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Abstract

This article studies strong A∞-weights and Besov capacities as
well as their relationship to Hausdorff measures. It is shown that
in the Euclidean space R

n with n ≥ 2, whenever n − 1 < s ≤ n,
a function u yields a strong A∞-weight of the form w = enu if the
distributional gradient ∇u has sufficiently small || · ||Ls,n−s(Rn; Rn)-
norm. Similarly, it is proved that if 2 ≤ n < p < ∞, then w = enu is
a strong A∞-weight whenever the Besov Bp-seminorm [u]Bp(Rn) of u
is sufficiently small.

Lower estimates of the Besov Bp-capacities are obtained in terms
of the Hausdorff content associated with gauge functions h satisfying
the condition

∫ 1
0 h(t)p

′−1 dt
t < ∞.

1. Introduction

In this paper we study sufficient conditions under which one would get strong
A∞-weights in R

n. We also study Besov capacity. We explore how Hausdorff
measures and this capacity are related.

A doubling measure µ on R
n is a Radon measure for which there exists

a constant C > 1 such that

0 < µ(2B) ≤ Cµ(B)

for all balls B. Throughout this paper λB represents the ball concentric
with B with radius λ times the radius of B for every λ > 0. To every
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doubling measure µ on R
n with density w (that is, µ(A) =

∫
A
w(x)dx for all

measurable sets A ⊂ R
n), we can associate a quasidistance on R

n defined by

(1.1) δµ(x, y) = µ(Bx,y)
1
n ,

where Bx,y is the smallest closed ball which contains the points x and y.
To say that δµ(x, y) is a quasidistance means by definition that it is non-
negative and symmetric, that it vanishes if and only if x = y, and that it
satisfies

δµ(x, z) ≤ C(δµ(x, y) + δµ(y, z))

for some C ≥ 1 and all x, y, z ∈ R
n. If the above inequality was satisfied

with C = 1, then the quasidistance δµ(x, y) would in fact be a distance
function.

A weight w is said to be an A∞-weight if there exist constants C ≥ 1
and q > 1 such that(

1

|B|
∫

B

w(x)qdx

) 1
q

≤ C
1

|B|
∫

B

w(x)dx

for all balls B ⊂ R
n. Here |E| denotes the Lebesgue measure of E ⊂ R

n

whenever E is measurable. See for example [15, Chapter 4] for a discussion
about A∞-weights.

To say that w is a strong A∞-weight means, by definition, that w is an
A∞-weight and that the quasidistance δµ is comparable to a distance δ′µ,
namely there exists a distance function δ′µ on R

n and a constant C > 0 such
that

(1.2) C−1δµ(x, y) ≤ δ′µ(x, y) ≤ Cδµ(x, y).

Here µ is the measure on R
n with density w.

Strong A∞-weights were introduced in the early 90’s by Semmes and
David [9], [30] when trying to identify the subclass of A∞-weights that
are comparable to the Jacobian determinants of quasiconformal mappings.
See [10], [19], and [31].

Strong A∞-weights also provide examples of admissible weights in the
sense of [20]. In particular, our results give new such examples. See [3].

Bonk and Lang proved in [5] that if µ is a signed Radon measure on R
2

such that µ+(R2) < 2π and µ−(R2) < ∞, then (R2, D̃µ) is bi-Lipschitz
equivalent to R

2 endowed with the Euclidean metric, where

D̃µ(x, y) = inf

{∫
α

euds : α analytic curve connecting x, y

}
,
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the function u is a solution of −∆u = µ with |∇u| ∈ L2(R2), and µ = µ+−µ−

is the Jordan decomposition of µ. In particular, it is proved that w = e2u

is comparable to the Jacobian of a quasiconformal mapping f : R
2 → R

2,
which implies that w is a strong A∞-weight.

Here we prove a weaker result in R
n, n ≥ 2, related to the one from [5].

One of our results states that A∞-weights of the form w = enu are strong
A∞-weights if u is a locally integrable function with distributional gradient
∇u in the Morrey space Ls,n−s(Rn; Rn) with small || · ||Ls,n−s(Rn; Rn)-norm
for some s ∈ (n− 1, n].

We recall that for 1 ≤ p <∞ and 0 ≤ λ ≤ n, the Morrey space Lp,λ(Rn)
is defined to be the linear space of measurable functions u ∈ L1

loc(R
n) such

that

||u||Lp,λ(Rn) = sup
x∈Rn

sup
r>0

(
r−λ

∫
B(x,r)

|u(y)|pdy
)1/p

<∞.

In particular, Ln,0(Rn) = Ln(Rn). We refer to [17, p. 65] for more informa-
tion about Morrey spaces and their use in the theory of partial differential
equations. One notices that the weak Lebesgue space Ln,∞(Rn) is contained
in Ls,n−s(Rn) for every s ∈ [1, n). Indeed, it can be shown that for every
s ∈ [1, n), there exists a constant C = C(n, s) such that

(1.3) ||u||Ls,n−s(Rn) ≤ C||u||Ln,∞(Rn).

Similarly we can define the Morrey space Lp,λ(Rn; Rm) for vector-valued
measurable functions. It follows from the Poincaré inequality that for every
s ∈ [1, n], there exists a constant C = C(n, s) > 0 such that

(1.4) [u]BMO(Rn) ≤ C||∇u||Ls,n−s(Rn; Rn),

where [u]BMO(Rn) is the bounded mean oscillation seminorm that measures
the oscillation of u on balls in R

n, given by

[u]BMO(Rn) = sup
a∈Rn

sup
r>0

1

|B(a, r)|
∫

B(a,r)

|u(x) − uB(a,r)| dx.

Here and throughout this paper uE denotes the average of u on the measur-
able set E ⊂ R

n whenever 0 < |E| <∞.
As a consequence of our result, (see [18], [11]), we can obtain strong

A∞-weights of the form w = enu, where u is a distributional solution of

−div(|∇u|n−2∇u) = µ

whenever µ is a signed Radon measure with small total variation. Indeed, it
follows from the results of [18] and [11] that every distributional solution u
of the previous equation has the property that the weak Ln-norm of the

distributional gradient of u is controlled by (|µ|(Rn))
1

n−1 .
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In [4, Theorem 3.1] the authors prove that if u belongs to the Bessel
potential space Lα, n

α (Rn), 0 < α < n, then w = enu is a strong A∞-weight
with data depending only on α, n, and the Lα, n

α -norm of u. We prove a
result similar to [4, Theorem 3.1]. This result yields strong A∞-weights of
the form w = enu when u has small Besov Bp-seminorm, 2 ≤ n < p <∞.

We define

Bp(R
n) = {u ∈ Lp(Rn) : ||u||Bp(Rn) <∞},

where

(1.5) ||u||Bp(Rn) = ||u||Lp(Rn) + [u]Bp(Rn)

with

(1.6) [u]Bp(Rn) =

(∫
Rn

∫
Rn

|u(x) − u(y)|p
|x− y|2n

dx dy

)1/p

.

It is known that L
n
p

,p(Rn) ⊂ Bp(R
n) for every p ∈ (n,∞), so our result

generalizes [4, Theorem 3.1] to Besov Bp spaces.
Besov spaces have recently been used in the study of quasiconformal

mappings in metric spaces and in geometric group theory. See [6] and [7].
Capacities associated with Besov spaces were studied by Netrusov in [26]

and [27] and by Adams and Hurri-Syrjänen in [2]. Bourdon in [6] studied
Besov Bp-capacity in metric settings.

We develop a theory of Besov Bp-capacity on R
n and we prove that this

capacity is a Choquet set function. We also relate Hausdorff measure and
Besov capacity. Some of the ideas used here follow [22], [23], [7], and [6].

This is part of my PhD thesis at the University of Michigan under the
guidance of Professor Juha Heinonen.

2. Scaling invariant Besov spaces

In this section we prove some basic properties of the scaling invariant Besov
spaces Bp(R

n) and their closed subspaces Bp(Ω) and B0
p(Ω), where Ω ⊂ R

n

is an open set.
The expressions ||u||Bp(Rn) and [u]Bp(Rn) from (1.5) and (1.6) are called

the Besov norm and the Besov seminorm of u respectively. We have

(2.1) [u]Bp(Rn) = 0 if and only if u is constant a.e.

We know that Bp(R
n) is a reflexive Banach space and moreover, S is dense

in Bp(R
n) where S = S(Rn) is the Schwartz class. See [1, Theorem 4.1.3]
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and [28, Chapter 3]. It is easy to see that every Lipschitz function with com-
pact support belongs to Bp(R

n). We also note that [u(α)]Bp(Rn) = [u]Bp(Rn),
where u(α)(x) = u(αx) for α > 0.

If u ∈ L1
loc(R

n) is such that [u]Bp(Rn) < ∞, then u ∈ BMO(Rn). Indeed,
it is easy to see that

(2.2) [u]BMO(Rn) ≤ C(n, p)[u]Bp(Rn).

For an open set Ω ⊂ R
n we define

Bp(Ω) = {u ∈ Bp(R
n) : u = 0 a.e. in R

n \ Ω}.
For a function u ∈ Bp(Ω) we let ||u||Bp(Ω) = ||u||Bp(Rn).

We notice that Bp(Ω) is a closed subspace of Bp(R
n) with respect to the

Besov norm, hence it is itself a reflexive space.
We define B0

p(Ω) as the closure of C∞
0 (Ω) in Bp(R

n). Since C∞
0 (Ω) ⊂

Bp(Ω), it follows that B0
p(Ω) ⊂ Bp(Ω), so we can say that B0

p(Ω) is the
closure of C∞

0 (Ω) in Bp(Ω).

Lemma 2.1. Bp(Ω) is closed under truncations. In particular, bounded
functions in Bp(Ω) are dense in Bp(Ω).

Proof. It is easy to show that vλ ∈ Bp(Ω) for every λ ≥ 0, where vλ =
min(v, λ). Indeed, we have ||vλ||Lp(Rn) ≤ ||v||Lp(Rn) and [vλ]Bp(Ω) ≤ [v]Bp(Ω).

To prove the second assertion, for positive integers k we define the func-
tion vk by vk = max(−k,min(v, k)). From the first assertion it follows that
vk ∈Bp(Ω) with ||vk||Bp(Ω)≤||v||Bp(Ω). Furthermore, we have |vk(x)|≤|v(x)|
for every x ∈ R

n and from the Lebesgue Dominated Convergence Theo-
rem it follows that ||vk − v||Lp(Ω) → 0. We also notice that |vk(x)− vk(y)| ≤
|v(x)−v(y)| for every x, y ∈ R

n and since |(vk(x)−vk(y))−(v(x)−v(y))| → 0
for almost every (x, y) ∈ R

n × R
n, it follows from the Lebesgue Dominated

Convergence Theorem that [vk − v]Bp(Ω) → 0 as k → ∞. �
For a measurable function u : Ω → R, we let u+ = max(u, 0) and

u− = min(u, 0).

Lemma 2.2. If uj → u in Bp(Ω) and vj → v in Bp(Ω), then

min(uj, vj) → min(u, v) in Bp(Ω).

Proof. It suffices to show that if uj converges to u in Bp(Ω), then u+
j con-

verges to u+ in Bp(Ω). By Lemma 2.1, we have that u+ ∈ Bp(Ω) whenever
u ∈ Bp(Ω). We can assume without loss of generality that uj and u are 0
everywhere in R

n \ Ω and that uj → u pointwise a.e. in R
n. Since

(2.3) |u+
j (x) − u+(x)| ≤ |uj(x) − u(x)|

for every x ∈ R
n, it is clear that u+

j → u+ in Lp(Ω).
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For every x, y ∈ R
n we have

|(u+
j (x) − u+(x)) − (u+

j (y) − u+(y))| ≤ |u+
j (x) − u+(x)| + |u+

j (y) − u+(y)|
which, together with (2.3) and the fact that uj → u pointwise a.e. in R

n,
implies that

(2.4) |(u+
j (x) − u+(x)) − (u+

j (y) − u+(y))| → 0

for a.e. (x, y) ∈ R
n × R

n as j → ∞. We also notice that

|(u+
j (x) − u+(x)) − (u+

j (y) − u+(y))| ≤ |u+
j (x) − u+

j (y)| + |u+(x) − u+(y)|
≤ |uj(x) − uj(y)| + |u(x) − u(y)|

for every x, y ∈ R
n which implies, via the triangle inequality, that

|(u+
j (x) − u+(x)) − (u+

j (y) − u+(y))| ≤ |(uj(x) − u(x)) − (uj(y) − u(y))|
+ 2 |u(x) − u(y)|

for every x, y ∈ R
n. We notice that the above inequality implies

(2.5) [u+
j − u+]Bp(Ω) ≤ [uj − u]Bp(Ω) + 2[u]Bp(Ω)

for every integer j ≥ 1. From (2.4) and the inequality preceding (2.5) it
follows, via a general version of Lebesgue Dominated Convergence Theorem
(see [14, p. 57, Exercise 20]) that

[u+
j − u+]Bp(Ω) → 0

as j → ∞. This, together with the fact that ||u+
j −u+||Lp(Rn) → 0 as j → ∞,

implies that ||u+
j − u+||Bp(Ω) → 0 as j → ∞, which proves our claim. �

Next we show that the space B0
p(Ω) is a lattice.

Lemma 2.3. If u, v ∈ B0
p(Ω), then min(u, v) and max(u, v) are in B0

p(Ω).
Moreover, if u ∈ B0

p(Ω) is nonnegative, then there exists a sequence of non-
negative functions ϕj ∈ C∞

0 (Ω) converging to u in Bp(Ω).

Proof. It is enough to show, due to Lemma 2.2, that u+ is in B0
p(Ω)

whenever u is in C∞
0 (Ω). Let η ∈ C∞

0 (B(0, 1)), 0 ≤ η ≤ 1, be a mollifier.
For every ε > 0, we define ηε by ηε(x) = ε−nη(x

ε
). We notice that ηε ∗ u+ ∈

C∞
0 (Ω) for ε < ε0 = dist(supp u, ∂Ω). We know that ηε∗u+ → u+ uniformly

on R
n as ε → 0. We also know that ||ηε ∗ u+||Lp(Rn) ≤ ||u+||Lp(Rn) and that

[ηε ∗ u+]Bp(Rn) ≤ [u+]Bp(Rn) for every ε > 0. Then ηε ∗ u+, 0 < ε < ε0

is a sequence of nonnegative functions in C∞
0 (Ω), bounded in B0

p(Ω), and
converging to u+ uniformly on R

n as ε → 0. The convexity and reflexivity of
B0

p(Ω) together with Mazur’s lemma [32, p. 120] imply that u+ ∈ B0
p(Ω) and

that there exists a sequence of nonnegative functions ϕj in C∞
0 (Ω) converging

to u+ in Bp(Ω). This finishes the proof. �
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Proposition 2.4. C∞
0 (Rn) is dense in Bp(R

n).

Proof. Let u ∈ Bp(R
n). Without loss of generality we can assume that

u is in S, and in particular bounded. For every integer k ≥ 2, we define
ϕk : R

n → R,

ϕk(x) =

⎧⎪⎨⎪⎩
1 if 0 ≤ |x| ≤ k(

ln k2

|x|
)
/ln k if k < |x| ≤ k2

0 if |x| > k2.

Then ϕk ∈ Bp(R
n) and moreover, [ϕk]

p
Bp(Rn) ≤ C(ln k)1−p. (See (3.4).) Let

η ∈ C∞
0 (B(0, 1)) be a mollifier. Let ϕ̃k = η ∗ ϕk. Then ϕ̃k ∈ C∞

0 (Rn) and

[ϕ̃k]Bp(Rn) ≤ [ϕk]Bp(Rn) ≤ C(ln k)1−p.

Moreover ϕ̃k(x) = 1 for |x| ≤ k − 1 and ϕ̃k(x) = 0 for |x| ≥ k2 + 1.

Let uk = uϕ̃k. Then uk ∈ C∞
0 (Rn) and

||u− uk||Lp(Rn) ≤ ||uχRn\B(0,k−1)||Lp(Rn) → 0 as k → ∞.

We also have

[u− uk]Bp(Rn) ≤
(∫

Rn

∫
Rn

(1 − ϕ̃k(y))
p|u(x) − u(y)|p

|x− y|2n
dx dy

)1/p

+ ||u||L∞(Rn)[ϕ̃k]Bp(Rn) → 0

as k → ∞. This completes the proof. �

Lemma 2.5. Let ϕ be a Lipschitz function with compact support in R
n. If

u ∈ Bp(R
n), then uϕ ∈ Bp(R

n) with

||uϕ||Bp(Rn) ≤ C ||u||Bp(Rn),

where C depends on n, p, the Lipschitz constant of ϕ, and the diameter of
supp ϕ.

Proof. Let R be the diameter of supp ϕ. We choose x0 ∈ supp ϕ such
that supp ϕ ⊂ B, where B = B(x0, R). Let L > 0 be a constant such that
|ϕ(x)−ϕ(y)|≤L|x−y| for every x, y ∈ R

n. Then note that ||ϕ||L∞(Rn)≤LR.
We also notice that

||uϕ||Lp(Rn) ≤ ||ϕ||L∞(Rn) ||u||Lp(Rn),

hence uϕ ∈ Lp(Rn). For every x, y ∈ R
n we have

|u(x)ϕ(x) − u(y)ϕ(y)| ≤ |u(x) − u(y)| |ϕ(x)|+ |u(y)| |ϕ(x)− ϕ(y)|.
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Therefore, if we denote

I =

∫
Rn

∫
Rn

|u(y)|p |ϕ(x) − ϕ(y)|p
|x− y|2n

dx dy,

we have

(2.6) [uϕ]Bp(Rn) ≤ ||ϕ||L∞(Rn)[u]Bp(Rn) + I1/p.

We notice that I = I1 + I2 + I3, where

I1 =

∫
2B

∫
2B

|u(y)|p |ϕ(x) − ϕ(y)|p
|x− y|2n

dx dy

I2 =

∫
2B

∫
Rn\2B

|u(y)|p |ϕ(x) − ϕ(y)|p
|x− y|2n

dx dy

I3 =

∫
Rn\2B

∫
2B

|u(y)|p |ϕ(x) − ϕ(y)|p
|x− y|2n

dx dy.

From the definition of I1 we have, since ϕ is Lipschitz with constant L,

I1 ≤
∫

2B

∫
2B

Lp |u(y)|p
|x− y|2n−p

dx dy(2.7)

= Lp

∫
2B

|u(y)|p
(∫

2B

|x− y|p−2ndx

)
dy.(2.8)

We have

(2.9)

∫
2B

|x− y|p−2ndx ≤ C(n, p)Rp−n

for every y ∈ 2B, where we recall that R is the radius of B. From (2.7)
and (2.9) we get

(2.10) I1 ≤ C(n, p)LpRp−n

∫
2B

|u(y)|pdy ≤ C(n, p)LpRp−n ||u||pLp(Rn).

Since ϕ is supported in B, it follows from the definition of I2 that in fact

I2 =

∫
B

∫
Rn\2B

|u(y)|p |ϕ(y)|p
|x− y|2n

dx dy.

Hence

I2 ≤ ||ϕ||pL∞(Rn)

∫
B

∫
Rn\2B

|u(y)|p
|x− y|2n

dx dy
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and since |x− y| ≥ |x−x0|
2

whenever x ∈ R
n \ 2B and y ∈ B, we get

I2 ≤ 22n ||ϕ||pL∞(Rn)

∫
B

|u(y)|p dy
∫

Rn\2B

1

|x− x0|2n
dx.

Hence

I2 ≤ C(n) ||ϕ||pL∞(Rn)R
−n

∫
B

|u(y)|pdy(2.11)

≤ C(n) ||ϕ||pL∞(Rn)R
−n ||u||pLp(Rn).

We notice that

I3 ≤ 2p−1

(
I2 +

∫
Rn\2B

∫
2B

|u(x) − u(y)|p |ϕ(x) − ϕ(y)|p
|x− y|2n

dx dy

)
(2.12)

≤ 2p−1I2 + 2p−1 ||ϕ||pL∞(Rn) [u]pBp(Rn).

From (2.6), (2.10), (2.11), (2.12), and the fact that I = I1 + I2 + I3, we
get that uϕ ∈ Bp(R

n) with

(2.13) ||uϕ||Bp(Rn) ≤ C||u||Bp(Rn),

where the constant C is as required. This finishes the proof. �
Lemma 2.6. Let ϕ be a Lipschitz function with compact support in R

n.
Suppose uk is a sequence in Bp(R

n) converging to u in Bp(R
n). Then ukϕ

converges to uϕ in Bp(R
n).

Proof. From Lemma 2.5, we have that ukϕ ∈ Bp(R
n) for every k ≥ 1 and

uϕ ∈ Bp(R
n). Moreover, Lemma 2.5 implies

(2.14) ||ukϕ− uϕ||Bp(Rn) ≤ C||uk − u||Bp(Rn)

for every k ≥ 1 and since uk → u in Bp(R
n), it follows that ukϕ → uϕ in

Bp(R
n). This finishes the proof. �

Remark 2.7. Let Ω, Ω̃ be bounded and open subsets of R
n such that Ω⊂⊂Ω̃.

Suppose that ϕ is a function in C∞
0 (Ω̃) satisfying

(2.15) 0 ≤ ϕ ≤ 1, ϕ = 1 in Ω and ||∇ϕ||L∞(Rn) ≤ C(n)

dist(Ω, ∂Ω̃)
.

By doing an argument very similar to the one from Lemma 2.5, one can
show that uϕ ∈ Bp(Ω̃) whenever u ∈ Bp(R

n) and ϕ ∈ C∞
0 (Ω̃) satisfies (2.15).

Moreover, in this case

||uϕ||Bp(�Ω) ≤ C||u||Bp(Rn)

for all u ∈ Bp(R
n) and the constant C > 0 can be chosen to depend only on

n, p, dist(Ω, ∂Ω̃) and diam Ω̃.
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Remark 2.8. It is easy to see that uϕ ∈ Bp(R
n) whenever u, ϕ are bounded

functions in Bp(R
n). Moreover,

||uϕ||Lp(Rn) ≤ min(||u||L∞(Rn)||ϕ||Lp(Rn), ||ϕ||L∞(Rn)||u||Lp(Rn))

and
[uϕ]Bp(Rn) ≤ ||u||L∞(Rn)[ϕ]Bp(Rn) + ||ϕ||L∞(Rn)[u]Bp(Rn).

Lemma 2.9. Let B = B(x0, R) ⊂ R
n. Let η ∈ C∞

0 (2B) such that 0 ≤ η ≤ 1,
that η = 1 on B, and that ||∇η||L∞(2B) <

2
R
. Then there exists a constant

C = C(n, p) such that

[η(v − vB)]Bp(Rn) ≤ C[v]Bp(Rn)

whenever v ∈ L1
loc(R

n) with [v]Bp(Rn) <∞.

Proof. Let v ∈ L1
loc(R

n) such that [v]Bp(Rn) < ∞. Then v ∈ Lp
loc(R

n) and
this implies, since η ∈ C∞

0 (2B), that η(v − vB) ∈ Lp(Rn). We repeat to
some extent the argument of Lemma 2.5 with ϕ = η, and u = v − vB. We
can choose L = 2

R
and we notice that ||η||L∞(Rn) = 1. By repeating the

argument from Lemma 2.5, we get

(2.16)

(∫
Rn

∫
Rn

|u(x)η(x) − u(y)η(y)|p
|x− y|2n

dx dy

)1/p

≤ [u]Bp(Rn) + I1/p,

where

I =

∫
Rn

∫
Rn

|v(y) − vB|p |η(x) − η(y)|p
|x− y|2n

dx dy.

Like in Lemma 2.5, we notice that I = I1 + I2 + I3, where

I1 =

∫
4B

∫
4B

|v(y)− vB|p |η(x) − η(y)|p
|x− y|2n

dx dy

I2 =

∫
4B

∫
Rn\4B

|v(y)− vB|p |η(x) − η(y)|p
|x− y|2n

dx dy

I3 =

∫
Rn\4B

∫
4B

|v(y)− vB|p |η(x) − η(y)|p
|x− y|2n

dx dy.

As in (2.10), we get

(2.17) I1 ≤ C(n, p)

(
2

R

)p

Rp−n

∫
4B

|v(y)− vB|pdy ≤ C(n, p) [v]pBp(Rn).

Since η is supported in 2B, it follows from the definition of I2 that in fact

I2 =

∫
2B

∫
Rn\4B

|v(y)− vB|p |η(y)|p
|x− y|2n

dx dy.
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Hence

I2 ≤
∫

2B

∫
Rn\4B

|v(y) − vB|p
|x− y|2n

dx dy

and since |x− y| ≥ |x−x0|
2

whenever x ∈ R
n \ 4B and y ∈ 2B, we get

I2 ≤ 22n

∫
Rn\4B

1

|x− x0|2n
dx

∫
2B

|v(y) − vB|p dy.

Hence

I2 ≤ C(n)R−n

∫
2B

|v(y)− vB|pdy(2.18)

≤ C(n, p) [v]pBp(Rn).

We notice that

I3 ≤ 2p−1

(
I2 +

∫
Rn\4B

∫
4B

|v(x) − v(y)|p |η(x) − η(y)|p
|x− y|2n

dx dy

)
(2.19)

≤ 2p−1I2 + 2p−1 [v]pBp(Rn).

From (2.16), (2.17), (2.18), (2.19) and the fact that I = I1 + I2 + I3, we have
that η(v − vB) ∈ Bp(R

n) with

(2.20) [η(v − vB)]Bp(Rn) ≤ C(n, p) [u]Bp(Rn) = C(n, p) [v]Bp(Rn).

�

Lemma 2.10. Let v ∈ Bp(Ω).

(i) If supp v ⊂⊂ Ω, then v ∈ B0
p(Ω).

(ii) If u ∈ B0
p(Ω) and if 0 ≤ v ≤ u in R

n, then v ∈ B0
p(Ω).

Proof. For the proof of (i), let ψ ∈ C∞
0 (Ω) such that ψ = 1 on the support

of v. If a sequence vj ∈ C∞
0 (Rn) converges to v in Bp(R

n), then from
Lemma 2.6 we see that ψvj ∈ C∞

0 (Ω) converges to ψv = v in Bp(R
n),

therefore v ∈ B0
p(Ω).

As to assertion (ii), let ϕj ∈ C∞
0 (Ω) be an approximating sequence for

u ∈ B0
p(Ω). From Lemma 2.3 we can assume that the functions ϕj are

nonnegative. We can assume without loss of generality that v = u = 0
everywhere on R

n \ Ω. Then min(v, ϕj) has as support a compact subset
of Ω and hence belongs to B0

p(Ω). Moreover, since min(v, ϕj) converges to
min(u, v) = v in Bp(Ω) (see Lemma 2.2), we have v ∈ B0

p(Ω). �
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Lemma 2.11. Suppose that Ω ⊂ R
n is bounded. Let u ∈ Bp(Ω) be such that

u = 0 on R
n \ Ω and limx→y,x∈Ω u(x) = 0 for all y ∈ ∂Ω. Then u ∈ B0

p(Ω).

Proof. Recalling that u = u+ − u−, we may assume that u is nonnegative.
The function uε = max(u − ε, 0) is in Bp(Ω) for ε > 0 and has compact
support in Ω. Thus uε ∈ B0

p(Ω), ||uε||Bp(Ω) ≤ ||u||Bp(Ω) for every ε > 0
and uε → u both in Lp(Rn) and pointwise as ε → 0. The convexity and
reflexivity of B0

p(Ω) together with Mazur’s lemma imply that u ∈ B0
p(Ω). �

3. Relative Besov capacity

In this section we establish a general theory of the relative Besov capacity
and study how this capacity is related to Hausdorff measures.

For E ⊂ Ω we define

BA(E,Ω) = {u ∈ B0
p(Ω) : u ≥ 1 on a neighborhood of E}.

We call BA(E,Ω) the set of admissible functions for the condenser (E,Ω).
The relative Besov p-capacity of the pair (E,Ω) is denoted by

capBp
(E,Ω) = inf{[u]pBp(Ω) : u ∈ BA(E,Ω)}.

If BA(E,Ω) = ∅, we set capBp
(E,Ω) = ∞.

Since B0
p(Ω) is closed under truncations from below by 0 and from above

by 1 and since these truncations do not increase the Besov p-seminorm, we
may restrict ourselves to those admissible functions u for which 0 ≤ u ≤ 1.

3.1. Basic properties of the relative Besov capacity

A capacity is a monotone, subadditive set function. The following theorem
expresses, among other things, that this is true for the relative Besov p-
capacity.

Theorem 3.1. Let Ω ⊂ R
n be a bounded open set. The set function E 
→

capBp
(E,Ω), E ⊂ Ω, enjoys the following properties:

(i) If E1 ⊂ E2, then capBp
(E1,Ω) ≤ capBp

(E2,Ω).

(ii) If Ω1 ⊂ Ω2 are open and bounded and E ⊂ Ω1, then

capBp
(E,Ω2) ≤ capBp

(E,Ω1).

(iii) capBp
(E,Ω) = inf{capBp

(U,Ω) : E ⊂ U ⊂ Ω, U open}.
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(iv) If Ki is a decreasing sequence of compact subsets of Ω with K =⋂∞
i=1Ki, then

capBp
(K,Ω) = lim

i→∞
capBp

(Ki,Ω).

(v) If E1 ⊂ E2 ⊂ . . . ⊂ E =
⋃∞

i=1Ei ⊂ Ω, then

capBp
(E,Ω) = lim

i→∞
capBp

(Ei,Ω).

(vi) If E =
⋃∞

i=1Ei ⊂ Ω, then

capBp
(E,Ω) ≤

∞∑
i=1

capBp
(Ei,Ω).

Proof. Properties (i), (ii) and (iii) are immediate consequences of the defi-
nition.

The proof of (iv), (v) and (vi) follows [22] and [23].

(iv) We notice that by monotonicity we have

capBp
(K,Ω) ≤ lim

i→∞
capBp

(Ki,Ω).

On the other hand let U ⊂ Ω be an open set containing K. By the compact-
ness of the sets Ki and K, we have that Ki ⊂ U for all sufficiently large i.
Therefore

lim
i→∞

capBp
(Ki,Ω) ≤ capBp

(U,Ω),

and we obtain the claim from (iii) by taking the infimum over all such open
sets U .

(v) Monotonicity yields

lim
i→∞

capBp
(Ei,Ω) ≤ capBp

(E,Ω).

To prove the opposite inequality, we may assume without loss of generality
that limi→∞ capBp

(Ei,Ω) < ∞. Let ε > 0 be fixed. For every i = 1, 2, . . .
we choose ui ∈ BA(Ei,Ω), 0 ≤ ui ≤ 1, such that

(3.1) [ui]
p
Bp(Ω) < capBp

(Ei,Ω) + ε.

Since Ω is bounded, it follows that ui is a bounded sequence in B0
p(Ω)

and hence there exists a subsequence, which we denote again by ui such
that ui → u weakly in B0

p(Ω) as i → ∞. Using Mazur’s lemma we obtain a
sequence vi of convex combinations of ui such that vi ∈ BA(Ei,Ω), vi → u in
B0

p(Ω), vi → u a.e. This sequence can be found in the following way. Let i0
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be fixed. Since every subsequence of ui converges to u weakly in B0
p(Ω), we

may use the Mazur lemma for the subsequence ui, i ≥ i0. We obtain a finite
convex combination of the functions ui, i ≥ i0 as close to u as we want in
B0

p(Ω). For every i = i0, i0 + 1, . . . there is an open neighborhood Oi of Ei0

such that ui = 1 in Oi. The intersection of finitely many open neighborhoods
of Ei0 is an open neighborhood of Ei0 . Therefore, vi0 equals 1 in an open
neighborhood Ui0 of Ei0 . Moreover, since for every i = 1, 2, . . . we have

[ui]
p
Bp(Ω) < capBp

(Ei,Ω) + ε ≤ lim
j→∞

capBp
(Ej ,Ω) + ε,

we obtain from the convexity of the Bp-seminorm and (3.1) that

(3.2) [vi]
p
Bp(Ω) ≤ lim

j→∞
capBp

(Ej,Ω) + ε

for every i = 1, 2, . . .. Passing to subsequences if necessary, we may assume
that for every i = 1, 2, . . . we have

(3.3) ||vi+1 − vi||Bp(Ω) ≤ 2−i.

For j = 1, 2, . . . we set
wj = sup

i≥j
vi.

It is easy to see that wj = limk→∞wj,k pointwise a.e., where wj,k is
defined for every k ≥ j by

wj,k = sup
k≥i≥j

vi.

We notice that wj,k ∈ BA(Ej ,Ω). Moreover,

wj,k ≤ vj +
∞∑
i=j

|vi+1 − vi|

pointwise in R
n and

|wj,k(x) − wj,k(y)| ≤ sup
i≥j

|vi(x) − vi(y)| ≤ |vj(x) − vj(y)|

+
∞∑
i=j

|(vi+1(x) − vi(x)) − (vi+1(y) − vi(y))|

for all x, y ∈ R
n and every k ≥ j. The convexity and reflexivity of B0

p(Ω)
together with Mazur’s lemma and formula (3.3) imply that wj ∈ B0

p(Ω) with

wj ≤ vj +

∞∑
i=j

|vi+1 − vi|
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pointwise a.e. in R
n and

|wj(x) − wj(y)| ≤ sup
i≥j

|vi(x) − vi(y)| ≤ |vj(x) − vj(y)|

+

∞∑
i=j

|(vi+1(x) − vi(x)) − (vi+1(y) − vi(y))|

for a.e. x, y ∈ R
n. It is easy to see that wj = 1 in a neighborhood of E

and this shows, since wj ∈ B0
p(Ω), that in fact wj ∈ BA(E,Ω) and hence

capBp
(E,Ω) ≤ [wj]

p
Bp(Ω). We notice that

[wj]Bp(Ω) ≤ [vj ]Bp(Ω) +

∞∑
i=j

[vi+1 − vi]Bp(Ω) ≤ [vj ]Bp(Ω) + 2−j+1

for every j ≥ 1. Therefore, for all sufficiently large j we have from (3.2) that

capBp
(E,Ω) ≤ [wj ]

p
Bp(Ω) ≤ lim

i→∞
capBp

(Ei,Ω) + 2ε.

By letting ε→ 0, we get the converse inequality so (v) is proved.

(vi) To prove the countable subadditivity, we need to prove the finite
subadditivity first. It is enough to prove this for two sets because then the
general finite case follows by induction. So let E1 and E2 be two subsets of Ω.
We can assume without loss of generality that capBp

(E1,Ω)+capBp
(E2,Ω)<∞.

Let ui ∈ BA(Ei,Ω) such that 0 ≤ ui ≤ 1 and [ui]
p
Bp(Ω) < capBp

(Ei,Ω) + ε

for i = 1, 2. Then u = max(u1, u2) belongs to BA(E1 ∪ E2,Ω) and since
|u(x) − u(y)| ≤ max(|u1(x) − u1(y)|, |u2(x) − u2(y)|) for all x, y ∈ R

n, it
follows that

capBp
(E1 ∪E2,Ω) ≤ [u]pBp(Ω) ≤ [u1]

p
Bp(Ω) + [u2]

p
Bp(Ω)

≤ capBp
(E1,Ω) + capBp

(E2,Ω) + 2ε.

Letting ε → 0 we complete the proof in the case of two sets, and hence the
general finite case.

The general case follows from the finite case together with (v). The the-
orem is proved. �

A set function that satisfies properties (i), (iv), (v) and (vi) is called
a Choquet capacity (relative to Ω). We may thus invoke an important ca-
pacitability theorem of Choquet and state the following result. See [12,
Appendix II].
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Theorem 3.2. Suppose that Ω is a bounded open set in R
n. The set function

E 
→ capBp
(E,Ω), E ⊂ Ω, is a Choquet capacity. In particular, all Borel

subsets (in fact, all analytic) subsets E of Ω are capacitable, i.e.,

capBp
(E,Ω) = sup{capBp

(K,Ω) : K ⊂ E compact}
whenever E ⊂ Ω is analytic.

Remark 3.3. IfK is a compact subset of the bounded and open set Ω ⊂ R
n,

we get the same Besov Bp-capacity for (K,Ω) if we restrict ourselves to a
smaller set, namely

BW (K,Ω) = {u ∈ C∞
0 (Ω) : u = 1 in a neighborhood of K}.

Indeed, let u ∈ BA(K,Ω); we may clearly assume that u = 1 in a neigh-
borhood U ⊂⊂ Ω of K. Then we choose a cut-off function η ∈ C∞(Rn),

0 ≤ η ≤ 1 such that η = 1 in R
n \ U and η = 0 in a neighborhood Ũ of K,

Ũ ⊂⊂ U . Now, if ϕj ∈ C∞
0 (Ω) is a sequence converging to u in B0

p(Ω), then
ψj = 1 − η(1 − ϕj) is a sequence belonging to BW (K,Ω) which converges
to 1 − η(1 − u) in B0

p(Ω). (See Lemma 2.6.) But 1 − η(1 − u) = u. This
establishes the assertion, since BW (K,Ω) ⊂ BA(K,Ω). In fact, it is easy
to see that if K ⊂ Ω is compact we get the same Besov Bp-capacity if we
consider

BW̃ (K,Ω) = {u ∈ C∞
0 (Ω) : u = 1 on K}

BW0(K,Ω) = {u ∈ C0(Ω) ∩B0
p(Ω) : u = 1 on K}.or

It is also useful to observe that if ψ ∈ B0
p(Ω) is such that if ϕ−ψ ∈ B0

p(Ω\K)
for some ϕ ∈ BW0(K,Ω), then

capBp
(K,Ω) ≤ [ψ]pBp(Ω).

3.2. Upper estimates for the relative Besov capacity

For every x ∈ R
n we obviously have capBp

(E,Ω) = capBp
(E+x,Ω+x). Next

we derive some upper estimates for the relative Besov capacity. Similar esti-
mates have been obtained earlier by Bourdon in [6]. We follow his methods.

Theorem 3.4. There exists a constant C = C(n, p) > 0 depending only on
n and p such that

(3.4) capBp
(B(x0, r), B(x0, R)) ≤ C

(
ln
R

r

)1−p

for every 0 < r < R
2

and every x0 ∈ R
n.
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Proof. We use the function u : R
n → R,

u(x) =

⎧⎪⎨⎪⎩
1 if 0 ≤ |x− x0| ≤ r(

ln |x−x0|
R

)
/
(
ln r

R

)
if r < |x− x0| < R

0 if |x− x0| ≥ R.

Then u∈Bp(R
n) because it is Lipschitz with compact support. Since u is

continuous on R
n and 0 outside B(x0, R), we have in fact from Lemma 2.11

that u ∈ B0
p(B(x0, R)). In fact u ∈ BA(B(x0, r), B(x0, R)) since u = 1 on

B(x0, r). Let v(x) = u(x) ln R
r
. We will get an upper bound for [v]Bp(B(x0,R)).

Let k ≥ 3 be the smallest integer such that 2k−1r ≥ R. For i = 1, . . . , k
we define Bi = B(x0, 2

ir) \ B(x0, 2
i−1r). We also define B0 = B(x0, r) and

Bk+1 = R
n \B(x0, 2

kr). We have

[v]pBp(B(x0,R)) =
∑

0≤i,j≤k+1

Ii,j =
∑

0≤i,j≤k+1

∫
Bi

∫
Bj

|v(x) − v(y)|p
|x− y|2n

dx dy.

Obviously we have Ii,j = Ij,i. We majorize Ii,j by distinguishing a few
cases. For j ≤ k and 0 ≤ i ≤ j − 2 we have from the definition of v that
|v(x) − v(y)| ≤ j − i+ 1 whenever x ∈ Bi and y ∈ Bj , hence

Ii,j ≤ C0(j − i+ 1)p (2jr)−2n (2ir)n (2jr)n,

that is Ii,j ≤ C1(j − i)p2(i−j)n. For 0 ≤ i ≤ j ≤ k we notice, since v is
1

2i−1r
-Lipschitz on

⋃
j≥iBj that

Ii,j ≤ (2i−1r)−p

∫
Bi

∫
Bj

1

|x− y|2n−p
dx dy.

Moreover, we have ∫
Bj

1

|x− y|2n−p
dx ≤ C2(diam Bj)

p−n

for every y ∈ B(x0, 2
ir), where C2 depends only on p and n. Hence for

0 ≤ i ≤ j ≤ k we have

Ii,j ≤ C3(2
i−1r)−p(2ir)n(2jr)p−n ≤ C42

(j−i)(p−n).

In particular, for j−1 ≤ i ≤ j ≤ k, the integral Ii,j is bounded by a constant
that depends only on p and n. Now we have to bound Ii,j when j = k + 1.
Since v is constant on Bk ∪ Bk+1, we have Ii,k+1 = 0 for i ∈ {k, k + 1}. For
0 ≤ i ≤ k − 1 we have

Ii,k+1 ≤ (k − i+ 1)p

∫
Bi

∫
Bk+1

1

|x− y|2n
dx dy.



1084 Ş. Costea

But there exists C5 > 0 such that∫
Bk+1

1

|x− y|2n
dx ≤ C5(2

k+1r)−n

for every y ∈ R
n with |y − x0| ≤ 2k−1r. Hence

Ii,k+1 ≤ C6(k − i+ 1)p2(i−k−1)n.

Finally we have

[v]pBp(B(x0,R)) ≤ C7k + C8

∑
0≤i≤j≤k+1

(j − i)p2(i−j)n.

The last sum is equal to

k+1∑
l=1

(k + 2 − l)lp2−l n.

But k + 2 − l ≤ k + 1 and there exists a > 1 such that lp2−l n ≤ C9a
−l for

l ≥ 1. Hence

[v]pBp(B(x0,R)) ≤ C10 ln
R

r
and

[u]pBp(B(x0,R)) ≤ C10

(
ln
R

r

)1−p

.

The claim follows with C = C10. �

Whenever Q ⊂ R
n is a cube with sides parallel to coordinate axes, we

denote its edge length by �(Q) and then set

Q̂ = Q× [�(Q), 2�(Q)] ⊂ R
n+1
+ ,

so that Q̂ is the upper half of the (n + 1)-dimensional box Q × [0, 2�(Q)].
For definiteness, we assume that the cubes are closed. We denote Dr(R

n),
r > 0, the countable collection of all r-dyadic cubes in R

n. Thus, Q∈Dr(R
n)

if and only if the corners of Q lie in 2krZn and �(Q) = 2kr for some k ∈ Z.
Similarly, if Q0 ⊂ R

n is a r-dyadic cube, we denote by Dr(Q0) the
r-dyadic subcubes of Q0. Finally, we set

Wr = {Q̂ : Q ∈ Dr(R
n)}.

The members of Wr will be referred as to as r-dyadic Whitney cubes of R
n+1
+ .

Two distinct r-dyadic Whitney cubes Q̂, Q̂′ are adjacent if there exists an
integer k such that either:
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(i) Q,Q′ are dyadic cubes in Dr(R
n) and both Q and Q′ have side length

2kr and a common face, or

(ii) one of the cubes Q,Q′ has side length 2kr, the other has side length
2k+1r and the one with the bigger side length includes the other one.

Given a function f ∈ Bp(R
n), we construct an extension f̂ : Wr → R.

For Q̂ ∈ Wr we let

f̂(Q̂) =
1

|Q|
∫

Q

f(x) dx.

For two adjacent cubes Q̂, Q̂′ ∈ Wr we have

|f̂(Q̂) − f̂(Q̂′)|p =

∣∣∣∣ 1

|Q|
∫

Q

f(x) dx− 1

|Q′|
∫

Q′
f(y) dy

∣∣∣∣p
=

∣∣∣∣ 1

|Q|
1

|Q′|
∫

Q

∫
Q′

(f(x) − f(y)) dx dy

∣∣∣∣p
≤ 1

|Q|
1

|Q′|
∫

Q

∫
Q′
|f(x) − f(y)|p dx dy

≤ C(n)

∫
Q

∫
Q′

|f(x) − f(y)|p
|x− y|2n

dx dy.

For the following lemma see [7, Lemma 3.5].

Lemma 3.5. There exists a constant C = C(n) depending only on n such
that we have

C(n)−1|η − ζ |−2n ≤
∑

�Q, �Q′∈Wr adjacent

χQ(η)χQ′(ζ)

|Q||Q′| ≤ C(n)|η − ζ |−2n

for a.e. η, ζ ∈ R
n.

We also have (see [7, Theorem 3.4]):

Lemma 3.6. There exists a constant C = C(n, p) such that

C−1[f ]pBp(Rn) ≤
∑

�Q, �Q′∈Wr adjacent

1

|Q|
1

|Q′|
∫

Q

∫
Q′
|f(x) − f(y)|p dx dy

≤ C[f ]pBp(Rn)

for every f ∈ Bp(R
n).

This implies (see [7, Lemma 3.5]):

Lemma 3.7. There exists a constant C = C(n, p) such that

(3.5)
∑

�Q, �Q′∈Wr adjacent

|f̂(Q̂) − f̂(Q̂′)|p ≤ C[f ]pBp(Rn)

for every f ∈ Bp(R
n).



1086 Ş. Costea

3.3. Hausdorff measure and relative Besov capacity

Now we examine the relationship between Hausdorff measures and the Bp-
capacity. Let h be a real-valued, increasing function on [0,∞) with

lim
t→0

h(t) = h(0) = 0.

Such a function h is called a measure function. Let 0 < δ ≤ ∞. For E ⊂ R
n

we define
Λδ

h(E) = inf
∑

i

h(ri),

where the infimum is taken over all coverings of E by balls Bi with diame-
ter ri not exceeding δ. The set function Λ∞

h is called the h-Hausdorff content.
Clearly Λδ

h is an outer measure for every δ ∈ (0,∞].

Moreover, for every E ⊂ R
n, there exists a Borel set Ẽ such that E ⊂

Ẽ ⊂ R
n and Λδ

h(E) = Λδ
h(Ẽ). Clearly Λδ

h(E) is a decreasing function of δ.
This allows us to define the h-Hausdorff measure of E ⊂ R

n by

Λh(E) = sup
δ>0

Λδ
h(E) = lim

δ→0
Λδ

h(E).

The measure Λh is Borel regular; that is, it is an additive measure on
Borel sets of R

n and for each E ⊂ R
n there is a Borel set G such that E ⊂ G

and Λh(E) = Λh(G). (See [13, p. 170] and [25, Chapter 4].) If h(t) = ts,
we write Λs for Λts . It is immediate from the definition that Λs(E) < ∞
implies Λu(E) = 0 for all u > s. The smallest s ≥ 0 that satisfies Λu(E) = 0
for all u > s is called the Hausdorff dimension of E.

The set function Λ∞
h satisfies the following three properties:

(i) If Ki is a decreasing sequence of compact sets, then

Λ∞
h

( ∞⋂
i=1

Ki

)
= lim

i→∞
Λ∞

h (Ki).

(ii) If Ei is an increasing sequence of arbitrary sets, then

Λ∞
h (

∞⋃
i=1

Ei) = lim
i→∞

Λ∞
h (Ei).

(iii) Λ∞
h (E) = sup{Λ∞

h (K) : K ⊂ E compact} whenever E ⊂ R
n is a Borel

set. (See [1, p. 138] and [8, Theorem II.2].)

If h : [0,∞) → [0,∞) is a measure function, we know that Λh(E) = 0 if
and only if Λ∞

h (E) = 0. (See [1, Proposition 5.1.5].) If h(t) = ts, 0 < s <∞,
we write Λ∞

s for Λ∞
ts .



Strong A∞-weights and scaling invariant Besov capacities 1087

We notice that for every 0 < s < ∞, there exists a constant C =
C(n, s) > 0 such that

(3.6) Λ∞
s (B) = C (diam B)s

for every ball B ⊂ R
n.

Since Λh(E) = 0 for every E ⊂ R
n whenever h : [0,∞) → [0,∞) is a

measure function such that lim inft→0 h(t)t
−n = 0, it is enough to assume

that h : [0,∞) → [0,∞) is an increasing homeomorphism such that t 
→
h(t) t−n, 0 < t < ∞ is decreasing if we hope to get Λh(E) > 0 where
E ⊂ R

n. (See [1, Proposition 5.1.8].)

Let Q0,r ∈ Dr(R
n) be a cube with side length r.

Theorem 3.8. Suppose h : [0,∞) → [0,∞) is an increasing homeomor-
phism such that t 
→ h(t)t−n, 0 < t < ∞ is decreasing. There exists a
positive constant C ′

1 = C ′
1(n, p) such that

(3.7)
Λ∞

h (E ∩Qk,r)(∫ 2−kr

0
h(t)p′−1 dt

t

)p−1
≤ C ′

1k
p−1capBp

(E ∩Qk,r, int(Q0,r))

for every E ⊂ R
n, every k > 1, r > 0, and for every Qk,r ∈ Dr(Q0,r) with

side length 2−kr and with one corner at the center of Q0,r.

Here and throughout the paper int(E) denotes the interior of a set E
whenever E ⊂ R

n.

Proof. Fix r > 0, k > 1, Q0,r a r-dyadic cube of side length r and Qk,r ∈
Dr(Q0,r) r-dyadic subcube of Q0,r with side length 2−kr and with one corner
at the center of Q0,r. Let E ⊂ R

n. From the fact that there exists a Borel

set Ẽ such that E ⊂ Ẽ ⊂ R
n and

capBp
(E ∩Qk,r, int(Q0,r)) = capBp

(Ẽ ∩Qk,r, int(Q0,r)),

we can assume that E is a Borel set. Moreover, since

Λ∞
h (E) = sup{Λ∞

h (K) : K ⊂ E compact}

whenever E ⊂ R
n is a Borel set and since capBp

(·, int(Q0,r)) is a Choquet
capacity, we can assume that E is compact.

There is nothing to prove if we have either
∫ 2−kr

0
h(t)p′−1 dt

t
= ∞ or

Λ∞
h (E ∩ Qk,r) = 0. So we can assume without loss of generality that α =

Λ∞
h (E ∩Qk,r) > 0 and that

∫ 2−kr

0
h(t)p′−1 dt

t
<∞.
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For every ζ ∈ ∂Q0,r there is an increasing sequence (Qs,ζ)s≤0 of r-dyadic
subcubes of Q0,r containing ζ such that Qs,ζ has side length 2sr for every
integer s ≤ 0 and ⋂

s≤0

Qs,ζ = {ζ}.

We denote by s0
ζ the sequence (Q̂s,ζ)s≤0.

For every η ∈ Qk,r there is a decreasing sequence (Qs+k,η)s≥0 of r-dyadic
subcubes of Qk,r containing η such that Qs+k,η has side length 2−s−kr for
every s ≥ 0 and ⋂

s≥0

Qs+k,η = {η}.

We denote by s1
η the sequence (Q̂s+k,η)s≥0. Let I = {Q̂0,r, . . . , Q̂k,r} be a

shortest sequence of pairwise adjacent cubes connecting Q̂0,r and Q̂k,r.

For (ζ, η) ∈ ∂Q0,r ×Qk,r we define γζ,η = (Q̂s,ζ,η)s∈Z, where

Q̂s,ζ,η =

⎧⎪⎨⎪⎩
Q̂s,ζ if s ≤ 0

Q̂s,r if 0 ≤ s ≤ k

Q̂s,η if s ≥ k.

For Q̂, Q̂′ ∈ Wr we define

C(Q̂, Q̂′) = {(ζ, η) ∈ ∂Q0,r×Qk,r : Q̂ = Q̂s,ζ,η, Q̂
′ = Q̂s+1,ζ,η for some s ∈ Z}.

We notice that C(Q̂, Q̂′) = ∅ if Q̂, Q̂′ are not adjacent or if they are adjacent
but with the same side length.

Since the Λ∞
1 (∂Q0,r) = C(n)r and α = Λ∞

h (E∩Qk,r) > 0, from Frostman
lemma (see [1, Theorem 5.1.12]) there exists a constant C > 0 and probab-
ility measures ν0 on ∂Q0,r and ν1 on E∩Qk,r such that for every ball B(x, t)
of radius t of R

n we have

(3.8) ν0(B(x, t)) ≤ C
t

r
and ν1(B(x, t)) ≤ C

h(t)

α
.

For Q̂, Q̂′ ∈ Wr we define

m(Q̂, Q̂′) = ν0 × ν1(C(Q̂, Q̂′)).

We notice that m(Q̂, Q̂′)m(Q̂′, Q̂) = 0 for every pair of cubes Q̂, Q̂′ ∈ Wr.

Moreover, if m(Q̂, Q̂′) = 0, then this implies that Q̂ and Q̂′ are adjacent but
with different side length.
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For f ∈ BW (E ∩Qk,r, int(Q0,r)) let f̂ be its extension. Then, since f is
continuous, we have that

1

|Qv|
∫

Qv

f(x) dx→ f(y)

for every y ∈ R
n for every nested sequence Qv of r-dyadic cubes containing

y and converging to y. It follows that

1 ≤ f(η) − f(ζ) ≤
∑
s∈Z

(f̂(Q̂s+1,ζ,η) − f̂(Q̂s,ζ,η))

whenever η ∈ E ∩Qk,r and ζ ∈ ∂Q0,r.

We obtain with the definition ofm(Q̂, Q̂′) and by Hölder’s inequality that

1 ≤
∫

∂Q0,r

∫
E∩Qk,r

∑
s∈Z

(f̂(Q̂s+1,ζ,η) − f̂(Q̂s,ζ,η)) dν1(η) dν0(ζ)

≤
∫

∂Q0,r

∫
Qk,r

∑
s∈Z

|f̂(Q̂s+1,ζ,η) − f̂(Q̂s,ζ,η)| dν1(η) dν0(ζ)

=
∑

�Q, �Q′∈Wr adjacent

|f̂(Q̂) − f̂(Q̂′)|m(Q̂, Q̂′)

≤
( ∑

�Q, �Q′∈Wr adjacent

|f̂(Q̂) − f̂(Q̂′)|p
)1/p( ∑

�Q, �Q′∈Wr

m(Q̂, Q̂′)p′
)1/p′

≤ C(n, p)[f ]Bp(Rn)

( ∑
�Q, �Q′∈Wr

m(Q̂, Q̂′)p′
)1/p′

,

where we used (3.5) for the last inequality. For a nonnegative integer s we let

E0,s = {(Q̂, Q̂′) ∈ Wr ×Wr : Q̂ = Q̂−s−1,ζ, Q̂
′ = Q̂−s,ζ for some ζ ∈ ∂Q0,r}

and similarly

E1,s = {(Q̂, Q̂′) ∈ Wr ×Wr : Q̂ = Q̂s+k,η, Q̂
′ = Q̂s+k+1,η for some η ∈ Qk,r}.

We notice that we can break
∑

=
∑

�Q, �Q′∈Wr
m(Q̂, Q̂′)p′ into 3 parts,

namely

∑
=

∞∑
s=0

∑
( �Q, �Q′)∈E0,s

m(Q̂, Q̂′)p′ +
∑
�Q, �Q′∈I

m(Q̂, Q̂′)p′ +

∞∑
s=0

∑
( �Q, �Q′)∈E1,s

m(Q̂, Q̂′)p′.
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We recall that I = {Q̂0,r, . . . , Q̂k,r} is a shortest sequence of pairwise

adjacent cubes in Wr connecting Q̂0,r and Q̂k,r. Thus, the sum in the middle
is exactly k. We get upper bounds for the first and the third term in the
sum. We notice that for every s ≥ 0 we have∑

( �Q, �Q′)∈E0,s

m(Q̂, Q̂′) = 1

since ν0 × ν1 is a probability measure. On the other hand, there exists a
constant C ′ = C ′(p, n) depending only on p and n such that

m(Q̂, Q̂′) ≤ C ′h(2
−s−kr)

α
for every (Q̂, Q̂′) ∈ E1,s

for every integer s ≥ 0 and

m(Q̂, Q̂′) ≤ C ′2−s for every (Q̂, Q̂′) ∈ E0,s

for every integer s ≥ 0.
Therefore

∞∑
s=0

∑
( �Q, �Q′)∈E1,s

m(Q̂, Q̂′)p′ =

∞∑
s=0

∑
( �Q, �Q′)∈E1,s

m(Q̂, Q̂′)p′−1m(Q̂, Q̂′)

≤ Cα1−p′
∑
s≥0

h(2−s−kr)p′−1

( ∑
( �Q, �Q′)∈E1,s

m(Q̂, Q̂′)

)
.

But there exists a constant C0 = C0(n, p) > 1 such that

1

C0

∫ 2−kr

0

h(t)p′−1dt

t
≤
∑
s≥0

h(2−k−sr)p′−1 ≤ C0

∫ 2−kr

0

h(t)p′−1dt

t

for every r > 0, every integer k > 1 and every increasing homeomorphism
h : [0,∞) → [0,∞) such that t 
→ h(t)t−n, 0 < t <∞, is decreasing. Hence

∞∑
s=0

∑
( �Q, �Q′)∈E1,s

m(Q̂, Q̂′)p′ ≤ C α1−p′
∫ 2−kr

0

h(t)p′−1dt

t
.

From a similar computation we get

∞∑
s=0

∑
( �Q, �Q′)∈E0,s

m(Q̂, Q̂′)p′ =
∞∑

s=0

∑
( �Q, �Q′)∈E0,s

m(Q̂, Q̂′)p′−1m(Q̂, Q̂′)

≤ C
∑
s≥0

2−(p′−1)s

( ∑
( �Q, �Q′)∈E0,s

m(Q̂, Q̂′)

)
= C.
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So we get ∑
≤ C

(
α1−p′

∫ 2−kr

0

h(t)p′−1dt

t
+ k + 1

)
.

It is easy to see that there exists a constant C = C(n, p) such that

Λ∞
h (Qk,r)(∫ 2−kr

0
h(t)p′−1 dt

t

)p−1 ≤ C.

for every r > 0, every integer k > 1 and every increasing homeomorphism
h : [0,∞) → [0,∞) such that t 
→ h(t)t−n, 0 < t <∞, is decreasing. Hence∑

≤ Ck α1−p′
∫ 2−kr

0

h(t)p′−1dt

t
.

Therefore we obtain

1 ≤ C[f ]Bp(Rn)

(
k α1−p′

∫ 2−kr

0

h(t)p′−1dt

t

)1/p′

for every integer k > 1 and for every f ∈ BW (E ∩Qk,r, int(Q0,r)).
This implies that there exists C ′

1 = C ′
1(n, p) > 0 such that

Λ∞
h (E ∩Qk,r)(∫ 2−kr

0
h(t)p′−1 dt

t

)p−1k
1−p ≤ C ′

1capBp
(E ∩Qk,r, int(Q0,r)).

This finishes the proof. �

Theorem 3.8 helps us formulate and prove the following theorem. We
leave the details to the reader.

Theorem 3.9. Suppose h : [0,∞) → [0,∞) is an increasing homeomor-
phism such that t 
→ h(t)t−n, 0 < t < ∞ is decreasing. There exists a
positive constant C1 = C1(n, p) such that

Λ∞
h (E ∩Q(x, 2−kr))(∫ 2−kr

0
h(t)p′−1 dt

t

)p−1 ≤ C1k
p−1capBp

(E ∩Q(x, 2−kr), int(Q(x, r)))

for every E ⊂ R
n, every integer k > 1, every x ∈ R

n, and every r > 0.

From Theorem 3.9 it follows easily that there exists a constant C =
C(n, p) such that

(3.9)
Λ∞

1 (E ∩B(a, 3R))

R
≤ CcapBp

(E ∩B(a, 3R), B(a, 6R))

whenever E ⊂ R
n, R > 0, and a ∈ R

n.
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As a corollary we have the following.

Corollary 3.10. There exists a positive constant C2 = C2(n, p) such that

(3.10) C2

(
ln
R

r

)1−p

≤ capBp
(Q(x, r), int(Q(x,R)))

for every x ∈ R
n and every pair of positive numbers r, R such that r < R

2
.

Proof. We apply Theorem 3.9 for h(t) = t. We notice that there exists a
constant C ′

2 = C ′
2(n, p) such that

(3.11)
Λ∞

1 (Q(x, 2−kr))(∫ 2−kr

0
tp′−1 dt

t

)p−1 = C ′
2

for every x ∈ R
n, every integer k ≥ 2 and every r > 0. The rest is routine. �

Theorem 3.4 and Corollary 3.10 easily yield the following theorem, (cf. [6]).

Theorem 3.11. There exists C0 = C0(n, p) > 0 such that

(3.12)
1

C0

(
ln
R

r

)1−p

≤ capBp
(B(x, r), B(x,R)) ≤ C0

(
ln
R

r

)1−p

for every x ∈ R
n and every pair of positive numbers r, R such that r < R

2
.

A set E⊂R
n is said to be of Besov Bp-capacity zero if capBp

(E∩Ω,Ω)=0
for all open and bounded Ω ⊂ R

n. In this case we write capBp
(E) = 0.

The following lemma is obvious.

Lemma 3.12. A countable union of sets of Besov Bp-capacity zero has
Besov Bp-capacity zero.

The next lemma shows that, if E is bounded, one needs to test only a
single bounded open set Ω containing E in showing that E has zero Besov
Bp-capacity.

Lemma 3.13. Suppose that E is bounded and that there is a bounded neigh-
borhood Ω of E with capBp

(E,Ω) = 0. Then capBp
(E) = 0.

Proof. Let Ω′ be an open set. Since there exists a Borel set Ẽ ⊂ Ω such
that E ⊂ Ẽ and capBp

(E,Ω) = capBp
(Ẽ,Ω) = 0, we may assume that E is

itself a Borel set.
Thus, by invoking Theorem 3.2, we may assume that E ∩Ω′ is compact.

Since capBp
(E∩Ω′,Ω) = 0, there exists a sequence ϕi ∈ BW (E∩Ω′,Ω) such
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that [ϕi]Bp(Ω) < 2−i for every integer i ≥ 1. We notice that the sequence
ϕi is bounded in B0

p(Ω). Therefore, from the reflexivity of B0
p(Ω), there

exists ψ ∈ B0
p(Ω) and a subsequence denoted again by ϕi such that ϕi → ψ

weakly in B0
p(Ω). From Mazur’s lemma, there exists a sequence ϕ̃i of convex

combinations of ϕj ,

ϕ̃i =

ji∑
j=i

λi,jϕj, λi,j ≥ 0, and

ji∑
j=i

λi,j = 1,

such that ϕ̃i → ψ in B0
p(Ω). Without loss of generality we can assume that

ϕ̃i → ψ pointwise a.e. in R
n as i→ ∞. The convexity of the Besov seminorm

and the choice of the sequence ϕi imply, together with the closedness of
BW (E ∩ Ω′,Ω) under finite convex combinations, that ϕ̃i is a sequence in
BW (E∩Ω′,Ω) and [ϕ̃i]Bp(Ω)<2−i for every integer i≥1. Since [ϕ̃i]Bp(Ω)<2−i

for every integer i ≥ 1 and ϕ̃i → ψ in B0
p(Ω), it follows that [ψ]Bp(Ω) = 0.

Therefore, from (2.1) and the fact that ψ ∈ Lp(Rn), it follows that in fact
ψ = 0 a.e. in R

n, which means that

(3.13) ||ϕ̃i||Bp(Ω) → 0

as i→∞. Let η∈BW (E∩Ω′,Ω′). Then η ϕ̃i is a sequence in BW(E∩Ω′,Ω′),
hence

(3.14) capBp
(E ∩ Ω′,Ω′) ≤ [η ϕ̃i]

p
Bp(Ω′)

for every integer i ≥ 1. From Lemma 2.5, (3.13) and (3.14) we have

0 ≤ capBp
(E ∩ Ω′,Ω′) ≤ lim

i→∞
[η ϕ̃i]

p
Bp(Ω′) ≤ lim

i→∞
||η ϕ̃i||pBp(Ω)

≤ C||ϕ̃i||pBp(Ω) → 0,

where C depends only on n, p, the Lipschitz constant of η and the diameter
of supp η. Hence capBp

(E ∩ Ω′,Ω′) = 0. This finishes the proof. �

Corollary 3.14. Let E ⊂ R
n be such that capBp

(E) = 0. Then Λh(E) = 0
for every measure function h : [0,∞) → [0,∞) such that

(3.15)

∫ 1

0

h(t)p′−1dt

t
<∞.

In particular, the Hausdorff dimension of E is zero.

Note that for every ε > 0 we can take h = hε : [0,∞) → [0,∞) in
Corollary 3.14, where hε(t) = | ln t|1−p−ε for every t ∈ (0, 1/2).
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Proof. It is enough to assume, without loss of generality, that h : [0,∞) →
[0,∞) is an increasing homeomorphism such that t 
→ h(t)t−n, 0 < t < ∞
is decreasing. (See [1, Proposition 5.1.8].)

If capBp
(E) = 0, then there exists a Borel set Ẽ such that E ⊂ Ẽ and

capBp
(Ẽ) = 0, hence we can assume without loss of generality that E is

itself Borel.
Since Λh is a Borel regular measure and Λh(E) = 0 if and only if

Λ∞
h (E) = 0, (see [1, Proposition 5.1.5]) it is enough to assume that E is

in fact compact.
For E compact the claim follows obviously from Theorem 3.9.
The second claim is a consequence of (i) because for every s ∈ (0, n), the

function hs : [0,∞) → [0,∞) defined by hs(t) = ts has the property (3.15).
�

As another corollary, we have the following:

Corollary 3.15. Suppose E ⊂ R
n is such that capBp

(E) = 0. Then R
n \E

is connected.

Proof. We fix s ∈ (1, n). If capBp
(E) = 0, then in particular we have

Λn−s(E) = 0 and this implies via [20, Theorem 2.27 and Corollary 2.39] that
Caps(E) = 0. Here Caps denotes the Sobolev s-capacity as in [20, p. 48].
An appeal to [20, Lemma 2.46] finishes the proof. �

We close this section with another sufficient condition to get sets of Besov
Bp-capacity zero.

Theorem 3.16. Let h : [0,∞) → [0,∞) be an increasing homeomorphism
such that h(t) = (ln 1

t
)1−p for all t ∈ (0, 1

2
). Then Λh(E) < ∞ implies

capBp
(E) = 0 for every set E in R

n.

Before we prove Theorem 3.16, we state and prove the following propo-
sition.

Proposition 3.17. Let E be a compact set in R
n. There exists a constant

C = C(n, p) such that capBp
(E,Ω) ≤ CΛh(E) for every bounded and open

set Ω containing E.

Proof. We can assume without loss of generality that Λh(E) <∞. Let Ω be
a bounded open set containing E.

We denote by δ the distance from E to the complement of Ω. Without
loss of generality we can assume that 0 < δ < 1.

We fix 0 < ε < 1 such that 0 < ε < δ2

4
. Then r < ε implies

ln

(
δ

2r

)
≥ 1

2
ln

(
1

r

)
.
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We cover E by open balls B(xi, ri) such that ri <
ε
2
. Since we may

assume that the balls B(xi, ri) intersect E, we have B(xi,
δ
2
) ⊂ Ω. In fact,

since E is compact, E is covered by only finitely many of the balls B(xi, ri).
As in [20, p. 48] we obtain

capBp
(E,Ω) ≤

∑
i

capBp
(B(xi, ri),Ω) ≤

∑
i

capBp
(B(xi, ri), B(xi,

δ

2
))

≤ C(n, p)
∑

i

(
ln

1

ri

)1−p

.

In the last step we also used formula (3.12) for the Besov Bp-capacity of
spherical condensers together with our choice of ε. Taking the infimum over
all such coverings and letting ε → 0, we conclude capBp

(E,Ω) ≤ CΛh(E).
This finishes the proof of the proposition. �

We prove now Theorem 3.16.

Proof. Since Λh is a Borel regular measure, we may assume that E is a
Borel set and furthermore, in light of the Choquet capacitability theorem,
we may assume that E is compact. We let M = CΛh(E), where C is the
constant from Proposition 3.17. Since Λh(E) < ∞, we have that |E| = 0,
while Proposition 3.17 implies that capBp

(E,Ω) ≤ M for every bounded and
open set Ω containing E. Let Ω ⊂ R

n be a bounded open set containing E.
From Lemma 3.13 it is enough to show that capBp

(E,Ω) = 0. We choose a
descending sequence of bounded open sets

Ω = Ω1 ⊃⊃ Ω2 ⊃⊃ . . . ⊃⊃ ∩iΩi = E

and a sequence ϕi ∈ BW (E,Ωi) with [ϕi]
p
Bp(Ωi)

< M + 1. Then ϕi is a

bounded sequence in Bp(Ω). Because ϕi converges pointwise to a function
ψ which is 0 in R

n \ E and 1 on E, we have from Mazur’s lemma and the
reflexivity of B0

p(Ω) that ψ ∈ B0
p(Ω). That is, there exists a subsequence

denoted again by ϕi such that ϕi → ψ weakly in B0
p(Ω) and a sequence ϕ̃i

of convex combinations of ϕj,

ϕ̃i =

ji∑
j=i

λi,jϕj, λi,j ≥ 0, and

ji∑
j=i

λi,j = 1,

such that ϕ̃i → ψ in B0
p(Ω). Without loss of generality we can assume that

ϕ̃i → ψ pointwise in R
n as i → ∞. The convexity of the Besov seminorm

and the choice of the sequence ϕi imply, together with the closedness of
BW (E,Ωi) under finite convex combinations, that ϕ̃i ∈ BW (E,Ωi) for every
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integer i ≥ 1. Since |E| = 0, ψ = 0 in R
n \ E, and ϕ̃i → ψ in B0

p(Ω), it
follows that ||ψ||Bp(Ω) = 0. This implies ||ϕ̃i||Bp(Ω) → 0 as i→ ∞, hence

0 ≤ capBp
(E,Ω) ≤ lim

i→∞
[ϕ̃i]

p
Bp(Ω) = 0 .

�

4. Besov capacity and quasicontinuous functions

In this section we study a global Besov capacity and quasicontinuous func-
tions in Besov spaces.

4.1. Besov Capacity

Definition 4.1. For a set E ⊂ R
n define

CapBp
(E) = inf{||u||pLp(Rn) + [u]pBp(Rn) : u ∈ S(E)},

where u runs through the set

S(E) = {u ∈ Bp(R
n) : u = 1 in a neighborhood of E}.

Since Bp(R
n) is closed under truncations from below by 0 and from above

by 1 and since these truncations do not increase the norm, we may restrict
ourselves to those functions u ∈ S(E) for which 0 ≤ u ≤ 1. We get the same
capacity if we consider the apparently larger set of admissible functions,
namely

S̃(E) = {u ∈ Bp(R
n) : u ≥ 1 a.e. in a neighborhood of E}.

Moreover, we have the following lemma:

Lemma 4.2. If K is compact, then

CapBp
(K) = inf{||u||pLp(Rn) + [u]pBp(Rn) : u ∈ S0(K)}

where S0(K) = S(K) ∩ C∞
0 (Rn).

Proof. Let u ∈ S(K). Since Bp(R
n) = B0

p(R
n), we may choose a sequence

of functions ϕj ∈ C∞
0 (Rn) converging to u in Bp(R

n). Let U be a bounded
and open neighborhood ofK such that u=1 in U . Let ψ∈C∞(Rn), 0≤ψ≤1

be such that ψ=1 in R
n\U and ψ=0 in Ũ⊂⊂U , an open neighborhood ofK.

From Lemma 2.6 we see that the functions ψj = 1 −(1 − ϕj)ψ converge to
1−(1−u)ψ in Bp(R

n). This establishes the assertion since 1−(1−u)ψ = u. �
We can apply almost verbatim the proof of Theorem 3.1 to conclude:



Strong A∞-weights and scaling invariant Besov capacities 1097

Theorem 4.3. The set function E 
→ CapBp
(E), E ⊂ R

n is a Choquet
capacity. In particular

(i) If E1 ⊂ E2, then CapBp
(E1) ≤ CapBp

(E2).

(ii) If E =
⋃

iEi, then

CapBp
(E) ≤

∑
i

CapBp
(Ei).

We have introduced two different capacities, and it is next shown that
they have the same zero sets.

Let Ω, Ω̃ be bounded and open subsets of R
n such that Ω ⊂⊂ Ω̃. Let

η ∈ C∞
0 (Ω̃) be a cut-off function satisfying (2.15). Suppose K is a compact

subset of Ω. Then, if u ∈ S0(K), we have that uη is admissible for the

condenser (K, Ω̃). Therefore

(4.1) capBp
(K, Ω̃) ≤ [uη]p

Bp(�Ω)
≤ ||uη||p

Bp(�Ω)
≤ C ||u||pBp(Rn)

where C depends only on n, p, diam Ω̃ and dist(Ω, ∂Ω̃). (See Remark 2.7.)
Since ||u||Bp(Rn) = ||u||Lp(Rn) + [u]Bp(Rn), we have

(4.2) ||u||pBp(Rn) ≤ 2p−1(||u||pLp(Rn) + [u]pBp(Rn)).

From (4.1) and (4.2) we get, by taking the infimum over all u ∈ S0(K), that

(4.3) capBp
(K, Ω̃) ≤ 2p−1C CapBp

(K),

where C is the constant from (4.1).

Since both capBp
(·, Ω̃) and CapBp

(·) are Choquet capacities, we obtain:

Theorem 4.4. There exists C > 0 depending only on n, p, diam Ω̃ and
dist(Ω, ∂Ω̃) such that

(4.4) capBp
(E, Ω̃) ≤ C CapBp

(E)

for every E ⊂ Ω.

Corollary 4.5. If CapBp
(E) = 0, then capBp

(E) = 0.

We also have a converse result, namely:

Theorem 4.6. If capBp
(E) = 0, then CapBp

(E) = 0.
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Proof. Without loss of generality we can assume that E is bounded. Since
we have capBp

(E) = 0, there exists a Borel set Ẽ such that E ⊂ Ẽ and

capBp
(Ẽ) = 0. Since CapBp

(·) is a Choquet capacity, we can in fact assume
that E is compact. Then we have capBp

(E,Ω) = 0 for every Ω open and
bounded, Ω ⊃ E. We fix Ω ⊂ R

n bounded and open such that E ⊂ Ω.
Like in the proof of Lemma 3.13, we construct a sequence of functions ϕ̃i in
BW (E,Ω) such that ||ϕ̃i||Bp(Ω) → 0 as i → ∞. This implies in particular
that the sequence ϕ̃i is in S0(E) with

0 ≤ CapBp
(E) ≤ lim

i→∞

(
||ϕ̃i||pLp(Rn) + [ϕ̃i]

p
Bp(Rn)

)
= 0,

hence CapBp
(E) = 0. This proves the claim. �

Remark 4.7. For E ⊂ R
n compact we see from the proof of Lemma 3.13

and Theorem 4.6 that it is enough to have capBp
(E,Ω) = 0 for one bounded

open set Ω ⊂ R
n with E ⊂ Ω in order to have CapBp

(E) = 0.

It is desirable to know when a set is negligible for a Besov space. If there
is an isometric isomorphism between two normed spaces X and Y we write
X = Y . In particular, if E is relatively closed subset of Ω, then by

B0
p(Ω \ E) = B0

p(Ω)

we mean that each function u ∈ B0
p(Ω) can be approximated in Bp-norm by

functions from C∞
0 (Ω \ E).

Theorem 4.8. Suppose that E is a relatively closed subset of Ω. Then

B0
p(Ω \ E) = B0

p(Ω)

if and only CapBp
(E) = 0.

Proof. Suppose that CapBp
(E) = 0. Let ϕ ∈ C∞

0 (Ω) and choose a se-
quence uj of functions in Bp(R

n) such that 0 ≤ uj ≤ 1, uj = 1 in a
neighborhood of E and uj → 0 in Bp(R

n). For every j ≥ 1 we define
wj = (1 − uj)ϕ. Then from Remark 2.8 and the properties of the functions
ϕ and uj, it follows that wj is a bounded sequence of functions in Bp(R

n),
compactly supported in Ω \ E. Lemma 2.10 implies that wj is a sequence
in B0

p(Ω \ E). Moreover, Lemma 2.6 implies, since ϕ − wj = ujϕ for every
j ≥ 1 and since ||uj||Bp(Rn) → 0, that wj converges to ϕ in Bp(R

n). Since
wj is a sequence in B0

p(Ω \ E), it follows that ϕ ∈ B0
p(Ω \ E). Hence

B0
p(Ω) ⊂ B0

p(Ω \ E)

and since the reverse inclusion is trivial, the sufficiency is established.



Strong A∞-weights and scaling invariant Besov capacities 1099

For the only if part, let K ⊂ E be compact. It suffices to show that
CapBp

(K) = 0. Choose ϕ ∈ C∞
0 (Ω) with ϕ = 1 in a neighborhood of K.

Since B0
p(Ω \ E) = B0

p(Ω), we may choose a sequence of functions ϕj ∈
C∞

0 (Ω \K) such that ϕj → ϕ in Bp(Ω). Consequently

CapBp
(K) ≤

(
lim
j→∞

||ϕj − ϕ||pLp(Rn) + [ϕj − ϕ]pBp(Rn)

)
= 0,

and the theorem follows. �

4.2. Quasicontinuous functions

We show that for each u ∈ Bp(R
n) there is a function v such that u = v a.e.

and that v is Bp-quasicontinuous, i.e. v is continuous when restricted to a set
whose complement has arbitrarily small Besov Bp-capacity. Moreover, this
quasicontinuous representative is unique up to a set of Besov Bp-capacity
zero.

Definition 4.9. A function u : R
n → R is Bp-quasicontinuous if for every

ε > 0 there is an open set G ⊂ R
n such that CapBp

(G) < ε and the
restriction of u to R

n \G is continuous.

A sequence of functions ψj : R
n → R converges Bp-quasiuniformly in

R
n to a function ψ if for every ε > 0 there is an open set G such that

CapBp
(G) < ε and ψj → ψ uniformly in R

n \G.
We say that a property holds Bp-quasieverywhere, or simply q.e., if it

holds except on a set of Besov Bp-capacity zero.

Theorem 4.10. Let ϕj ∈ C(Rn)∩Bp(R
n) be a Cauchy sequence in Bp(R

n).
Then there is a subsequence ϕk which converges Bp-quasiuniformly in R

n to
a function u ∈ Bp(R

n). In particular, u is Bp-quasicontinuous and ϕk → u
Bp-quasieverywhere in R

n.

Proof. The proof is similar to the proof of [20, Theorem 4.3] and omitted. �
Theorem 4.10 implies the following corollary.

Corollary 4.11. Suppose that u ∈ Bp(R
n). Then there exists a Borel Bp-

quasicontinuous function v ∈ Bp(R
n) such that u = v a.e.

Proof. Since u ∈ Bp(R
n), from Theorem 2.4 there exists a sequence of

functions ϕj in C∞
0 (Rn) converging to u in Bp(R

n). Passing to subsequences
if necessary, we can assume that ϕj → u pointwise a.e. in R

n and that

2jp
(
||ϕj+1 − ϕj ||pLp(Rn) + [ϕj+1 − ϕj ]

p
Bp(Rn)

)
< 2−j
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for every j = 1, 2, . . . Defining Ej = {x ∈ R
n : |ϕj+1(x) − ϕj(x)| > 2−j}

and letting E = ∩∞
k=1 ∪∞

j=k Ej , the proof of the previous theorem yields
the existence of a function v ∈ Bp(R

n), such that ϕj → v in Bp(R
n) and

pointwise in R
n \ E. Since E is a Borel set of Besov Bp-capacity zero and

the functions ϕj are continuous, this finishes the proof. �
Theorem 4.12. Let u ∈ Bp(R

n). Then u ∈ B0
p(Ω) if and only if there

exists a Bp-quasicontinuous function v in R
n such that u = v a.e. in Ω and

v = 0 q.e. in R
n \ Ω.

Proof. Fix u ∈ B0
p(Ω) and let ϕj ∈ C∞

0 (Ω) be a sequence converging to u in
Bp(Ω). By Theorem 4.10 there is a subsequence of ϕj which converges Bp-
quasieverywhere in R

n to a Bp-quasicontinuous function v in R
n such that

u = v a.e. in Ω and v = 0 q.e. in R
n \ Ω. Hence v is the desired function.

To prove the converse, we assume first that Ω is bounded. Because the
truncations of v converge to v in Bp(Ω), we can assume that v is bounded.
Without loss of generality, since v is Bp-quasicontinuous and v = 0 q.e.
outside Ω we can assume that in fact v = 0 everywhere in R

n \ Ω.
Choose open sets Gj such that v is continuous on R

n \Gj and

CapBp
(Gj) −→ 0.

By passing to a subsequence, we may pick a sequence ϕj in Bp(R
n) such

that 0 ≤ ϕj ≤ 1, ϕj = 1 everywhere in Gj , ϕj → 0 a.e. in R
n, and

||ϕj||pLp(Rn) + [ϕj ]
p
Bp(Rn) → 0.

Then from Remark 2.8 we have that wj = (1 − ϕj)v is a bounded sequence
in Bp(Ω). Moreover, for every j ≥ 1, we have limx→y,x∈Ωwj(x) = 0 for all
y ∈ ∂Ω.

Thus, from Lemma 2.11, we have that wj is a sequence in B0
p(Ω). Clearly

wj → v in Lp(Rn) and pointwise a.e. in R
n.

This, together with the boundedness of the sequence wj in B0
p(Ω), implies

via Mazur’s lemma that v ∈ B0
p(Ω). The proof is complete in case Ω is

bounded.
Assume that Ω is unbounded. We can assume again, without loss of

generality, that v is bounded and that v = 0 everywhere in R
n \ Ω. For

every k ≥ 2 let ϕk ∈ C∞
0 (B(0, k2)) be such that 0 ≤ ϕk ≤ 1, ϕk = 1 on

B(0, k) and [ϕk]Bp(Rn)≤C(ln k)1−p. (See (3.4).) Then

vk = vϕk ∈ B0
p(Ω ∩ B(0, k2)) ⊂ B0

p(Ω)

for every k ≥ 2 and like in Theorem 2.4, we get

||v − vk||Bp(Rn) → 0,

which implies that v ∈ B0
p(Ω). �
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We denote by
QBp = QBp(Rn)

the set of all functions u ∈ Bp(R
n) such that there exists a sequence ϕj ∈

C(Rn) ∩ Bp(R
n) converging to u both in Bp(R

n) and Bp-quasiuniformly.
It follows immediately from Theorem 4.10 that the functions in QBp are
Bp-quasicontinuous and for each v ∈ Bp(R

n) there is u ∈ QBp such that
u = v a.e. We soon show that, conversely, each Bp-quasicontinuous function
v of Bp(R

n) belongs to QBp .

Theorem 4.13. Let u ∈ QBp. If u ≥ 1 Bp-quasieverywhere on E, then

CapBp
(E) ≤ ||u||pLp(Rn) + [u]pBp(Rn).

Proof. The proof is similar to the proof of [20, Lemma 4.7] and omitted.�

This result has the following corollary.

Corollary 4.14. Suppose that Ω is open and bounded and let E ⊂⊂ Ω. Let
u ∈ QBp . Suppose that u ≥ 1 quasieverywhere on E and that u has compact
support in Ω. Then

capBp
(E,Ω) ≤ [u]pBp(Ω).

We know that CapBp
is an outer capacity. We will show that it satisfies

the following compatibility condition (see [21]):

Theorem 4.15. Suppose that G is open and |E| = 0. Then

(4.5) CapBp
(G) = CapBp

(G \ E).

Proof. Obviously we have CapBp
(G \ E) ≤ CapBp

(G). Conversely, we can
assume without loss of generality that CapBp

(G \ E) < ∞. We fix ε > 0.
There exists a function uε ∈ Bp(R

n) and an open neighborhood W of G \E
such that uε = 1 on W and

||uε||pLp(Rn) + [uε]
p
Bp(Rn) < CapBp

(G \ E) + ε.

Since |E| = 0, we can assume without loss of generality that in fact uε = 1
on E. But then uε = 1 on W ∪ G which is an open neighborhood of G,
hence

CapBp
(G) ≤ ||uε||pLp(Rn) + [uε]

p
Bp(Rn) < CapBp

(G \ E) + ε.

Letting ε→ 0 we get the desired conclusion. �

We state now the uniqueness of a Bp-quasicontinuous representative.
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Theorem 4.16. Let f and g be Bp-quasicontinuous functions on R
n such

that
|{x : f(x) = g(x)}| = 0.

Then f = g Bp-quasieverywhere on R
n.

Proof. The proof is verbatim the proof from [21, p. 262]. �
Combining Theorem 4.13 and Theorem 4.16 we obtain the following

corollary.

Corollary 4.17. Suppose that E ⊂ R
n. Then

CapBp
(E) = inf{||u||pLp(Rn) + [u]pBp(Rn)},

where the infimum is taken over all Bp-quasicontinuous u ∈ Bp(R
n) such

that u = 1 Bp-quasieverywhere on E.

Corollary 4.11 and Theorem 4.16 imply that each u ∈ Bp(R
n) has a

“unique” quasicontinuous Borel version.

Corollary 4.18. Suppose that u ∈ Bp(R
n). Then there exists a Borel Bp-

quasicontinuous function v such that u = v a.e. Moreover, if ṽ is another
Borel Bp-quasicontinuous function such that u = ṽ a.e., then v = ṽ Bp-
quasieverywhere.

We have a result similar to Corollary 4.18 for locally integrable functions
with finite Bp-seminorm.

Corollary 4.19. Suppose that u ∈ L1
loc(R

n) such that [u]Bp(Rn) < ∞. Then
there exists a Bp-quasicontinuous Borel function v such that u = v a.e.
Moreover, if ṽ is another Bp-quasicontinuous Borel function such that u= ṽ
a.e., then v = ṽ Bp-quasieverywhere.

Proof. We prove the “uniqueness” first. Suppose v, ṽ are two Borel Bp-
quasicontinuous functions such that v = u a.e. and ṽ = u a.e. Let w = v− ṽ.
We notice that w is Bp-quasicontinuous and belongs to Bp(R

n) because
w = 0 a.e. in R

n. Hence from Corollary 4.18 we have that w = 0 Bp-
quasieverywhere. The “uniqueness” is proved.

We prove now the existence. For every integer k ≥ 1 we choose a function
ηk ∈ C∞

0 (B(0, 2k+1)) such that ηk = 1 on B(0, 2k) and |∇ηk|L∞(Rn) ≤ 21−k.
We have

(4.6) ηk+1ηk = ηk

for every integer k ≥ 1. For a fixed integer k ≥ 1, we define uk = ηku. Then
uk ∈ Lp(Rn) because u ∈ Lp

loc(R
n) and ηk ∈ C∞

0 (B(0, 2k+1)). Moreover,
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from Lemma 2.9, it follows that [ηku− ηkuB(0,2k)]Bp(Rn) <∞. This, together
with the fact that ηk ∈ Bp(R

n), imply that uk ∈ Bp(R
n). Therefore, from

Corollary 4.11 it follows that there exists ũk ∈ Bp(R
n) a Bp-quasicontinuous

Borel function such that ũk = uk a.e. in R
n. In particular, since ηk = 1

in B(0, 2k), this implies that ũk = u a.e. in B(0, 2k). So, for every integer
k ≥ 1 we have that ũk+1 is a Bp-quasicontinous Borel representative of ηk+1u,
hence ηkũk+1 is a Bp-quasicontinuous Borel representative of ηkηk+1u = uk,
where the equality follows from the definition of uk and (4.6). This implies
that both ηkũk+1 and ũk are two Bp-quasicontinuous Borel representatives
of uk ∈ Bp(R

n), hence from Corollary 4.18 we can assume that ũk = ηkũk+1

in B(0, 2k). Since ηk = 1 on B(0, 2k), this means in particular that we can
assume that ũk(x) = ũk+1(x) for every x in B(0, 2k).

So, we constructed a sequence of Bp-quasicontinuous Borel functions ũk

in Bp(R
n) satisfying the following properties:

ũk(x) = u(x) for a.e. x in B(0, 2k)

ũl(x) = ũk(x) for every x in B(0, 2k) and l ≥ k ≥ 1.

We define ũ : R
n → R by

ũ(x) = lim
k→∞

ũk(x).

Thus, ũ is a Bp-quasicontinuous Borel function and u = ũ a.e. This proves
the existence of a Bp-quasicontinuous Borel representative of u. The claim
follows. �

5. Strong A∞-weights

In this section we apply results from previous sections to study strong
A∞-weights, as promised in the introduction. We prove the following theo-
rems.

Theorem 5.1. Let s ∈ (n − 1, n] and let u be in L1
loc(R

n) such that its
distributional gradient ∇u is in the Morrey space Ls,n−s(Rn; Rn). There
exists ε = ε(n, s) > 0 such that if ||∇u||Ls,n−s(Rn;Rn) < ε, then w = enu is a
strong A∞-weight with data depending only on n and s.

Theorem 5.2. Let p∈(n,∞) and let u be in L1
loc(R

n) such that [u]
Bp(Rn)

<∞.

There exists ε = ε(n, p) > 0 such that if [u]Bp(Rn) < ε, then w = enu is a
strong A∞-weight with data depending only on n and p.

A corollary to Theorem 5.1 is the following (see [11], [18] and (1.3)):
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Corollary 5.3. Let µ be a signed Radon measure on R
n of finite total mass

||µ||M = |µ|(Rn) and let u be a distributional solution of the equation

−div(|∇u|n−2∇u) = µ

such that ∇u ∈ Ln,∞(Rn). There exists ε(n) > 0 such that if ||µ||M < ε(n),
then w = enu is a strong A∞-weight.

Corollary 5.3 was known (in a stronger form) for n = 2. (See [5].)
Theorem 5.1 yields another consequence that will be proved later:

Theorem 5.4. Let s ∈ (n − 1, n] and let u be in L1
loc(R

n) such that its
distributional gradient ∇u is in the Morrey space Ls,n−s(Rn; Rn). There
exists ε = ε(n, s) > 0 such that if ||∇u||Ls,n−s(Rn;Rn) < ε, then

(5.1) C−1δµ(x1, x2) ≤ Dµ(x1, x2) ≤ Cδµ(x1, x2) for all x1, x2 in R
n,

where C = C(n, s) > 0,

(5.2) Dµ(x, y) = inf

{∫
γ

e�uds : γ a rectifiable curve connecting x, y

}
and ũ is an s-quasicontinuous Borel representative of u.

For the definition of an s-quasicontinuous function, see [20, p. 87]. For a
discussion and definition of line integration, see [19, Chapter 7].

Theorem 5.2 has also a consequence that will be proved later:

Theorem 5.5. Let p∈(n,∞) and let u be in L1
loc(R

n) such that [u]
Bp(Rn)

<∞.

There exists ε = ε(n, p) > 0 such that if [u]Bp(Rn) < ε, then

C−1δµ(x1, x2) ≤ Dµ(x1, x2) ≤ Cδµ(x1, x2) for all x1, x2 in R
n,

where C = C(n, p) > 0,

(5.3) Dµ(x, y) = inf

{∫
γ

e�uds : γ a rectifiable curve connecting x, y

}
and ũ is a Bp-quasicontinuous Borel representative of u.

One should compare the metrics Dµ in Theorems 5.4 and 5.5 to those
studied in [5] and [29].

Before we start the proof of Theorems 5.1 and 5.2, we mention the fol-
lowing auxiliary results:
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Lemma 5.6. (See [4, Lemma 3.11].) Let x, y ∈ R
n and let E ⊂ R

n be a
Borel set. Suppose that B1, ..., Bk are open balls in R

n such that x ∈ B1,
y ∈ Bk, and Bi ∩Bi+1 = ∅ for i = 1, . . . , k− 1. Then there exists a constant
c1 = c1(n) > 0 with the following property: if

(5.4) Λ∞
1 (E) ≤ c1|x− y|,

then

(5.5)
∑
i∈G

diamBi >
1

10
|x− y|,

where

(5.6) G =

{
i = 1, . . . , k : |E ∩Bi| ≤ 1

2
|Bi|

}
.

Lemma 5.7. (See [24, Theorem 3.1].) Suppose s ∈ (n− 1, n]. There exists
a constant C = C(n, s) > 0 such that

(5.7)
Λ∞

1 (E ∩B(a, 3R))

R
≤ C

caps(E ∩ B(a, 3R), B(a, 6R))

(6R)n−s

for every a ∈ R
n, every R > 0 and every Borel set E ⊂ R

n.

Here caps denotes the variational s-capacity as in [20, p. 27].
We will prove now the following lemma.

Lemma 5.8. Suppose s ∈ (1, n]. Let B = B(x0, R) ⊂ R
n. Let η ∈ C∞

0 (2B)
such that 0 ≤ η ≤ 1, η = 1 on B, and that ||∇η||L∞(2B) <

2
R
. Then

v = η(u− uB) ∈ H1,s
0 (2B)

whenever u ∈ L1
loc(R

n) with ||∇u||Ls,n−s(Rn;Rn) < ∞. Moreover, there exists
a constant C = C(n, s) such that∫

2B

|∇v|sdx ≤ C(n, s)

∫
2B

|∇u|sdx.

Proof. Let u ∈ L1
loc(R

n) be such that ||∇u||Ls,n−s(Rn;Rn) < ∞. Then from
the Poincaré inequality it follows that

u− uB ∈ H1,s(2B).

This, together with the fact that η ∈ C∞
0 (2B) implies via [20, p. 21] that

v = η(u− uB) ∈ H1,s
0 (2B).
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Moreover,∫
2B

|∇v|sdx ≤
∫

2B

(|u− uB||∇η| + η|∇u|)sdx

≤ 2s−1

(∫
2B

(|u− uB|s|∇η|s + |∇u|s)dx
)

≤ 2s−1

((
2

R

)s ∫
2B

|u− uB|sdx+

∫
2B

|∇u|s
)

≤ C(n, s)

∫
2B

|∇u|sdx,

where for the last inequality we used the Poincaré inequality. The claim
follows. �

We will prove Theorem 5.1 now.

Proof. Since ∇u ∈ Ls,n−s(Rn; Rn), we can assume without loss of general-
ity due to [20, Theorem 4.4] that u is s-quasicontinuous and Borel. Since ∇u
has small Ls,n−s(Rn; Rn)-norm, it follows from (1.4) that u is in BMO(Rn)
with small BMO-seminorm. Therefore, from John-Nirenberg lemma, it fol-
lows that w(x) = enu(x) is an A∞-weight and doubling measure with data
depending on n and s. That is, (see [15, Theorem IV.2.15]), there exists a
constant C = C(n, s) such that

(5.8)
1

|B|
∫

B

en(u(x)−uB)dx < C and

∫
2B

w(x)dx ≤ C

∫
B

w(x)dx

for every ball B ⊂ R
n. We write dµ(x) = w(x)dx. We recall the definition of

δµ from (1.1). We shall show that there exists a constant C = C(n, s) ∈ (0, 1]
such that

(5.9) dµ(x1, x2) := inf

k∑
i=1

µ(Bi)
1
n ≥ Cµ(Bx1,x2)

1
n = Cδµ(x1, x2)

for all x1, x2 ∈ R
n, where the infimum is taken over finite chains of open

balls connecting x1 and x2 satisfying

(5.10) x1 ∈ B1, x2 ∈ Bk and Bi ∩ Bi+1 = ∅ for all i = 1, . . . , k − 1.

Indeed, (5.9) implies both that dµ is a distance and that is comparable
to δµ as required in (1.2). Towards this end, fix x1, x2 ∈ R

n, x1 = x2, and let

a =
x1 + x2

2
, R = |x1 − x2|, B = B(a,R).
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Now let B1, . . . , Bk be an arbitrary chain of balls connecting x1 and x2 as
in (5.10). Let η ∈ C∞

0 (6B) be such that η = 1 on 3B and ||∇η||L∞(Rn) <
2

3R
.

Since u is s-quasicontinuous and Borel, it follows from Lemma 5.8 that
v(x) = η(x) |u(x)− u3B| is an s-quasicontinuous Borel function in H1,s

0 (6B)
compactly supported in 6B. Let E = {x ∈ 3B : |u(x) − u3B| > 1}.
We have that E is a Borel set since u is a Borel function. Since v is an
s-quasicontinuous function in H1,s

0 (6B) compactly supported in 6B, we have
from Lemma 5.8 that

caps(E, 6B) ≤
∫

6B

|∇v(x)|sdx ≤ C(n, s)

∫
6B

|∇u(x)|sdx(5.11)

≤ C(n, s)(6R)n−s||∇u||sLs,n−s(Rn;Rn).

This implies that

(5.12)
caps(E, 6B)

(6R)n−s
≤ C(n, s)||∇u||sLs,n−s(Rn;Rn),

which together with (5.7) yields

(5.13)
Λ∞

1 (E)

R
≤ C(n, s)

caps(E, 6B)

(6R)n−s
≤ C(n, s)||∇u||sLs,n−s(Rn;Rn).

We choose ε = ε(n, s) > 0 such that C(n, s)εs < c1 where c1 is the constant
from (5.4). We assume first that Bi ⊂ 3B for all i = 1, . . . , k. Let G be
defined like in (5.6). We have

k∑
i=1

µ(Bi)
1
n ≥

∑
i∈G

µ(Bi)
1
n ≥

∑
i∈G

µ(Bi \ E)
1
n(5.14)

=
∑
i∈G

(∫
Bi\E

enu(x)dx

) 1
n

≥
∑
i∈G

(∫
Bi\E

en(u3B−1)dx

) 1
n

= eu3B−1

(∑
i∈G

|Bi \ E| 1
n

)
≥ eu3B−1

∑
i∈G

(1

2
|Bi|

) 1
n

≥ C(n)eu3B |3B| 1
n .

From (5.8) and (5.14) there exists C = C(n, s) such that

k∑
i=1

µ(Bi)
1
n ≥ C

(∫
3B

enu(x)dx

) 1
n

≥ C

(∫
1
2
B

enu(x)dx

) 1
n

(5.15)

= Cδµ(x1, x2).
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Next, if the chain (Bi) does not lie entirely in 3B, then there exists a smallest
number k′ with 1 ≤ k′ ≤ k such that Bk′ ∩ ∂2B = ∅. Let x0 ∈ Bk′ ∩ ∂2B.
Then B1, . . . , Bk′ is a chain of balls connecting x1 and x0. We note that the
definition of k′ and the fact that x1 ∈ B1 ∩ 2B implies

B1 ∪ . . . ∪Bk′−1 ⊂ 2B.

Let u = x1+x0

2
. We let Bx0,x1 = B(u, |x0 − x1|).

It is easy to see that 3B ⊂ 3Bx0,x1.

If Bk′ ⊂ 3B, then the subchain B1, . . . , Bk′ is contained in 3B ⊂ 3Bx0,x1

and we can apply the preceding argument with x0 in place of x2 to conclude
that (5.15) holds; in the opposite case, diam Bk′ ≥ R. The doubling con-
dition for µ then implies µ(B) ≤ Cµ(Bk′). Thus, (5.15) is true in all cases.
This finishes the proof. �

We prove now Theorem 5.4.

Proof. We see that Dµ is independent of the choice of the s-quasicontinuous
Borel representative of u. Indeed, if ũ and ṽ are two s-quasicontinuous Borel
representatives of u, then from an argument similar to [20, Theorem 4.14] we
have ũ = ṽ s-quasieverywhere, which implies via [20, Theorem 2.27], since
s ∈ (n− 1, n], that ∫

γ

e�uds =

∫
γ

e�vds

for every rectifiable curve γ in R
n.

It is easy to see that Dµ is indeed symmetric, nonnegative and satisfies
the triangle inequality. From (5.1) it would follow immediately that Dµ is
a distance comparable to δµ. So fix x1, x2 in R

n. We can assume without
loss of generality that x1 = x2. Like before, let a = x1+x2

2
, R = |x1 − x2|,

B = B(a,R). Like in the proof of Theorem 5.1, let v = η|u− u3B| and E=
{x ∈ 3B : |u(x) − u3B|>1}. Like before, we have that E is a Borel set and
v is an s-quasicontinuous function in H1,s

0 (6B) compactly supported in 6B.

Let γ be a rectifiable curve connecting x1 and x2 and let |γ| be its image.
We assume first that |γ| ⊂ 3B. We obviously have

(5.16)

∫
γ

euds ≥
∫

γ∩(3B\E)

euds.

As in the proof of Theorem 5.1, we have

Λ∞
1 (E)

R
≤ C(n, s)

caps(E, 6B)

(6R)n−s
≤ C(n, s)||∇u||sLs,n−s(Rn;Rn),
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hence

Λ∞
1 (|γ| ∩ (3B \ E)) ≥ Λ∞

1 (|γ| ∩ 3B) − Λ∞
1 (|γ| ∩E)

≥ R− Λ∞
1 (E) ≥ (1 − c1)R

if ε = ε(n, s) is small enough, where c1 is the constant from Lemma 5.6.

We get∫
γ

euds ≥
∫

γ∩(3B\E)

euds ≥
∫

γ∩(3B\E)

eu3B−1ds(5.17)

≥ Λ∞
1 (|γ| ∩ (3B \ E)) eu3B−1 > C(n)Reu3B−1

= C(n)

(∫
3B

en(u3B−1)dz

) 1
n

≥ C(n, s)

(∫
3B

enudz

) 1
n

,

where the last inequality follows from (5.8). Hence we get∫
γ

euds ≥ C(n, s)

(∫
3B

enu(x)dx

) 1
n

(5.18)

≥ C(n, s)

(∫
1
2
B

enu(x)dx

) 1
n

= C(n, s)δµ(x1, x2).

Now we assume that |γ| \ 3B = ∅. We assume that γ is parametrized
by its arc length parametrization. Let t0 = inf{t ∈ [0, �(γ)] : γ(t) /∈ 2B.}.
Then, since γ is a path with γ(0), γ(�(γ)) ∈ 2B, it follows that 0 < t0 < �(γ)
and moreover, γ([0, t0]) ⊂ 2B. Let x0 = γ(t0) and let γ̃ be the restriction
of γ to [0, t0]. Let u = x1+x0

2
. We let Bx0,x1 = B(u, |x0 − x1|). It is easy

to see that 3B ⊂ 3Bx0,x1, where we recall that B = B(a, |x1 − x2|) with
a = x1+x2

2
. We can apply (5.18) with x0 in place of x2 and γ̃ in place of γ to

conclude that∫
γ

euds ≥
∫

γ̃

euds ≥ C

(∫
3Bx0,x1

enu(x)dx

) 1
n

≥ C

(∫
3B

enu(z)dz

) 1
n

.

So we proved that there exists a constant C = C(n, s) such that∫
γ

euds ≥ C

(∫
3B

enu(x)dx

) 1
n

≥ C

(∫
1
2
B

enu(x)dx

) 1
n

= Cδµ(x1, x2)

for every x1, x2 ∈ R
n and every rectifiable curve γ connecting x1 and x2.
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To prove the converse inequality, we need to find a path from x1 to x2

whose length we can control. Let H denote the hyperplane through a
that is orthogonal to the line segment that joins x1 and x2. For each
v ∈ B(a,R) ∩H let γv : [0, R] → R

n be the path such that γv(0) = x1,
γv(R) = x2, γv(R/2) = v and γ̇v is constant on (0, R/2) and on (R/2, R).

Obviously we have

(5.19) Dµ(x1, x2) ≤ 1

mn−1(B(a,R) ∩H)

∫
B(a,R)∩H

∫
γv

euds dv.

We can bound this last expression by

(5.20) C(n) (I(x1, R) + I(x2, R)) ,

where

I(xi, R) =

∫
B(xi,2R)

eu(z)|xi − z|1−ndz

for i = 1, 2. (The iterated integral on the right side of (5.19) can be split
into two pieces corresponding to s in [0, R/2] and [R/2, R], each piece being
bounded by an integral in polar coordinates centered at x1 or x2. See [30,
Proposition 3.12].) Since w = enu is an A∞-weight, there exists a constant
C1 = C1(n, s) > 0 and q = q(n, s) > 1 such that

(5.21)

(
1

|B|
∫

B

enqu(z)dz

) 1
q

≤ C1
1

|B|
∫

B

enu(z)dz.

(See [30, Proposition 3.5] and [16, Lemma 2].) Let r be the conjugate
exponent to nq. Using Hölder inequality and (5.8), we get

I(x1, R) ≤
(∫

B(x1,2R)

enqu(z)dz

) 1
nq
(∫

B(x1,2R)

|x1 − z|r−rndz

) 1
r

≤ C(n, p)C
1
q

1 |B(x1, 2R)| 1
nq

− 1
n

(∫
B(x1,2R)

enu(z)dz

) 1
n

R1− 1
q(5.22)

≤ C(n, s)

(∫
B(a,3R)

enu(z)dz

) 1
n

≤ C(n, s)

(∫
B(a, 1

2
R)

enu(z)dz

) 1
n

= C(n, s)δµ(x1, x2).

Similarly we get

I(x2, R) ≤ C(n, s)

(∫
B(a, 1

2
R)

enu(z)dz

) 1
n

= C(n, s)δµ(x1, x2).

�
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Now we prove Theorem 5.2.

Proof. Since u ∈ L1
loc(R

n)∩Bp(R
n), with small Bp-seminorm, it follows that

u ∈ BMO(Rn) with small BMO-seminorm. Therefore, by John-Nirenberg
lemma, there exists a constant C = C(n, p) such that w = enu is an A∞-
weight and a doubling measure satisfying (5.8) with C. We write dµ(x) =
w(x)dx. We recall the definition of δµ from (1.1). We shall show that there
exists a constant C = C(n, p) ∈ (0, 1] such that

dµ(x1, x2) := inf
k∑

i=1

µ(Bi)
1
n ≥ Cµ(Bx1,x2)

1
n = Cδµ(x1, x2)

for all x1, x2 ∈ R
n, where the infimum is taken over finite chains of open

balls connecting x1 and x2 satisfying (5.10). Indeed, (5.9) implies both that
dµ is a distance and that is comparable to δµ as required in (1.2). Towards
this end, fix x1, x2 ∈ R

n. We can assume without loss of generality that
x1 = x2. Let

a =
x1 + x2

2
, R = |x1 − x2|, B = B(a,R).

Now let B1, . . . , Bk be an arbitrary chain of balls connecting x1 and x2 as
in (5.10). Let η ∈ C∞

0 (6B) be such that η = 1 on 3B and ||∇η||L∞(Rn) <
2

3R
.

Since u ∈ Bp(R
n) is a Bp-quasicontinuous Borel function, it follows that the

function v defined by v = η|u− u3B| is a Bp-quasicontinuous Borel function
supported in 6B. Hence v ∈ B0

p(6B).
Let E = {x ∈ 3B : |u(x) − u3B| > 1}. We have that E is a Borel

set since u is a Borel function. From Lemma 2.9, (3.9) and Corollary 4.14,
we get

Λ∞
1 (E)

R
≤ C(n, p) capBp

(E, 6B) ≤ C(n, p)[v]pBp(6B)(5.23)

≤ C(n, p) [u]pBp(Rn),

where R is the radius of B. We choose ε=ε(n, p)>0 such that C(n, p) εp<c1
where c1 is the constant from (5.4) and C(n, p) is the constant from the last
inequality in (5.23). We assume first that Bi ⊂ 3B for all i = 1, . . . , k. Let G
be defined like in (5.6). The proof now continues like in Theorem 5.1, with
the only difference that the constants who depended on n and s will now
depend on n and p. �

Now we prove Theorem 5.5.

Proof. We see that Dµ is independent of the choice of the Bp-quasiconti-
nuous Borel representative of u. Indeed, if ũ and ṽ are two Bp-quasiconti-
nuous Borel representatives of u, then from Corollary 4.19 we have ũ = ṽ
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Bp-quasieverywhere, which implies via Corollary 3.14 that∫
γ

e�uds =

∫
γ

e�vds

for every rectifiable curve γ in R
n.

Like in the proof of Theorem 5.2, we have

Λ∞
1 (E)

R
≤ C(n, p) capBp

(E, 6B) ≤ C(n, p)[u]pBp(Rn).

The proof now continues like in Theorem 5.4, with the only difference that
the constants who depended on n and s will now depend on n and p. �
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[30] Semmes, S.: Bi-Lipschitz mappings and strong A∞-weights. Ann. Acad.
Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 211–248.

[31] Semmes, S.: Some novel types of fractal geometry. Oxford Mathematical
Monographs. The Clarendon Press, Oxford Univ. Press, New York, 2001.

[32] Yosida, K.: Functional Analysis. Sixth edition. Fundamental Principles of
Mathematical Sciences 123. Springer-Verlag, Berlin-New York, 1980.

Recibido: 26 de junio de 2006
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