1

(�1)j�1 (wj � zj)
^
k 6=j

dwk

n̂

`=1

dw`:
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A similar result holds for the operators C0;qn;s. De�ne

�qn;s (w; z) = �qn (w; z)

 
1� jwj2

1� wz

!s�n n�q�1X
j=0

cj;n;s

 �
1� jwj2

� �
1� jzj2

�
j1� wzj2

!j

=
(1� wz)n�1�q

�
1� jwj2

�q
4 (w; z)n

 
1� jwj2

1� wz

!s�n n�q�1X
j=0

cj;n;s

 �
1� jwj2

� �
1� jzj2

�
j1� wzj2

!j

=

n�q�1X
j=0

cj;n;s
(1� wz)n�1�q�j

�
1� jwj2

�s�n+q+j �
1� jzj2

�j
(1� wz)s�n+j 4 (w; z)n

:

Note that the numerator and denominator are balanced in the sense that the sum of
the exponents in the denominator minus the corresponding sum in the numerator
(counting 4 (w; z) double) is s + n + j � (s+ j � 1) = n + 1, the exponent of the
invariant measure of the ball Bn.

Theorem 6. Suppose that s > n and 0 � q � n� 1. Then we have

C0;qn;s(w; z) = C0;qn (w; z)

 
1� jwj2

1� wz

!s�n n�q�1X
j=0

cj;n;s

 �
1� jwj2

� �
1� jzj2

�
j1� wzj2

!j
= �qn;s (w; z)

X
jJj=q

X
k=2J

(�1)�(k;J) (zk � wk) dzJ ^ dw(J[fkg)
c

^ !n (w) :

Proof : For s > n recall that the kernels of the ameliorated operators C0;qn;s are
given in (3.11). For ease of notation, we will set k = s�n, so we have Cs = Cn�Ck.
Suppose that 0 � q � n� 1. Recall from (3.9) that

C0;qs (w; z) = (�1)q
(1� wz)s�q�1

�
1� jwj2

�q
4 (w; z)s

�
X
�2P q

s

sgn (�) (wi� � zi� )
^
j2J�

dwj
^
l2L�

dzl
^
!s (w)

=
X
�2P q

s

zqs;i� (w; z)
^
j2J�

dwj
^
l2L�

dzl
^
!s (w) :

where

zqs;i� (w; z) = �
q
s (w; z) (wi� � zi� ) =

(1� wz)s�q�1
�
1� jwj2

�q
4 (w; z)s (wi� � zi� ) :

To compute the ameliorations of these kernels, we need only focus on the func-
tional coe¢ cient zqs;i� (w; z) of the kernel. It is easy to see that the ameliorated
kernel can only give a contribution in the variables when 1 � i� � n, since when
n + 1 � i� � s the functional kernel becomes radial in certain variables and thus
reduces to zero upon integration.
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Then for any 1 � i � n the corresponding functional coe¢ cient zqs;i (w; z) has
amelioration zqn;s;i (w; z) given by

zqn;s;i (w; z) =

Z
p
1�jwj2Bs�n

zqs;i ((w;w
0); (z; 0)) dV (w0)

=

Z
p
1�jwj2Bk

(1� wz)s�q�1 (1� jwj2 � jw0j2)q (zi � wi)
4((w;w0) ; (z; 0))s dV (w0)

= (zi � wi) (1� wz)s�q�1
Z
p
1�jwj2Bk

(1� jwj2 � jw0j2)q
4((w;w0) ; (z; 0))s dV (w

0) :

Theorem 6 is a thus a consequence of the following elementary lemma, which will
�nd application in Section 4 below on integration by parts as well.

Lemma 1. We have

(1� wz)s�q�1
Z
p
1�jwj2Bs�n

(1� jwj2 � jw0j2)q
4((w;w0) ; (z; 0))s dV (w

0)

=
�s�n

(s� n)!�
q
n (w; z)

 
1� jwj2

1� wz

!s�n n�q�1X
j=0

cj;n;s

 �
1� jwj2

� �
1� jzj2

�
j1� wzj2

!j
:

See the appendix for a proof of Lemma 1.

4. Integration by parts

We begin with an integration by parts formula involving a covariant derivative in
[20] (Lemma 2.1 on page 57) that reduces the singularity of the solution kernel on
the diagonal at the expense of di¤erentiating the form. However, in order to prepare
for a generalization to higher order forms, we replace the covariant derivative with
the notion of Zz;w-derivative de�ned in (4.2) below.
Recall Charpentier�s explicit solution C0;0n � to the @ equation @C0;0n � = � in the

ball Bn when � is a @-closed (0; 1)-form with coe¢ cients in C
�
Bn
�
: the kernel is

given by

C0;0n (w; z) = c0
(1� wz)n�1

4 (w; z)n
nX
j=1

(�1)j�1 (wj � zj)
^
k 6=j

dwk

n̂

`=1

dw`;

for (w; z) 2 Bn � Bn where

4 (w; z) = j1� wzj2 �
�
1� jwj2

��
1� jzj2

�
:

De�ne the Cauchy operator Sn on @Bn � Bn with kernel

Sn (�; z) = c1
1�

1� �z
�n d� (�) ; (�; z) 2 @Bn � Bn:

Let � =
Pn

j=1 �jdwj be a (0; 1)-form with smooth coe¢ cients. Let Z = Zz;w
be the vector �eld acting in the variable w = (w1; :::; wn) and parameterized by
z = (z1; :::; zn) given by

(4.1) Z = Zz;w =
nX
j=1

(wj � zj)
@

@wj
:
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It will usually be understood from the context what the acting variable w and the
parameter variable z are in Zz;w and we will then omit the subscripts and simply
write Z for Zz;w.

De�nition 3. For m � 0, de�ne the mth order derivative Zm� of a (0; 1)-form � =Pn
k=1 �k (w) dwk to be the (0; 1)-form obtained by componentwise di¤erentiation

holding monomials in w � z �xed:

(4.2) Zm� (w) =
nX
k=1

�
Zm�k

�
(w) dwk =

nX
k=1

8<:
nX

j�j=m

(w � z)� @
m�k
@w�

(w)

9=; dwk:

Lemma 2. (cf. Lemma 2.1 of [20]) For all m � 0 and smooth (0; 1)-forms � =Pn
k=1 �k (w) dwk, we have the formula,

C0;0n � (z) �
Z
Bn
C0;0n (w; z) ^ � (w)(4.3)

=

m�1X
j=0

cj

Z
@Bn

Sn (w; z)
�
Zj�

� �
Z
�
(w) d� (w)

+cm

Z
Bn
C0;0n (w; z) ^ Zm� (w) :

Here the (0; 1)-form Zj� acts on the vector �eld Z in the usual way:

�
Zj�

� �
Z
�
=

 
nX
k=1

Zj�k (w) dwk

! 
nX
i=1

(wi � zi)
@

@wi

!
=

nX
k=1

(wk � zk)Z
j
�k (w) :

We can also rewrite the �nal integral in (4.3) asZ
Bn
C0;0n (w; z) ^ Zm� (w) =

Z
Bn
�0n (w; z)

�
Zm�

� �
Z
�
(w) dV (w) :

See the appendix for a proof of Lemma 2.

We now extend Lemma 2 to (0; q + 1)-forms. Let

� =
X

jIj=q+1

�I (w) dw
I

be a (0; q + 1)-form with smooth coe¢ cients. Given a (0; q + 1)-form � =
P

jIj=q+1 �Idw
I

and an increasing sequence J of length jJ j = q, we de�ne the interior product �ydwJ
of � and dwJ by

(4.4) �ydwJ =
X

jIj=q+1

�Idw
IydwJ =

X
k=2J

(�1)�(k;J) �J[fkgdwk;

since dwIydwJ = (�1)�(k;J) dwk if k 2 I n J is the � (k; J)th index in I, and 0
otherwise. Recall the vector �eld Z de�ned in (4.1). The key connection between
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�ydwJ and the vector �eld Z is

�
�ydwJ

� �
Z
�
=

 
nX
k=1

(�1)�(k;J) �J[fkgdwk

!0@ nX
j=1

(wj � zj)
@

@wj

1A(4.5)

=
nX
k=1

(wk � zk) (�1)�(k;J) �J[fkg:

We now de�ne an mth order derivative Dm� of a (0; q + 1)-form � using the

interior product. In the case q = 0 we will have Dm� =
�
Zm�

� �
Z
�
for a (0; 1)-

form �.

Remark 3. We are motivated by the fact that the Charpentier kernel C0;qn (w; z)
takes (0; q + 1)-forms in w to (0; q)-forms in z. Thus in order to express the solution
operator C0;qn in terms of a volume integral rather than the integration of a form in
w and z, our de�nition of Dm�, even when m = 0, must include an appropriate
exchange of w-di¤erentials for z-di¤erentials.

De�nition 4. Let m � 0. For a (0; q + 1)-form � =
P

jIj=q+1 �Idw
I in the variable

w, de�ne the (0; q)-form Dm� in the variable z by

Dm� (w) =
X
jJj=q

Zm
�
�ydwJ

� �
Z
�
(w) dzJ :

Again it is usually understood what the acting and parameter variables are in
Dm but we will write Dz;w

m
� (w) when this may not be the case. Note that for a

(0; q + 1)-form � =
P

jIj=q+1 �Idw
I , we have

� =
X
jJj=q

�
�ydwJ

�
^ dwJ ;

and using (4.2) the above de�nition yields

Dm� (w)(4.6)

=
X
jJj=q

Zm
�
�ydwJ

� �
Z
�
(w) dzJ

=
X
jJj=q

nX
k=1

(wk � zk) (�1)�(k;J)
�
Zm�J[fkg

�
(w) dzJ

=
X
jJj=q

nX
k=1

(wk � zk) (�1)�(k;J)
8<: X
j�j=m

(w � z)�
@m�J[fkg

@w�
(w)

9=; dzJ :

Thus the e¤ect of Dm on a basis element �IdwI is to replace a di¤erential dwk from
dwI (I = J [ fkg) with the factor (�1)�(k;J) (wk � zk) (and this is accomplished
by acting a (0; 1)-form on Z), replace the remaining di¤erential dwJ with dzJ , and
then to apply the di¤erential operator Zm to the coe¢ cient �I . We will refer to the
factor (wk � zk) introduced above as a rogue factor since it is not associated with a
derivative @

@wk
in the way that (w � z)� is associated with @m

@w� . The point of this
distinction will be explained in Section 8 on estimates for solution operators.
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The following lemma expresses C0;qn � (z) in terms of integrals involving Dj� for
0 � j � m. Note that the overall e¤ect is to reduce the singularity of the kernel on
the diagonal by m factors of

p
4 (w; z), at the cost of increasing by m the number

of derivatives hitting the form �. Recall from (3.8) that

�`n (w; z) �
(1� wz)n�1�`

�
1� jwj2

�`
4 (w; z)n :

We de�ne the operator �`n on forms � by

�`n� (z) =

Z
Bn
�`n (w; z) � (w) dV (w) :

Lemma 3. Let q � 0. For all m � 0 we have the formula,

(4.7) C0;qn � (z) =

m�1X
k=0

ckSn
�
Dj�

�
(z) +

qX
`=0

c`�
`
n

�
Dm�

�
(z) :

The proof is simply a reprise of that of Lemma 2 complicated by the algebra
that reduces matters to (0; 1)-forms. See the appendix.

4.1. The radial derivative. Recall the radial derivative R =
Pn

j=1 wj
@
@wj

from
(6.4). Here is Lemma 2.2 on page 58 of [20]. See the appendix for a proof.

Lemma 4. Let b > �1. For 	 2 C
�
Bn
�
\ C1 (Bn) we haveZ

Bn

�
1� jwj2

�b
	(w) dV (w)

=

Z
Bn

�
1� jwj2

�b+1�n+ b+ 1
b+ 1

I +
1

b+ 1
R

�
	(w) dV (w) :

Remark 4. Typically the above lemma is applied with

	(w) =
1

(1� wz)s (w; z)

where z is a parameter in the ball Bn and

R	(w) =
1

(1� wz)sR (w; z)

since 1
(1�wz)s is antiholomorphic in w.

We will also need to iterate Lemma 4, and for this purpose it is convenient to
introduce for m � 1 the notation

Rb = Rb;n =
n+ b+ 1

b+ 1
I +

1

b+ 1
R;

Rmb = Rb+m�1Rb+m�2:::Rb =
mY
k=1

Rb+m�k:

Corollary 3. Let b > �1. For 	 2 C
�
Bn
�
\ C1 (Bn) we haveZ

Bn

�
1� jwj2

�b
	(w) dV (w)

=

Z
Bn

�
1� jwj2

�b+m
Rmb 	(w) dV (w) :
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Remark 5. The important point in Corollary 3 is that combinations of radial
derivatives R and the identity I are played o¤ against powers of 1 � jwj2. It will
sometimes be convenient to write this identity asZ

Bn
F (w) dV (w) =

Z
Bn
Rm
b F (w) dV (w)

where

(4.8) Rm
b �

�
1� jwj2

�b+m
Rmb

�
1� jwj2

��b
;

and provided that 	(w) =
�
1� jwj2

��b
F (w) lies in C

�
Bn
�
\ C1 (Bn).

4.2. Integration by parts in ameliorated kernels. Wemust now extend Lemma
3 and Corollary 3 to the ameliorated kernels C0;qn;s given by

C0;qn;s = RnC0;qs Es:

Since Corollary 3 already applies to very general functions 	(w), we need only
consider an extension of Lemma 3. The procedure for doing this is to apply Lemma
3 to C0;qs in s dimensions, and then integrate out the additional variables using
Lemma 1.

Lemma 5. Suppose that s > n and 0 � q � n � 1. For all m � 0 and smooth
(0; q + 1)-forms � in Bn we have the formula,

C0;qn;s� (z) =
m�1X
k=0

c0k;n;sSn;s
�
Dk�

� �
Z
�
(z) +

qX
`=0

c`;n;s�
`
n;s

�
Dm�

�
(z) ;

where the ameliorated operators Sn;s and �`n;s have kernels given by,

Sn;s (w; z) = cn;s

�
1� jwj2

�s�n�1
(1� wz)s = cn;s

�
1� jwj2
1� wz

�s�n�1
1

(1� wz)n+1
;

�`n;s(w; z) = �`n (w; z)

 
1� jwj2

1� wz

!s�n n�`�1X
j=0

cj;n;s

 �
1� jwj2

� �
1� jzj2

�
j1� wzj2

!j
:

Proof : Recall that for a smooth (0; q + 1)-form � (w) =
P

jIj=q+1 �Idw
I in Bn,

the (0; q)-form DmEs� is given by

DmEs� (w) =
X
jJj=q

Dm
�
�ydwJ

�
dzJ =

X
jJj=q

Dm
 X
k=2J

(�1)�(k;J) �J[fkg (w) dwk

!
dzJ

=
X
jJj=q

Dm
 X
k=2J

(�1)�(k;J) �J[fkg (w) dwk

!
dzJ

=
X
jJj=q

X
k=2J

(�1)�(k;J)
0@ X
j�j=m

(wk � zk)(w � z)�
@m

@w�
�J[fkg (w)

1A ;

where J [fkg is a multi-index with entries in In � f1; 2; :::; ng since the coe¢ cient
�I vanishes if I is not contained in In. Moreover, the multi-index � lies in (In)

m

since the coe¢ cients �I are constant in the variable w
0 = (wn+1; :::; ws). Thus

Dm(z;0);(w;w0)Es� = Dmz;w� = Dm�;
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and we compute that

Rn�
`
s

�
Dm(z;0);(w;w0)Es�

�
(z)

= �`s
�
Dm�

�
((z; 0))

=
X
jJj=q

X
k2InnJ

(�1)�(k;J)
X
j�j=m

�`s

�
(wk � zk)(w � z)�

@m

@w�
�J[fkg ((w;w

0))

�
((z; 0)) ;

where J [ fkg � In and � 2 (In)m and

�`s

�
(wk � zk)(w � z)�

@m

@w�
�J[fkg (w)

�
((z; 0))

=

Z
Bs

(1� wz)s�1�`
�
1� jwj2 � jw0j2

�`
4 ((w;w0) ; (z; 0))s (wk � zk)(w � z)�

@m

@w�
�J[fkg (w) dV ((w;w

0))

=

Z
Bn

8><>:(1� wz)s�`�1
Z
Bs�n

�
1� jwj2 � jw0j2

�`
4 ((w;w0) ; (z; 0))s dV (w

0)

9>=>;
�(wk � zk)(w � z)�

@m

@w�
�J[fkg (w) dV (w) :

By Lemma 1 the term in braces above equals

�s�n

(s� n)!�
`
n (w; z)

 
1� jwj2

1� wz

!s�n n�`�1X
j=0

cj;n;s

 �
1� jwj2

� �
1� jzj2

�
j1� wzj2

!j
;

and now performing the sum
P

jJj=q
P

k2InnJ (�1)
�(k;J)P

j�j=m yields

(4.9) Rn�
`
s

�
Dm(z;0)Es�

�
(z) = �`s

�
Dmz �

�
((z; 0)) = �`n;s

�
Dmz �

�
(z) :

An even easier calculation using formula (1) in 1.4.4 on page 14 of [24] shows that

(4.10) RnSs
�
EsDkz�

�
((z; 0)) = Ss

�
Dkz�

�
((z; 0)) = Sn;s

�
Dkz�

�
(z) ;

and now the conclusion of Lemma 5 follows from (4.9), (4.10), the de�nition C0;qn;s =
RnC0;qs Es, and Lemma 3.

5. The Koszul complex

Here we brie�y review the algebra behind the Koszul complex as presented for
example in [18] in the �nite dimensional setting. A more detailed treatment in that
setting can be found in Section 5.5.3 of [25]. Fix h holomorphic as in (2.5). Now if
g = (gj)

1
j=1 satis�es jgj

2
=
P1

j=1 jgj j
2 � �2 > 0, let


10 =
g

jgj2
=

 
gj

jgj2

!1
j=1

=
�

10 (j)

�1
j=1

;

which we view as a 1-tensor (in `2 = C1) of (0; 0)-forms with components 
10 (j) =
gj
jgj2 . Then f = 


1
0h satis�esMgf = f �g = h, but in general fails to be holomorphic.

The Koszul complex provides a scheme which we now recall for solving a sequence
of @ equations that result in a correction term �g�

2
0 that when subtracted from f

above yields a holomorphic solution to the second line in (2.5). See below.
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The 1-tensor of (0; 1)-forms @
0 =
�
@
gj
jgj2

�1
j=1

=
�
@
10 (j)

�1
j=1

is given by

@
10 (j) = @
gj

jgj2
=
jgj2 @gj � gj@ jgj2

jgj4
=

1

jgj4
1X
k=1

gkfgk@gj � gj@gkg:

and can be written as

@
10 = �g

2
1 �

" 1X
k=1


21 (j; k) gk

#1
j=1

;

where the antisymmetric 2-tensor 
21 of (0; 1)-forms is given by


21 =
�

21 (j; k)

�1
j;k=1

=

"
fgk@gj � gj@gkg

jgj4

#1
j;k=1

:

and �g
21 denotes its contraction by the vector g in the �nal variable.
We can repeat this process and by induction we have

(5.1) @
q+1q = �g

q+2
q+1; 0 � q � n;

where 
q+1q is an alternating (q + 1)-tensor of (0; q)-forms. Recall that h is holo-
morphic. When q = n we have that 
n+1n h is @-closed and this allows us to solve a
chain of @ equations

@�qq�2 = 

q
q�1h� �g�

q+1
q�1;

for alternating q-tensors �qq�2 of (0; q � 2)-forms, using the ameliorated Charpentier
solution operators C0;qn;s de�ned in (3.11) above (note that our notation suppresses
the dependence of � on h). With the convention that �n+2n � 0 we have

@
�

q+1q h� �g�q+2q

�
= 0; 0 � q � n;(5.2)

@�q+1q�1 = 
q+1q h� �g�q+2q ; 1 � q � n:

Now
f � 
10h� �g�20

is holomorphic by the �rst line in (5.2) with q = 0, and since �20 is antisymmetric,
we compute that �g�20 � g = �20 (g; g) = 0 and

Mgf = f � g = 
10h � g � �g�20 � g = h� 0 = h:

Thus f = (fi)
1
i=1 is a vector of holomorphic functions satisfying the second line in

(2.5). The �rst line in (2.5) is the subject of the remaining sections of the paper.

5.1. Wedge products and factorization of the Koszul complex. Here we
record the remarkable factorization of the Koszul complex in Andersson and Carls-
son [4]. To describe the factorization we introduce an exterior algebra structure on
`2 = C1. Let fe1; e2; :::g be the usual basis in C1, and for an increasing multiindex
I = (i1; :::; i`) of integers in N, de�ne

eI = ei1 ^ ei2 ^ ::: ^ ei` ;
where we use ^ to denote the wedge product in the exterior algebra �� (C1) of
C1, as well as for the wedge product on forms in Cn. Note that feI : jIj = rg is a
basis for the alternating r-tensors on C1.
If f =

P
jIj=r fIeI is an alternating r-tensor on C1 with values that are (0; k)-

forms in Cn, which may be viewed as a member of the exterior algebra of C1
Cn,
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and if g =
P

jJj=s gJeJ is an alternating s-tensor on C1 with values that are
(0; `)-forms in Cn, then as in [4] we de�ne the wedge product f ^ g in the exterior
algebra of C1 
 Cn to be the alternating (r + s)-tensor on C1 with values that
are (0; k + `)-forms in Cn given by

f ^ g =

0@X
jIj=r

fIeI

1A ^
0@X
jJj=s

gJeJ

1A(5.3)

=
X

jIj=r;jJj=s

(fI ^ gJ) (eI ^ eJ)

=
X

jKj=r+s

 
�

X
I+J=K

fI ^ gJ

!
eK :

Note that we simply write the exterior product of an element from �� (C1) with an
element from �� (Cn) as juxtaposition, without writing an explicit wedge symbol.
This should cause no confusion since the basis we use in �� (C1) is feig1i=1, while
the basis we use in �� (Cn) is fdzj ; dbzjgnj=1, quite di¤erent in both appearance and
interpretation.
In terms of this notation we then have the following factorization in Theorem

3.1 of Andersson and Carlsson [4]:

(5.4) 
10 ^
`̂

i=1

f
10 =
 1X
k0=1

gk0

jgj2
ek0

!
^

`̂

i=1

 1X
ki=1

@gki

jgj2
eki

!
= � 1

`+ 1

`+1` ;

where


10 =

 
gi

jgj2

!1
i=1

and f
10 =
 
@gi

jgj2

!1
i=1

:

The factorization in [4] is proved in the �nite dimensional case, but this extends to
the in�nite dimensional case by continuity. Since the `2 norm is quasi-multiplicative
on wedge products by Lemma 5.1 in [4] we have

(5.5)
��
`+1`

��2 � C`
��
10��2 ���f
10���2` ; 0 � ` � n;

where the constant C` depends only on the number of factors ` in the wedge product,
and not on the underlying dimension of the vector space (which is in�nite for
`2 = C1).
It will be useful in the next section to consider also tensor products

(5.6) f
10 
 f
10 =
 1X
i=1

@gi

jgj2
ei

!



0@ 1X
j=1

@gj

jgj2
ej

1A =
1X

i;j=1

@gi 
 @gj
jgj4

ei 
 ej ;

and more generally X�f
10
X �f
10 where Xm denotes the vector derivative de�ned
in De�nition 7 below. We will use the fact that the `2-norm is multiplicative on
tensor products.
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6. An almost invariant holomorphic derivative

In this section we continue to consider `2-valued spaces. We refer the reader to
[6] for the de�nition of the Bergman tree Tn and the corresponding pairwise disjoint
decomposition of the ball Bn:

Bn =
�[

�2Tn

K�;

where the sets K� are comparable to balls of radius one in the Bergman metric � on
the ball Bn: � (z; w) = 1

2 ln
1+j'z(w)j
1�j'z(w)j

(Proposition 1.21 in [36]). This decomposition
gives an analogue in Bn of the standard decomposition of the upper half plane
C+ into dyadic squares whose distance from the boundary @C+ equals their side
length. We also recall from [6] the di¤erential operator Da which on the Bergman
kube K�, and provided a 2 K�, is close to the invariant gradient er, and which
has the additional property that Dm

a f (z) is holomorphic for m � 1 and z 2 K�

when f is holomorphic. For our purposes the powers Dm
a f , m � 1, are easier to

work with than the corresponding powers ermf , which fail to be holomorphic. It is
shown in [6] that Dm

a can be used to de�ne an equivalent norm on the Besov space
Bp (Bn) = B0p (Bn), and it is a routine matter to extend this result to the Besov-
Sobolev space B�p (Bn) when � � 0 and m > 2

�
n
p � �

�
. The further extension to

`2 -valued functions is also routine.
We de�ne

rz =
�

@

@z1
; :::;

@

@zn

�
and rz =

�
@

@z1
; :::;

@

@zn

�
so that the usual Euclidean gradient is given by the pair

�
rz;rz

�
. Fix � 2 Tn and

let a = c�. Recall that the gradient with invariant length given byerf (a) = (f � 'a)
0
(0) = f 0 (a)'0a (0)

= �f 0 (a)
��
1� jaj2

�
Pa +

�
1� jaj2

� 1
2

Qa

�
fails to be holomorphic in a. To rectify this, we de�ne as in [6],

Daf (z) = f 0 (z)'0a (0)(6.1)

= �f 0 (z)
��
1� jaj2

�
Pa +

�
1� jaj2

� 1
2

Qa

�
;

for z 2 Bn. Note that rz (a � z) = at when we view w 2 Bn as an n � 1 complex
matrix, and denote by wt the 1 � n transpose of w. With this interpretation, we
observe that Paz = az

jaj2 a has derivative Pa = P 0az =
aat

jaj2 = jaj
�2
[aiaj ]1�i;j�n.

The next lemma from [6] shows that Dm
a and Dm

b are comparable when a and b
are close in the Bergman metric.

Lemma 6. (Lemma 6.2 in [6]) Let a; b 2 Bn satisfy � (a; b) � C. There is a
positive constant Cm depending only on C and m such that

C�1m jDm
b f (z)j � jDm

a f (z)j � Cm jDm
b f (z)j ;

for all f 2 H
�
Bn; `2

�
.
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We remind the reader that jDm
a f (z)j =

qP1
i=1 jDm

a fi (z)j
2 if f = (fi)

1
i=1. The

scalar proof in [6] is easily extended to `2-valued f .

De�nition 5. (see [6]) Suppose � � 0, 1 < p <1 and m � 1. We de�ne a �tree
semi-norm� k�k�B�

p;m(Bn;`2)
by

(6.2) kfk�B�
p;m(Bn;`2)

=

 X
�2Tn

Z
Bd(c�;C2)

����1� jzj2��Dm
c�f (z)

���p d�n (z)!
1
p

:

We now recall the invertible �radial�operators R;t : H (Bn)! H (Bn) given in
[36] by

R;tf (z) =
1X
k=0

� (n+ 1 + ) � (n+ 1 + k +  + t)

� (n+ 1 +  + t) � (n+ 1 + k + )
fk (z) ;

provided neither n +  nor n +  + t is a negative integer, and where f (z) =P1
k=0 fk (z) is the homogeneous expansion of f . This de�nition is easily extended

to f 2 H
�
Bn; `2

�
. If the inverse of R;t is denoted R;t, then Proposition 1.14 of

[36] yields

R;t

 
1

(1� wz)n+1+

!
=

1

(1� wz)n+1++t
;(6.3)

R;t

 
1

(1� wz)n+1++t

!
=

1

(1� wz)n+1+
;

for all w 2 Bn. Thus for any , R;t is approximately di¤erentiation of order t.
The next proposition shows that the derivatives R;mf (z) are �Lp norm equivalent�
to
�
f (0) ; :::;rm�1f (0) ;rmf (z)

	
for m large enough. The scalar case � = 0 is

Proposition 2.1 in [6] and follows from Theorems 6.1 and Theorem 6.4 of [36]. The
extension to � � 0 and `2-valued f is routine. See the appendix and also [11].

Proposition 1. Suppose that � � 0, 0 < p < 1, n +  is not a negative integer,
and f 2 H

�
Bn; `2

�
. Then the following four conditions are equivalent:�

1� jzj2
�m+�

rmf (z) 2 Lp
�
d�n; `

2
�
for some m >

n

p
� �;m 2 N;�

1� jzj2
�m+�

rmf (z) 2 Lp
�
d�n; `

2
�
for all m >

n

p
� �;m 2 N;�

1� jzj2
�m+�

R;mf (z) 2 Lp
�
d�n; `

2
�
for some m >

n

p
� �;m+ n+  =2 �N;�

1� jzj2
�m+�

R;mf (z) 2 Lp
�
d�n; `

2
�
for all m >

n

p
� �;m+ n+  =2 �N:

Moreover, with  (z) = 1� jzj2, we have for 1 < p <1,

C�1
 m1+�R;m1f


Lp(d�n;`2)

�
m2�1X
k=0

���rkf (0)���+ �Z
Bn

�����1� jzj2�m2+�

rm2f (z)

����p d�n (z)�
1
p

� C
 m1+�R;m1f


Lp(d�n;`2)
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for all m1;m2 >
n
p � �, m1 + n +  =2 �N, m2 2 N, and where the constant C

depends only on �, m1, m2, n,  and p.

There is one further equivalent norm involving the radial derivative

(6.4) Rf (z) = z � rf (z) =
nX
j=1

zj
@f

@zj
(z) ;

and its iterates Rk = R �R � ::: �R (k times).

Proposition 2. Suppose that � � 0, 0 < p <1 and f 2 H
�
Bn; `2

�
. Then

m1X
k=0

�Z
Bn

�����1� jzj2�m1+�

Rkf (z)

����p d�n (z)�
1
p

�
m2�1X
k=0

���rkf (0)���+ �Z
Bn

�����1� jzj2�m2+�

rm2f (z)

����p d�n (z)�
1
p

for all m1;m2 >
n
p � �, m1 + n+  =2 �N, m2 2 N, and where the constants in the

equivalence depend only on �, m1, m2, n and p.

The seminorms k�k�B�
p;m(Bn;`2)

turn out to be independent of m > 2
�
n
p � �

�
. We

will obtain this fact as a corollary of the equivalence of the standard norm in (2.4)
with the corresponding norm in Proposition 1 using the �radial�derivative R0;m.

Note that the restriction m > 2
�
n
p � �

�
is dictated by the fact that

��Dm
c�f (z)

��
involves the factor

�
1� jzj2

�m
2

times mth order tangential derivatives of f , and so

we must have that
�
1� jzj2

�(m2 +�)p
d�n (z) is a �nite measure, i.e.

�
m
2 + �

�
p �

n� 1 > �1. The case scalar � = 0 of the following lemma is Lemma 6.4 in [6].

Lemma 7. Let 1 < p < 1, � � 0 and m > 2
�
n
p � �

�
. Denote by B� (c; C) the

ball center c radius C in the Bergman metric �. Then for f 2 H
�
Bn; `2

�
,

kfk�B�
p;m(Bn;`2)

+
m�1X
j=0

��rjf (0)��(6.5)

�
 X
�2Tn

Z
B�(c�;C2)

����1� jzj2��Dm
c�f (z)

���p d�n (z)!
1
p

+
m�1X
j=0

��rjf (0)��
�

�Z
Bn

�����1� jzj2�m+� R�;mf (z)����p d�n (z)�
1
p

+
m�1X
j=0

��rjf (0)�� = kfkB�
p;m(Bn;`2)

:

See the appendix for an adaptation of the proof in [6] to the case � � 0 and
`2-valued f .

We will also need to know that the pointwise multipliers in MB�
p (Bn)!B�

p (Bn;`2)
are bounded. Indeed, standard arguments show the following.

Lemma 8.

(6.6) MB�
p (Bn)!B�

p (Bn;`2) � H1 �Bn; `2� \B�p �Bn; `2� :
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Proof : If ' 2MB�
p (Bn)!B�

p (Bn;`2), then ' 2 B
�
p

�
Bn; `2

�
since 1 2 B�p (Bn), and

M' : B
�
p (Bn)! B�p

�
Bn; `2

�
and M�

' : B
�
p

�
Bn; `2

�� ! B�p (Bn)
�
:

If ez denotes point evaluation at z 2 Bn, x 2 `2 and f 2 B�p (Bn), then the
calculation


f;M�
' (xez)

�
B�
p (Bn)

= hM'f; xeziB�
p (Bn;`2)

=
1X
i=1

h'if; xieziB�
p (Bn)

=
1X
i=1

xi'i (z) f (z) =
1X
i=1

xi'i (z) hf; eziB�
p (Bn)

=
1X
i=1

D
f; 'i (z)xiez

E
B�
p (Bn)

= hf; hx; ' (z)i`2 eziB�
p (Bn)

;

shows that

M�
' (xez) = hx; ' (z)i`2 ez:

This yields

jhx; ' (z)i`2 j kezkB�
p (Bn)

� =
M�

' (xez)

B�
p (Bn)

�

�
M�

'


B�
p (Bn;`2)

�!B�
p (Bn)

� kxezkB�
p (Bn;`2)

�

= kM'kB�
p (Bn)!B�

p (Bn;`2)
jxj kezkB�

p (Bn)
� ;

which gives

j' (z)j = sup
x6=0

jhx; ' (z)i`2 j
jxj � kM'kB�

p (Bn)!B�
p (Bn;`2)

; z 2 Bn;

and completes the proof of Lemma 8.

In order to deal with functions f on Bn that are not necessarily holomorphic,
we use a notion of higher order derivative Dm introduced in [6] that is based on
iterating Da rather than er.
De�nition 6. Form 2 N and f 2 C1

�
Bn; `2

�
smooth in Bn we de�ne �mf (a; z) =

Dm
a f (z) for a; z 2 Bn, and then set

Dmf (z) = �mf (z; z) = Dm
z f (z) ; z 2 Bn:

Note that in this de�nition, we iterate the operator Dz holding z �xed, and then
evaluate the result at the same z. If we combine Lemmas 6 and 7 we obtain that
for f 2 H

�
Bn; `2

�
,

kfkB�
p;m(Bn;`2)

�
m�1X
j=0

��rjf (0)��+ �Z
Bn

����1� jzj2��Dmf (z)
���p d�n (z)� 1

p

:

6.1. Real variable analogues of Besov-Sobolev spaces. In order to handle
the operators arising from integration by parts formulas below, we will need yet
more general equivalent norms on B�p;m

�
Bn; `2

�
.
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De�nition 7. We denote by Xm the vector of all di¤erential operators of the form
X1X2:::Xm where each Xi is either 1 � jzj2 times the identity operator I, the op-
erator D, or the operator

�
1� jzj2

�
R. Just as in De�nition 6, we calculate the

products X1X2:::Xm by composing Da and
�
1� jaj2

�
R and then setting a = z at

the end. Note that Da and
�
1� jaj2

�
R commute since the �rst is an antiholo-

morphic derivative and the coe¢ cient z in R = z � r is holomorphic. Similarly

we denote by Ym the corresponding products of
�
1� jzj2

�
I, D (instead of D) and�

1� jzj2
�
R.

In the iterated derivative Xm we are di¤erentiating only with the antiholomor-
phic derivative D or the holomorphic derivative R. When f is holomorphic, we thus

have Xmf �
n�
1� jzj2

�m
Rkf

om
k=0

. The reason we allow 1� jzj2 times the iden-
tity I to occur in Xm is that this produces a norm (as opposed to just a seminorm)

without including the term
Pm�1

k=0

���rkf (0)���. We de�ne the norm k�kB�
p;m(Bn;`2)

for

smooth f on the ball Bn by

kfkB�
p;m(Bn;`2)

�
 

mX
k=0

Z
Bn

�����1� jzj2�m+� Rkf (z)����p d�n (z)
! 1

p

;

and note that provided m + � > n
p , this provides an equivalent norm for the

Besov-Sobolev space B�p
�
Bn; `2

�
of holomorphic functions on Bn. These considera-

tions motivate the following two de�nitions of a real-variable analogue of the norm
k�kB�

p;m(Bn;`2)
.

De�nition 8. We de�ne the norms k�k��p;m(Bn;`2) and k�k��p;m(Bn;`2) for f = (fi)
1
i=1

smooth on the ball Bn by

kfk��p;m(Bn;`2) �
�Z

Bn

����1� jzj2�� Xmf (z)
���p d�n (z)� 1

p

;(6.7)

kfk��p;m(Bn;`2) �
�Z

Bn

����1� jzj2�� Ymf (z)���p d�n (z)� 1
p

:

It is not true that either of the norms k�k��p;m(Bn;`2) or k�k��p;m(Bn;`2) are indepen-
dent of m for large m when acting on smooth functions. However, Lemmas 6 and
7 show the equivalence of norms when restricted to holomorphic vector functions:

Lemma 9. Let 1 < p <1, � � 0 and m > 2
�
n
p � �

�
. Then for f a holomorphic

vector function we have

(6.8) kfkB�
p;m(Bn;`2)

� kfk��p;m(Bn;`2) � kfk��p;m(Bn;`2):
The norms k�k��p;m(Bn;`2) arise in the integration by parts in iterated Charpentier

kernels in Section 8, while the norms k�k��p;m(Bn;`2) are useful for estimating the
holomorphic function g in the Koszul complex. For this latter purpose we will
use the following multilinear inequality whose scalar version is, after translating
notation, Theorem 3.5 in [20]. The extension to `2-valued functions is routine but
again, for the convenience of the reader, we give a detailed proof in the appendix.
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Proposition 3. Suppose that 1 < p < 1, 0 � � < 1, M � 1, m > 2
�
n
p � �

�
and � = (�0; :::; �M ) 2 ZM+1

+ with j�j = m. For g 2 MB�
p (Bn)!B�

p (Bn;`2) and
h 2 B�p (Bn) we have,Z

Bn

�
1� jzj2

�p�
j(Y�1g) (z)jp ::: j(Y�M g) (z)jp j(Y�0h) (z)jp d�n (z)

� Cn;M;�;p

�
kMgkMp

B�
p (Bn)!B�

p (Bn;`2)

�
khkpB�

p (Bn)
:

Remark 6. The inequalities for M = 1 in Proposition 3 actually characterize
multipliers g in the sense that a function g 2 B�p

�
Bn; `2

�
\ H1 �Bn; `2� is in

MB�
p (Bn)!B�

p (Bn;`2) if and only if the inequalities with M = 1 in Proposition 3 hold.
This follows from noting that each term in the Leibniz expansion of Ym (gh) occurs
on the left side of the display above with M = 1.

6.1.1. Three crucial inequalities. In order to establish appropriate inequalities for
the Charpentier solution operators, we will need to control terms of the form

(z � w)� @m

@w�F (w), D
m
(z) 4 (w; z), Dm

(z)

n
(1� wz)k

o
and Rm(z)

n
(1� wz)k

o
inside

the integral for T as given in the integration by parts formula in Lemma 3 above.
Here we are using the subscript (z) in parentheses to indicate the variable being
di¤erentiated. This is to avoid confusion with the notation Da introduced in (6.1).
We collect the necessary estimates in the following proposition.

Proposition 4. For z; w 2 Bn and m 2 N, we have the following three crucial
estimates:
(6.9)����(z � w)� @m

@w�
F (w)

���� � C

 p
4 (w; z)
1� jwj2

!m ���Dm
F (w)

��� ; F 2 H
�
Bn; `2

�
;m = j�j :

��D(z) 4 (w; z)
�� � C

n�
1� jzj2

�
4 (w; z)

1
2 +4 (w; z)

o
;(6.10) ����1� jzj2�R(z) 4 (w; z)��� � C

�
1� jzj2

�p
4 (w; z);

���Dm
(z)

n
(1� wz)k

o��� � C j1� wzjk
 
1� jzj2

j1� wzj

!m
2

;(6.11)

����1� jzj2�mRm(z) n(1� wz)ko��� � C j1� wzjk
 
1� jzj2

j1� wzj

!m
:

Proof : To prove (6.9) we view Da as a di¤erentiation operator in the variable
w so that

Da = �rw
��
1� jaj2

�
Pa +

q
1� jaj2Qa

�
:
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A basic calculation is then:

(1� az)'a (z) � (Da)
t

=

�
Pa (z � a) +

q
1� jaj2Qa (z � a)

�
�
��
1� jaj2

�
Parw +

q
1� jaj2Qarw

�
= Pa (z � a)

�
1� jaj2

�
Parw

+

q
1� jaj2Qa (z � a)

q
1� jaj2Qarw

=
�
1� jaj2

�
(z � a) � rw:

From this we conclude the inequality����(zi � ai) @

@wi
F (w)

���� � j(z � a) � rF (w)j

�
����� 1� az1� jaj2

'a (z)

����� jDaF (w)j

=

p
4 (a; z)
1� jaj2

jDaF (w)j ;

as well as its conjugate����(zi � ai) @

@wi
F (w)

���� � C

p
4 (a; z)
1� jaj2

��DaF (w)
�� :

Moreover, we can iterate this inequality to obtain����(z � a)� @m

@w�
F (w)

���� � C

 p
4 (a; z)
1� jaj2

!m ����Da

�m
F (w)

��� ;
for a multi-index of length m. With a = w this becomes the �rst estimate (6.9).

To see the second estimate (6.10), recall from (6.1) that

Daf (z) = �
��
1� jaj2

�
Parf (z) +

�
1� jaj2

� 1
2

Qarf (z)
�
:

We let a = z. By the unitary invariance of

4 (w; z) = j1� wzj2 �
�
1� jzj2

��
1� jwj2

�
;

we may assume that z = (jzj ; 0; :::; 0). Then we have
@

@zj
4 (w; z) =

@

@zj

n
(1� wz) (1� zw)� (1� zz)

�
1� jwj2

�o
= �wj (1� zw) + zj

�
1� jwj2

�
= (zj � wj) + wj (zw)� zj jwj2

= (zj � wj)
�
1� jzj2

�
+ zj jzj2 � wj jzj2 + wj (zw)� zj jwj2

= (zj � wj)
�
1� jzj2

�
+ zj

�
jzj2 � jwj2

�
+ wj (z (w � z)) :
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Now Qzrf =
�
0; @f@z2 ; :::;

@f
@zn

�
and thus a typical term in Qzr4 is @

@zj
4 (w; z)

with j � 2. From z = (jzj ; 0; :::; 0) and j � 2 we have zj = 0 and so
@

@zj
4 (w; z) = (zj � wj)

�
1� jzj2

�
� (zj � wj) (z (w � z)) ; j � 2:

Now (3.4) implies

(6.12) 4 (w; z) =
�
1� jzj2

�
jw � zj2 + jz(w � z)j2 ;

which together with the above shows thatq
1� jzj2 jQzr4 (w; z)j � C jz � wj

�
1� jzj2

� 3
2

(6.13)

+C

q
1� jzj2 jz � wj jz (w � z)j

� C
�
1� jzj2

�
4 (w; z)

1
2 + C 4 (w; z) :

As for PzrD =
�
@f
@z1

; 0; :::; 0
�
we use (6.12) to obtain

jPzr4 (w; z)j =
���(z1 � w1)�1� jzj2�+ z1 �jzj2 � jwj2�+ w1z (w � z)���

� jz � wj
�
1� jzj2

�
+
���jzj2 � jwj2���+ jz (w � z)j

� C
p
4 (w; z) + 2 jjzj � jwjj :

However,

4 (w; z) � (1� jwj jzj)2 �
�
1� jzj2

��
1� jwj2

�
= 1� 2 jwj jzj+ jwj2 jzj2 �

n
1� jzj2 � jwj2 + jzj2 jwj2

o
= jzj2 + jwj2 � 2 jwj jzj = (jzj � jwj)2

and so altogether we have the estimate

(6.14) jPzr4 (w; z)j � C
p
4 (w; z):

Combining (6.13) and (6.14) with the de�nition (6.1) completes the proof of the
�rst line in (6.10). The second line in (6.10) follows from (6.14) since R(z) = Pzr.

To prove the third estimate (6.11) we compute:

D(z) (1� wz)k = k (1� wz)k�1D(z) (1� wz)

= k (1� wz)k�1
��
1� jzj2

�
Pzr+

q
1� jzj2Qzr

�
(1� wz)

= �k (1� wz)k�1
��
1� jzj2

�
Pzw +

q
1� jzj2Qzw

�
;

R(z) (1� wz)k = k (1� wz)k�1 (�wz) :

Since jwj2 + jaj2 � 2 we have
jQzwj2 = jQz (w � z)j2 � jw � zj2 ;

= jwj2 + jzj2 � 2Re (wz)
� 2Re (1� wz) � 2 j1� wzj ;
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which yields

���D(z)

n
(1� wz)k

o��� � C j1� wzjk

8>><>>:
�
1� jzj2

�
+

r�
1� jzj2

�
j1� wzj

j1� wzj

9>>=>>;
� C j1� wzjk

s
1� jzj2

j1� wzj :

Iteration then yields (6.11).

7. Schur�s Test

Here we characterize boundedness of the positive operators that arise as majo-
rants of the solution operators below. The case c = 0 of the following lemma is
Theorem 2.10 in [36].

Lemma 10. Let a; b; c; t 2 R. Then the operator

Ta;b;cf (z) =

Z
Bn

�
1� jzj2

�a �
1� jwj2

�b �p
4 (w; z)

�c
j1� wzjn+1+a+b+c

f (w) dV (w)

is bounded on Lp
�
Bn;

�
1� jwj2

�t
dV (w)

�
if and only if c > �2n and

(7.1) � pa < t+ 1 < p (b+ 1) :

We sketch the proof for the case c 6= 0 when p = 2 and t = �n � 1. Let

 " (�) =
�
1� j�j2

�"
and recall that

p
4 (w; z) = j1� wzj j'z (w)j. We compute

conditions on a, b, c and " such that we have

Ta;b;c " (z) � C " (z) and T
�
a;b;c " (w) � C " (w) ; z; w 2 Bn;

where T �a;b;c denotes the dual relative to L
2 (�n). For this we take " 2 R and

compute

Ta;b;c " (z) =

Z
Bn

�
1� jzj2

�a �
1� jwj2

�n+1+b+"
j'z (w)j

c

j1� wzjn+1+a+b
d�n (w) :

Note that the integral de�ning Ta;b;c " (z) is �nite if and only if " > �b�1. Now
in this integral make the change of variable w = 'z (�) and use that �n is invariant
to obtain

Ta;b;c " (z) =

Z
Bn

�
1� jzj2

�a �
1� j'z (�)j

2
�n+1+b+"

j�jc���1� 'z (�)z���n+1+a+b (1� j�j2)n+1 dV (�) :

Plugging the identities

1� 'z (�) z = 1� h'z (�) ; 'z (0)i =
1� jzj2
1� �z ;

1� j'z (�)j
2
= 1� h'z (�) ; 'z (�)i =

�
1� jzj2

��
1� j�j2

�
j1� �zj2

;
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into the formula for Ta;b;c " (z) we obtain

Ta;b;c " (z) =  " (z)

Z
Bn

�
1� j�j2

�b+"
j�jc

j1� �zjn+1+b�a+2"
dV (�) :

Then from Theorem 1.12 in [36] we obtain that

sup
z2Bn

Z
Bn

�
1� j�j2

��
j1� �zj�

dV (�) <1

if and only if � � � < n + 1. Provided c > �2n it is now easy to see that we also
have

sup
z2Bn

Z
Bn

�
1� j�j2

��
j�jc

j1� �zj�
dV (�) <1

if and only if � � � < n+ 1. It now follows from the above that

Ta;b;c " (z) � C " (z) ; z 2 Bn;

if and only if

�b� 1 < " < a:

Arguing as above and provided c > �2n, we obtain

T �a;b;c " (w) � C " (w) ; w 2 Bn;

if and only if

�a+ n < " < b+ n+ 1:

Altogether then there is " 2 R such that h =
p
 " is a Schur function for Ta;b;c

on L2 (�n) in Schur�s Test (as given in Theorem 2.9 on page 51 of [36]) if and only
if

max f�a+ n;�b� 1g < min fa; b+ n+ 1g :

This is equivalent to �2a < �n < 2 (b+ 1), which is (7.1) in the case p = 2; t =
�n� 1. This completes the proof (in this case) that (7.1) implies the boundedness
of Ta;b;c on L2 (�n). The converse is easy - see for example the argument for the
case c = 0 on page 52 of [36].
See the appendix for a more detailed proof of Lemma 10.

Remark 7. We will also use the trivial consequence of Lemma 10 that the operator

Ta;b;c;df (z) =

Z
Bn

�
1� jzj2

�a �
1� jwj2

�b �p
4 (w; z)

�c
j1� wzjn+1+a+b+c+d

f (w) dV (w)

is bounded on Lp
�
Bn;

�
1� jwj2

�t
dV (w)

�
if c > �2n, d � 0 and (7.1) holds. This

is simply because j1� wzj � 2.



32 Ş. COSTEA, E. T. SAWYER, AND B. D. WICK

8. Operator estimates

We must show that f = 
10h��g�20 2 B�p
�
Bn; `2

�
where �20 is an antisymmetric

2-tensor of (0; 0)-forms that solves

@�20 = 

2
1h� �g�31;

and inductively where �q+2q is an alternating (q + 2)-tensor of (0; q)-forms that
solves

@�q+2q = 
q+2q+1h� �g�
q+3
q+1;

up to q = n � 1 (since �n+2n = 0 and the (0; n)-form 
n+1n is @-closed). Using the
Charpentier solution operators C0;qn;s on (0; q + 1)-forms we then get

f = 
10h� �g�20
= 
10h� �gC0;0n;s1

�

21h� �g�31

�
= 
10h� �gC0;0n;s1

�

21h� �gC0;1n;s2

�

32h� �g�42

��
...

= 
10h� �gC0;0n;s1

2
1h+ �gC0;0n;s1�gC

0;1
n;s2


3
2h� �gC0;0n;s1�gC

0;1
n;s2�gC

0;2
n;s3


4
3h� :::

+(�1)n �gC0;0n;s1 :::�gC
0;n�1
n;sn 
n+1n h

� F0 + F1 + :::+ Fn:
The goal is to establish

kfkB�
p (Bn;`2)

� Cn;�;p;� (g) khkB�
p (Bn)

;

which we accomplish by showing that

(8.1) kF�kB�
p;m1

(Bn;`2) � Cn;�;p;� (g) khk��p;m�
(Bn) ; 0 � � � n;

for a choice of integers m� satisfying
n

p
� � < m1 < m2 < ::: < m` < ::: < mn:

Recall that we de�ned both of the norms kFkB�
p;m�

(Bn;`2) and kFk��p;m�
(Bn;`2) for

smooth vector functions F in the ball Bn.
Note on constants: We often indicate via subscripts, such as n; �; p; �, the
important parameters on which a given constant C depends, especially
when the constant appears in a basic inequality. However, at times in mid-
argument, we will often revert to suppressing some or all of the subscripts
in the interests of readability.

The norms k�k��p;m(Bn;`2) in (6.7) above will now be used to estimate the compo-
sition of Charpentier solution operators in each function

F� = �gC0;0n;s1 :::�gC
0;��1
n;s� 
�+1� h

as follows. More precisely we will use the specialized variants of the seminorms
given by

kFkp��
p;m0;m00 (Bn;`2)

�
Z
Bn

�����1� jzj2�� ��1� jzj2�m0

Rm
0
�
D
m00

F (z)

����p d�n (z) ;
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where we take m00 derivatives in D followed by m0 derivatives in the invariant

radial operator
�
1� jzj2

�
R. Recall from De�nition 7 that Xm denotes the vector

of all di¤erential operators of the form X1X2:::Xm where each Xi is either I, D,

or
�
1� jzj2

�
R, and where by de�nition 1 � jzj2 is held constant in composing

operators. It will also be convenient at times to use the notation

(8.2) Rm �
�
1� jzj2

�m �
Rk
�m
k=0

;

which should cause no confusion with the related operators Rm
b in (4.8) introduced

in the remark following Corollary 3. Note that Rm is simply Xm when none of
the operators D appear. We will make extensive use the multilinear estimate in
Proposition 3.
Let us �x our attention on the function F� = F�0 and write

F�0 = �gC0;0n;s1
n
�gC0;1n;s2 :::�gC

0;��1
n;s� 
�+1� h

o
= �gC0;0n;s1 fF

�
1 g ;

F�1 = �gC0;1n;s2
n
�gC0;2n;s3 :::�gC

0;��1
n;s� 
�+1� h

o
= �gC0;1n;s2 fF

�
2 g ;

F�q = �gC0;qn;sq+1
�
F�q+1

	
; etc;

where F�q is a (0; q)-form. We now perform the integration by parts in Lemma 5 in
each iterated Charpentier operator F�q = �gC0;qn;sq+1

�
F�q+1

	
to obtain

F�q = �gC0;qn;sq+1F
�
q+1(8.3)

=

m0
q+1�1X
j=0

c0j;n;sq+1�gSn;sq+1
�
DjF�q+1

�
(z)

+

�X
`=0

c`;n;sq+1�g�
`
n;sq+1

�
Dm

0
q+1F�q+1

�
(z) :

Now we compose these formulas for F�k to obtain an expression for F� that is a
complicated sum of compositions of the individual operators in (8.3) above. For now

we will concentrate on the main terms �g��n;sk+1

�
Dm

0
k+1F�k+1

�
that arise in the

second sum above when ` = �. We will see that the same considerations apply to
any of the other terms in (8.3). Recall from Lemma 5 that the "boundary" operators
Sn;sq+1 are projections of operators on @Bsq to the ball Bn and have (balanced)
kernels even simpler than those of the operators �`n;sq+1 . The composition of these
main terms is �

�g�
�
n;s1D

m0
1

�
F�1(8.4)

=
�
�g�

�
n;s1D

m0
1

��
�g�

�
n;s2D

m0
2

�
F�2

=
�
�g�

�
n;s1D

m0
1

��
�g�

�
n;s2D

m0
2

�
:::
�
�g�

�
n;s�D

m0
�

�

�+1� h:

At this point we would like to take absolute values inside all of these integrals
and use the crucial inequalities in Proposition 4 to obtain a composition of positive
operators of the type considered in Lemma 10. However, there is a di¢ culty in
using the crucial inequality (6.9) to estimate the derivative Dm on (0; q + 1)-forms
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� given by (4.6):

Dm� (z) =
X
jJj=q

X
k=2J

X
j�j=m

(�1)�(k;J) (wk � zk)(w � z)�
@m

@w�
�J[fkg (w) :

The problem is that the factor (wk � zk) has no derivative @
@wk

naturally associated

with it, as do the other factors in (w � z)�. We refer to the factor (wk � zk) as a
rogue factor, as it requires special treatment in order to apply (6.9). Note that we
cannot simply estimate (wk � zk) by jw � zj because this is much larger in general
than the estimate

p
4 (w; z) obtained in (6.9) (where the di¤erence in size between

jw � zj and
p
4 (w; z) is compensated by the di¤erence in size between @

@wk
and

D).

We now describe how to circumvent this di¢ culty in the composition of operators

in (8.4). Let us write each Dm
0
q+1F�q+1 asX

jJj=q

X
k=2J

X
j�j=m0

q+1

(�1)�(k;J) (wk � zk)(w � z)�
@m

@w�
�
F�q+1

�
J[fkg (w) ;

where
�
F�q+1

�
J[fkg is the coe¢ cient of the form F�q+1 with di¤erential dwJ[fkg.

We now replace each of these sums with just one of the summands, say

(8.5) (wk � zk)(w � z)�
@m

@w�
�
F�q+1

�
J[fkg (w) :

Here the factor (wk � zk) is a rogue factor, not associated with a corresponding
derivative @

@wk
. We will refer to k as the rogue index associated with the rogue

factor when it is not convenient to explicitly display the variables.
The key fact in treating the rogue factor (wk � zk) is that its presence in (8.5)

means that the coe¢ cient
�
F�q+1

�
I
of the form F�q+1 that multiplies it must have k

in the multi-index I. Since F�q+1 = �gC0;q+1n;sq+2

�
F�q+2

	
, the form of the ameliorated

Charpentier kernel C0;q+1n;sq+2 in Theorem 6 shows that the coe¢ cients of C
0;q+1
n;sq+2 (w; z)

that multiply the rogue factor must have the di¤erential dzk in them. In turn, this
means that the di¤erential dwk must be missing in the coe¢ cient of C0;q+1n;sq+2 (w; z),
and hence �nally that the coe¢ cients

�
F�q+2

�
H
with multi-index H that survive

the wedge products in the integration must have k 2 H. This observation can be
repeated, and we now derive an important consequence.

Returning to (8.4), each summand in Dm
0
q+1F�q+1 has a rogue factor with as-

sociated rogue index kq+1. Thus the function in (8.4) is a sum of terms of the
form �

�g�
�
n;s1(wk1 � zk1)Z

m0
1

�
�
�
�g�

�
n;s2(wk2 � zk2)Z

m0
2

�
I1
�

::: �
�
�g�

�
n;s� (wk� � zk� )Z

m0
�

�
I��1

�

::: �
�
�g�

��1
n;s�

�
wk� � zk�

�
Zm

0
�

�
I��1

�
�

�+1� h

�
I�
;

where the subscript I� on the form �g�
�
n;s� (wk� � zk� )Z

m0
� indicates that we are

composing with the component of �g��n;s� (wk� � zk� )Z
m0
� corresponding to the



THE CORONA THEOREM IN Cn 35

multi-index I��1, i.e. the component with the di¤erential dzI��1 . The notation
will become exceedingly unwieldy if we attempt to identify the di¤erent variables
associated with each of the iterated integrals, so we refrain from this in general. The
considerations of the previous paragraph now show that we must have fk1g = I1,
fk2g [ I1 = I2 and more generally

fk�g [ I��1 = I� ; 1 < � � �:

In particular we see that the associated rogue indices k1; k2; :::k� are all distinct
and that as sets

fk1; k2; :::; k�g = I�:

If we denote by � the variable in the �nal form 
�+1� h, we can thus write each

rogue factor (wk� � zk� ) as

(wk� � zk� ) =
�
wk� � �k�

�
�
�
zk� � �k�

�
;

and since k� 2 I�, there is a factor of the form @
@�k�

@j�jgi

@�
� in each summand of

the component
�

�+1� h

�
I�
of 
�+1� h. So we are able to associate the rogue factor

(wk� � zk� ) with derivatives of g as follows:

(8.6)

(�
wk� � �k�

� @

@�k�

)
@j�jgi

@�
�
�
(�
zk� � �k�

� @

@�k�

)
@jjgj

@�
 :

Thus it is indeed possible to

(1) apply the radial integration by parts in Corollary 3,
(2) then take absolute values and `2-norms inside all the integrals,
(3) and then apply the crucial inequalities in Proposition 4.

One of the di¢ culties remaining after this is that we are now left with additional
factors of the form p

4 (w; �)
1� jwj2

;

p
4 (z; �)
1� jzj2

that result from an application of (6.9) to the derivatives in (8.6). These factors
are still rogue in the sense that the variable pairs occurring in them, namely (w; �)
and (z; �), do not consist of consecutive variables in the iterated integrals of (8.4).
This is recti�ed by using the fact that d (w; z) =

p
4 (w; z) is a quasimetric, which

in turn follows from the identityp
4 (w; z) = j1� wzj j'z (w)j = � (w; z)

2
� (w; z) ;

where � (w; z) = j'z (w)j is the invariant pseudohyperbolic metric on the ball
(Corollary 1.22 in [36]) and where � (w; z) = j1� wzj

1
2 satis�es the triangle in-

equality on the ball (Proposition 5.1.2 in [24]). Using the quasi-subadditivity of
d (w; z) we can, with some care, redistribute appropriate factors back to the it-
erated integrals where they can be favourably estimated using Lemma 10. It is
simplest to illustrate this procedure in speci�c cases, so we defer further discussion
of this point until we treat in detail the cases � = 0; 1; 2 below. We again emphasize
that all of the above observations regarding rogue factors in (8.4) apply equally well

to the rogue factors in the other terms �`n;sq+1

�
Dm

0
qF�q+1

�
(z) in (8.3), as well as

to the boundary terms Sn;sq+1
�
DjF�q+1

�
(z) in (8.3).
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The other di¢ culty remaining is that in order to obtain a favourable estimate
using Lemma 10 for the iterated integrals resulting from the bullet items above, it

is necessary to generate additional powers of
�
1� jzj2

�
(we are using z as a generic

variable in the iterated integrals here). This is accomplished by applying the radial
integrations by parts in Corollary 3 to the previous iterated integral. Of course
such a possibility is impossible for the �rst of the iterated integrals, but there we
are only applying the radial derivative R thanks to the fact that our candidate
f from the Koszul complex is holomorphic. As a result, we see from (6.10) that�
1� jzj2

�
R, unlike D, generates positive powers of 1 � jzj2 even when acting on

4 (w; z). This procedure is also best illustrated in speci�c cases and will be treated
in the next subsection.
So ignoring these technical issues for the moment, the integrals that result

from taking absolute values and `2-norms inside (8.4) are now estimated using
Lemma 10 and Remark 7. Note that we only use scalar-valued Schur estimates
since all the integrals to which Lemma 10 and Remark 7 are applied have posi-
tive integrands. Here is the rough idea. Suppose that fT1; T2; :::; T�g is a collec-
tion of Charpentier solution operators and that for a sequence of large integers�
m0
1;m

00
1 ;m

0
2; ;m

00
2 :::;m

0
�+1;m

00
�+1

	
, we have the inequalities

(8.7) kTjFk��
p;m0

j
;m00

j
(Bn;`2) � Cj kFk��

p;m0
j+1

;m00
j+1

(Bn;`2) ; 1 � j � `+ 1;

for the class of smooth functions F that arise as TG for some Charpentier solution
operator T and some smoothG. Then we can estimate kT1 � T2 � ::: � T�
kB�

p;m(Bn;`2)
by

kT1 � T2 � ::: � T`
k��
p;m0

1;m
00
1
(Bn;`2)

� C1 kT2 � ::: � T`
k��
p;m0

2;m
00
2
(Bn;`2)

� C1C2 kT3 � ::: � T`
k��
p;m0

3;m
00
3
(Bn;`2)

� C1C2:::C` k
k��
p;m0

`+1
;m00

`+1
(Bn;`2) :

Finally we will show that if 
 is one of the forms 
q+1q in the Koszul complex, then

k
k��
p;m0

`+1
;m00

`+1
(Bn;`2) � k
k��p;m0

`+1
+m00

`+1
(Bn;`2) � Cn;�;p;� (g) khkB�

p;m(Bn)
;

and so altogether this proves that

kfkB�
p (Bn;`2)

� Cn;�;p;� (g) khkB�
p;m(Bn)

:

We now make some brief comments on how to obtain the inequalities in (8.7).
Complete details will be given in the cases � = 0; 1; 2 below, and the general case
0 � � � n is no di¤erent than these three cases. We note that from (3.9) the kernel
of C0;qn typically looks like a sum of terms

(8.8)
(1� wz)n�1�q

�
1� jwj2

�q
4 (w; z)n (zj � wj)

times a wedge product of di¤erentials in which the di¤erential dwj is missing. We
again emphasize that the rogue factor (zj � wj) cannot simply be estimated by
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jzj � wj j as the formula (3.4) shows thatp
4 (w; z) =

����Pz (z � w) +q1� jzj2Qz (z � w)����
can be much smaller than jz � wj. As we mentioned above, it is possible to exploit
the fact that any surviving term in the form 
�+1� must then involve the derivative
@
@wj

hitting a component of g. This permits us to absorb part of the complex
tangential component of z � w into the almost invariant derivative D which is
larger than the usual gradient in the complex tangential directions. This results in
a good estimate for the rogue factor (zj � wj) in (8.8) based on the smaller quantityp
4 (w; z). We have already integrated by parts to write (8.8) as (recall that the

factors zj � wj are already incorporated into Dmz � (w))Z
Bn

(1� wz)n�1�q
�
1� jwj2

�q
4 (w; z)n Dm� (w) dV (w) ;

plus boundary terms which we ignore for the moment. Then we use the three
crucial inequalities (6.9), (6.10) and (6.11);

��(zj � wj)Dmz;w
`+1` (w)
�� �

 p
4 (w; z)
1� jwj2

!m+1 ����Dm[
`+1` (w)

���� ;��D(z) 4 (w; z)
�� � C

�
1� jzj2

�
4 (w; z)

1
2 +4 (w; z) ;����1� jzj2�R(z) 4 (w; z)��� � C

�
1� jzj2

�
4 (w; z)

1
2 ;

���Dm
(z)

n
(1� wz)k

o��� � C j1� wzjk
 
1� jzj2

j1� wzj

!m
2

����1� jzj2�mRm(z) n(1� wz)ko��� � C j1� wzjk
 
1� jzj2

j1� wzj

!m
;

to help show that the resulting iterated kernels can be factored (after accounting
for all rogue factors zj � wj) into operators that satisfy the hypotheses of Lemma
10 or Remark 7 above.

De�nition 9. The expression [
`+1` denotes the form 
`+1` but with every occur-
rence of the derivative @

@wj
replaced by the derivative Dj.

Recall that each summand of 
`+1` includes a product of exactly ` distinct deriv-

atives @
@wj

applied to components of g. Thus the entries of Dm[
`+1` (w) consist of
m + ` derivatives distributed among components of g. Using the factorization of


`+1` in (5.4), we obtain the corresponding factorization for [
`+1` :

(8.9) 
10 ^
`̂

i=1

c
10 = � 1

`+ 1
[
`+1` ;

where 
10 =
�
gi
jgj2

�1
i=1

and c
10 = �Dgijgj2

�1
i=1

:

It is important for this purpose of using Lemma 10 and Remark 7 to �rst apply
the integration by parts Lemma 3 to temper the singularity due to negative powers
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of 4 (w; z), and to use the integration by parts Corollary 3 to infuse enough powers
of
�
1� jwj2

�
for use in the subsequent iterated integral.

Finally it follows from Lemma 7, Proposition 2 and Proposition 3 together with
the factorization (5.4) that
(8.10)�1� jzj2�� Xm[
�+1� h (z)


Lp(�n;`2)

� C kMgkm+�B�
p (Bn)!B�

p (Bn;`2)
khkB�

p (Bn)
:

We defer the proof of (8.10) until Subsubsection 8.1.1 when further calculations are
available.

Remark 8. At this point we observe from (8.1) that the exponent m+ � in (8.10)
is at most mn+n, and thus we may take � = mn+n. We leave it to the interested
reader to estimate the size of mn.

Taking into account all of the above, the conclusion is that with � = mn + n,

kfkB�
p (Bn;`2)

� Cn;�;p;� kMgk�B�
p (Bn)!B�

p (Bn;`2)
khkB�

p (Bn)
:

As the arguments described above are rather complicated we illustrate them by
considering the three cases � = 0; 1; 2 in complete detail in the next subsection
before proceeding to the general case.

8.1. Estimates in special cases. Here we prove the estimates (8.1) for � = 0; 1; 2.
Recall that

F0 = 
10h;

F1 = �gC0;0n;s1

2
1h;

F2 = �gC0;0n;s1�gC
0;1
n;s2


3
2h:

To obtain the estimate for F0 we use the multilinear inequality in Proposition 3.
In estimating F1 we confront for the �rst time a rogue factor zk � wk that we

must associate with a derivative @
@wk

occurring in each surviving summand of the
kth component of the form 
21. After applying the integration by parts formula
in 5 as in [20], we use the crucial inequalities in Proposition 4 and the Schur type
operator estimates in Lemma 10 with c = 0 to obtain the desired estimates. Finally
we must also deal with the boundary terms in the integration by parts formula
for ameliorated Charpentier kernels in Lemma 5. This requires using the radial
derivative integration by parts formula in Corollary 3 as in [20], and also requires
dealing with the corresponding rogue factors.
The �nal trick in the proof arises in estimating F2. This time there are two

iterated integrals each with a rogue factor. The problematic rogue factor zk � �k
occurs in the �rst of the iterated integrals since there is no derivative @

@�k
hitting the

second iterated integral with which to associate the rogue factor zk � �k. Instead we
decompose the factor as zk � wk � �k � wk and associate each of these summands
with a derivative @

@wk
already occurring in 
32. Then we can apply the crucial

inequality (6.9) and use the fact that
p
4 (w; z) is a quasimetric to redistribute

the estimates appropriately. As a result of this redistribution we are forced to
use Lemma 10 with c = �1 this time as well as c = 0. In applying the Schur type
estimates in Lemma 10 to the second iterated integral, we require a su¢ ciently large
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power of
�
1� jwj2

�
to be carried over from the �rst iterated integral. To ensure

this we again use the radial derivative integration by parts formula in Corollary 3.
The estimate (8.1) for general � involves no new ideas. There are now � rogue

terms and we need to apply Lemma 10 with c = 0;�1; :::;� (�� 1). With this
noted the arguments needed are those used above in the cases � = 0; 1; 2.

8.1.1. The estimate for F0. We begin with the estimateF0
B�
p;m(Bn;`2)

=

10hB�

p;m(Bn;`2)

� Cn;�;p;� kMgkmB�
p (Bn)!B�

p (Bn;`2)
khkB�

p;m(Bn)
;

for m+ � > n
p . However, for later use we prove instead the more general estimate

with X in place of R, except that m must then be chosen twice as large:Z
Bn

����1� jzj2�� Xm
�

10h

�
(z)
���p d�n (z)(8.11)

� Cn;�;p;� kMgkmpB�
p (Bn)!B�

p (Bn;`2)
khkpB�

p (Bn)
;

for m > 2
�
n
p � �

�
. Recall that Xm is the di¤erential operator of order m given in

De�nition 7 that is adapted to the complex geometry of the unit ball Bn. It will
be in estimating iterated Charpentier integrals below that the derivatives Rm and
Dm will arise from integration by parts in the previous iterated integral, and this
will require estimates using Xm.
By Leibniz�rule for Xm we have

Xm
�

10h

�
=

mX
k=0

ck
�
X k
10

� �
Xm�kh

�
;

and

(8.12) X k
�

10
�
= X k

 
g

jgj2

!
=

kX
`=0

c`
�
X k�`g

� �
X ` jgj�2

�
:

It su¢ ces to proveZ
Bn

������1� jzj2��
 

mX
k=0

kX
`=0

ckc`
�
X k�`g

� �
X ` jgj�2

� �
Xm�kh

�!�����
p

d�n

� Cn;�;p;� kMgkmpB�
p (Bn)!B�

p (Bn;`2)
khkpB�

p (Bn)
;

and hence Z
Bn

�
1� jzj2

�p� ��X k�`g
��p ���X ` jgj�2

���p ��Xm�kh
��p d�n(8.13)

� Cn;�;p;� kMgkmpB�
p (Bn)!B�

p (Bn;`2)
khkpB�

p (Bn)
;

for each �xed 0 � ` � k � m.
Now we can pro�tably estimate both

��Xm�kh
�� and ��X k�`g

�� as they are, but we
must be more careful with

���X ` jgj�2
���. In the case ` = 1, we assume for convenience
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that X annihilates gi (if not it will annihilate gi unless X = I) and obtain,

���X jgj�2���2 =

������ jgj�4
1X
i=1

giX gi

�����
2

� jgj�8
 1X
i=1

jgij2
! 1X

i=1

jX gij2
!
� jgj�6

1X
i=1

jX gij2 :

Similarly when ` = 2,

���X 2 jgj�2
���2 =

������� jgj�4
1X
i=1

giX 2gi + 2 jgj�6
X
i 6=j

(giX gi) (gjX gj)

������
2

� 2 jgj�6
1X
i=1

��X 2gi
��2 + 4 jgj�8 1X

i=1

jX gij2
!2

;

and the general case is���X ` jgj�2
���2(8.14)

� C` jgj�6
1X
i=1

��X `gi
��2 + C`�1 jgj�8 1X

i=1

��X `�1gi
��2! 1X

i=1

jX gij2
!

+:::+ C0 jgj�4�2`
 1X
i=1

jX gij2
!`

=
X

1��1��2�:::��M :�1+�2+:::+�M=`
c� jgj�4�2`

MY
m=1

 1X
i=1

jX�mgij2
!
:

We can ignore the powers of jgj since jgj is bounded above and below by Lemma
8 and the hypotheses of Theorem 2. Fixing � we see that the left side of (8.13) is
thus at most

Cn;�;p;�

Z
Bn

�
1� jzj2

�p� ��X k�`g
��p ��Ym�kh��p

0@ MY
j=1

jX�jgjp
1A d�n:

Since
��X k�`g

��2 =P1
i=1

��X k�`gi
��2 and k � ` could vanish (unlike the exponents �`

which are positive), we see that altogether after renumbering, it su¢ ces to proveZ
Bn

�
1� jzj2

�p�
jY�1hjp jY�2gjp ::: jY�M gjp d�n(8.15)

� Cn;�;p;� kMgkMp
B�
p (Bn)!B�

p (Bn;`2)
khkpB�

p (Bn)

for each �xed � = (�1; �2; :::; �M ) with M � 2, j�j = m and at most one of
�2; :::; �M is zero. We have used here that

��Dg�� = jDgj. Now Proposition 3 yields
(8.15) for each 0 � k � m and j�j = m � k. Summing these estimates completes
the proof of (8.11).
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We can now prove the more general inequality (8.10). Indeed, using the factor-

ization (5.4) of [
�+1� together with the Leibniz formula gives

Xm

�
[
�+1� h

�
= Xm

�

10 ^

�c
10�� h�
=

X
�2Z�+2+ :j�j=m

�
X�0
10

�
^

�̂

j=1

�
X�jc
10� (X��+1h)

=
X

�2Z�+2+ :j�j=m

8<:�X�0
10
�
^

�̂

j=1

�
X�j+1
10

�9=; (X��+1h) ;

where we have used that c
10 already has an X derivative in each summand, and

so X�jc
10 can be written as X�j+1
10. Now use (8.12) and (8.14) to see that����Xm

�
[
�+1� h

����� is controlled by a tensor product of at most m + � factors, and

then apply Proposition 3 as above to complete the proof of (8.10).

8.1.2. The estimate for F1. The estimate in (8.1) with � = 1 will follow from (8.10)
and the estimate�1� jzj2�� Ym1

�
�gC0;0n;s
21h

�p
Lp(�n)

(8.16)

� C

Z
Bn

����1� jzj2�� Xm2

�c
21h� (z)���p d�n (z) ;
where as in De�nition 9, we de�ne c
21 to be 
21 with @ replaced by D throughout:

c
21 = NX
j;k=1

fgkDgj � gjDgkg
jgj4

ej ^ ek;

and where Dh =
Pn

k=1 (Dkh) dzk and Dk is the kth component of D. We are using
here the following observation regarding the interior product 
21hydwk:

For each summand of 
21hydwk, there is a unique 1 � i � N so that(8.17)
@gi
@wk

occurs as a factor in the summand.

We rewrite (8.16) as�1� jzj2��Rm00
1Dm0

1
�
�gC0;0n;s
21h

�p
Lp(�n)

(8.18)

� C

Z
Bn

����1� jzj2��Rm00
2Dm0

2

�c
21h� (z)���p d�n (z) ;
where Rm =

�
1� jzj2

�m �
Rk
�m
k=0

as in (8.2). As mentioned above, we only need

to prove the case m00
1 = 0 since (8.1) only requires that we estimate

F1
B�
p;m(Bn)

.

However, when considering the estimate for F2 in (8.1) we will no longer have the
luxury of using the norm k�kB�

p;m(Bn)
in the second iterated integral occuring there,

and so we will consider the more general case now in preparation for what comes
later. As we will see however, it is necessary to choose m0

1 su¢ ciently large in order
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to obtain (8.18). It is useful to recall that the operator
�
1� jzj2

�
R is "smaller"

than D in the sense that

D =
�
1� jzj2

�
Pzr+

q
1� jzj2Qzr;�

1� jzj2
�
R =

�
1� jzj2

�
Pzr:

To prove (8.18) we will ignore the contraction �g since if derivatives hit g in the
contraction, the estimates are similar if not easier. Note also that j�gF j � jgj jF j
for the contraction �gF of any tensor F .
We will also initially suppose that m00

1 = 0 and later take m
00
1 su¢ ciently large.

Now we apply Lemma 5 to C0;0n;s
21h and obtain

C0;0n;s
21h (z) = c0C0;0n;s
�
Dm

0
2
21h

�
(z) + boundary terms(8.19)

=

Z
Bn
�0n;s (w; z)D

m0
2
�

21h

�
dV (w)

+ boundary terms:

A typical term above looks like

(8.20)
Z
Bn

 
1� jwj2

1� wz

!s�n
(1� wz)n�1

4 (w; z)n Dm
0
2
�

21h

�
dV (w)

where we are discarding the sum of (balanced) factors
�
(1�jwj2)(1�jzj2)

j1�wzj2

�j
for 1 �

j � n� 1 in Lemma 5 that turn out to only help with the estimates. This can be
seen from (6.11) and its trivial counterpart����Dm

(z)

��
1� jzj2

�k�����+ �����1� jzj2�mRm(z)��1� jzj2�k����� � C
�
1� jzj2

�k
:

Recall from the general discussion above that in the integral (8.20) there are rogue

factors zk � wk in D
m0
2
�

21h

�
(w) that must be associated with a @

@wk
derivative

that hits some factor of each summand in the kth component 
21ydwk of 
21 �
fgi@gj � gj@gig. Thus we can apply (6.9) to the components of 
21h (z) to obtain���Dm0

2
21h (z)
���(8.21)

�

������
nX
k=1

nX
j�j=m0

2

(wk � zk) (w � z)�
@m

0
2

@w�
�

21hydwk

�������
� C

 p
4 (w; z)
1� jwj2

!m0
2+1 ���Dm0

2

�c
21h� (w)��� :
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Thus we get �
1� jzj2

�� ���Dm0
1C0;0n;s
21h (z)

���(8.22)

�
Z
Bn

�
1� jzj2

�� �������Dm0
1

(z)

8><>:
�
1� jwj2

�s�n
(1� wz)n�1

(1� wz)s�n 4 (w; z)n

9>=>;
�������

�
 p

4 (w; z)
1� jwj2

!m0
2+1 ���Dm0

2

�c
21h� (w)��� dV (w)
� Ssm0

1;m
0
2
f (z) ;

where

(8.23) f (w) =
�
1� jwj2

�� ���Dm0
2

�c
21h� (w)��� :
Now we iterate the estimate (6.10),��D(z) 4 (w; z)

�� � C
�
1� jzj2

�
4 (w; z)

1
2 +4 (w; z) ;

to obtain �������Dm0
1

(z)

8><>:
�
1� jwj2

�s�n
(1� wz)n�1

(1� wz)s�n 4 (w; z)n

9>=>;
�������(8.24)

�

�
1� jzj2

�m0
1
�
1� jwj2

�s�n
4 (w; z)

m0
1
2

j1� wzjs�2n+1 4 (w; z)n+m
0
1

+:::+

�
1� jwj2

�s�n
j1� wzjs�2n+1 4 (w; z)n

+OK;

where the terms in OK are obtained when some of the derivatives D hit the factor
1

(1�wz)s�n or factors D4 (w; z) already in the numerator. Leaving the OK terms
for later, we combine all the estimates above to get that if we plug the �rst term
on the right in (8.24) into the left side of (8.18), then the result is dominated by

Z
Bn

�
1� jzj2

�m0
1+�

�
1� jwj2

�s�n�m0
2�1�� 4 (w; z)

m0
1+m

0
2+1

2

j1� wzjs�2n+1 4 (w; z)n+m
0
1

f (w) dV (w)

=

Z
Bn

�
1� jzj2

�m0
1+�

�
1� jwj2

�s�n�1�m0
2��

j1� wzjs�2n+1
p
4 (w; z)

m0
2�m

0
1�2n+1

f (w) dV (w) :

Now for convenience choose m0
2 = m0

1 + 2n � 1 so that the factor of
p
4 (w; z)

disappears. We then get
(8.25)�
1� jzj2

�� ���Dm0
1C0;0n;s
21h (z)

��� � Z
Bn

�
1� jzj2

�m0
1+�

�
1� jwj2

�s�3n�m0
1��

j1� wzjs�2n+1
f (w) dV (w) :
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Lemma 10 shows that the operator

Ta;b;0f (z) =

Z
Bn

�
1� jzj2

�a �
1� jwj2

�b
j1� wzjn+1+a+b

f (w) dV (w)

is bounded on Lp
�
Bn;

�
1� jwj2

�t
dV (w)

�
if and only if

�pa < t+ 1 < p (b+ 1) :

We apply this lemma with t = �n�1, a = m0
1+� and b = s�3n�m0

1��. Note that
the sum of the exponents in the numerator and denominator of (8.25) are equal if we

write the integral in terms of invariant measure d�n (w) =
�
1� jwj2

��n�1
dV (w).

We conclude that Ssm0
1;m

0
2
is bounded on Lp (d�n) provided T is, and that this latter

happens if and only if

�p (m0
1 + �) < �n < p (s� 3n+ 1�m0

1 � �) :
This requires m0

1 + � >
n
p and s > 3n� 1 +m

0
1 + � � n

p .

Remark 9. Suppose instead that we choose m0
2 above to be a positive integer sat-

isfying c = m0
2 �m0

1 � 2n+ 1 > �2n. Then we would be dealing with the operator
Ta;b;c where a = m0

1 + � and

b = s� n� 1�m0
2 � � = s� 3n� c�m0

1 � �:
By Lemma 10, Ta;b;c is bounded on Lp (d�n) if and only if

�p (m0
1 + �) < �n < p (s� 3n+ 1� c�m0

1 � �) ;
i.e. m0

1 + � > n
p and s > c+ 3n� 1 +m0

1 + � � n
p . Thus we can use any value of

c > �2n provided we choose m0
2 � m0

1 and s large enough.

Now we turn to the second displayed term on the right side of (8.24) which leads
to the operator Ta;b;0 with a = �, b = s� 3n� �. This time we will not in general
have the required boundedness condition � > n

p . It is for this reason that we must
return to (8.18) and insist that m00

1 be chosen su¢ ciently large that m
00
1 + � > n

p .
For convenience we let m0

1 = 0 for now. Indeed, it follows from the second line
in the crucial inequality (6.10) that the second displayed term on the right side of
(8.24) is �

1� jzj2
�m00

1
�
1� jwj2

�s�n
4 (w; z)

m00
1
2

j1� wzjs�2n+1 4 (w; z)n+m
00
1

+ better terms:

Using this expression and choosing m0
2 = m00

1 + 2n� 1 so that the term
p
4 (w; z)

disappears from the ensuing integral, we obtain the following analogue of (8.25):�
1� jzj2

�� �
1� jzj2

�m00
1
���Rm00

1 C0;0n;s
21h (z)
���

�
Z
Bn

�
1� jzj2

�m00
1+�

�
1� jwj2

�s�3n�m00
1��

j1� wzjs�2n+1
f (w) dV (w) :

The corresponding operator Ta;b;0 has a = m00
1 + � and b = s � 3n �m00

1 � � and
is bounded on Lp (�n) when �p (m00

1 + �) < �n < p (s� 3n+ 1�m00
1 � �). Thus
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there is no unnecessary restriction on � if m00
1 and s are chosen appropriately large.

Note that the only di¤erence between this operator Ta;b;0 and the previous one is
that m0

1 has been replaced by m
00
1 .

The above arguments are easily modi�ed to handle the general case of (8.18)
provided m00

1 + � >
n
p and s is chosen su¢ ciently large.

Now we return to consider the OK terms in (8.24). For this we use the inequality
(6.11): ���Dm

(z)

n
(1� wz)k

o��� � C j1� wzjk
 
1� jzj2

j1� wzj

!m
2

:

We ignore the derivative
�
1� jzj2

�
R as the second line in (6.11) shows that it

satis�es a better estimate. We also write m1 and m2 in place of m0
1 and m

0
2 now.

As a result, one of the extremal OK terms in (8.24) is�
1� jzj2

�m1
2
�
1� jwj2

�s�n
j1� wzjs�2n+1+

m1
2 4 (w; z)n

;

which when combined with the other estimates leads to the integral operator

Z
Bn

�
1� jzj2

�m1
2 +� �

1� jwj2
�s�n�1�m2��

j1� wzjs�2n+1+
m1
2

p
4 (w; z)

m2�2n�1
f (w) dV (w) :

This is Ta;b;c with a = m1

2 + �, b = s� n� 1�m2 � � and c = m2 � 2n� 1. This
is bounded on Lp (�n) provided m2 � 2 and

�p
�m1

2
+ �

�
< �n < p (s� n�m2 � �) ;

i.e. m1

2 + � >
n
p and s > n+m2+ �� n

p . The intermediate OK terms are handled
similarly. Note that the crux of the matter is that all of the positive operators have
the form Ta;b;c, and moreover, if s and the m0s are chosen appropriately large, then
Ta;b;c is bounded on Lp (�n).

8.1.3. Boundary terms for F1. Now we turn to estimating the boundary terms in
(8.19). A typical term is

(8.26) Sn;s
�
Dk
�

21h

�� �
Z
�
(z) =

Z
Bn

�
1� jwj2

�s�n�1
(1� wz)s Dk

�

21h

� �
Z
�
(w) dV (w) ;

with 0 � k � m� 1 upon appealing to Lemma 5.
We now apply the operator

�
1� jzj2

�m1+�

Rm1 to the integral in the right side

of (8.26) and using Proposition 4 we obtain that the absolute value of the result is
dominated byZ

Bn

�
1� jzj2

�m1+� �
1� jwj2

�s�n�1
j1� wzjs+m1

 p
4 (w; z)
1� jwj2

!k+1 ���Dk
�c
21h���� dV (w)

=

Z
Bn

�
1� jzj2

�m1+� �
1� jwj2

�s�n�2�k��p
4 (w; z)k+1

j1� wzjs+m1

����1� jwj2��Dk
�c
21h� (w)��� dV (w) :
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The operator in question here is Ta;b;c with a = m1 + �, b = s� n� 2� k � � and
c = k + 1 since

a+ b+ c+ n+ 1 = s+m1:

Lemma 10 applies to prove the desired boundedness on Lp (�n) provided m1+� >
n
p .

However, if k fails to satisfy k + 1 > 2
�
n
p � �

�
, then the derivative Dk+1


cannot be used to control the norm k
kB�
p (Bn)

. To compensate for a small k,

we must then apply Corollary 3 to the right side of (8.26) (which for �xed z is
in C

�
Bn
�
\ C1 (Bn)) before di¤erentiating and taking absolute values inside the

integral. This then leads to operators of the form

�
1� jzj2

�m1+�

Rm1

8><>:
Z
Bn

�
1� jwj2

�s�n�1
(1� wz)s

�
�
1� jwj2

�m
Rm

h
Dk
�

21h

�
(w)
i
dV (w)

o
;

which are dominated byZ
Bn

�
1� jzj2

�m1+� �
1� jwj2

�s�n�1
j1� wzjs+m1

�
 p

4 (w; z)
1� jwj2

!k+1 ���RmD
k
�c
21h� (w)��� dV (w) ;

which is Z
Bn

�
1� jzj2

�m1+� �
1� jwj2

�s�n�2�k��p
4 (w; z)k+1

j1� wzjs+m1

�
����1� jwj2��RmD

k
�c
21h� (w)��� dV (w) :

This latter operator is Ta;b;cH (z) with

a = m1 + �; b = s� n� 2� k � �; c = k + 1

and H (w) =
����1� jwj2�� Rmb0Dk

�c
21h� (w)���. Note that for m > 2
�
n
p � �

�
we do

indeed now have kHkLp(�n) �
c
21h

B�
p (Bn)

. The operator here is the same as that

above and so Lemma 10 applies to prove the desired boundedness on Lp (�n).

8.1.4. The estimate for F2. Our next task is to obtain the estimate (8.1) for � = 2,
and for this we will show thatZ

Bn

�����1� jzj2�m1+�

Rm1�gC0;0n;s1�gC
0;1
n;s2


3
2

����p d�n (z)(8.27)

� C

Z
Bn

�����1� jzj2�� �1� jzj2�m00
3

Rm
00
3D

m0
3

�c
32h� (z)����p d�n (z) :
Unlike the previous argument we will have to deal with a rogue term

�
z2 � �2

�
this

time where there is no derivative @
@�2

to associate to the factor
�
z2 � �2

�
. Again we
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ignore the contractions �g. Then we use Lemma 5 to perform integration by parts
m0
2 times in the �rst iterated integral and m

0
3 times in the second iterated integral.

We also use Corollary 3 to perform integration by parts in the radial derivative
m00
2 times in the �rst iterated integral (for �xed z, C0;1n;s2


3
2 2 C

�
Bn
�
\ C1 (Bn)

by standard estimates [13]), so that the additional factor
�
1� j�j2

�m00
2

can be used

crucially in the second iterated integral, and also m00
3 times in the second iterated

integral for use in acting on 
32.
Recall from Lemma 5 that

C0;qn;s� (z) = boundary terms (depending on m)

+

qX
`=0

Z
Bn

(1� wz)n�1�`
�
1� jwj2

�`
4 (w; z)n

 
1� jwj2

1� wz

!s�n

�

0B@n�`�1X
j=0

cj;`;n;s

24
�
1� jwj2

��
1� jzj2

�
j1� wzj2

35j
1CADm� (z) :

Recall also that that Dm already has the rogue terms built in, as can be seen from
(4.6). Now we use the right side above with q = ` = j = 0 to substitute for C0;0n;s1 ,
and the right side above with q = ` = 1 and j = 0 to substitute for C0;1n;s2 . Then a
typical part of the resulting kernel of the operator C0;0n;s1C

0;1
n;s2


3
2 (z) isZ

Bn

(1� �z)n�1

4 (�; z)n

 
1� j�j2

1� �z

!s1�n �
z2 � �2

�
(8.28)

�
�
1� j�j2

�m0
2

Rm
0
2Dm

00
2

Z
Bn

�
1� w�

�n�2 �
1� jwj2

�
4 (w; �)n

 
1� jwj2

1� w�

!s2�n
�
�
w1 � �1

� �
1� jwj2

�m0
3

Rm
0
3Dm

00
3
�

32h

�
(w) dV (w) dV (�) ;

where we have arbitrarily chosen
�
z2 � �2

�
and

�
w1 � �1

�
as the rogue factors.

Remark 10. It is important to note that the di¤erential operators Dm2

� are con-
jugate in the variable z and hence vanish on the kernels of the boundary terms

Sn;s
�
Dk
32h

�
(z) in the integration by parts formula (4.7) associated to the Char-

pentier solution operator C0;1n;s2 since these kernels are holomorphic. As a result the
operator Dm

0
2 hits only the factor Dk
32h and a typical term is

(zi � �i)
@

@zi

n
(wi � zi)
32h

o
= �(zi � �i)
32h;

where the derivative @
@wi

must occur in each surviving term in 
32h, and this term
which is then handled like the rogue terms.

Now we recall the factorization (5.4) with ` = 2,


32 = �4
10 ^ f
10 ^ f
10;
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and that 
32 (w) must have both derivatives
@g
@w1

and @g
@w2

occurring in it, one sur-

viving in each of the factors f
10, along with other harmless powers of g that we
ignore. Thus we may replace f
10 ^ f
10 with @

@w2

10 ^ @

@w1

10. If we use

z2 � �2 = (z2 � w2)�
�
�2 � w2

�
;

we can write the above iterated integral as

Z
Bn

(1� �z)n�1

4 (�; z)n

 
1� j�j2

1� �z

!s1�n

�
Z
Bn

�
1� j�j2

�m00
2

Rm
00
2Dm
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2

8<:
�
1� w�

�n�2 �
1� jwj2

�
4 (w; �)n

 
1� jwj2

1� w�

!s2�n9=;
�
��
1� jwj2

�m00
3

Rm
00
3
�
�2 � w2

� @

@w2
Dm

0
3�`
10

�
^
��
1� jwj2

�m00
3

Rm
00
3
�
�1 � w1

� @

@w1
D`
10

�
dV (w) dV (�)

minus

Z
Bn

(1� �z)n�1

4 (�; z)n

 
1� j�j2

1� �z

!s1�n

�
Z
Bn

�
1� j�j2

�m00
2

Rm
00
2Dm

0
2

8<:
�
1� w�

�n�2 �
1� jwj2

�
4 (w; �)n

 
1� jwj2

1� w�

!s2�n9=;
�
��
1� jwj2

�m00
3

Rm
00
3 (z2 � w2)

@

@w2
Dm

0
3�`
10

�
^
��
1� jwj2

�m00
3

Rm
00
3
�
�1 � w1

� @

@w1
D`
10

�
dV (w) dV (�) ;

where we have temporarily ignored the wedge products with terms that do not
include derivatives of g, as these terms are bounded and so harmless.

Now we apply
�
1� jzj2

�� �
1� jzj2

�m00
1

Rm
00
1Dm0

1 to these operators. Using the

crucial inequalities in Proposition 4 together with the factorization (8.9) with ` = 2,

c
32 = �4
10 ^ c
10 ^ c
10;
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the result of this application on the �rst integral is then dominated by

Z
Bn

�
1� jzj2

��
j1� �zjn�1

4 (�; z)m
0
1+m

00
1+n

h�
1� jzj2

�p
4 (�; z)

im00
1

(8.29)

�
�h�

1� jzj2
�p

4 (�; z)
im0

1

+4 (�; z)m
0
1

� �����1� j�j21� �z

�����
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�
Z
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�
1� j�j2

�m00
2 ��1� w���n�2 �1� jwj2�

4 (w; �)m
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�
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1� j�j2

�p
4 (w; �)

im00
2

�h�
1� j�j2

�p
4 (w; �)

im0
2

+4 (w; �)m
0
2

�

�
�����1� jwj21� w�

�����
s2�n p

4 (w; �)
1� jwj2

!m0
3
 p

4 (w; �)
1� jwj2

!2
�
�����1� jwj2�m00

3

Rm
00
3Dm0

3

�c
32h� (w)���� dV (w) dV (�) ;
and the result of this application on the second integral is dominated by

Z
Bn

�
1� jzj2
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j1� �zjn�1

4 (�; z)m
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1+m

00
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1� jzj2

�p
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(8.30)
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�h�
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1
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�
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�m00
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4 (w; �)m
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!m0
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�
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1� j�j2

�p
4 (w; �)

im00
2
nh�

1� j�j2
�p

4 (w; �)
im
+4 (w; �)m

0
2

o
�
�����1� jwj21� w�

�����
s2�n p

4 (w; �)
1� jwj2

!m0
3
 p

4 (w; z)
1� jwj2

! p
4 (w; �)
1� jwj2

!

�
�����1� jwj2�m00

3

Rm
00
3Dm0

3

�c
32h� (w)���� dV (w) dV (�) ;
The only di¤erence between these two iterated integrals is that one of the factorsp
4(w;�)
1�jwj2 that occur in the �rst is replaced by the factor

p
4(w;z)
1�jwj2 in the second.

Note that the ignored wedge products have now been reinstated in c
32.
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Now for the iterated integral in (8.29), we can separate it into the composition
of two operators of the form treated previously. One factor is the operator

Z
Bn

�
1� jzj2

��
j1� �zjn�1

4 (�; z)m
0
1+m

00
1+n

h�
1� jzj2

�p
4 (�; z)
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1

(8.31)
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+4 (�; z)m
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1� j�j2

!m0
2
�����1� j�j21� �z

�����
s1�n �

1� j�j2
���

F (�) dV (�) ;

and the other factor is the operator

F (�) =

Z
Bn

�
1� j�j2

�� ��1� w���n�2 �1� jwj2�
4 (w; �)m

0
2+m

00
2+n

h�
1� j�j2

�p
4 (w; �)

im00
2

(8.32)

�
�h�

1� j�j2
�p

4 (w; �)
im0

2

+4 (w; �)m
0
2

� �����1� jwj21� w�

�����
s2�n

�
 p

4 (w; �)
1� jwj2

!m0
3+2 �

1� jwj2
���

f (w) dV (w) ;

where f (w) =
�
1� jwj2

�� �����1� jwj2�m00
3

Rm
00
3Dm0

3

�c
32h� (w)����. We now show how
Lemma 10 applies to obtain the appropriate boundedness.
We will in fact compare the corresponding kernels to that in (8.25). When we

consider the summand 4 (�; z)m
0
1 in the middle line of (8.31), the �rst operator has

kernel

�
1� jzj2

��+m00
1
�
1� j�j2

�s1�n�m0
2��

j1� �zjs1�2n+1 4 (�; z)m
0
1+m

00
1+n�

m00
1 +2m

0
1+m

0
2

2

(8.33)

=

�
1� jzj2

��+m00
1
�
1� j�j2

�s1�3n�m00
1��

j1� �zjs1�2n+1
;

if we choosem0
2 = m00

1 + 2n so that the factor 4 (�; z) disappears. This is exactly
the same as the kernel of the operator in (8.25) in the previous alternative argu-
ment but with m00

1 in place of m
0
1 there. When we consider instead the summandh�

1� jzj2
�p

4 (�; z)
im0

1

in the middle line of (8.31), we obtain the kernel in (8.33)

but with m00
1 +m

0
1 in place of m

00
1 .
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When we consider the summand 4 (w; �)m
0
2 in the middle line of (8.32), the

second operator has kernel�
1� j�j2

�m00
2+� �

1� jwj2
�1+s2�n�m0

3�2��

��1� w���s2�2n+2 4 (w; �)m0
2+m

00
2+n�

m00
2 +2m

0
2+m

0
3+2

2

(8.34)

=

�
1� j�j2

�m00
2+� �

1� jwj2
�s2�3n+1�m00

2����1� w���s2�2n+2 :

if we choose m0
3 = m00

2 + 2n � 2, and this is also bounded on Lp (d�n) for m00
2 and

s2 su¢ ciently large.

Note: It is here in choosing m00
2 large that we are using the full force of Corollary

3 to perform integration by parts in the radial derivative m00
2 times in the �rst

iterated integral.

When we consider instead the summand
h�
1� jzj2

�p
4 (�; z)

im0
2

in the middle

line of (8.32), we obtain the kernel in (8.34) but with m00
2 +m

0
2 in place of m

00
2 .

To handle the iterated integral in (8.30) we must �rst deal with the rogue factorp
4 (w; z) whose variable pair (w; z) doesn�t match that of either of the denomi-

nators 4 (�; z) or 4 (w; �). For this we use the fact thatp
4 (w; z) = j1� wzj j'z (w)j = � (w; z)

2
� (w; z) ;

where � (w; z) = j'z (w)j is the invariant pseudohyperbolic metric on the ball
(Corollary 1.22 in [36]) and where � (w; z) = j1� wzj

1
2 satis�es the triangle in-

equality on the ball (Proposition 5.1.2 in [24]). Thus we have

� (w; z) � � (�; z) + � (w; �) ;

� (w; z) � � (�; z) + � (w; �) ;

and so alsop
4 (w; z) � 2

h
� (�; z)

2
+ � (w; �)

2
i �
j'z (�)j+

��'� (w)���
= 2

 
1 +

��1� w���
j1� �zj

!p
4 (�; z) + 2

 
1 +

j1� �zj��1� w���
!p

4 (w; �):

Thus we can write p
4 (w; z)
1� jwj2

(8.35)

. 1� j�j2

1� jwj2

p
4 (�; z)
1� j�j2

+

��1� w���
1� jwj2

1� j�j2

j1� �zj

p
4 (�; z)
1� j�j2

+

p
4 (w; �)
1� jwj2

+
j1� �zj
1� j�j2

1� j�j2��1� w���
p
4 (w; �)
1� jwj2

:

All of the terms on the right hand side of (8.35) are of an appropriate form to
distribute throughout the iterated integral, and again Lemma 10 applies to obtain
the appropriate boundedness.
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For example, the �nal two terms on the right side of (8.35) that involve
p
4(w;�)
1�jwj2

are handled in the same way as the operator in (8.29) by taking m0
3 = m00

2 +2n� 2
and m0

2 = m00
1 + 2n, and taking s1 and s2 large as required by the extra factors

j1��zj
1�j�j2

1�j�j2

j1�w�j . With these choices the �rst two terms on the right side of (8.35) that

involve
p
4(�;z)
1�j�j2 are then handled using Lemma 10 with c = �1 as follows.

If we substitute the �rst term 1�j�j2
1�jwj2

p
4(�;z)
1�j�j2 on the right in (8.35) for the factor

p
4(w;z)
1�jwj2 in (8.30) we get a composition of two operators as in (8.31) and (8.32) but

with the kernel in (8.31) multiplied by
p
4(�;z)
1�j�j2 and the kernel in (8.32) multiplied

by 1�j�j2
1�jwj2 and divided by

p
4(w;�)
1�jwj2 . If we consider the summand 4 (�; z)

m0
1 in the

middle line of (8.31), and with the choice m0
2 = m00

1 + 2n already made, the �rst
operator then has kernel

p
4 (�; z)
1� j�j2

�

�
1� jzj2

��+m00
1
�
1� j�j2

�s1�3n�m00
1��

j1� �zjs1�2n+1

=

�
1� jzj2

�m00
1+�

�
1� j�j2

�s1�m00
1�3n�1��p4 (�; z)

j1� �zjs1�2n+1
;

and hence is of the form Ta;b;c with

a = m00
1 + �;

b = s1 � 3n� 1�m00
1 � �;

c = 1;

since a+ b+ c+n+1 = s1�n� 1. Now we apply Lemma 10 to conclude that this
operator is bounded on Lp (�n) if and only if

�p (m00
1 + �) < �n < p (s1 � 3n�m00

1 � �) ;

i.e. m00
1 + � >

n
p and s1 > m00

1 + � + 3n� n
p .

If we consider the summand 4 (w; �)m
0
2 in the middle line of (8.32), and with

the choice m0
3 = m00

2 + 2n� 2 already made, the second operator has kernel

1� j�j2

1� jwj2
�
 p

4 (w; �)
1� jwj2

!�1
�

�
1� j�j2

�m00
2+� �

1� jwj2
�s2�3n+1�m00

2����1� w���s2�2n+2
=

�
1� j�j2

�m00
2+�+1 �

1� jwj2
�s2�3n+1�m00

2��p4 (w; �)�1��1� w���s2�2n+2 ;

and hence is of the form Ta;b;c with

a = m00
2 + � + 1;

b = s2 � 3n+ 1�m00
2 � �;

c = �1:
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This operator is bounded on Lp (�n) if and only if

�p (m00
2 + � + 1) < �n < p (s2 � 3n+ 2�m00

2 � �) ;

i.e. m00
2 + � >

n
p � 1 and s2 > m00

2 + � + 3n� 2� n
p .

If we now substitute the second term j1�w�j
1�jwj2

1�j�j2
j1��zj

p
4(�;z)
1�j�j2 on the right in (8.35)

for the factor
p
4(w;z)
1�jwj2 in (8.30) we similarly get a composition of two operators

that are each bounded on Lp (�n) for mi and si chosen large enough.

8.1.5. Boundary terms for F2. Now we must address in F2 the boundary terms that
arise in the integration by parts formula (4.7). Suppose the �rst operator C0;0n;s1 is
replaced by a boundary term, but not the second. We proceed by applying Corollary

3 to the boundary term. Since the di¤erential operator
�
1� jzj2

�m1+�

Rm1 hits

only the kernel of the boundary term, we can apply Remark 7 to the �rst iterated
integral and Lemma 10 to the second iterated integral in the manner indicated in
the above arguments. If the second operator C0;1n;s2 is replaced by a boundary term,
then as mentioned in Remark 10, the operators D

m2 hit only the factors Dm3 , and
this produces rogue terms that are handled as above. If the �rst operator C0;0n;s1 was
also replaced by a boundary term, then in addition we would have radial derivatives
Rm hitting the second boundary term. Since radial derivatives are holomorphic,
they hit only the holomorphic kernel and not the antiholomorphic factors in Dm3 ,
and so these terms can also be handled as above.

8.2. The estimates for general F�. In view of inequality (8.10), it su¢ ces to
establish the following inequality:

kF�kpB�
p (Bn)

(8.36)

=

Z
Bn

�����1� jzj2�m1+�

Rm1�gC0;0n;s1 :::�gC
0;��1
n;s� 
�+1� h

����p d�n (z)
� C�;n;p;�

Z
Bn

�����1� jzj2�� Xm�

�
[
�+1� h

�
(z)

����p d�n (z) :
Recall that the absolute value jF j of an element F in the exterior algebra is the
square root of the sum of the squares of the coe¢ cients of F in the standard basis.
The case � > 2 involves no new ideas, and is merely complicated by straight-

forward algebra. The reason is that the solution operator �gC0;0n;s1 :::�gC
0;��1
n;s� acts

separately in each entry of the form 
�+1� h, an element of the exterior algebra of
C1 
 Cn which we view as an alternating `2-tensor of (0; �) forms in Cn. These
operators decompose as a sum of simpler operators with the basic property that
their kernels are identical, except that the rogue factors in each kernel di¤er accord-
ing to the entry. Nevertheless, there are always exactly � distinct rogue factors in
each kernel and after splitting, the � rogue factors can be associated in one-to-one
fashion with each of the @

@wj
derivatives in the corresponding entry of


�+1� h = � (�+ 1)
 1X
k0=1

gk0

jgj2
ek0

!
^

�̂

i=1

 1X
ki=1

@gki

jgj2
eki

!
h:
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After applying the crucial inequalities, this e¤ectively results in replacing each
derivative @

@wj
by the derivative Dj , and consequently we can write the resulting

form as [
�+1� h.

This completes our proof of Theorem 2.

9. Appendix

Here in the appendix we collect proofs of formulas and modi�cations of argu-
ments already in the literature that would otherwise interrupt the main �ow of the
paper.

9.1. Charpentier�s solution kernels. Here we prove Theorem 4. In the compu-
tation of the Cauchy kernel Cn(w; z), we need to compute the full exterior derivative
of the section s(w; z). By de�nition one has,

si(w; z) = wi(1� wz)� zi(1� jwj2);
dsi(w; z) � (@w + @w + @z + @z)si(w; z)

Straightforward computations show that

@wsi (w; z) =
nX
j=1

(ziwj � wizj) dwj(9.1)

@wsi (w; z) = (1� wz) dwi +
nX
j=1

wjzidwj

@zsi (w; z) = �
nX
j=1

wiwjdzj �
�
1� jwj2

�
dzi

@zsi (w; z) = 0;

as well as

@wsk = (1� wz)dwk + zk@wjwj2

@zsk = �(1� jwj2)dzk � wk@z(wz):

We also have the following representations of sk, again following by simple com-
putation. Recall from Notation 2 that f1; 2; :::; ng = fi�g [ J� [ L� where J� and
L� are increasing multi-indices of lengths n� q�1 and q. We will use the following
with k = i� .

sk = (wk � zk) +
X
l 6=k

wl(wlzk � wkzl)

= (wk � zk) +
X
j2J�

wj(wjzk � wkzj) +
X
l2L�

wl(wlzk � wkzl)

= (wk � zk) + zk
X
j2J�

jwj j2 � wk
X
j2J�

wjzj + zk
X
l2L�

jwlj2 � wk
X
l2L�

wlzl:

Remark 11. Since A ^ A = 0 for any form, we have in particular that @w jwj2 ^
@w jwj2 = 0 and @z (wz) ^ @z (wz) = 0.
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Using this remark we next compute
V
j2J� @wsj . We identify J� as j1 < j2 <

� � � < jn�q�1 and de�ne a map {(jr) = r, namely { says where jr occurs in the
multi-index. We will frequently abuse notation and simply write {(j). Because
@wjwj2^@wjwj2 = 0 it is easy to conclude that we can not have any term in @wjwj2
of degree greater than one when expanding the wedge product of the @wsj .^
j2J�

@wsj =
^
j2J�

�
(1� wz)dwj + zj@wjwj2

	
= (1� wz)n�q�1

^
j2J�

dwj + (1� wz)n�q�2
X
j2J�

(�1){(j)�1zj@wjwj2 ^
^

j02J�nfjg

dwj0

= (1� wz)n�q�20@0@1� wz + X
j2J�

wjzj

1A ^
j2J�

dwj +
X
j2J�

(�1){(j)�1zj
X

k2L�[fi�g

wkdwk
^

j02J�nfjg

dwj0

1A :

The last line follows by direct computation using

@w jwj2 =
X
j2J�

wjdwj +
X

k2L�[fi�g

wkdwk:

A similar computation yields that

^
l2L�

@zsl

= (�1)q
^
l2L�

�
(1� jwj2)dzl + wl@z(wz)

	

= (�1)q
0@(1� jwj2)q ^

l2L�

dzl + (1� jwj2)q�1
X
l2L�

(�1){(l)�1wl@z(wz) ^
^

l02L�nflg

dzl0

1A
= (�1)q(1� jwj2)q�10@ 1� jwj2 + X

l2L�

jwlj2
! ^
l2L�

dzl +
X
l2L�

(�1){(l)�1wl
X

k2J�[fi�g

wkdzk
^

l02L�nflg

dzl0

1A :

An important remark at this point is that the multi-index J� or L� can only
appear in the �rst term of the last line above. The terms after the plus sign have
multi-indices that are related to J� and L� , but di¤er by one element. This fact
will play a role later.
Combining things, we see that^

j2J�

@wsj
^
l2L�

@zsj = (�1)q(1� wz)n�q�2(1� jwj2)q�1 (I� + II� + III� + IV�) ;

where

I� =

0@1� wz + X
j2J�

wjzj

1A 1� jwj2 + X
l2L�

jwlj2
! ^
j2J�

dwj
^
l2L�

dzl;

II� =

0@1� wz + X
j2J�

wjzj

1A ^
j2J�

dwj

0@X
l2L�

(�1){(l)�1wl
X

k2J�[fi�g

wkdzk
^

l02L�nflg

dzl0

1A ;
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III� =

0@X
j2J�

(�1){(j)�1zj
X

k2L�[fi�g

wkdwk
^

j02J�nfjg

dwj0

1A 1� jwj2 + X
l2L�

jwlj2
! ^
l2L�

dzl;

IV� =

0@X
j2J�

(�1){(j)�1zj
X

k2L�[fi�g

wkdwk
^

j02J�nfjg

dwj0

1A
�

0@X
l2L�

(�1){(l)�1wl
X

k2J�[fi�g

wkdzk
^

l02L�nflg

dzl0

1A :

We next introduce a little more notation to aid in the computation of the kernel
C0;qn (w; z). For 1 � k � n we let P qn(k) = f� 2 P qn : �(1) = i� = kg. This divides
the set P qn into n classes with

(n�1)!
(n�q�1)!q! elements. At this point, with the notation

introduced in Notation 2 and computations performed above, we have reduced the
calculation of C0;qn (w; z) to

C0;qn (w; z) =
1

4(w; z)n
X
�2P q

n

��si�
^
j2J�

@wsj
^
l2L�

@zsl ^ !(w)

=
(�1)q(1� wz)n�q�2(1� jwj2)q�1

4(w; z)n
nX
k=1

sk
X

�2P q
n(k)

��(I� + II� + III� + IV�)

=
(�1)q(1� wz)n�q�2(1� jwj2)q�1

4(w; z)n
nX
k=1

sk(I(k) + II(k) + III(k) + IV (k))

=
(�1)q(1� wz)n�q�2(1� jwj2)q�1

4(w; z)n
nX
k=1

skC(k):

Here we have de�ned C(k) � I(k) + II(k) + III(k) + IV (k), and

I(k) �
X

�2P q
n(k)

��I� II(k) �
X

�2P q
n(k)

��II�

III(k) �
X

�2P q
n(k)

��III� IV (k) �
X

�2P q
n(k)

��IV� :

For a �xed � 2 P qn we will compute the coe¢ cient of
V
j2J� dwj

V
l2L� dzl. We

will ignore the functional coe¢ cient in front of the sum since it only needs to
be taken into consideration at the �nal stage. We will show that for this �xed
� the sum on k of sk times I(k), II(k), III(k) and IV (k) can be replaced by
�� (1�wz)(1�jwj2)(wi� � zi� )

V
j2J� dwj

V
l2L� dzl. There will also be other terms

that appear in this expression that arise from multi-indices J and I that are not
disjoint. Using the computations below it can be seen that these terms actually
vanish and hence provide no contribution for C0;qn (w; z). Since � is an arbitrary
element of P qn this will then complete the computation of the kernel.
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Note that when k = i� then we have the following contributions. It is easy to
see that II(i� ) = III(i� ) = 0. It is also easy to see that

I(i� ) = ��

0@1� wz + X
j2J�

wjzj

1A 1� jwj2 + X
l2L�

jwlj2
! ^
j2J�

dwj
^
l2L�

dzl

= �� (1� wz)(1� jwj2)
^
j2J�

dwj
^
l2L�

dzl

+

0@(1� wz)X
l2L�

jwlj2 + (1� jwj2)
X
j2J�

wjzj +
X
l2L�

jwlj2
X
j2J�

wjzj

1A ^
j2J�

dwj
^
l2L�

dzl:

We also receive a contribution from term IV (i� ) is this case. This happens by
interchanging an index in the multi-index J� with one in L� . Namely, we consider
the permutations � : f1; : : : ; ng ! fi� ; (J� n fjg) [ flg; (L� n flg) [ fjgg: This
permutation contributes the term zlwlwjwj . After summing over all these possible
permutations, we arrive at the simpli�ed formula,

IV (i� ) = ���

0@X
j2J�

jwj j2
1A X

l2L�

wlzl

! ^
j2J�

dwj
^
l2L�

dzl:

Collecting all these terms, when k = i� we have that the coe¢ cient of ��
V
j2J� dwj

V
l2L� dzl

is:

C(i� ) = (1� wz)(1� jwj2) + (1� wz +
X
j2J�

wjzj)
X
l2L�

jwlj2

+(1� jwj2 +
X
l2L�

jwlj2)
X
j2J�

wjzj �
X
l2L�

jwlj2
X
j2J�

wjzj �
X
j2J�

jwj j2
X
l2L�

wlzl:

We next note that when k 6= i� it is still possible to have terms which contribute
to the coe¢ cient of

V
j2J� dwj

V
l2L� dzl. To see this we further split the conditions

on k into the situations where k 2 J� and k 2 L� . First, observe in this situation
that if k 6= i� then term I(k) can never contribute. So all contributions must come
from terms II(k), III(k), and IV (k). In these terms it is possible to obtain the
term

V
j2J� dwj

V
l2L� dzl by replacing some index in �. Namely, it is possible to

have � and � di¤er by one index from each other, or one by replacing an index with
i� .
Next, observe that when k 2 L� there exists a unique � 2 P qn(k) such that

J� = J� . Namely, we have that � : f1; : : : ; ng ! fk; J� ; (L� n fkg) [ i�g. Here, we
used that i� = k. Terms of this type will contribute to term II(k) but will give no
contribution to term III(k). However, they will give a contribution to term IV (k).
Similarly, when k 2 J� there will exist a unique � 2 P qn(k) with L� = L� .

This happens with � : f1; : : : ; ng ! fk; (J� n fkg) [ i� ; L�g. Here we used that
i� = k. Again, we get a contribution to term III(k) and IV (k) and they give no
contribution to the term II(k).
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Using these observations when k 2 L� we arrive at the following for I(k), II(k),
III(k), and IV (k):

I(k) = 0

II(k) = ���

0@1� wz + X
j2J�

wjzj

1Awi�wk
^
j2J�

dwj
^
l2L�

dzl

III(k) = 0

IV (k) = ��zi�wk

0@X
j2J�

jwj j2
1A ^
j2J�

dwj
^
l2L�

dzl:

Similarly, when k 2 J� we arrive at the following for I(k), II(k), III(k), and
IV (k):

I(k) = 0

II(k) = 0

III(k) = ���

 
1� jwj2 +

X
l2L�

jwlj2
!
zi�wk

^
j2J�

dwj
^
l2L�

dzl

IV (k) = ��wi�wk

 X
l2L�

wlzl

! ^
j2J�

dwj
^
l2L�

dzl:

Collecting these terms, we see the following for the coe¢ cient of ��
V
j2J� dwj

V
l2L� dzl:

C(k) = �wk
�
zi�
�
1� jwj2 +

P
l2L� jwlj

2
�
� wi�

�P
l2L� wlzl

��
8k 2 J� ;

C(k) = �wk
�
wi�

�
1� wz +

P
j2J� wjzj

�
� zi�

�P
j2J� jwj j

2
��

8k 2 L� :

This then implies that the total coe¢ cient of ��
V
j2J� dwj

V
l2L� dzl is given by

si�C(i� ) +
X
k2J�

skC(k) +
X
k2L�

skC(k):

At this point the remainder of the proof of the Theorem 4 reduces to tedious
algebra. The term si�C(i� ) will contribute the term (1�wz)(1�jwj2)(wi��zi� ) and
a remainder term. The remainder term will cancel with the terms

P
k 6=i� skC(k).

We �rst compute the term skC(k) for k 2 J� . Note that in this case, we have
that

C(k) = wk

 
wi�

 X
l2L�

wlzl

!
� zi�

 
1� jwj2 +

X
l2L�

jwlj2
!!

= wk

 
wi�

 X
l2L�

wlzl

!
� zi�

 
1�

X
l2J�

jwlj2
!!

+ wkzi� jwi� j2:
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Multiplying this by sk we see that

skC(k) = (1� wz)
 
wi�

 X
l2L�

wlzl

!
� zi�

 
1�

X
l2J�

jwlj2
!!

jwkj2

�(1� jwj2)
 
wi�

 X
l2L�

wlzl

!
� zi�

 
1�

X
l2J�

jwlj2
!!

wkzk

+(1� wz)zi� jwi� j2jwkj2 � (1� jwj2)zi� jwi� j2wkzk:

Upon summing in k 2 J� we �nd that

X
k2J�

skC(k) = (1� wz)

0@wi�
 X
l2L�

wlzl

!
� zi�

0@1� X
j2J�

jwj j2
1A1A X

k2J�

jwkj2

�(1� jwj2)

0@wi�
 X
l2L�

wlzl

!
� zi�

0@1� X
j2J�

jwj j2
1A1A X

k2J�

wkzk

+(1� wz)zi� jwi� j2
X
k2J�

jwkj2 � (1� jwj2)zi� jwi� j2
X
k2J�

wkzk:

Performing similar computations for k 2 L� we �nd,

X
k2L�

skC(k) = (1� wz)
 
zi�

 X
k2J�

jwj j2
!
� wi�

 
1�

X
l2L�

wlzl

!! X
k2L�

jwkj2

�(1� jwj2)
 
zi�

 X
k2J�

jwj j2
!
� wi�

 
1�

X
l2L�

wlzl

!! X
k2L�

wkzk

+(1� wz)zi� jwi� j2
X
k2L�

jwkj2 � (1� jwj2)zi� jwi� j2
X
k2L�

wkzk:

Putting this all together we �nd that

X
k 6=i�

skC(k)

= wi� (1� wz)
  X

k2L�

wlzl

! X
k2J�

jwkj2
!
�
 
1�

X
k2L�

wkzk � wi� zi�

! X
k2L�

jwkj2
!!

+zi� (1� jwj2)
  

1�
X
k2J�

jwkj2 � jwi� j2
! X

k2J�

wkzk

!
�
 X
k2J�

jwj j2
! X

k2L�

wkzk

!!

�zi� (1� wz)(1� jwj2)
 X
k2J�

jwj j2
!
+ wi� (1� wz)(1� jwj2)

 X
k2L�

wkzk

!
:
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We next compute the term si�C(i� ). Using the properties of sk we have that
si�C(i� ) is

(wi� � zi� ) (1� wz)(1� jwj2)

+zi� (1� wz)(1� jwj2)
 X
k2J�

jwkj2
!
� wi� (1� wz)(1� jwj2)

 X
k2L�

wkzk

!

+wi� (1� wz)
(
(1� wz)

 X
k2L�

jwkj2
!
+

 X
k2L�

jwkj2
! X

k2J�

wkzk

!

�
 X
k2J�

jwkj2
! X

k2L�

wkzk

!)

+zi� (1� jwj2)
(
�(1� jwj2)

 X
k2J�

wkzk

!
�
 X
k2L�

jwkj2
! X

k2J�

wkzk

!

+

 X
k2J�

jwkj2
! X

k2L�

wkzk

!)
:

From this point on it is simple to see that the remainder of the term si�C(i� )
cancels with

P
k 6=i� skC(k). One simply adds and subtracts a common term in parts

of
P

k 6=i� skC(k). The only term that remains is (wi��zi� )(1�wz)(1�jwj
2). Thus,

we see that the term corresponding to � in the sum C0;qn (w; z) is

��
(�1)q(1� wz)n�q�2(1� jwj2)q�1

4(w; z)n (1�wz)(1�jwj2)(wi��zi� )
^
j2J�

dwj
^
l2L�

dzl^!(w):

Since � was arbitrary we conclude that C0;qn (w; z) equals

(1� wz)n�q�1
�
1� jwj2

�q
4 (w; z)n

times X
�2P q

n

��(wi� � zi� )
^
j2J�

dwj
^
l2L�

dzl ^ !(w);

which completes the proof of Theorem 4.

9.1.1. Explicit formulas for kernels in n = 2 and 3 dimensions . Using the above
computations and simplifying algebra we obtain the formulas

C0;02 (w; z)(9.2)

=
(1� wz)
4(w; z)2 [(z2 � w2)dw1 ^ dw1 ^ dw2 � (z1 � w1)dw2 ^ dw1 ^ dw2] ;

and

C0;12 (w; z)(9.3)

=
(1� jwj2)
4(w; z)2 [(w2 � z2)dz1 ^ dw1 ^ dw2 � (w1 � z1)dz2 ^ dw1 ^ dw2] ;
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and

C0;q3 (w; z)(9.4)

=
X
�2S3

sgn (�)
(1� wz)2�q

�
1� jwj2

�q �
z�(1) � w�(1)

�
4 (w; z)3

d��(2) ^ d��(3) ^ !3 (w) ;

where S3 denotes the group of permutations on f1; 2; 3g and q determines the
number of dzi in the form d��(2) ^ d��(3):

d��(2) ^ d��(3) =

8<: dw�(2) ^ dw�(3) if q = 0
dz�(2) ^ dw�(3) if q = 1
dz�(2) ^ dz�(3) if q = 2

:

9.1.2. Integrating in higher dimensions. Here we give the proof of Lemma 1. Let

B �

�
1� jzj2

�
j1� wzj2

and R �
p
1� jwj2;

so that

BR2 =

�
1� jwj2

� �
1� jzj2

�
j1� wzj2

= 1� j'w(z)j
2
:

Then with the change of variable � = Br2 we obtain

(1� wz)s�q�1
Z
p
1�jwj2Bk

(1� jwj2 � jw0j2)q
4((w;w0) ; (z; 0))s dV (w

0)

=
(1� wz)s�q�1

j1� wzj2s
Z
p
1�jwj2Bk

�
1� jwj2 � jw0j2

�q
�
1� (1�jzj2)

j1�wzj2

�
1� jwj2 � jw0j2

��s dV (w0)
=

(1� wz)s�q�1

j1� wzj2s
Z R

0

�
R2 � r2

�q
(1�BR2 +Br2)s r

2k�1dr

=
(1� wz)s�q�1

2Bk+q j1� wzj2s
Z BR2

0

�
BR2 � �

�q
(1�BR2 + �)s �

k�1d�;

which with

	0;qn;k (t) =
(1� t)n

tk

Z t

0

(t� �)q

(1� t+ �)n+k
�k�1d�;
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we rewrite as

(1� wz)s�q�1

2Bk+q j1� wzj2s
(BR2)k

j'w(z)j
2n	

0;q
n;k

�
BR2

�

=
(1� wz)s�q�1

�
1� jwj2

�k
2
�
1� jzj2

�q
j1� wzj2s

j1� wzj2q

j'w(z)j
2n 	

0;q
n;k

�
BR2

�

=
(1� wz)s�q�1

�
1� jwj2

�k
2
�
1� jzj2

�q j1� wzj2q�2k

4 (w; z)n 	0;qn;k
�
BR2

�

=
1

2
�qn (w; z)

 
1� jwj2

1� wz

!k�q  
1� wz
1� jzj2

!q
	0;qn;k

�
BR2

�
:

since �qn (w; z) =
(1�wz)n�1�q(1�jwj2)

q

4(w;z)n .
At this point we claim that

(9.5) 	0;qn;k (t) =
(1� t)n

tk

Z t

0

(t� r)q

(1� t+ r)n+k
rk�1dr

is a polynomial in
t = BR2 = 1� j'w(z)j

2

of degree n� 1 that vanishes to order q at t = 0, so that

	0;qn;k (t) =
n�1X
j=q

cj;n;s

 �
1� jwj2

� �
1� jzj2

�
j1� wzj2

!j
;

With this claim established, the proof of Lemma 1 is complete.
To see that 	0;qn;k vanishes of order q at t = 0 is easy since for t small (9.5) yields���	0;qn;k (t)��� � Ct�k

Z t

0

tq

C
rk�1dr � Ctq:

To see that	0;qn;k is a polynomial of degree n � 1 we prove two recursion formulas
valid for 0 � t < 1 (we let t! 1 at the end of the argument):

	0;qn;k (t)�	
0;q+1
n;k (t) = (1� t)	0;qn�1;k (t) ;(9.6)

	0;0n;k (t) =
1

k
(1� t)n + n+ k

k
t	0;0n;k+1 (t) :

The �rst formula follows from

(t� r)q � (t� r)q+1 = (t� r)q (1� t+ r) ;
while the second is an integration by parts:Z t

0

rk�1

(1� t+ r)n+k
dr =

1

k

rk

(1� t+ r)n+k
jt0

+
n+ k

k

Z t

0

rk

(1� t+ r)n+k+1
dr

=
1

k
tk +

n+ k

k

Z t

0

rk

(1� t+ r)n+k+1
dr:
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If we multiply this equality through by (1�t)n
tk

we obtain the second formula in (9.6).
The recursion formulas in (9.6) reduce matters to proving that 	0;0n;1 is a poly-

nomial of degree n� 1. Indeed, once we know that 	0;0n;1 is a polynomial of degree
n � 1, then the second formula in (9.6) and induction on k shows that 	0;0n;k is as
well. Then the �rst formula and induction on q then shows that 	0;qn;k is also. To

see that 	0;0n;1 is a polynomial of degree n� 1 we compute

	0;0n;1 (t) =
(1� t)n

t

Z t

0

1

(1� t+ r)n+1
dr

=
(1� t)n

t

�
� 1

n (1� t+ r)n
�
jt0

=
1� (1� t)n

nt
;

which is a polynomial of degree n � 1. This �nishes the proof of the claim, and
hence that of Lemma 1 as well.

9.2. Integration by parts formulas in the ball. We begin by proving the gen-
eralized analogue of the integration by parts formula of Ortega and Fabrega [20] as
given in Lemma 3. For this we will use the following identities.

Lemma 11. For ` 2 Z, we have

Z
n
4 (w; z)`

o
= `4 (w; z)` ;(9.7)

Z
n
(1� wz)`

o
= 0;

Z
��
1� jwj2

�`�
= `

�
1� jwj2

�`
� `
�
1� jwj2

�`�1
(1� zw) :

Proof : (of Lemma 11) The computation

@4
@wj

=
@

@wj

n
j1� wzj2 �

�
1� jwj2

��
1� jzj2

�o
= (wz � 1) zj +

�
1� jzj2

�
wj ;

shows that Z4 = 4:

Z 4 (w; z) =

0@ nX
j=1

(wj � zj)
@

@wj

1Anj1� wzj2 � �1� jwj2��1� jzj2�o

=
nX
j=1

(wj � zj)
n
(wz � 1) zj +

�
1� jzj2

�
wj

o
=

�
wz � jzj2

�
(wz � 1) +

�
1� jzj2

��
jwj2 � zw

�
= �wz + jzj2 + jwzj2 � jzj2 wz + jwj2 � wz � jzj2 jwj2 + jzj2 wz
= �2Rewz + jzj2 + jwzj2 + jwj2 � jzj2 jwj2

= jw � zj2 + jwzj2 � jzj2 jwj2 = 4 (w; z)
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by the second line in (3.1) above. Iteration then gives the �rst line in (9.7). The
second line is trivial since 1 � wz is holomorphic in w. The third line follows by
iterating

Z
�
1� jwj2

�
= zw � jwj2 =

�
1� jwj2

�
� (1� zw) :

Proof of Lemma 3: We use the general formula (3.10) for the solution kernels
C0;qn to prove (4.7) by induction on m. For m = 0 we obtain
(9.8)

C0;qn � (z) = c0

Z
Bn
�qn (w; z)

8<:X
jJj=q

D0
�
�ydwJ

�
dzJ

9=; dV (w) � c0�
q
n

�
D0�

�
(z) ;

from (4.5) and the following calculation using (3.9):

C0;qn � (z)

�
Z
Bn
C0;qn (w; z) ^ � (w)

=

Z
Bn

X
jJj=q

�qn (w; z)
X
k=2J

(�1)�(k;J) (zk � �k) dzJ ^ dw(J[fkg)
c

^ !n (w) ^

0@ X
jIj=q+1

�IdwI

1A
=

8<:
Z
Bn
�qn (w; z)

24X
jJj=q

X
k=2J

(�1)�(k;J) (zk � wk) �J[fkgdzJ
35 dV (w)

9=; :

Now we consider the case m = 1. First we note that for each J with jJ j = q,

(9.9) ZD0
�
�ydwJ

�
�D0

�
�ydwJ

�
= D1

�
�ydwJ

�
:

Indeed, we compute

ZD0
�
�ydwJ

�
=

0@ nX
j=1

(wj � zj)
@

@wj

1A0@X
k=2J

(wk � zk)
X

InJ=fkg

(�1)�(k;J) �I

1A
=

nX
j=1

X
k=2J

X
InJ=fkg

(�1)�(k;J) (wj � zj) (wk � zk)
@

@wj
�I

+
X
k=2J

(wk � zk)
X

InJ=fkg

(�1)�(k;J) �I ;

so that

ZD0
�
�ydwJ

�
�D0

�
�ydwJ

�
=

nX
j=1

X
k=2J

X
InJ=fkg

(�1)�(k;J) (wj � zj) (wk � zk)
@

@wj
�I = D1

�
�ydwJ

�
:

For jJ j = q and 0 � ` � q de�ne

I`J �
nX
j=1

Z
Bn

@

@wj

8><>:
(1� wz)n�1�`

�
1� jwj2

�`
4 (w; z)n (wj � zj)D0

�
�ydwJ

�9>=>;! (w)^! (w) :
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By (3) and (4) of Proposition 16.4.4 in [24] we have
nX
j=1

(�1)j�1 (wj � zj)
^
k 6=j

dwk ^ ! (w) j@Bn= c (1� zw) d� (w) ;

and Stokes�theorem then yields

I`J = c

Z
@Bn

(1� wz)n�`
�
1� jwj2

�`
4 (w; z)n D0

�
�ydwJ

�
d� (w) = 0;

since ` � 1 and 1� jwj2 vanishes on @Bn. Moreover, from Lemma 11 we obtain

I`J = n

Z
Bn

(1� wz)n�1�`
�
1� jwj2

�`
4 (z; w)n D0

�
�ydwJ

�
dV (w)

+

Z
Bn
Z

8><>:
(1� wz)n�1�`

�
1� jwj2

�`
4 (z; w)n D0

�
�ydwJ

�9>=>; dV (w)

=

Z
Bn

(1� wz)n�1�`
�
1� jwj2

�`
4 (z; w)n ZD0

�
�ydwJ

�
dV (w)

+`

Z
Bn

(1� wz)n�1�`
�
1� jwj2

�`
4 (z; w)n D0

�
�ydwJ

�
dV (w)

�`
Z
Bn

(1� wz)n�`
�
1� jwj2

�`�1
4 (z; w)n D0

�
�ydwJ

�
dV (w) :

Combining this with (9.9) and (9.8) yields

�`n

�
D0�

�
(z) =

X
J

Z
Bn
�`n (w; z)D0

�
�ydwJ

�
dV (w) dzJ

=
X
J

Z
Bn
�`n (w; z)ZD0

�
�ydwJ

�
dV (w) dzJ

�
X
J

Z
Bn
�`n (w; z)D1

�
�ydwJ

�
dV (w) dzJ

= �
X
J

Z
Bn
�`n (w; z)D1

�
�ydwJ

�
dV (w) dzJ

�`
X
J

Z
Bn
�`n (w; z)D0

�
�ydwJ

�
dV (w) dzJ

+`
X
J

Z
Bn
�`�1n (w; z)D0

�
�ydwJ

�
dV (w) dzJ

= ��`n
�
D1�

�
(z)� `�`n

�
D0�

�
(z) + `�`�1n

�
D0�

�
(z) :

Thus we have

(9.10) �`n

�
D0�

�
(z) = � 1

`+ 1
�`n

�
D1�

�
(z) +

`

`+ 1
�`�1n

�
D0�

�
(z) :
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From (9.8) and then iterating (9.10) we obtain

C(0;q)n � (z)(9.11)

= �qn

�
D0�

�
(z) = � 1

q + 1
�qn

�
D1�

�
(z) +

q

q + 1
�q�1n

�
D0�

�
(z)

= � 1

q + 1
�qn

�
D1�

�
(z) +

q

q + 1

�
�1
q
�q�1n

�
D1�

�
(z) +

q � 1
q
�q�2n

�
D0�

�
(z)

�
= � 1

q + 1

qX
`=1

�`n

�
D1�

�
(z) + boundary term:

Thus we have obtained the second sum in (4.7) with c` = � 1
q+1 for 1 � ` � q in

the case m = 1.
We have included boundary term in (9.11) since when we use Stokes�theorem

on �0n
�
D0�

�
the boundary integral no longer vanishes. In fact when ` = 0 the

boundary term in Stokes�theorem is

I0J = c

Z
@Bn

(1� �z)n

4 (�; z)n D
0
�
�ydwJ

�
d� (�)

= c

Z
@Bn

1�
1� �z

�nD0 ��ydwJ� d� (�) ;
since from (3.4) we have

(1� wz)n

4 (z; w)n =
(1� wz)n

j1� wzj2n j'z (w)j
2n =

1

(1� wz)n ; w 2 @Bn:

Thus the boundary term in (9.11) is

c
X
J

Z
@Bn

1�
1� �z

�nD0 ��ydwJ� d� (�) dzJ = cSn
�
D0�

�
(z) :

This completes the proof of (4.7) in the case m = 1. Now we proceed by induction
on m to complete the proof of Lemma 3.

Finally here is the simple proof of the integration by parts formula for the radial
derivative in Lemma 4.

Proof of Lemma 4: Since
�
1� jwj2

�b+1
vanishes on the boundary for b > �1,

and since

R
�
1� jwj2

�b+1
=

nX
j=1

wj
@

@wj

�
1� jwj2

�b+1
= � (b+ 1)

�
1� jwj2

�b
jwj2 ;
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the divergence theorem yields

0 =

Z
@Bn

�
1� jwj2

�b+1
	(w)w � nd� (w)

=

Z
Bn

nX
j=1

@

@wj

�
wj

�
1� jwj2

�b+1
	(w)

�
dV (w)

= n

Z
Bn

�
1� jwj2

�b+1
	(w) dV (w)

+ (b+ 1)

Z
Bn

�
1� jwj2

�b �
� jwj2

�
	(w) dV (w)

+

Z
Bn

�
1� jwj2

�b+1
R	(w) dV (w) ;

which after rearranging becomes

(n+ b+ 1)

Z
Bn

�
1� jwj2

�b+1
	(w) dV (w)

+

Z
Bn

�
1� jwj2

�b+1
R	(w) dV (w) :

= (b+ 1)

Z
Bn

�
1� jwj2

�b
	(w) dV (w) :

9.3. Equivalent seminorms on Besov-Sobolev spaces. It is a routine matter
to take known scalar-valued proofs of the results in this section and replace the
scalars with vectors in `2 to obtain proofs for the `2-valued versions. We begin
illustrating this process by proving the equivalence of norms in Proposition 1.
Proof of Proposition 1: First we note the equivalence of the following two

conditions (the case � = 0 is Theorem 6.1 of [36]):

(1) The functions �
1� jzj2

�jkj+� @jkj
@zk

f (z) ; jkj = N

are in Lp
�
d�n; `

2
�
for some N > n

p � �,
(2) The functions �

1� jzj2
�jkj+� @jkj

@zk
f (z) ; jkj = N

are in Lp
�
d�n; `

2
�
for every N > n

p � �.

Indeed, Lp
�
d�n; `

2
�
= Lp

�
��n�1; `

2
�
and

�
1� jzj2

�jkj+�
@jkj

@zk
f (z) 2 Lp

�
��n�1; `

2
�

if and only if @
jkj

@zk
f (z) 2 Lp

�
�p(jkj+�)�n�1; `

2
�
. Provided p (jkj+ �)� n� 1 > �1,

Theorem 2.17 of [36] shows that
�
1� jzj2

�`
@j`j

@z`

�
@jkj

@zk
f
�
(z) 2 Lp

�
�p(jkj+�)�n�1; `

2
�
,

which shows that (2) follows from (1).
From the equivalence of (1) and (2) we obtain the equivalence of the �rst two

conditions in Proposition 1. The equivalence with the next two conditions follows
from the corresponding generalization to � > 0 of Theorem 6.4 in [36], which in
turn is achieved by arguing as in the previous paragraph.
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Next we prove Lemma 7 by adapting the proof of Lemma 6.4 in [6].
Proof of Lemma 7: We have

(9.12)

jDaf (z)j =
����f 0 (z)��1� jaj2�Pa + �1� jaj2� 1

2

Qa

����� � ����1� jaj2� f 0 (z)��� ;
and iterating with f replaced by (the components of) Daf in (9.12), we obtain��D2

af (z)
�� � ����1� jaj2� (Daf)

0
(z)
��� :

Applying (9.12) once more with f replaced by (the components of) f 0, we get����1� jaj2� (Daf)
0
(z)
��� = ����1� jaj2�Da (f

0) (z)
��� � �����1� jaj2�2 f 00 (z)���� ;

which when combined with the previous inequality yields��D2
af (z)

�� � �����1� jaj2�2 f 00 (z)���� :
Continuing by induction we have

(9.13) jDm
a f (z)j �

����1� jaj2�m f (m) (z)��� ; m � 1:

Proposition 1 and (9.13) now show that�Z
Bn

�����1� jzj2�m+� R0;mf (z)����p d�n (z)�
1
p

� C

�Z
Bn

�����1� jzj2�m+� f (m) (z)����p d�n (z)�
1
p

+

m�1X
j=0

��rjf (0)��
� C

 X
�2Tn

Z
B�(c�;C2)

�����1� jzj2�m+� f (m) (z)����p d�n (z)
! 1

p

+
m�1X
j=0

��rjf (0)��
� C

 X
�2Tn

Z
B�(c�;C2)

�����1� jc�j2�m+� f (m) (z)����p d�n (z)
! 1

p

+
m�1X
j=0

��rjf (0)��
� C

 X
�2Tn

Z
B�(c�;C2)

����1� jzj2��Dm
c�f (z)

���p d�n (z)!
1
p

+
m�1X
j=0

��rjf (0)��
= C kfk�B�

p;m(Bn)
+
m�1X
j=0

��rjf (0)�� :
For the opposite inequality, just as in [6], we employ some of the ideas in the

proofs of Theorem 6.11 and Lemma 3.3 in [36], where the case � = 0 and m = 1 >
2n
p is proved. Suppose f 2 H (Bn) and that the right side of (6.5) is �nite. By
Proposition 1 and the proof of Theorem 6.7 of [36] we have

(9.14) f (z) = c

Z
Bn

g (w)

(1� wz)n+1+�
dV (w) ; z 2 Bn;
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for some g 2 Lp (�n) where

(9.15) kgkLp(�n) �
m�1X
j=0

��rjf (0)��+ �Z
Bn

�����1� jzj2�m+� R�;mf (z)����p d�n (z)�
1
p

:

Indeed, Proposition 1 shows that

f 2 B�p (Bn),
�
1� jzj2

�m+�
R�;mf (z) 2 Lp (�n)

, R�;mf (z) 2 Lp
�
�p(m+�)�n�1

�
\H (Bn) ;

where as in [36] we write d�� (z) =
�
1� jzj2

��
dV (z). Now Lemma 10 above (see

also Proposition 2.11 in [36]) shows that

T0;�;0L
p (�) = Lp (�) \H (Bn)

if and only if p (� + 1) >  +1. Choosing � = m+ � and  = p (m+ �)� n� 1 we
see that p (� + 1) >  + 1 and so f 2 B�p (Bn) if and only if

R�;mf (z) = c

Z
Bn

�
1� jwj2

�m+�
h (w)

(1� wz)n+1+m+�
dV (w)

for some h 2 Lp
�
�p(m+�)�n�1

�
. If we set g (w) =

�
1� jwj2

�m+�
h (w) we obtain

(9.16) R�;mf (z) = c

Z
Bn

g (w)

(1� wz)n+1+m+�
dV (w)

with g 2 Lp (�n). Now apply the inverse operator R�;m = (R�;m)�1 to both sides
of (9.16) and use (6.3),

R�;m

 
1

(1� wz)n+1+m+�

!
=

1

(1� wz)n+1+�
;

to obtain (9.14) and (9.15).
Fix � 2 Tn and let a = c� 2 Bn. We claim that

(9.17)

jDm
a f (z)j � Cm

�
1� jaj2

�m
2

Z
Bn

jg (w)j
j1� wzjn+1+

m
2 +�

dV (w) ; m � 1; z 2 B� (a;C) :

To see this we compute Dm
a f (z) for z 2 B� (a;C), beginning with the case m = 1.

Since

Da (wz) = (wz)
0
'0a (0) = �wt

��
1� jaj2

�
Pa +

�
1� jaj2

� 1
2

Qa

�
= �

��
1� jaj2

�
Paw +

�
1� jaj2

� 1
2

Qaw

�t
;
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we have

Daf (z)(9.18)

= cn

Z
Bn
Da (1� wz)�(n+1+�) g (w) dV (w)

= cn

Z
Bn
(1� wz)�(n+2+�)Da (wz) g (w) dV (w)

= cn

Z
Bn
(1� wz)�(n+2+�)

��
1� jaj2

�
Paw +

�
1� jaj2

� 1
2

Qaw

�t
g (w) dV (w) :

Taking absolute values inside, we obtain

(9.19) jDaf (z)j � C
�
1� jaj2

� 1
2

Z
Bn

�
1� jaj2

� 1
2 jPawj+ jQawj

j1� wzjn+2+�
jg (w)j dV (w) :

From the following elementary inequalities

jQawj2 = jQa (w � a)j2 � jw � aj2 ;(9.20)

= jwj2 + jaj2 � 2Re (wa)
� 2Re (1� wa) � 2 j1� waj ;

we obtain that jQawj � C j1� waj
1
2 . Now

j1� waj � j1� wzj � 1

2

�
1� jzj2

�
�
�
1� jaj2

�
; z 2 B� (a;C)

shows that �
1� jaj2

� 1
2

+ j1� waj
1
2 � C j1� wzj

1
2 ; z 2 B� (a;C) ;

and so we see that�
1� jaj2

� 1
2 jPawj+ jQawj

j1� wzjn+2
� C

j1� wzjn+
3
2

; z 2 B� (a;C) :

Plugging this estimate into (9.19) yields

jDaf (z)j � C
�
1� jaj2

� 1
2

Z
Bn

jg (w)j
j1� wzjn+

3
2+�

dV (w) ;

which is the case m = 1 of (9.17).
To obtain the case m = 2 of (9.17), we di¤erentiate (9.18) again to get

D2
af (z) = c

Z
Bn
(1� wz)�(n+3+�)WW

t
g (w) dV (w) :

where we have writtenW =

��
1� jaj2

�
Paw +

�
1� jaj2

� 1
2

Qaw

�
for convenience.

Again taking absolute values inside, we obtain

��D2
af (z)

�� � C
�
1� jaj2

�Z
Bn

��
1� jaj2

� 1
2 jPawj+ jQawj

�2
j1� wzjn+3+�

jg (w)j dV (w) :
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Once again, using jQawj � C j1� waj
1
2 and

�
1� jaj2

� 1
2

+ j1� waj
1
2 � C j1� wzj

1
2

for z 2 B� (a;C), we see that��
1� jaj2

� 1
2 jPawj+ jQawj

�2
j1� wzjn+3+�

� C

j1� wzjn+2+�
; z 2 B� (a;C) ;

which yields the casem = 2 of (9.17). The general case of (9.17) follows by induction
on m.
The inequality (9.17) shows that

�
1� jzj2

�� ��Dm
c�f (z)

�� � CmS jgj (z) for z 2
B� (c�; C), where

Sg (z) =

Z
Bn

�
1� jzj2

�m
2 +�

j1� wzjn+1+
m
2 +�

g (w) dV (w) :

We will now use the symbol a di¤erently than before. The operator S is the operator
Ta;b;c in Lemma 10 above (see also Theorem 2.10 of [36]) with parameters a = m

2 +�

and b = c = 0. Now with t = �n � 1, our assumption that m > 2
�
n
p � �

�
yields

�p
�
m
2 + �

�
< �n < p (0 + 1), i.e.

�pa < t+ 1 < p (b+ 1) :

Thus the bounded overlap property of the balls B� (c�; C2) together with Lemma
10 above yields

kfk�B�
p;m(Bn)

=

 X
�2Tn

Z
B�(c�;C2)

����1� jzj2��Dm
c�f (z)

���p d�n (z)!
1
p

� Cm

�Z
Bn
jSg (z)jp d�n (z)

� 1
p

� C 0m

�Z
Bn
jg (z)jp d�n (z)

� 1
p

� C 00m

�Z
Bn

�����1� jzj2�m+� R�;mf (z)����p d�n (z)�
1
p

by (9.15). This completes the proof of Lemma 7.

9.3.1. Multilinear inequalities. Proposition 3 is proved by adapting the proof of
Theorem 3.5 in Ortega and Fabrega [20] to `2-valued functions. This argument
uses the complex interpolation theorem of Beatrous [11] and Ligocka [17], which
extends to Hilbert space valued functions with the same proof. In order to apply
this extension we will need the following operator norm inequality.
If ' 2MB�

p (Bn)!B�
p (Bn;`2) and f =

P
jIj=� fIeI 2 B�p

�
Bn;
��1`2

�
, we de�ne

M'f = '
 f = '


0@ X
jIj=��1

fIeI

1A =
X

jIj=��1

('fI)
 eI ;

where I = (i1; :::; i��1) 2 N��1 and eI = ei1 
 :::
 ei��1 .
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Lemma 12. Suppose that � � 0, 1 < p <1 and � � 1. Then there is a constant
Cn;�;p;� such that

(9.21) kMgkB�
p (Bn;
��1`2)!B�

p (Bn;
�`2) � Cn;�;p;� kMgkB�
p (Bn;`2)!B�

p (Bn;`2)
:

In the case p = 2 we have equality:

(9.22) kM'kB�
2 (Bn;
��1`2)!B�

2 (Bn;
�`2) = kM'kB�
2 (Bn)!B�

2 (Bn;`2)
:

It turns out that in order to prove (9.21) for p 6= 2 we will need the case M = 1
of Proposition 3. Fortunately, the case M = 1 does not require inequality (9.21),
thus avoiding circularity.

Proof of Proposition 3 and Lemma 12: We begin with the proof of the case
M = 1 of Proposition 3. We will show that for m = `+ k,
(9.23)Z
Bn

����1� jzj2�� �Y`g� �Ykh����p d�n (z) � Cn;�;p kMgkpB�
p (Bn)!B�

p (Bn;`2)
khkpB�

p (Bn)
:

Following the proof of Theorem 3.1 in [20] we �rst convert the Leibniz formula�
Y`g

� �
Ykh

�
= Y`

�
gYkh

�
�

`�1X
�=0

�
`
�

�
(Y�g)

�
Yk+`��h

�
to "divergence form"�

Y`g
� �
Ykh

�
=
X̀
�=0

(�1)�
�

`
`� �

�
Y`��

�
gYk+�h

�
:

This is easily established by induction on ` with k held �xed and can be stated as

(9.24)
�
Y`g

� �
Ykh

�
=
X̀
�=0

c`�Y�
�
gYk+`��h

�
:

Next we note that for s > n
p , B

s
p

�
Bn; `2

�
is a Bergman space, henceMBs

p(Bn)!Bs
p(Bn;`2) =

H1 �Bn; `2�. Thus using (6.6) we have for s > n
p ,

g 2MB�
p (Bn)!B�

p (Bn;`2) \H
1 �Bn; `2� =MB�

p (Bn)!B�
p (Bn;`2) \MBs

p(Bn)!Bs
p(Bn;`2):

Then, still following the argument in [20], we use the complex interpolation theorem
of Beatrous [11] and Ligocka [17] (they prove only the scalar-valued version but the
Hilbert space valued version has the same proof),�

B�p (Bn) ; B
n
p+"
p (Bn)

�
�
= B

(1��)�+�(np+")
p (Bn) ; 0 � � � 1;�

B�p
�
Bn; `2

�
; B

n
p+"
p

�
Bn; `2

��
�
= B

(1��)�+�(np+")
p

�
Bn; `2

�
; 0 � � � 1;

to conclude that g 2 MBs
p(Bn)!Bs

p(Bn;`2) for all s � �, and with multiplier norm
kMgkBs

p(Bn)!Bs
p(Bn;`2)

bounded by kMgkB�
p (Bn)!B�

p (Bn;`2)
. Recall now that

khkpB�
p (Bn)

=

Z
Bn

����1� jzj2�� Ymh (z)���p d�n (z) ;
and similarly for kfkpB�

p (Bn;`2)
, provided m satis�es

(9.25)
�
� +

m

2

�
p > n;
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where m
2 appears in the inequality since the derivatives D that can appear in Ym

only contribute
�
1� jzj2

� 1
2

to the power of 1� jzj2 in the integral (see Section 6).

Remark 12. At this point we recall the convention established in De�nitions 6 and
7 that the factors of 1�jzj2 that are embedded in the notation for the derivative Y�
are treated as constants relative to the actual di¤erentiations. In the calculations

below, we will adopt the same convention for the factors
�
1� jzj2

�s
that we

introduce into the integrals. Alternatively, the reader may wish to write out all the
derivatives explicitly with the appropriate power of 1 � jzj2 set aside as is done in
[20].

So we have, keeping in mind Remark 12,Z
Bn

����1� jzj2�� Y� �g (z)Yk+`��h (z)����p d�n
=

Z
Bn

�����1� jzj2�s Y��g (z)�1� jzj2���s Yk+`��h (z)�����p d�n
=

g (z)�1� jzj2���s Yk+`��hp
Bs
p;�(Bn;`2)

:

Here the function

H (z) =
�
1� jzj2

���s
Yk+`��h (z)

is not holomorphic, but we have de�ned the norm k�kBs
p;�(Bn;`2)

on smooth functions
anyway. Now we would like to apply a multiplier property of g, and for this we
must be acting on a Besov-Sobolev space of holomorphic functions, since that is
what we get from the complex interpolation of Beatrous and Ligocka. Precisely, we
get that Mg is a bounded operator from Bsp (Bn) to Bsp

�
Bn; `2

�
for all s � �.

Now we express Yk+`��h (z) as a sum of terms that are products of a power of
1 � jzj2 and a derivative RiLjh (z) where i + j = k + ` � � and R is the radial
derivative and L denotes a complex tangential derivative @

@zj
� zjR as in [20].

However, the operators RiLj have di¤erent weights in the sense that the power of

1� jzj2 that is associated with RiLj is
�
1� jzj2

�i+ j
2

, i.e.

Yk+`��h (z) =
X�

1� jzj2
�i+ j

2

RiLjh (z) :

It turns out that to handle the term
�
1� jzj2

�i+ j
2

RiLjh (z) we will use that g is

a multiplier on Bsp (Bn) with

s = � + i+
j

2
;

an exponent that depends on i+ j
2 and not on i+ j = k + `� �.
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Indeed, we have using our "convention" thatg (z)�1� jzj2���s �1� jzj2�i+ j
2

RiLjh (z)

p
Bs
p;�(Bn;`2)

=

Z
Bn

�����1� jzj2�s Y��g (z)�1� jzj2���s �1� jzj2�i+ j
2

RiLjh (z)

�����p d�n
=

Z
Bn

�����1� jzj2��+i+ j
2 Y�

�
g (z)RiLjh (z)

	����p d�n
=

g (z)RiLjh (z)p
Bs
p;�(Bn;`2)

:

Now the function g (z)RiLjh (z) is holomorphic and s = � + i+ j
2 � � so that we

can use that g is a multiplier on Bsp (Bn) = Bsp;� (Bn) (this latter equality holds
because

�
s+ �

2

�
p > n by (9.25)). The result is thatg (z)RiLjh (z)p

Bs
p(Bn;`2)

� kMgkpBs
p(Bn)!Bs

p(Bn;`2)

RiLjh (z)p
Bs
p;�(Bn)

� kMgkpBs
p(Bn)!Bs

p(Bn;`2)

Z
Bn

�����1� jzj2��+i+ j
2 Y�RiLjh (z)

����p d�n
= kMgkpBs

p(Bn)!Bs
p(Bn;`2)

Z
Bn

������1� jzj2�� Y� h�1� jzj2�Rii
�q

1� jzj2L
�j
h (z)

�����
p

d�n

� kMgkpBs
p(Bn)!Bs

p(Bn;`2)

Z
Bn

����1� jzj2�� Y�+i+jh (z)���p d�n
= kMgkpBs

p(Bn)!Bs
p(Bn;`2)

Z
Bn

����1� jzj2�� Ymh (z)���p d�n
� kMgkpB�

p (Bn)!B�
p (Bn;`2)

khkpB�
p (Bn)

;

and the case M = 1 of Proposition 3 is proved.

Now we turn to the proof of the operator norm inequality (9.21) in Lemma 12.
The case p = 2 is particularly easy:

kM'fk2B�
2 (Bn;
�`2) =

Z
Bn

�
1� jzj2

�2� X
jIj=��1

jYm ('fI)j2 d�n

=
X

jIj=��1

kM'fIk2B�
2 (Bn;`2)

� kM'k2B�
2 (Bn)!B�

2 (Bn;`2)

X
jIj=��1

kfIk2B�
2 (Bn)

= kM'k2B�
2 (Bn)!B�

2 (Bn;`2)

Z
Bn

�
1� jzj2

�2� X
jIj=��1

jYmfI j2 d�n

= kM'k2B�
2 (Bn)!B�

2 (Bn;`2)
kfk2B�

2 (Bn;
��1`2) ;

and from this we easily obtain (9.22).
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For p 6= 2 it su¢ ces to show that

(9.26) kM'kB�
p (Bn;C�)!B�

p (Bn;C�
C�)
� Cn;�;p kM'kB�

p (Bn)!B�
p (Bn;C�)

for all �; � � 1 where the constant Cn;�;p is independent of �; �. Indeed, both `2

and 
��1`2 are separable Hilbert spaces and so can be appropriately approximated
by C� and C� respectively. For each z 2 Bn we will view ' (z) 2 C� as a column
vector and f (z) 2 C� as a row vector so that (M'f) (z) is the rank one � � �
matrix

(M'f) (z) =

264 ('1f1) (z) � � � ('1f�) (z)
...

. . .
...�

'�f1
�
(z) � � �

�
'�f�

�
(z)

375 = ' (z)� f (z) ;

where we have inserted the symbol � simply to remind the reader that this is not
the dot product ' (z) � f (z) = f (z)' (z) of the vectors ' (z) and f (z).
Now we consider a single component Xm of the vector di¤erential operator Ym

for some m > 2
�
n
p � �

�
, which can be chosen independent of � and �. The main

point in the proof of the lemma is that the matrix Xm (M'f) (z) has rank at most
m+ 1 independent of � and �. Indeed, the Leibniz formula yields

Xm (M'f) (z) = Xm (' (z)� f (z)) =
mX
`=0

c`;mX
m�`' (z)�X`f (z) ;

where each matrix Xm�`' (z)�X`f (z) is rank one, and where the Hilbert Schmidt
norm is multiplicative:��Xm�`' (z)�X`f (z)

�� = ��Xm�`' (z)
�� ��X`f (z)

�� :
Momentarily �x 0 � ` � m and de�ne

T `h (z) = Xm�`' (z)h (z) ; h (z) 2 C;
T `g (z) = Xm�`' (z)� g (z) ; g (z) 2 C� :

For x 2 @B�, which we view as a row vector, de�ne

T `xg (z) = xT `g (z) = x
�
Xm�`'

�
(z)� g (z) :

Now choose x (z) 2 @B� such that x (z)
�
Xm�`'

�
(z) =

��Xm�`' (z)
�� so that

T `x(z)g (z) = x (z)
�
Xm�`'

�
(z)� g (z) =

��Xm�`' (z)
�� g (z) ;

and hence���T `x(z) �X`f
�
(z)
��� = ��Xm�`' (z)

�� ��X`f (z)
�� = ��Xm�`' (z)�X`f (z)

�� = ��T ` �X`f
�
(z)
�� :

Now we follow the well known argument on page 451 of [26]. For y 2 @B� , which
we view as a column vector, and g (z) 2 C� de�ne the scalars

gy (z) = g (z) y;�
T `x(z)g

�
y
(z) = T `x(z)g (z) y = x (z)

�
Xm�`'

�
(z)� g (z) y;

and note that

T `x(z)
�
X`f

�
(z) y = x (z)

�
Xm�`'

�
(z)�

�
X`f

�
(z) y = T `x(z)

�
X`f

�
y
(z) :
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Thus we have with d�� surface measure on @B� ,Z
@B�

���T `x(z) �X`f
�
(z) y

���p d�� (y) = ���T `x(z) �X`f
�
(z)
���p Z

@B�

������ T
`
x(z)

�
X`f

�
(z)���T `x(z) (X`f) (z)
��� � y

������
p

d�� (y) ;

as well asZ
@B�

����X`f
�
y
(z)
���p d�� (y) = ��X`f (z)

��p Z
@B�

���� X`f (z)

jX`f (z)j � y
����p d�� (y) :

The crucial observation now is thatZ
@B�

������ T
`
x(z)

�
X`f

�
(z)���T `x(z) (X`f) (z)
��� � y

������
p

d�� (y) =

Z
@B�

���� X`f (z)

jX`f (z)j � y
����p d�� (y) = p;�

is independent of the row vector in @B� that is dotted with y. Thus we have��T ` �X`f
�
(z)
��p =

���T `x(z) �X`f
�
(z)
���p = 1

p;�

Z
@B�

���T `x(z) �X`f
�
(z) y

���p d�� (y) ;��X`f (z)
��p =

1

p;�

Z
@B�

����X`f
�
y
(z)
���p d�� (y) :

So with d!p� (z) =
�
1� jzj2

�p�
d�n (z), we conclude thatZ

Bn
jXm (M'f)jp d!p� (z)

� Cn;�;p;m

mX
`=0

Z
Bn

��T ` �X`f
�
(z)
��p d!p� (z)

= Cn;�;p;m

mX
`=0

1

p;�

Z
@B�

Z
Bn

��x (z) �Xm�`'
�
(z)
�
X`fy

�
(z)
��p d!p� (z) d�� (y)

� Cn;�;p;m

mX
`=0

1

p;�

Z
@B�

Z
Bn

����Xm�`'
�
(z)
�
X`f

�
y
(z)
���p d!p� (z) d�� (y)

� Cn;�;p;m

mX
`=0

1

p;�

Z
@B�

kM'kpB�
p (Bn)!B�

p (Bn;C�)

Z
Bn

���(Xmf)y (z)
���p d!p� (z) d�� (y)

by the case M = 1 of Proposition 3, where `2 there is replaced by C� , g by ' and
h by fy. Now we use the equalityZ

@B�

���(Xmf)y (z)
���p d�� (y) = p;� jXmf (z)jp

to obtainZ
Bn
jXm (M'f)jp d!p� (z) � Cn;�;p;m kM'kpB�

p (Bn)!B�
p (Bn;C�)

Z
Bn
jXmf (z)jp d!p� (z)

� Cn;�;p;m kM'kpB�
p (Bn)!B�

p (Bn;C�)
kfkpB�

p (Bn;C�)
:

Since m depends only on n, � and p, this completes the proof of (9.26), and hence
that of Lemma 12
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Finally we return to complete the proof of Proposition 3. We have already proved
the case M = 1. Now we sketch a proof of the case M = 2 using the multiplier
norm inequality (9.21) with � = 2. By multiplicativity of j�j on tensors, it su¢ ces
to show that for m = `1 + `2 + k,Z

Bn

����1� jzj2�� �Y`1g�
 �Y`2g� �Ykh����p d�n (z)(9.27)

� Cn;�;p kMgk2pB�
p (Bn)!B�

p (Bn;`2)
khkpB�

p (Bn)
:

This time we write using the divergence form of Leibniz�formula on tensor products
(c.f. (9.24)),

�
Y`1g

�


�
Y`2g

� �
Ykh

�
=

�
Y`1g

�


(

`2X
�=0

c`2� Y�
�
gYk+`2��h

�)

=

`2X
�=0

c`2�
�
Y`1g

�


�
Y�
�
gYk+`2��h

��
=

`2X
�=0

c`2�

8<:
`1X
�=0

c`1� Y
�
�
g 
 Y�+`1��

�
gYk+`2��h

��9=; :

We �rst use the Hilbert space valued interpolation theorem together with the
case � = 2 of Lemma 12 to show that g 2 MB

s1
p (Bn;`2)!B

s1
p (Bn;`2
`2) and g 2

MB
s2
p (Bn)!B

s2
p (Bn;`2) for appropriate values of s1 and s2. Assuming for convenience

that Y =
�
1� jzj2

�
R, and keeping in mind Remark 12, we obtaing (z)
 �1� jzj2���s1 Y�+`1�� �gYk+`2��h�p

B
s1
p (Bn;`2
`2)

� kMgkpBs1
p (Bn;`2)!B

s1
p (Bn;`2
`2)

�1� jzj2���s1 Y�+`1�� �gYk+`2��h�p
B
s1
p (Bn;`2)

= kMgkpBs1
p (Bn;`2)!B

s1
p (Bn;`2
`2)

Z
Bn

�����1� jzj2�s1 Y� �1� jzj2���s1 Y�+`1�� �gYk+`2��h�����p d�n;
which by (9.21) is at most

Cn;�;p kMgkpB�
p (Bn)!B�

p (Bn;`2)

Z
Bn

�����1� jzj2�s2 Y�+`1 �g �1� jzj2���s2 Yk+`2��h�����p d�n
= Cn;�;p kMgkpB�

p (Bn)!B�
p (Bn;`2)

g �1� jzj2���s2 Yk+`2��hp
B
s2
p (Bn;`2)

� Cn;�;p kMgkpB�
p (Bn)!B�

p (Bn;`2)
kMgkpBs2

p (Bn)!B
s2
p (Bn;`2)

�1� jzj2���s2 Yk+`2��hp
B
s2
p (Bn)

� Cn;�;p kMgk2pB�
p (Bn)!B�

p (Bn;`2)
khkpB�

p (Bn)
:

Summing up over � and � gives (9.27).
Repeating this procedure for M � 3 and using (9.21) with � = M �nishes the

proof of Proposition 3.
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9.4. Schur�s test. We prove Lemma 10 using Schur�s Test as given in Theorem
2.9 on page 51 of [36].

Lemma 13. Let (X;�) be a measure space and H (x; y) be a nonnegative kernel.
Let 1 < p <1 and 1

p +
1
q = 1. De�ne

Tf (x) =

Z
X

H (x; y) f (y) d� (y) ;

T �g (y) =

Z
X

H (x; y) g (x) d� (x) :

If there is a positive function h on X and a positive constant A such that

Thq (x) =

Z
X

H (x; y)h (y)
q
d� (y) � Ah (x)

q
; �� a:e:x 2 X;

T �hp (y) =

Z
X

H (x; y)h (x)
p
d� (x) � Ah (y)

p
; �� a:e:y 2 X;

then T is bounded on Lp (�) with kTk � A.

Now we turn to the proof of Lemma 10. The case c = 0 of Lemma 10 is Lemma
2.10 in [36]. To minimize the clutter of indices, we �rst consider the proof for the
case c 6= 0 when p = 2 and t = �n� 1. Recall thatp

4 (w; z) = j1� wzj j'z (w)j ;

 " (�) =
�
1� j�j2

�"
;

and

Ta;b;cf (z) =

Z
Bn

�
1� jzj2

�a �
1� jwj2

�b+n+1 �p
4 (w; z)

�c
j1� wzjn+1+a+b+c

f (w) d�n (w) :

We will compute conditions on a, b, c and " such that we have

(9.28) Ta;b;c " (z) � C " (z) and T
�
a;b;c " (w) � C " (w) ; z; w 2 Bn;

where T �a;b;c denotes the dual relative to L
2 (�n). For this we take " 2 R and

compute

Ta;b;c " (z) =

Z
Bn

�
1� jzj2

�a �
1� jwj2

�n+1+b+"
j'z (w)j

c

j1� wzjn+1+a+b
d�n (w) :

Note that the integral is �nite if and only if " > �b� 1. Now make the change
of variable w = 'z (�) and use that �n is invariant to obtain

Ta;b;c " (z) =

Z
Bn

�
1� jzj2

�a �
1� jwj2

�n+1+b+"
j'z (w)j

c

j1� wzjn+1+a+b
d�n (w)

=

Z
Bn
F (w) d�n (w) =

Z
Bn
F ('z (�)) d�n (�)

=

Z
Bn

�
1� jzj2

�a �
1� j'z (�)j

2
�n+1+b+"

j�jc���1� 'z (�)z���n+1+a+b (1� j�j2)n+1 dV (�) :
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From the identity (Theorem 2.2.2 in [24]),

1� h'a (�) ; 'a ()i =
(1� ha; ai) (1� h�; i)
(1� h�; ai) (1� ha; i) ;

we obtain the identities

1� 'z (�) z = 1� h'z (�) ; 'z (0)i =
1� jzj2
1� �z ;

1� j'z (�)j
2
= 1� h'z (�) ; 'z (�)i =

�
1� jzj2

��
1� j�j2

�
j1� �zj2

:

Plugging these identities into the formula for Ta;b;c " (z) we obtain

Ta;b;c " (z) =

Z
Bn

�
1� jzj2

�a� (1�jzj2)(1�j�j2)
j1��zj2

�n+1+b+"
j�jc��� 1�jzj21��z

���n+1+a+b (1� j�j2)n+1 dV (�)(9.29)

=  " (z)

Z
Bn

�
1� j�j2

�b+"
j�jc

j1� �zjn+1+b�a+2"
dV (�) :

Now from Theorem 1.12 in [36] we obtain that

sup
z2Bn

Z
Bn

�
1� j�j2

��
j1� �zj�

dV (�) <1

if and only if � � � < n + 1. Provided c > �2n it is now easy to see that we also
have

sup
z2Bn

Z
Bn

�
1� j�j2

��
j�jc

j1� �zj�
dV (�) <1

if and only if � � � < n+ 1. It now follows from the above that

Ta;b;c " (z) � C " (z) ; z 2 Bn;

if and only if

�b� 1 < " < a:
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Now we turn to the adjoint T �a;b;c = Tb+n+1;a�n�1;c with respect to the space
L2 (�n). With the change of variable z = 'w (�) we have

T �a;b;c " (w) =

Z
Bn

�
1� jzj2

�a+" �
1� jwj2

�b+n+1
j'w (z)j

c

j1� wzjn+1+a+b
d�n (z)(9.30)

=

Z
Bn
G (z) d�n (z) =

Z
Bn
G ('w (�)) d�n (�)

=

Z
Bn

�
1� j'w (�) j2

�a+" �
1� jwj2

�b+n+1
j�jc���1� w'w (�)���n+1+a+b �1� j�j2�n+1 dV (�)

=

Z
Bn

�
(1�jwj2)(1�j�j2)

j1��wj2

�a+" �
1� jwj2

�b+n+1
j�jc��� 1�jwj21��w

���n+1+a+b �1� j�j2�n+1 dV (�)

=  " (w)

Z
Bn

�
1� j�j2

�a+"�n�1
j�jc

j1� �wja�b+2"�n�1
dV (�) :

Arguing as above and provided c > �2n, we obtain

T �a;b;c " (w) � C " (w) ; w 2 Bn;

if and only if
�a+ n < " < b+ n+ 1:

Altogether then there is " 2 R such that h =
p
 " is a Schur function for Ta;b;c

on L2 (�n) in Lemma 13 if and only if

max f�a+ n;�b� 1g < min fa; b+ n+ 1g :

This is equivalent to �2a < �n < 2 (b+ 1), which is (7.1) in the case p = 2; t =
�n � 1. Thus Lemma 13 completes the proof that this case of (7.1) implies the
boundedness of Ta;b;c on L2 (�n). The converse is easy - see for example the argu-
ment for the case c = 0 on page 52 of [36].

We now turn to the general case. The adjoint T �a;b;c relative to the Banach space
Lp (�t) is easily computed to be T �a;b;c = Tb�t;a+t;c (see page 52 of [36] for the case
c = 0). Then from (9.29) and (9.30) we have

Ta;b;c " (z) =  " (z)

Z
Bn

�
1� j�j2

�b+"
j�jc

j1� �zjn+1+b�a+2"
dV (�) ;

T �a;b;c " (w) =  " (w)

Z
Bn

�
1� j�j2

�a+t+"
j�jc

j1� �wja�b+2"+t
dV (�) :

Let 1
p +

1
q = 1. We apply Schur�s Lemma 13 with h (�) =

�
1� j�j2

�s
and

(9.31) s 2
�
�b+ 1

q
;
a

q

�
\
�
�a+ 1 + t

p
;
b� t
p

�
:
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Using Theorem 1.12 in [36] we obtain for h with s as in (9.31) that

Ta;b;ch
q � Chq and T �a;b;ch

p � Chp:

Schur�s Lemma 13 now shows that Ta;b;c is bounded on Lp (�t). Again, the converse
follows from the argument for the case c = 0 on page 52 of [36].
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