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Abstract

In the aftermath of the interbank market collapse of 2007-08, the traditional idea
that systemic risk is primarily the risk of cascading bank defaults has evolved into the
view that it involves both cascading bank defaults as well as funding liquidity shocks,
and that both types of shocks impair the functioning of the remaining undefaulted
banks.

In current models of systemic risk, these two facets, namely funding illiquidity
and insolvency, are treated as two distinct and separate phenomena. The main goal
of the double cascade model is to integrate these two facets as two faces of the same
coin. In a default cascade, insolvency of a given bank will create a shock to the asset
side of the balance sheet of each of its creditor banks. Under some circumstances,
such “downstream” shocks can cause further insolvencies that may build up to create
a global insolvency cascade. The pivotal question concerning default cascades is: in
a given financial network, what is the effect of the default of a single firm on the
solvency of other banks in the system? In a stress cascade, illiquidity that hits a
given bank will create a shock to the liability side of the balance sheet of each of its
debtor banks. Under some circumstances, such “upstream” shocks can cause further
illiquidity stresses that may build up to create a global illiquidity cascade. The pivotal
question concerning stress cascades is: in a given financial network, what is the effect
of the illiquidity of a single firm on the liquidity of other banks in the system?

Our paper will introduce a deliberately simplified model of insolvency and illiquid-
ity in financial networks that can provide answers to the question of how illiquidity



or default of one bank can influence the overall level of liquidity stress and default
in the network. To get there, a number of issues are addressed. First, this paper
proposes a stylized model of individual bank balance sheets that builds in regulatory
constraints, the most important types of interbank exposures, and collateralization of
interbank exposures. Secondly, three different possible states of a bank, namely the
normal state, the stressed state and the insolvent state, are identified with conditions
on the bank’s balance sheet. Thirdly, the paper models the behavioural response of
a bank when it finds itself in the stressed or insolvent states. Importantly, a stressed
bank will seek to shrink its balance sheet, by recalling short term interbank assets.
This serves to protect the bank from the default of its counterparties, but creates
stress in the network by forcing its debtor banks to raise cash, perhaps causing them
to become stressed.

Versions of these proposed models can be designed to have a property we call
“locally tree-like independence” that leads to large-network asymptotic cascade for-
mulas. Details of numerical experiments are given that verify that these asymptotic
formulas yield the expected quantitative agreement with Monte Carlo results for large
finite networks. These experiments illustrate clearly our main conclusion that in fi-
nancial networks, the average default probability is inversely related to strength of
banks’ stress response and therefore to the overall level of stress in the network.
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1 Introduction

In the aftermath of the interbank market collapse of 2007-08, financial systemic risk
is increasingly seen to involve not only cascades of defaulting banks but cascading of
illiquid banks as well.! In two seminal papers, Gai and Kapadia [2010] and Gai et al.
[2011], two key facets of systemic risk, namely illiquidity and insolvency cascades, are
treated as two distinct and separate phenomena that can arise in financial networks.
The two models presented are in a sense “dual” to one another: insolvency shocks
are transmitted from debtor to creditor while illiquidity shocks are transmitted in
an analogous way but from creditor to debtor. The main goal of the double cascade
model we present is to integrate these two facets of systemic risk as two faces of the
same coin.

In Gai and Kapadia [2010], insolvency of a given bank, defined as a bank whose
net worth becomes non-positive, will generate a shock to the asset side of the balance
sheet of each of its creditor banks. Under some circumstances, such “downstream”

LA typical definition of systemic risk that focuses only on cascading bank defaults is given on the website
of the Commodity Futures Trading Commission:
www.cftc.gov/consumerprotection/educationcenter/cftcglossary/glossary_s



shocks can cause further insolvencies that may build up to create a global insolvency
cascade. In their model of insolvency contagion, the pivotal question is this: in a given
financial network, what is the effect of the default of a single firm on the solvency of
other banks in the system?

The paper Gai et al. [2011] adopts the idea that funding illiquidity of a bank? is
when its liquid assets are insufficient to cover a possible run on its repo liabilities.
They argue that an illiquid or stressed bank is most likely to tighten its balance sheet
by reducing its interbank lending, thereby creating shocks to the liability side of its
debtor banks’ balance sheets. Under some circumstances, such “upstream” shocks
can cause further illiquidity stress that may build up to create a global illiquidity
cascade. In their model of illiquidity contagion, the pivotal question is this: in a
given financial network, what is the effect of the funding illiquidity of a single firm
on the liquidity of other banks in the system?

The purpose of the present paper is to construct a deliberately simplified model of
systemic risk, integrating both sides, illiquidity and insolvency, of a single coin. Only
in the double cascade model can one frame the important question: What effect
does a bank’s behavioural response to liquidity stress have on the probable level of
eventual defaults in entire system? One would expect that a stressed bank that reacts
to protect itself from eventual default by shrinking its own balance sheet will inflict
liquidity shocks to its debtor banks. More significantly, one may also expect a system
that on average reacts more strongly to stress will be more resilient to defaults. The
average strength of this stress reaction, denoted A, will be a key parameter that
determines the eventual level of default and stress in the network.

Our paper can provide quantitative answers to this question. We find that in
general, the overall level of default in the system is negatively related to the stress
response parameter A, and hence to the overall level of stress in the system. To
arrive at models where this negative relationship can be quantified, we will need to
address a number of issues. First, we need to create a stylized model of an individual
bank balance sheet that builds in regulatory constraints, the most important types of
interbank exposures, and the possibility of collateralization of interbank exposures.
For this, we adopt the balance sheet framework outlined in Gai et al. [2011]. Secondly,
three possible states of a bank, namely the normal state, the stressed state and the
insolvent state, are defined by conditions on the bank’s default and stress buffers
derived from their balance sheet. Thirdly, we will model the behavioural response of
a bank when it finds itself in the stressed or insolvent states. Importantly, a stressed
bank will seek to shrink its balance sheet by recalling short term interbank assets.
This reaction will reduce its exposure to defaulting counterparties, and therefore will
reduce the overall level of default in the network. However, such a reaction also forces
its debtor banks to raise cash, and if forced to raise too much too quickly, these debtor
banks will themselves become stressed. Therefore it seems intuitively natural that
the overall level of stress in the network goes up with the stress parameter A and

2Funding illiquidity is distinct from market illiquidity, where assets become difficult to sell due to an
oversupply in the market. See Brunnermeier and Pedersen [2009] for a detailed analysis of these concepts.



down with the overall level of default.

The double cascade picture we present is well justified in light of the new Basel
IIT regulatory framework. At the heart of the new regulatory changes are three new
accounting ratios. The leverage ratio (LR), the ratio of tier I capital (i.e. equity)
to assets, must be kept above 3%. This condition can be directly translated into
our assumption of a positive default buffer for each bank. The liquidity coverage
ratio (LCR), a specific ratio of liquid assets and short term liabilities, must be kept
above 100%. This regulation, intended to keep banks liquid during a short term (30
day) run on its repo and interbank liabilities, is analogous to our assumption of the
positivity of a stress buffer. There is one key difference: by penalizing interbank
liabilities where our model does not, the LCR constraint explicitly seeks to avoid the
possibility of a stress cascade. It is reasonable to expect that banks that violate their
LCR constraint will tighten their balance sheets: this is equivalent to our assumed
stress response. Finally, the Net Stable Funding Ratio (NSFR) is an additional new
regulatory constraint, similar to the LCR, but focusing on maintaining liquidity in
the face of liability runs over a one year horizon.

The present paper continues a recent strand of literature, built on the economic
interbank framework proposed by Eisenberg and Noe [2001], that focuses on deliber-
ately simplified models of random financial networks. These papers share the aim of
determining the key parameters that most impact the level of systemic risk in such
networks. They also share a philosophy common in the physics literature that true
understanding of complex phenomena should proceed via the numerical and analytic
study of simple “toy models” chosen carefully to exhibit key features. Only after
learning the true impact of various possible mechanisms in such toy models will it
be worthwhile to investigate realistic models that try to represent the intricacies of
observed financial systems. Nier et al. [2007] uses Monte Carlo methods to highlight
how the key network parameters for a stylized network of 25 banks can influence the
total number of defaults in a nonlinear, indeed sometimes nonmonotonic, fashion.
The paper of Gai and Kapadia [2010], and its extension Hurd and Gleeson [2011],
adapt the Watts [2002] model of information cascades to the context of financial
systems, deriving both analytical and Monte Carlo results showing the dependence
of the default cascade on different structural parameters. May and Arinaminpathy
[2010] present analytical formulas for the NYYA and GK models based on a mean
field approximation that can explain some of the main properties of the graphs found
in those papers. Gai et al. [2011] provides a stylized model of liquidity shocks that is
mathematically equivalent to the model of Gai and Kapadia [2010], but with cascades
that flow in the reverse direction from creditor to debtor. An important homogeneity
assumption made in these last two papers is that either a bank’s interbank assets (in
Gai and Kapadia [2010]) or its interbank liabilities (in Gai et al. [2011]) are constant
across its counterparties. When combined into a double cascade model with shocks
acting in opposing directions, such mathematically convenient, but over restrictive,
assumptions would imply the trivial case of exposures that are constant across the en-
tire network. Amini et al. [2012] develop a simple but general analytical criterion for



resilience to default contagion in random financial networks, based on an asymptotic
analysis of default cascades in heterogeneous networks.

The key technical innovation of the present paper is introduce a model framework,
generalizing the frameworks of Gai and Kapadia [2010], Hurd and Gleeson [2011] and
Gai et al. [2011], that will allow us to study the intertwining of stress and default
cascades, each acting in opposing directions. In particular, the present paper provides
a full mathematical treatment of networks with random stress and default buffers
and random interbank exposures, extending the techniques developed in Hurd and
Gleeson [2013] to go beyond the type of over restrictive homogeneity assumptions
made in earlier works. The main result of the paper, Theorem 1, provides an exact
asymptotic analysis of default and stress probabilities at each step of the double
cascade, in the limit as the number of banks N goes to oo.

The remainder of this paper is structured as follows. Section 2 provides the basic
network framework and assumptions underlying the balance sheet structure of banks.
The timing of the crisis and the bank behaviour assumptions are introduced in Section
3. These assumptions lead to rules for the transmission of shocks through the double
stress/default cascade. The precise dynamical rules of the double cascade, including
the conditions for banks to become stressed or defaulted, are provided in Section
4. Section 5 develops our main theorem, which yields an explicit asymptotic analy-
sis of default and stress probabilities in large heterogeneous networks with random
connectivity, balance sheets and interbank exposures. A key technical assumption
needed to prove this result is to assume a condition we call the locally tree-like in-
dependence (LTI) property. Section 6 provides a parallel development of default and
stress probabilities for cascades on finite “real-world” networks, where it is assumed
that the graph of interbank connections is known explicitly, but balance sheets and
exposure sizes are still random. Several specific financial experiments are reported in
Section 7. First we summarize experiments that verify the main theorem by direct
comparison of large N analytics to Monte Carlo simulation results. Secondly, we
investigate the relationship between the stress response parameter and the level of
stress and default, verifying our statement that average stress probability increases
and average default probability decreases as A increases. A final experiment involves
a detailed specification of the underlying random variables that is consistent with
known heuristics of financial networks and the latest stress testing data on 89 large
banks in the EU system. We observed that the network in this specification is highly
resilient, and only by a very large shock to the average default buffer size will a high
fraction of banks become either stressed or defaulted. The first main conclusion of
the paper, discussed in Section 8, is that the analytic asymptotic results on default
and stress probabilities that stem from the main theorem, when used carefully, are
consistent with results from Monte Carlo simulations on finite random graphs. A
second conclusion is that stress and default are inversely related: as banks respond to
stress more vigorously, creating more network stress, they protect the network from
default.

One critically important effect could be, but is not, addressed in this paper. Space



considerations led us to leave this aspect for future work. This is the impact of
financial cascades on the non-financial economy, and the consequent feedback into the
financial markets through “firesales” of assets. The effects of such market illiquidity
on financial networks have been extensively studied, for example in Cifuentes et al.
[2005] and Adrian and Shin [2010], and it is known that these effects will amplify any
cascade after it takes hold in the network.

2 Balance Sheet Assumptions

In the context of our paper, a deliberately simplified model of a bank is a specification
of a bank’s balance sheet and its behavioural rules, at a moment in time. The
characteristics of the bank’s asset and liability classes should be simplified enough
to allow feasible computations of network dynamics, and complex enough to capture
the network effects under study. The deliberately simplified modelling assumptions
we now specify combine elements of the insolvency model of Gai and Kapadia [2010]
and the illiquidity model of Gai et al. [2011] and are designed to capture the dual
effects of illiquidity and insolvency during a financial crisis.

The network of banks consists of a collection of N banks, each structured in a
similar manner. We adopt a labelling system to identify banks and their interbank
counterparties. The banks are labelled by numbers from the set N' = {1,2,...,N}.
The set of debtor banks of a bank v € N is called the in-neighbourhood of v, and
is denoted by N, ; similarly the bank’s creditor banks form a set called the out-
neighbourhood N, of v. The basic graph theoretic measure of a bank v’s size is the
degree pair (jy,, ky), where the in-degree is the number of debtors j, = |V, | and the
out-degree is the number of creditors k, = |N,F].

Balance Sheet Assumptions: The basic asset and liability classes have the fol-
lowing characteristics:

1. In addition to cash, the bank holds liquid collateral assets in the form of risk-free
government bonds;

2. The retail loan book of the bank is composed of illiquid loans to the retail sector;

3. Interbank loans are always assumed to be overnight so we neglect the term
structure of interbank lending;

4. Repo transactions, short for repurchase agreements, are overnight, and are col-
lateralized by either collateral assets or rehypothecated reverse-repo assets;

5. Bank deposits are insured hence the possibility of a run by depositors can be
ignored;

6. Bank equity is held only by investors that are external to the banking system;
7. Limited liability: no bank may have negative equity;

8. Prior to the onset of a crisis, balance sheet entries are book values reported
quarterly.
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Figure 1: The stylized balance sheet of a bank v with in-degree j, = 3 and
out-degree k, = 2. Banks wj,wsy, w3 are debtors of v while w}, w) are its
creditors. (Based on a figure from Gai et al. [2011].)

By these assumptions, the balance sheet of a bank v € N has the structure shown
in Figure 1. On the asset side of bank v’s balance sheet we have: fixed assets AL
which denote illiquid retail loans; collateral assets AS and reverse-repo assets AZF
which denote the assets that are allowable collateral for overnight repo borrowing;
AIB wwhich are interbank loans; and cash AZ. On the bank’s liability side, fixed
deposits are denoted by L: repo liabilities by L%; interbank liabilities by L. The
equity is defined to be

Ay =AF + AC ¢ ARR L AIB L AL D[R _ 1B (1)

when the right side is positive. When the right side is non-positive, the assumption
of limited liability is taken to mean that the bank must default and A, is defined to
be 0. In what follows, we also refer to A, as the bank’s default buffer.

The interbank liabilities L/? and assets A’? decompose into bilateral interbank
exposures. For any bank v and one of its creditors w € N, we denote by €, the
total exposure of w to v. Then we have the constraints

AP =" Quo LIP = ) Q.

wENy, weN;



The information of interbank counterparties is identifiable as a directed random
graph, i.e. a set of nodes or vertices with a collection of directed arrows, called
edges, between pairs of nodes. Each debtor-creditor pair v, w with w € N} is de-
noted by an arrow pointing from v to w. The type (j,, ky) of a bank v is its in-degree
Jv and out-degree k,. The type (kg, j¢) of an edge £ = (vw) is the out-degree ks = k,
of the debtor bank v and the in-degree j; = j,, of the creditor bank w.?

Repo transactions are collateralized overnight loans, designed to be free of coun-
terparty risk. At the near date (or inception date), the borrower (who is also the
asset seller) and lender (who is also the asset buyer) enter into a swap of ownership
of a collateral asset valued at $1, either in A or AR in exchange for $ (1 — h).
The haircut h € (0,1), which we assume in this paper to be constant over time and
across banks, affords the lender a margin of safety: in case the borrower defaults,
the lender’s cost to dispose of the collateral is hoped to be less than h. At the far
date (the end date of the contract, which we assume here to be the next day) the
asset buyer agrees to resell the asset, at the pre agreed price $ (1 — h) + r, where the
repo rate r is basically the overnight risk free interest rate. Repos are used by banks
to keep current accounts positive, even during periods of stress and solvency shocks.
The essence of the behaviour assumptions that will be made in the next section is
that the bank’s total capacity to raise cash by repo funding must exceed its total repo
liabilities. The stress buffer X measures this capacity:

¥ = AL 4 (1 — h)[AC 4+ ARR) _ LE (2)

Banks with a non-positive stress buffer are called stressed and trigger stress shocks
with a magnitude proportional to the stress response parameter A < 1.
In the next section, we will make additional assumptions about how insolvency and
illiquidity cascade through the network. It turns out that the mechanical cascade rules
will depend on the interbank exposures §2 together with the reduced set of balance
sheet variables (A, X), rather than the full vector X = (AT, A, ARR AIB AL [P LR [IB)
In what follows we will focus on the variables (A, X)) and ignore the impact of cascades
on the banks’ full balance sheets and consequently on the greater economy.

3 Systemic Crisis Assumptions

Prior to the onset of the crisis, all banks are assumed to be in the normal state. Then,
on day n = 0, a random collection of banks are assumed to experience initial shocks
that deplete either their default buffer, causing A = 0 or their stress buffer, causing
X =0.

We suppose that following this initial moment of the crisis, the financial regulator
forces banks to recompute their balance sheets daily, using mark-to-market valuation.
The initial stochastic state of the network is then described by the following random

3The convention that arrows point from debtors to creditors means that default shocks propagate in the
downstream direction. Unfortunately, in some of the systemic risk literature, this convention is reversed.



elements: the interbank links form a directed random graph £ on the set of banks
v € N; the buffers A,, X, for v € N are random; and the random variables €, for
edges ¢ = (vw) € & each represent the interbank exposure of a bank w € N, to
v. We now make assumptions about the day-by-day cascade dynamics on a general
network. Subsequent sections will provide a probabilistic analysis of the cascade in
both finite and infinite networks.

Crisis Timing Assumptions: Prior to the crisis, all banks are in the normal state,
neither stressed nor insolvent.

1. The crisis commences on day 0 triggered by the default or illiquidity of one or
more banks;

2. Balance sheets are recomputed daily on a mark-to-market basis;
3. Banks respond daily on the basis of their newly computed balance sheets;

4. All external cash flows, interest payments, and asset price changes are ignored
throughout the crisis.

The daily response of banks will also be governed by simple rules:

Bank Behaviour Assumptions: On each day of the crisis, banks respond as
follows:

1. An insolvent bank, characterized by A = 0, is forced by the regulator into
receivership. At this moment, each of its creditor banks are obliged to write
down their defaulted exposures to zero thereby experiencing a solvency shock.

2. Solvency shocks reduce a bank’s default buffer.

3. An illiquid or stressed bank, defined to be a non-defaulted bank with ¥ = 0,
reacts by shrinking its assets. Specifically, it reduces its interbank assets A5
to (1 — M\)ATB. Tt does so by terminating a constant fraction X of its interbank
loans. In doing so, it transmits a stress shock to the liabilities each of its debtor
banks. A is taken to be a constant across all banks during the crisis.

4. A newly defaulted bank also triggers maximal stress shocks (i.e. with A =1) to
each of its debtor banks as its bankruptcy trustees recall all its interbank loans,
reducing AP to 0;

5. Stress shocks reduce a bank’s stress buffer X.

This framework admits many variations and extensions. In the type of model
specification we consider in this paper, we ignore the possibility of market illiquidity
and changes in the underlying asset valuations during the short crisis period. In this
case, the above rules apply mechanistically starting on day 0. The crisis evolves in
a deterministic manner starting from the initial random state characterized by the

quintuple (N, &, A, 3, Q).



4 Double Cascade Dynamics

We now specify the precise dynamics of the double cascade on a financial network
that on day m = 0 of the crisis consists of a random directed graph &€ C N x N,
random buffers A, and ¥, for each bank (node) v € A/ and random exposure sizes
Qy for each edge £ € £.

The set D,, contains all the defaulted banks after n cascade steps, the set S,
comprises the undefaulted banks that are under stress after n steps, and U,, = D;, NSy,
contains the remaining undefaulted, unstressed banks.? In our model, banks do not
recover from either default or stress during the crisis, so the sequences {D,, },en and
{D,, U Sy }nen are non-decreasing. We provide an inductive characterization of the
sequence of random sets D, and S,. We use the notation that an event defined by
some condition P is written {P}, for example {v € D, }, and the indicator random
variable for that event is written 1py.

To say that a bank v is defaulted at step n means that default shocks to step n—1
exceed its default buffer:

{A, =0} forn =20
Pni= 3)
{U ‘ EwGNv_ Qwv&(v%_l) > Aq}} for n >1

where the random variables £ indicate the fractional sizes of the various default shocks
impacting v. Similarly, to say that a bank v is stressed at step n means both that it
is not yet defaulted and the stress shocks to step n — 1 exceed the stress buffer, i.e.
S, = D¢ NS, where

{Z, =0} forn =20
Sn = (4)
{U | Zwe/\/qu vaCo%_l) > EU} forn>1

where the random variables ¢ indicate the fractional sizes of the stress shocks impact-
ing v.

Accounting for the fact that when v becomes stressed it reduces its interbank
exposures, one can see that for n > 1 the fractions £~ are

0 when w € Df,_,
(=1 .= {1 when w € AD,,, and v € S¢,m =0,...,n—1 (5)

1-\ whenweAD,, andveS,,,m=0,....,.n—1
In formulas such as this, we use notation

A'Dj = Dj \'Djfl, D= @; ASj = Sj \ijla S1= 0. (6)

4For any set B, B¢ denotes its complement.
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Note that in this definition, “fictitious” default shocks with fraction & = 1— X continue
to impact after the default of v. Similarly, accounting for the assumption that de-
faulted creditors have a maximal impact on the bank’s stress buffer, whereas stressed
creditors only shock its stress buffer by a portion A of the interbank exposure, one
has forn > 1

0 whenweS8¢ ,NDE_,

(=)= I\ when we S,_1 N DS, - (7)
1  whenw e D,_4

At this point a subtle feedback effect arises that if not resolved will create difficul-
ties in the subsequent probabilistic analysis. Similar to a situation discussed in Hurd
and Gleeson [2013], there is dependence between the random variables €2,,, and Q(,Z)_I)
that appear in (4). This is because the condition w € D,,_; in the definition of (,y,
is not independent of €,,,. The difficulty can be resolved by considering properties
that hold “without regarding” (WOR) a fixed bank. To this end, we will say “bank v
is defaulted at step n, without regarding a bank w € N7, and write {v € D,, ® w},
if the default condition is true without including an in-link from w to v. That is, for

anwaN

{A, =0} NN forn =0

{'U S sz)_ | ZUIENJ\W Qy/vé.z(;lvil) Z AU} fOI' n 2 1

Using this definition, we can equivalently express the stress sets as S, = D¢ N Sn
where

{3, =0} forn =0
S Q
{” ’ Zwe/\/v+ vaéz()?u_l) > Ev} forn>1
with )
whenwe S, ND;_| @ v
when w € S’n_l NDe_, v (10)
when w € D1 ® v

26 =

_= > O

The reason is that for v € D¢, the @ v condition is redundant and thus D¢ N S =
D; N Sm for any m <n.

We need to check that the definition (5) of ¢ remains essentially unaffected if S
is replaced by S on the right hand side, i.e. that & can change only in a way that
leaves the default set unchanged. This is true because the sets S’m NDg, and Sm ND,,
are equal, while the sets Sm N D,, cannot be larger than the sets Sm N D,,. Thus
the fraction &, won’t change if v hasn’t yet defaulted, and may change but cannot
decrease if v has already defaulted.

11



The next two sections are devoted to the probabilistic analysis of the double
cascade in two distinct settings: the case of infinite networks and the case of finite
real-world networks.

5 Infinite Networks

Our model of a financial network has three layers of random structures: the skeleton
graph (a random directed graph (N, £)); the buffer random variables A,, %, v € N
and the exposure weights €y, ¢ € £.

The skeleton graph (N, €) is a random assortative directed graph as characterized
by the following construction developed in Hurd and Gleeson [2011] of an assortative
extension of the well-known configuration random graph model of Bollobas [2001]:

Definition 1. The infinite directed configuration graph model should be considered
as the limit of any infinite sequence (QAn, Fn,P) of random graphs of expected size
N, and asymptotically consistent with compatible probability laws P,Q for the degree
types of nodes and edges. More specifically:

1. For each N =1,2,... we have a random directed graph such that: the number
of nodes of degree type (j,k) for j,k € K ={0,1,..., K} is a random integer dj-\,fc
with expected value N Pjy,; the number of edges of degree type (k,j) is a random
integer e,iVj with expected value NQy;.

2. For each feasible realization of the integer random wvariables {d%,e]k\;}, the as-
sortative configuration graph construction of Hurd and Gleeson [2011] is applied;

3. The normalized random sequences converge in probability to P and Q) uniformly

m g, k:

dj./N = Pip+o(1);  ej/N = Qpj + o(1)
where XN =Y + o(1) for a sequence of random variables X means for each
€ >0, P| XN — Y| > €] has the limit 0 as N — co.

4. For each j,k € K, Pj, = P[Nji] is the asymptotic probability of a random
node having type (j, k) . This distribution has marginals P,j = zj Pj, P =
>k Pjk and mean in and out degree z =3, jP; =3, kP

5. For each j,k € IC, Qi := P[&;j] is the asymptotic probability of a type (k,j)
edge. This distribution has marginals Q: = Ej Qrj, Q; = > i Qrj that are
subject to the feasibility constraints Q;‘ = kP,:'/z, Q; = ij_/z.

6. To simplify the analysis that follows, we fix a finite set of possible degrees K =
{k1,ka, ..., kx} and assume that P]._,Plj >0 for all j,k € K.

The non-negative random variables A, have point masses at x = 0 that represent
their initial default probability p2. We assume that the distribution functions of A,
depend only on the type (j, k), and have the following form:

d
Dji(z) = P[A, < z|v € Nji] ; %Djk(x) = p?kcso(x) +dji(x) . (11)

12



where dji(z) > 0 is a specified function with [ dj(z)dz = 1 — p?k. Similarly, 3,
has a point mass at x = 0 that represents this bank’s initial stress probability ¢¥ and
a distribution function that depends only on its node type (j,k). Thus the stress
buffer distribution functions of nodes v € N}, have the following form:

d
Sik(xz) =P[E, < z,v ¢ Dylv € Njj] ; %Sjk($) = q?kéo(x) + sji(x) . (12)
where s;j,(x) > 0 is a specified function with [~ s;x(z)dz =1 — p?k - q?k,. The edge
weight random variables €, are positive (i.e. there is zero probability to have a zero
weight) and have distributions that depend only on the edge type (k,j). These can
be specified by the distribution functions

Wij(x) = P[Qp < 2|l € Epyl; %ij(ff) = wy;(x) (13)
Finally, conditional on the random skeleton graph (A, &), the collection of random
variables {A,, ¥, Q} is assumed to be mutually independent.

It was argued in Hurd and Gleeson [2011] that the above construction of a proba-
bility measure on random networks implies a property called locally tree-like indepen-
dence (LTT) extending the locally tree-like property of random graphs that cycles of
any fixed finite length occur in an infinite configuration graph only with zero proba-
bility. The probabilistic analysis to follow rests on this extended type of independence:

The locally tree-like independence (LTI) property: Consider a double cascade
model on N defined by a collection of random variables (N, €, A, 3, Q). Let N1, Na C
N be any two subsets that share exactly one node N1 NNy = {v} and let X7, X»
be any pair of random variables where for each ¢ = 1,2, X, is determined by the
information on N;. Then, conditioned on information located at the node v, that is
conditioned on A, X, j, or k,, X1 and X, are independent.®

We are now in a position to derive exact formulas for the probabilistic cascade
dynamics in infinite networks. We first define (here U,, = N \ (S, U D,,) are the
undefaulted and unstressed nodes):

pgz) =PveDylve Ny,
¢ =P e SulveN | (14)
ugz) =Plv € Uplv € Nji] .

®More precisely, to any subset of nodes N/ C A we associate the sigma-algebra G’ generated by the
balance sheets and degrees of nodes in N’ and edges in N7 x N’. Let the sigma-algebras corresponding to
N1, Mo, {v} be denoted G1,G2,G,. Then G; and Gs are statistically independent, conditioned on G,.
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as well as additional probabilities
1552) =PlveD, ®uwlveNjpnNS],
QJ(Z) = [v eS,lve /\/jk] , (15)
A = [u e AS,|v e /\/jk} .

Recall that AS’n = S‘n \ Sn_l,n > 1 and ASO = 30. Finally, we define conditional
probabilities for 0 < m < n:

(nm) P_UE'Dn‘UE./\[jkﬁASm} m=0,...,n—1; (16)
p" = 5 A

P[v € Dalo € Ny N S5 m=n

_ X N
ﬁ(n,m) _ P_UED @w\vej\/]kﬂAS m,/\/'} 1; -
ik -

PlveD, @wlve/\/kmgc 10N+] me=n

In terms of these quantities, we have the relations:

n n,m ~(m n,n ~(n—1

ng) = Zpgk )qu(k +p§k )( QEk ))7 (18)
By = Zﬁ(”m)Aq]k +Ag (=Y (19)
ufy = <1—p§-,; Ha -4y, (20)
& = 1D o

In (20), we use the fact
P |v € Dy |v € N ﬂgﬂ =P [v €DiveNENS_,| =(1 —pg.Z’n)) .

Inductively over n, it will be sufficient to compute the quantities p( k)v qj( k) , pgz ™) , ﬁS.Z’m)

for m = 0,1,...,n. Implementing these computations will require two important
facts. The first is that if X,Y are two independent random variables with probability
density functions (PDFs) fx(z) = F(x), fy (y) = Fy(y), then

P[X >Y]=E [l{x>y}] = /R/R]l{x>y}fx(x)f3/(y) dzdy
= /Fy(x)fx(iﬁ) dz = <Fy,fx> -
R

In general, the Hermitian inner product on R is defined as (f, g) f f(x
but here, both operands are real functions and the conjugate operator dlsappears
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A second result from probability tells us that if X, Xo,---, X,, are n independent
random variables with PDFs fx,, then the PDF of the sum X = X; + Xo+--- + X,
is the convolution

Ix =[xy * fxy % fx, = ®p_ fx, (23)

where the convolution product of two functions is the function defined by (fxg)(x) =
Jg f(w)g(x — y)dy. For convolution powers, we write ®}_, fx = P

The following induction over n > 1 is our main theorem.

(m)

Theorem 1. For any n > 1, suppose pjzl ,d§?),p§7£—1’m),ﬁ§2_l’m) are known for
m=20,1,...,n— 1. Define the quantities
Py
p;{m) = Plv € Dplk, = k] = Zpy’?)P]]:‘ , (24)
J
-1 . . -1 Pk
@V = PueSialii=4= ¢4V (25)
; B
_ o ~1) Pjk
"D = Bl € Uyl = g1 = Sy (26)
; P
A(n—1 . . ~(n—1 Pk
p§-n ) = ]P)['Uepnfl ®w|]v:]7U€NJ]:Zp§'Z )Pij— (27)
k J

as well as PDFs

g @) = Y[ =)o) + V()
kl
(1) _ (m-1)y 1 B Quj
ol Rl o/ ) 08)
@) = Y[ =AY = o) + 55 V()
j/
N e
qy - Swng (/)] oF (29)

(n)

In terms of these quantities, we can compute the quantities pjz

(18), (21) where we compute p§z,m)7ﬁ§z,m)

(n)

n
I jk
,(jjzl) form =0,1,...,n by the following

by equations

equations
mm) _ /p ((n—w I
™ = (D (6" @) ) (30)
~(n,m n—1,m ®j—1
3 = (D (@) | 1)
Aj('k) = <5jk, (h;i D) > : (32)
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Proof: To verify (30) for m < n, we use (3), (16) and (22) to give the formula

p(n m) P[AU < ZweNJ Qwv&(ﬁ})w € Mk N Agm] m<n ,
k - A
! PlAy <3 en- Qwvfl(ﬁ,)w eENENSS_ ] m=n

(o 00

where

(n-1,m) B %P[Qwvf&’? <z N NAS,weN] m<n ,
9; (z)

4Py, ) < 2l eENENS,_,weN;| m=n.
To verify (28) note that when m < n we can write

(n=dm) Z p P[Quut) < z|v € NjpNASm, w € Ny ky = K Pk = K |jo = j] -

Under the conditions v € Nj; N A8, w € N, ky =K', the events {g(” b — = 0},

{gw’fj D= =1}, {f(n Voo A} are equivalent to the events {w ¢ D,—1}, {w € D1},

{w € Dy_1 \ Dpm—1} and hence have conditional probabilities 1 p,(: 1), p,(;,n_l)

p,(;,l 2 p,(:,n_l) respectively. These latter three events are conditionally independent of

Qv by the LTI property. Also by the LTI property, the collection of random variables

)

Qwv&(ﬁ,) for different w € N, are mutually conditionally independent, justifying the
use of formula (22). Similarly, when m = n, and under the conditions v € Nj;NS,—1,
w € N, ky = k' the events {&%—1) = 0}, {&(ﬁ,—l) = 1} are equivalent to the events
{w ¢ Dp_1}, {w € Dp—1} while {&uw (D) = — A} cannot occur. Hence the events

have conditional probabilities 1 — pl(c, ), p,(g,l D and 0 respectively, and the mixture

CDFs gj(»Zfl’m) (x) for all m < n are given by (28).
To verify (30), we use (8) instead of (3) and follow these same steps. To verify
(32), we use (9), (15) and (22) to give the formula

Cimy, \\®k
0 =P < S Qo il = (S (1070@) )

weN,"

where

d
Z% oGl < @l € Njpyw € Ny, ju = 5’1 Plje = §'|ke = K] .
J

v

To verify (29), note that under the conditions v € Nji, w € N;f, j, = j/, the events

{C(n D= =0}, {Q,Z, D= 1}, {va = A} are equivalent to the events {w € U,,—1},
{w € Dyp—1 ® v}, {w € S,—1} and hence have conditional probabilities
1_ pn=D _ (n=1) s(n=1) (n—1)

Dy — 4 Dy 4 respectively.
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Remark 2. This theorem is in a non-Markovian form, as indicated by the sum over
m in equations (18) and (19). This sum will pose a difficulty in situations where we
need to compute a very large number of cascade steps before converging to the fixed
point. It is possible to reformulate the theorem in a Markovian form that avoids such
a sum over m.

6 Real-World Networks

The goal of the present section is to derive approximate probabilistic formulas describ-
ing the double cascade on a real-world network where the skeleton graph is actually
known (deterministic) and finite, while the buffers and weights are random. This
analysis will allow us to address systemic risk in tractable models of real observed
financial networks, without the need for Monte Carlo simulations.

Let A = Ayy,v,v" € N be the nonsymmetric adjacency matrix of the fixed
directed graph £. We number the nodes in N/ by v = 1,2,..., N and the links by
¢ =1,2,...,L where L = Zl<y,u'<N Ay. The buffer random variables A,, Y, at

each node are assumed to have a mass pl(,o), qf,o) at 0 (representing the initial default

and stress probabilities) and continuous support with density functions d(z), s,(x) on
the positive reals. The edge weights )y, £ € £ have continuous support with densities
wy(x) on the positive reals but no mass at 0. The random variables {A,, X, Qp}, v €
N, ¢ € £ are assumed to be an independent collection.

The aim of this section is to use the LTI property as an approximation to derive
approximate formulas for the marginal likelihoods p§°°), q,(f)o) for the eventual default
and stress of individual nodes, as well as the possibility to compute formulas for more
detailed systemic quantities. This approximation is not exact whenever there are
cycles in the skeleton graph. In general, when the skeleton graph is a single random
realization from a configuration graph ensemble, we expect the LTI approximation
to get better with increasing N. The LTT property will be exactly true in the special
case of skeleton graphs that are trees: This fact will be used in Section 7.3 to verify
the consistency of our numerical implementations.

We now present an approximate analysis, paralleling the N = oo analysis of the
previous section, of the sequence of probabilities

pi()") = PlveD,,
qf,") = Pves,],
u™ = Plveld,)

for each node v. For the same reasons as before we need in addition to track

@ = Pweds,,
P{UEDn\veAsm} m=0,....,n—1;
pgjn,m) _

P[UGDHIUGS,CL_J m=n
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and the WOR probabilities

ﬁg}i} = P[U €D, ® w] )
() P{UGDn®w\v€A$mﬂNJ} m=0,...,n—1;
Puww =

P[vEDn®w|v€g§fL,1ﬂN$‘] m=n

for each in-link of v. Note that

n—1
pgjn) _ Z pq(]n,m)A(jq(]m) _‘_pg}n,n)(l o (jf,(}n_l)) ’ (34)
m=0
n—1
P = Y A + plm (1Y) (35)
m=0
ul = (1—p{mm) (1 —g(M) (36)
a = e -l (37)
Inductively, we have
pgn,m) = <DU’ ®v’€Nv_ <g£7vil’m))> ’ (38)
ﬁl(;lv,m) = <Dv’ ®UIENJ\U} <g£7,’bv_1:m)>> ’ (39)
" = (So®yen (b)) (40)
(41)
where
diIP’[Qwv&(ﬁ,) <zlve AS,, ANS] m=0,...,n—1;
g (z) = ’ X (42)
%P[Qm&ﬁ,’? <zlve ASS_{ NN} m=n
M) = LBl < oo € NG (13)
T

These PDFs can be computed using the LTI approximation by following the logic of
the proof of Theorem 1:

g™ (x) = (1—pi)do(x) + pl Dwwe ()
O — ) T wala/1- ) (44)
hz(;lu) () = (1- ]51()2;1) - qg;nil))%(x) +]51(;Z;71)wvw(x) + qiunil) : lwvw (z/X) (45)

A
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7 Numerical Experiments

In this section, we report briefly on numerical experiments that illustrate the methods
developed in this paper. Firstly, we aim to convince the reader that the LTI method
correctly computes the double cascade in stylized networks with large values of N.
Secondly, we will show how the LTI method can lead to answers to questions about
the nature of systemic risk. Thirdly, we shall show how the method performs in a
challenging stylized network specified to reflect the complex characteristics of a 2011
dataset on the network of 90 most systemically important banks in the European
Union.

To crossvalidate the LTI method, we developed a Monte Carlo (MC) implemen-
tation of the double cascade model, and compared the final fraction of defaulted and
stressed nodes generated using the LTI and MC computations. Before we present
the results of the comparison, we mention two modifications that are necessary to
implement these methods. First, implementation of the LTI method uses an FFT
method sketched in Appendix A, which requires that the edge weight and buffer
random variables take values on a common discrete lattice {md}m=0.1,..p—1. The
second modification is that the MC implementation generated finite configuration
graphs with N = 20000 nodes, with the specified P and Q matrices, rather than the
infinite configuration graphs assumed in the LTI method.

7.1 Experiment 1: Verifying the LTI Method

This experiment aims to verify that the LTI method performs as expected when
applied to a stylized financial network whose specification is similar to that given
in Gai and Kapadia [2010]. It consists of a random directed Poisson skeleton graph
with mean degree z = 10, where each node v can be viewed as a bank with a default
buffer A, = 0.04 and stress buffer ¥, = 0.02. Unlike the deterministic weights used
in Gai and Kapadia [2010], the edge weight €, of an edge ¢, representing the exposure
between two banks, is taken from a log normal distribution with mean u, = 0.2j, !
and standard deviation 0.383u. Note that this specification makes the exposure size
dependent on the lending bank. An initial shock is applied to the network that causes
each bank to default with a 1% probability.

We compare the final fraction of defaulted bank and stressed banks as computed
using MC simulation with 1000 realizations and the LTI analytic formulas. Directed
Poisson random graphs are particularly amenable to study by Monte Carlo: To gen-
erate a random graph of size N with mean degree z > 0 from this class, one simply
selects directed edges independently from all N(N — 1) potential edges, each with
probability p = z/(N — 1). The resultant bi-degree distribution is a product of inde-
pendent binomials, Plv € Nj;] = Bin(N — 1,p, j) x Bin(N — 1,p, k), which for large
N nodes is approximately a product of independent Poisson(z) distributions.

6The mean degree is the average number of “in” edges per node, which equals the average number of
“out” edges per node.
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Figure 2 plots the results as functions of the stress response parameter A, with
error bars that represent the 10* and 90" percentile of the MC result. It shows the
expected agreement between MC and LTI analytics, with discrepancies that can be
attributed to finite IV effects present in the MC simulations.

One fundamental property of our model is clearly shown in this experiment: Stress
and default are negatively correlated. This fact can be explained by the stress reaction
which enables banks to react to liquidity shocks before they default, by reducing
their interbank exposures. This response creates yet more stress, but leads to a more
resilient network. The “knife-edge” property of default cascades is also clearly shown:
In the model parametrization we chose, a very small increase in A dramatically alters
the stability of the network. We also note that MC error bars are very large near the
knife-edge.

1 f 1 :ﬁ_z.-x—x—n—n—ﬁ—! e e S
091
0.8
3 0.7t
%)
9 0.6 Analytic Default
oy o5l X MC Default
§ ' Analytic Stress
c 04} x  MC Stress
5
= 0.3
0.21
0.1 i
0 1 ) ¥ | T 1 1 1 1 1 1 ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Stress Reaction A

Figure 2: A comparison of the mean default (light/red) and stress (dark/blue)
cascade size in Experiment 1 as computed by Monte Carlo (crosses) and LTI

analytics (solid lines). Error bars indicate the 10 and 90" percentiles of
the MC result.

7.2 Experiment 2: A Stylized Poisson Network

The next experiment focuses again on Poisson networks, with the aim to better
understand the effects of various parameters on network resilience. In general, we
continue to find confirmation that the LTI results accurately reflect observations
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from MC simulations.

7.2.1 Experiment 2A: Effects of Default and Stress Buffers

We consider how the parametrized financial network of Experiment 1 in a default-
susceptible state with A = 0.25 can be made resilient to random shocks by varying
either the default buffers away from 0.04 or the stress buffers away from 0.02.

Figure 3(a) imagines what would happen if regulators had required all banks
to have higher default buffers, without any change in their stress behaviour. We
observe a very fast transition to a stable network as A increases over the interval
[0.04,0.045]. This knife-edge property is observable in both the LTI analytics and in
the MC simulations. Note again that the MC error bars, representing the 10t and
90" percentiles, become very large near the knife-edge.

If banks with A = 0.04 reduce their stress buffers below 0.02, they will react more
quickly to stress shocks: This can also reduce default cascade risk in the network.
Figure 3(b) shows that such a change dramatically reduces the average default cascade
size in the network. Taken together, these two plots show that there may be many
different approaches to dealing with network resilience.

1 x 1 7717 =
(0]
N
0.8 % 0.8 ’
©
©
0.6 2 0.6
' Analytic 8 '
x MC =
0.4 3 04
©
a
0.2 § 0.2 1 Analytic
0 IBRRA RS S 368 = 0 b:d X 4 o MC
0.04 0.045 0.05 0 0.01 0.02 0.03
Default Buffer size A Stress Buffer size =

Figure 3: The results of Experiment 2A, showing the effects on the default
resilience of a Poisson network when the default buffer (left) and stress buffer
(right) are varied away from their benchmark values. Here A = 0.25 and other
parameters are chosen as in Experiment 1.

7.2.2 Experiment 2B: Effects of Graph Connectivity and Stress Re-
sponse

Aside from mandating changes to the behaviour of FIs during or prior to a crisis,
regulators can also influence the shape of the financial network as a whole. Exper-
iment 2B aims to demonstrate the importance of the skeleton graph itself, so we
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observed the systemic risk in a directed Poisson network as a function of the connec-
tivity parameter z and A, the stress response. In our simple model specification, the
mean degree z is the only parameter that controls the shape of the skeleton graph,
whereas in a more realistic modelling approach the skeleton graph may have many
more parameters.

In this experiment, we increased the model complexity by assuming each node to
have a random default buffer taken from a log normal distribution with mean 0.18
and standard deviation 0.18, and a stress buffer from an independent log normal
distribution with mean 0.12 and standard deviation 0.12. The edge weights €2, come
from a lognormal distribution with mean and standard deviation proportional to
(jeke) %5, with the average edge weight on the entire network equal to 1. Once again
we apply an initial shock so that each FI has 1% chance of defaulting initially.

Figure 4(a) shows a surface plot of the mean default cascade size in the network as
a function of z and \. Figure 4(b) shows the mean stress cascade size of the network.
For clarity of the graphics, we show LTI analytics only: the Monte Carlo results not
shown continue to agree with LTT analytics. Again, in these plots we notice the strong
anti-correlation between stress and default probabilities, and the effect of increasing
the stress response. It is also interesting to observe that the final level of stress is not
monotonic in the connectivity parameter z.

Mean Cascade Size

Mean Cascade Size

Connectivity (z) 0 o0 N Connectivity (z) 0o N

Figure 4: The results of Experiment 2B, showing the mean default (left) and
stress (right) cascade sizes on a multitude of Poisson networks parametrized
by connectivity z and stress response A. Here buffers and exposures are all
random.

7.3 Experiment 3: A Real-World Network with 90 Nodes

While the above experiments on hypothetical financial networks demonstrate the
range of options available in our framework, we are of course very interested in having
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a rough picture of the systemic risk of actual financial networks. In Experiment 3,
we use the “real-world” method of Section 6 to compute the cascade dynamics on a
single realization of an 90 node graph that aims to capture stylized features of the
European Union network in 2011.

As pointed out in Section 6, the LTI property is exactly true for real-world tree
networks. We used this fact to verify that the real-world network software used in
Experiment 3 is correct on a number of tree networks. While we do not show the
results here, such tests provide a strong independent validation of the real-world
method.

Numerous studies of real-world financial networks, notably Bech and Atalay [2010]
and Cont et al. [2010], have concluded that in and out degrees have fat tailed distri-
butions, as do the exposure sizes, and presumably the buffers. We addressed these
“stylized facts” by specifying a schematic model that intends to capture some key
statistical features of data published on the 2011 ECB stress testing of 90 system-
ically important banks in the Furopean Union. Our stylized model is specified as
follows.

1. The skeleton graph, shown in Figure 5, is the subgraph consisting of the 90
most connected nodes of a single realization with N = 1000 nodes of a scale-
free directed random graph drawn from the family of preferential attachment
models introduced in Bollobas et al. [2003]. Following that paper’s notation,
the parameters defining the skeleton graph are given by

o = 0.169, 8 = 0.662, v = 0.169

and lead to fat-tailed marginal in and out degree distributions with Pareto
exponents v4,v— = 4. Self loops are removed. The mean connectivity of the
subgraph containing the 90 most connected nodes is 10.

2. The buffer random variables A, and X, are defined by

2 -
Ay = (kujy)?l explar + 11 Xo]; By = g(kvjv)ﬁl expla; + b1X,] .

The exposure random variables 2, are defined by

Qy = (kujo)™ explaz + b2Xy].
The parameters 51 = 0.3,a; = 8.03,b; = 0.9, 85 = —0.2, a9 = 8.75,b, = 1.16 are
determined by matching moments of the aggregated interbank exposure data’.

3. The collection {XU,XU,Xg} consists of independent standard normal random
variables.

Figure 6(a) presents the mean default and stress cascade sizes that result in a
numerical experiment that shocked one bank at random to default. The real-world

"Data are available at
http://www.eba.europa.eu/EU-wide-stress-testing/2011/2011-EU-wide-stress-test-results.aspx.
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Figure 5: A representation of the undirected skeleton graph of the 90 bank
network of Experiment 3. The nodes are plotted with total degree decreasing
in the counterclockwise direction, with the maximally connected bank being
the rightmost node.

analytical computations used follow the method of Section 6, and comparable MC
computations were also performed. This graph shows that the MC and analytic
computations agree that the EU network in 2011 was resilient to such a shock.

To move this network to a knife-edge situation where a large scale double cascade
is triggered by a single bank default, we found it was necessary to imagine a dire crisis
where prior to the default shock, the T1 capital of all institutions has been decimated
to 1/10th of their initial amount. Figure 6(b) shows the behaviour of the resultant
cascade as a function of the stress response parameter A. This graph also shows
limitations of the LTI approximation. In this specification of the network, while the
LTI and MC methods agree that there is an intermediate size cascade, they disagree
strongly on the actual mean default cascade size. This discrepancy is an example of
a general tendency we observed: LTI and MC tend to agree best when the network is
far from the critical surface where the cascade is intermediate in size. In Figure 6(b),
both LTT and MC agree that the double cascade is intermediate in size, that is, that
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the probability of banks becoming either stressed or defaulted is not close to either 0
or 1. However, they disagree strongly on the precise size of the cascade.
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Figure 6: The results of Experiment 3 that show the effects of changing the
stress response A in a stylized finite network. The left plot corresponds to
parameters that represent the EU financial system at the time of the 2011
stress testing exercise. The right plot shows the same system where a dire
pre-shock crisis has decimated the banks’ default buffers.

Finally, in real-world networks, we can get a picture of which banks are most
susceptible to the default of the single bank. Figure 7 shows the eventual stress and
default probabilities bank by bank, in increasing order of the LTI estimated default
probability. We see that LTT analytics and MC agree quite well on the ordering of the
banks, on the eventual probability of stress, but not well on the eventual probability
of default.

8 Conclusions

The double cascade model we present in this paper is a natural extension of the
previous systemic risk research that studies deliberately simplified models which build
in either default or stress cascades, but not both. Only by combining the default
and stress mechanisms into a single model, a non-trivial accomplishment given their
fundamentally opposing natures, can one determine quantitatively the intuitively
obvious effect of banks using the stress response to reduce their risk of default.
Developing a feasible and reliable computation framework for a model as complex
as our double cascade model is a difficult undertaking. We have demonstrated how
computations can be done by two complementary approaches: the Monte Carlo (MC)
method and the locally tree-like independence (LTI) analytic method. In general,
having these two approaches allows us to independently cross validate both methods.
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Figure 7: The eventual default and stress probabilities of individual banks
after a severe crisis in the stylized EU financial system. The banks are
numbered in increasing order of their default probability as computed by the
real-world LTT method.

This validation capability leads to a dramatic increase in confidence in the results
one obtains.

As to the pros and cons of MC versus LTI, we mention some of the key issues.
To counter the natural flexibility of MC methods, the LTI method, where it applies,
adds the possibility to better understand the flow of the cascade. For example,
using LTT one can determine sensitivities to changing parameters through explicit
differentiation. A con for the MC method is that simulating general assortative
(P, Q) configuration models has not been well-studied in the literature, while the LTI
method handles this generality without difficulty. On the other hand, relevant random
graphs such as preferential attachment models have a straightforward MC simulation
algorithm, but are not LTI. Another pro for MC is that the LTI approximation
is uncontrolled for finite N configuration graphs, meaning we can only learn how
accurate it is by comparing to MC results. Through experience, we are learning rules
of thumb for when LTI gives acceptable results, for example when N is large and
the cascade is far from critical. Apart from the graph generation step, MC is usually
easier to program than LTI. But in some situations where the MC method leads to
unacceptably long run times, LTI can be computed in seconds. Ultimately what is
important is that both methods have complementary strengths and weaknesses, and
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when used in combination we can arrive at robust and reliable conclusions about a
wide range of network effects.

Future theoretical work must proceed by improving and extending both the MC
and LTT methods. For example, we need better MC algorithms for simulating different
random graph models and we would like to find computable analytical methods for
networks that are not LTI.

Many promising specifications of financial networks remain to be investigated us-
ing our techniques. While the systemic importance of parameters such as network
connectivity, mean buffer strength, and the size of the interbank sector have been
studied previously, other parameters such as the stress response, the buffer and expo-
sure variances, and graph assortativity, remain almost completely unexplored. The
effect of market illiquidity and asset fire sales has been omitted from the present
paper, but its impact on the cascade and consequently the greater economy merits
careful investigation. Financial network databases, and the statistical methods for
matching such data to the model, are still in an underdeveloped state, but are needed
to tie down the wide range of parameters in our model. We hope we have demon-
strated that the double cascade model developed in this paper has the potential to
realistically represent observed financial networks, and that further investigations of
such networks will uncover interesting and unexpected systemic phenomena.
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A Discrete Probability Distributions and the
Fast Fourier Transform

Numerical implementation of these models follows the methods outlined in Hurd and
Gleeson [2013]. In this section, we analyze the case where the random variables
{A,,%,,Q} all take values in a specific finite discrete set M = {0,1,...,(M — 1)}
with a large value M. In such a situation, the convolutions in (23) can be performed
exactly and efficiently by use of the discrete Fast Fourier Transform (FFT).

Let X,Y be two independent random variables with probability mass functions
(PMF) px,py taking values on the non-negative integers {0,1,2,...}. Then the
random variable X + Y also takes values on this set and has the probability mass
function (PMF) pxty = px *py where the convolution of two functions f, g is defined
to be

(f*9)(n) =Y f(m)g(n —m) (46)
m=0

Note that px+y will not necessarily have support on the finite set M if px, py have
support on M. This discrepancy leads to the difficulty called “aliasing”.

We now consider the space CM of C-valued functions on M = {0,1,...,M — 1}.
The discrete Fourier transform, or fast Fourier transform (FFT), is the linear mapping
F:a=lag,...,apy-1) € CM — a = F(a) € CM defined by

ap = chlal ,k‘EM .
leM

where the coefficient matrix Z = ((x;) has entries (; = e~ 2mikl/M  The “inverse FFT”
(IFFT), is given by the map a — @ = G(a) where

- 1 -
ak:MZCklalvkEM-

leM

If we let a denote the complex conjugate of a, we can define the Hermitian inner

product between
(@,0) = Gmbm
meM

We also define the convolution product of two vectors:

(axb)(n) = Z a(m) b(n —m modulo M), neM
meM

Note that this agrees with (46) if and only if the sum of the supports of a and b is in M.
Otherwise the difference is called an aliasing error: our numerical implementations
reduce or eliminate aliasing errors by taking M sufficiently large.

The following identities hold for all a,b € CM: (i) Inverse mappings:
a = G(F(a)) = F(G(a)); (ii) Conjugation: G(a) = ++F(a); (iii) Parseval Identity:
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(a,b) = M(a,b) = +(a, b); (iv) Convolution Identities: a-xb = (a * b), a-xb = m,
where -*x denotes the component-wise product.

As an example to illustrate how the above formulas help, we observe that a typical
formula (30) can be computed instead by the formula

n,m 1 ~(n—1m J
P = 55 (FO), ("))

where D = F(D), g}j(n_l’m) =F (gj(-n_l’m)) and the power is the component-wise vec-
tor multiplication. Such FFT-based formulas can be computed systematically, very
efficiently, if the discrete probability distributions for A, 3, Q) are initialized in terms
of their Fourier transforms.
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