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Preface

This slim volume logs the development of a cascade of contagious ideas that has
occupied my space, time and mind in recent years. There was a clear triggering event
that occurred in April 2009. Late in that month, Michael Lynch and his colleagues at
MITACS Canada brought together a host of scientists, mathematicians and finance
industry participants for three days to brainstorm about underlying causes of the
ongoing financial crisis and how mathematical thinking could be brought to bear on
it. My role there was as gadfly to provoke discussion on a special topic no one at the
meeting was very aware of, namely financial systemic risk.

Since that event introduced me to the subject, I have had many opportunities to
present to a diversity of audiences an evolving view of how the architecture of the
financial system can be described in terms of network science, and how such a net-
work formulation can be made amenable to a certain type of mathematical analysis.
This book is not intended to be a definitive work on the subject of financial systemic
risk, and does not try to represent a broad consensus. Instead, it is a personal at-
tempt to crystallize the early results of research that focuses on the basic modelling
structure that ensures some kind of mathematical tractability, while allowing a great
deal of both reality and complexity in the actual finance network specification. I
owe a debt of thanks to a great number of people who have listened, commented,
and added new nodes to this complex network of ideas, too many to list here in this
preface.

My McMaster colleague, Matheus Grasselli, was instrumental in many ways,
not least in providing the original impetus to write this SpringerBrief. Nizar Touzi
encouraged and supported me in my first attempt at delivering a minicourse on Sys-
temic Risk. The scope of this minicourse grew over time: Jorge Zubelli hosted me
for an extended period at IMPA, where I delivered another version; Peter Spreij ar-
ranged a session for me to speak at the Winter School on Financial Mathematics in
Lunteren; James Gleeson provided me with multiple invitations to Limerick. The
Fields Institute for Research in Mathematical Sciences gave me encouragement and
organized multiple events relevant to my work. The Global Risk Institute for Finan-
cial Services, in particular Michel Maila and Catherine Lubochinsky, have provided
substantial financial and moral support for this research. I give my hearty thanks to
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Mario Wüthrich and Paul Embrechts who hosted my extended stay at ETH Zürich
in 2014 where I was extremely fortunate to be able to deliver a Nachdiplom lec-
ture series based on the material contained in this book. Finally, to my wife, Rita
Bertoldi, I offer my affectionate acknowledgment of her patient support throughout
my lengthy exposure to this dangerous contagion.
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Chapter 1
Systemic Risk Basics

Annual income twenty pounds, annual expenditure nineteen nineteen six, result happiness.
Annual income twenty pounds, annual expenditure twenty pounds ought and six, result mis-
ery. The blossom is blighted, the leaf is withered, the god of day goes down upon the dreary
scene, and—and, in short, you are for ever floored.1

Abstract Attempts to define systemic risk are summarized and found to be deficient
in various respects. In this introductory chapter, after considering some of the salient
features of financial crises in the past, we focus on the key characteristics of banks,
their balance sheets and how they are regulated.

Bankruptcy! Mr. Micawber, David Copperfield’s debt-ridden sometime mentor,
knew first hand the difference between surplus and deficit, between happiness and
the debtors’ prison. In Dickens’ fictional universe, and perhaps even in the real world
of Victorian England, a small businessman’s unpaid debts were never overlooked but
always lead him and his loved ones to the unmitigated misery of the poorhouse. On
the other hand, the aristocrats and upper classes, were treated more delicately, and
usually given a comfortable escape.

For people, firms, and in particular banks, bankruptcy in modern times is more
complicated yet it still retains some of the flavour of the olden days. When a bank
fails, it often seems that the rich financiers responsible for its collapse and the col-
lateral damage it inflicts walk away from the wreckage with intact bonuses and
compensation packages. When a particularly egregious case arises and a scapegoat
is needed, then a middle rank banker is identified who takes the bullet for the disas-
ter. A cynic might say that despite the dictates of Basel I, II, III, ...•, bank executives
remain free to take excessive risks with their company, receiving a rich fraction of
any upside while insulating themselves from any possible disaster they might cause.

As we learn afresh during every large scale financial crisis, society at large pays
the ultimate costs when banks fail. Spiking unemployment leads to the poverty of

1 Charles Dickens, David Copperfield, Chapter 12, p. 185 (1950). First published 1849–1850.
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10 1 Systemic Risk Basics

the less well-to-do, while salary freezes and imploded pension plans lead to belt-
tightening and delayed retirement for the better-off. Those at the top of the pile,
even those responsible, often do just fine. Banks that are too big to fail are propped
up, while failed banks are bailed out by governments, their debts taken over and
paid by the taxpayers.

If anything is different since the crisis of 2007-08, perhaps it is the widespread
recognition that society needs to find ways and means to ensure that the responsi-
ble parties pay the downside costs of bank failure. New ideas on bank resolution,
including contingent capital and bail-in regulation, aim to force the financial stake-
holders, not the central bank, to pay much higher fractions of the costs of failure.
Banks’ creditors, bondholders and equity investors should in the future be forced
to take their fair share of losses. When banking incentives and regulation are bet-
ter aligned with the needs of society, then bank failures will be better anticipated,
prepared for and managed to reduce their most catastrophic consequences.

1.1 The Nature of this Book

The title “Contagion! Systemic Risk in Financial Networks” is intended to suggest
that financial contagion is analogous to the spread of disease, and that damaging
financial crises may be better understood by bringing to bear ideas gained from
studying the breakdown of other complex systems in our world. It also suggests that
the aim of systemic risk management is similar to the primary aim of epidemiol-
ogy, namely to identify situations when contagion danger is high, and then to make
targeted interventions to damp out the risk.2

The primary goal of this book is to present a unified mathematical framework
for the transmission channels for damaging shocks that can lead to instability in
financial systems. Models in science and engineering can usually be described as
either explanatory or predictive. In the early stages of research in a field, explana-
tory models may make dramatic oversimplifications or counterfactual assumptions
that are only justifiable to the extent they highlight and explain the most critical
mechanisms underlying the phenomenon of interest. Later, when guided by such
improvements in understanding, predictive models become feasible. Certainly, pre-
dictive models will be more complex, and must be carefully calibrated to the details
of the observed system in question. Since financial systemic risk is a rather new
field, this book focuses on certain explanatory models developed by economists that
aim to explore how disruptions can arise in large financial systems. We will there-
fore make certain dramatic oversimplifications in the hope of gaining mathematical
clarity and analytic tractability that can improve understanding of the different ways
financial instability can arise.

2 Interestingly, I found on Wikipedia that epidemiology has a code of nine principles, called the
“Bradford Hill criteria”, that should be considered to help assess evidence of a causal relationship
between an incidence and a consequence. Perhaps, researchers can codify an analogous set of
principles for assessing systemic risk.



1.1 The Nature of this Book 11

This introductory chapter will develop the concepts and setting for systemic risk
in financial networks. It provides a brief survey of how people have viewed and
defined financial crises and systemic risk. It looks at how banks’ balance sheets
reflect the type of business they deal with, and the ways adverse shocks between
banks can be transmitted and amplified. Finally, we review the key aspects of the
new international regulatory regime for banks that are designed to safeguard global
financial stability.

From Chapter Two onwards, we delve more deeply into the mechanics of the
interactions between banking counterparties. Chapter Two puts a sharp focus on
the type of bank behaviour that can negatively impact the functioning of the en-
tire system, by surveying, dissecting and classifying a number of economic models
for financial contagion that have been proposed in recent years. We will make the
important discovery that a common mathematical structure unlies a variety of finan-
cial cascade mechanisms, namely such crises proceed through cascade mappings
that approach a cascade equilibrium. To address the intrinsic opacity of financial
institutions and their interconnections, we identify a particular point of view devel-
oped by Gai, Kapadia [42], Amini, Cont, Minca [7] and others that argues for the
usefulness of random financial networks, a statistical representation of networks of
banks, their interconnections and their balance sheets. The design of this concept
reflects the type of models that network science, reviewed in the book [71], has
already developed in other domains.

The remainder of the book is devoted to studying cascade models on asymptot-
ically large random financial networks. Chapter Three provides the mathematical
underpinning we need by developing and adapting the theory of random graphs
which describes the skeleton structure at the heart of the random financial network.
Two distinct classes of random graphs, the Assortative Configuration Graph model
and the Inhomogeneous Random Graph model, are characterized in detail by their
stochastic construction algorithms. The first class, which will form the framework
underlying the cascade channels studied in the remaining chapters, is an extensive
generalization of the well-known configuration graph model that incorporates assor-
tative wiring between nodes that represent banks, which means wiring probabilities
depend on banks’ degree. It has not been well studied before so we spend time to
develop its key mathematical properties, the most important of which we call the
locally tree-like property. The second class of random graph extends the meaning of
nodes to include types other than banks, such as asset classes or hedge funds. Chap-
ter Four is devoted to understanding the relation between the Watts 2002 model
of information cascades [82] and the concept of bootstrap percolation in random
networks, studied recently in [10]. The Watts model can be fully analyzed from
first principles, providing us with a template for results on more specific cascade
mechanisms on financial networks. We shall learn that its properties can be deter-
mined using the mathematics of percolation which addresses the size distribution
of connected network components. Chapter Five returns to focus on the zero recov-
ery default cascade mechanism on due to Gai and Kapadia and studied by Amini,
Cont, Minca [7]. It develops a purely analytical method for computing the large
network asymptotics of cascade equilibria, based on the locally treelike property
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of assortative configuration graphs. The main theorem on the asymptotic form of
the default cascade extends the work of Amini, Cont and Minca in certain respects,
and requires new proof techniques not previously developed. This theory provides
us with a computational methodology that is independent of and complementary to
the usual Monte Carlo simulation techniques used everywhere in network science.
Finally in Chapter Six we indicate some of the ways this theory can be extended to
encompass more complex contagion channels.

Do there exist classes of mathematical systemic risk models that provide a degree
of realism, but at the same time are sufficiently tractable that all critical parameters
can be varied at will and resulting network characteristics computed? Can these
model systems be tested for their systemic susceptibility? Are the mathematical
conclusions robust and relevant to the real world of financial crisis regulation? We
hope this book will be viewed as providing an emphatic “YES” in answer to these
questions.

1.2 What is Systemic Risk?

First it is helpful to identify what systemic risk is not. Duffie and Singleton [32]
identify five categories of risk faced by financial institutions: (i) market risk: the
risk of unexpected changes in market prices; (ii) credit risk: the risk of changes in
value due to unexpected changes in credit quality, in particular if a counterparty
defaults on one of their contractual obligations; (iii) liquidity risk: the risk that costs
of adjusting financial positions may increase substantially; (iv) operational risk: the
risk that fraud, errors or other operational failures lead to loss in value; (v) systemic
risk: the risk of market wide illiquidity or chain reaction defaults. To the extent
that the first four risk categories are focussed on individual institutions, they are
not deemed to be systemic risk. However, each of the four also has market wide
implications: such market wide implications are wrapped up into the fifth category,
systemic risk.

Kaufman and Scott [59], John B. Taylor [79] and others all seem to agree that
the concept of systemic risk must comprise at least three ingredients. First, a trig-
gering event. Second, the propagation of shocks through the financial system. And
third, significant impact of the crisis on the macroeconomy. Possible triggers might
come from outside the financial system, for example a terrorist attack that phys-
ically harms the system. Or triggers might come internally, such as the surprise
spontaneous failure of a major institution within the system. Propagation of shocks
may be through direct linkages between banks or indirectly, such as through the im-
pact on the asset holdings of many banks caused by the forced sales of a few banks
or through a crisis of confidence. The impact of systemic crises on the macroecon-
omy may take many forms: on the money supply, on the supply of credit, on major
market indices, on interest rates, and ultimately on the production economy and the
level of employment.
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As Admati and Hellwig [3] have argued, ambiguity in the definition of systemic
risk implies that mitigation of systemic risk might mean different things to different
people. One approach might seek to reduce impact on the financial system, whereas
a different approach might instead try to mitigate the damage to the economy at
large. These aims do not necessarily coincide: the demise of Lehman Bros. illus-
trates that key components of the financial system might be sacrificed to save the
larger economy during a severe crisis. It is therefore important to have an unam-
biguous definition of systemic risk supported by a widespread consensus.

1.2.1 Defining SR

The economics literature has used the term systemic risk in the context of financial
systems for many years. Nonetheless, Kaufman and Scott, Taylor and many oth-
ers argue that there is as yet no generally accepted definition of the concept, and
furthermore, that without an agreed definition, it may be pointless and indeed dan-
gerous to implement public policy that explicitly aims to reduce systemic risk. To
see that there is as yet no consensus definition over the years, consider the following
examples of definitions proposed in the past.

1. Mishkin 1995 [66]: “the likelihood of a sudden, usually unexpected, event that disrupts
information in financial markets, making them unable to effectively channel funds to
those parties with the most productive investment opportunities.”

2. Kaufman 1995 [58] “The probability that cumulative losses will accrue from an event
that sets in motion a series of successive losses along a chain of institutions or markets
comprising a system. . . . That is, systemic risk is the risk of a chain reaction of falling
interconnected dominos.”

3. Bank for International Settlements 1994 [39] “ the risk that the failure of a participant
to meet its contractual obligations may in turn cause other participants to default with a
chain reaction leading to broader financial difficulties.”

4. Board of Governors of the Federal Reserve System 2001 [73] “In the payments system,
systemic risk may occur if an institution participating on a private large- dollar payments
network were unable or unwilling to settle its net debt position. If such a settlement
failure occurred, the institution’s creditors on the network might also be unable to settle
their commitments. Serious repercussions could, as a result, spread to other participants
in the private network, to other depository institutions not participating in the network,
and to the nonfinancial economy generally.”

In the light of the 2007-08 financial crisis, the above style of definitions, defi-
cient as they are in several respects, can be seen to miss or be vague about one
key attribute of any systemic crisis, namely that it also causes damage outside the
network, through its failure to efficiently perform its key function of providing liq-
uidity, credit and services. S. L. Schwarcz’ definition [75] of systemic risk explicitly
includes this important aspect:

Systemic risk: a definition The risk that (i) an economic shock such as market or insti-
tutional failure triggers (through a panic or otherwise) either (X) the failure of a chain of
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markets or institutions or (Y) a chain of significant losses to financial institutions, (ii) re-
sulting in increases in the cost of capital or decreases in its availability, often evidenced by
substantial financial-market price volatility.

While the Schwarcz definition is hardly elegant in its phrasing, it has received
support from a rather broad range of practitioners. We will therefore accept it as the
closest thing we have to a concise definition of the spirit of systemic risk.

If this definition captures much of the spirit of systemic risk, it fails to address
how to measure or quantify the level of systemic risk, and how it might be dis-
tributed over the network. Much of current research on systemic risk is dedicated to
defining measures of systemic risk and identifying where it is concentrated. Some of
the important concepts are counterparty value at risk (CoVaR) introduced by Brun-
nermeier and Pedersen [20]; and systemic expected shortfall introduced by Acharya,
Pedersen, Philippon, and Richardson [2]. For a recent and comprehensive review of
these and many other systemic risk measures, please see [12].

1.2.2 Haldane’s 2009 Speech

In 2009, in the aftermath of the crisis, Andrew G. Haldane, Executive Director of
Financial Stability at the Bank of England, gave a provocative and visionary talk,
entitled “Rethinking the Financial Network” [46]. In this brilliant summary of the
nature of networks, he compares the 2002 SARS epidemic to the 2008 collapse
of Lehman Bros, with the aim to inspire efforts to better understand the nature of
systemic risk. For a very broad free thinking overview, we can’t do better than sum-
marize the high points of his speech.

In these two examples of contagion events he identifies the following pattern:

• an external event strikes;
• panic ensues and the complex system seizes up;
• collateral damage is wide and deep;
• in hindsight, the trigger event was modest;
• during the event itself, dynamics was chaotic.

He claims this type of pattern is a manifestation of any complex adaptive system,
and should be the target where we need to direct our attention.

So, in more detail, what went wrong with the financial network in 2008? Haldane
identifies two contributing trends: increasing complexity and decreasing diversity.
In real world networks these two trends are observed to lead to fragility, and ring
alarm bells for ecologists, engineers, geologists. Figure 1.1 illustrates how the global
financial network has grown in complexity. Highly connected, heterogeneous net-
works may be robust yet fragile, by which he means that they may be resistant to
average or typical shocks, yet highly susceptible to an attack that targets a highly
connected or dominant node. In such networks, connections that we think of as
shock absorbers may turn out to act as shock amplifiers during a crisis. There may
be a sharp tipping point that separates normal behaviour from a crisis regime. Thus,
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a network with a fat-tailed degree distribution (i.e. where there is a significant num-
ber of highly connected nodes) may be robust to random shocks while vulnerable to
shocks that preferentially target these highly connected nodes.

Fig. 1.1 The global financial network in 1985 (left) and 2005 (right). Here line thickness denotes
link strength as fraction of total GDP. (figure taken from Haldane [46].)

In both of Haldane’s examples of contagion events, agents exhibit a variety of be-
havioural responses that create feedback and influence the stability of the network.
In epidemics, two classic responses, “hide” or “flee”, may prevail and the virulence
of the event is highly dependent on which behaviour dominates. In a financial crisis,
two likely responses of banks are to hoard liquidity or to sell assets. Both responses
are rational, but both make the systemic problem worse. Massive government inter-
vention to provide liquidity and restore capital to banks in a timely manner may be
needed in order to curtail systemic events.

Financial networks generate chains of claims and at times of stress, these chains
can amplify uncertainties about true counterparty exposures. In good times, coun-
terparty risk is known to be small, and thus “Knightian” uncertainty3 is small, and
in such times we might expect that stability will improve with connectivity. In bad
times, counterparty risk can be large and highly uncertain, due to the complicated
web and the nature of the links: we then expect stability to decline with connectiv-
ity. Financial innovation, particularly securitization, created additional instability.
As CDOs, MBSs, RMBSs and similar high dimensional products proliferated in-
ternationally, they dramatically expanded the size and scope of the precrisis bubble
(see [76]). The structure of these contracts was opaque not transparent. They dra-
matically increased the connectedness and complexity of the network, and moreover
adverse selection made them hard to evaluate. As Haldane wrote:
3 In Knightian terms, uncertainty describes modelling situations where probabilities cannot plau-
sibly be assigned to outcomes. On the other hand, risk describes situations where uncertainty can
be adequately captured in a probability distribution.
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Haldane 2009 [46]: “With no time to read the small-print, the instruments were instead
devoured whole. Food poisoning and a lengthy loss of appetite have been the predictable
consequences. ”

In ecosystems, many instances have been observed that show that biodiversity
tends to improve stability. On the other hand, Haldane argues that during the Great
Moderation prior to 2007, financial diversity has been reduced. Pursuit of returns
led many major players, including global banks, insurance companies and hedge
funds, to follow similar strategies leading to averaged portfolio correlations in ex-
cess of 90% during 2004-2007. Moreover, risk management regulation following
Basel II led to similar risk management strategies for banks. As a result of such
trends, bank balance sheets became increasingly homogeneous. Finance became al-
most a monoculture, in which all banks became vulnerable to infection by the same
virus.

What one learns from Haldane’s analysis is that networks arising in ecology, en-
gineering, the internet, and in finance, are complex and adaptive. Such networks are
in a sense robust yet fragile. He asks “what properties of the financial network most
influence stability?” and expresses the hope that the key determinants for financial
stability can be deduced from studies of other types of networks.

1.2.3 A Lesson from Network Science: The Sandpile Model

Is there more specific guidance to understanding systemic risk that comes from
other branches of the science of complex adapted systems? Consider the follow-
ing thought experiment, first proposed by Bak, Tang and Wiesenfeld [9]. A very
slow trickle of sand is allowed to fall in the middle of a large circular table. How
do we expect the system to evolve? The growing accumulation of sand forms a pile
on the table and our common experience tells us that the steepness of the pile can-
not exceed a certain critical slope that depends on the microscopic and statistical
properties of the sand. As more sand is added, the sandpile, still near its critical
slope, eventually expands to cover the entire surface of the table. Having reached
this maximal extent, the properties of the system take on a new character. On aver-
age, as sand is added near the centre of the table, an equal amount of sand must fall
off the edge.

The interesting thing is the nature of the likelihood of n grains falling off, for
each single grain added. BTW’s assertion, vindicated since by experiments, is that
the frequency for between N and 2N grains to fall is roughly the same as for 2N to
4N grains. In other words, it is a power law or scale-invariant distribution similar
to the Gutenberg-Richter frequency law for earthquakes, that carries the implication
that disturbances of unbounded size can occasionally be triggered by a very small
event. They coined the term self-organized criticality, or “SOC”, for this type of
phenomenon, and boldly asserted that large scale driven systems have an innate ten-
dency to build into a steady state that exhibits power law statistics that are universal,
or insensitive to the microscopic details of the system.
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Self-organized criticality has also been invoked to explain the widespread ob-
servation of fat-tailed Pareto distributions in economic contexts, such as the size
of cities, the distribution of wealth, and the distribution of firm sizes (see[26]). Net-
work scientists are thus not surprised to see results of [78], [27] and others that show
evidence of Pareto tails in the size and connectivity of large financial networks, with
highly connected hub banks that form a core within a periphery of intermediate and
small banks.

It might sound naive to assert that something analogous to sand piling is hap-
pening in financial systems. However, as Minsky wrote in [65], “Stability–even of
an expansion–is destabilizing in that more adventuresome financing of investment
pays off to the leaders, and others follow.” Perhaps the financial system is like a sand
pile near its maximal size, where unbounded disturbances are possible. The Minsky
moment when a financial bubble bursts might then be analogous to one of these
large scale disturbances. Adrian and Shin [5] provide a possible explanation. They
demonstrate that in the 10 year period leading up to the 2007-08 crisis, financial
institutions exhibited strongly pro cyclical investment strategies: as asset prices rose
during the prolonged period of stability, so did the balance sheets and leverage ratios
of banks, showing that they pursued ever more adventurous strategies. Eventually,
as the financial system approached a critical state with little government oversight,
only small triggers were needed to create the inevitable collapse.

1.3 Capital Structure of a Bank

Banks around the globe form a diverse family of firms, spanning a huge range of
sizes and types. In addition to traditional retail and investment banks, financial net-
work models need eventually to include a whole host of shadow banking institu-
tions, including hedge funds, pension and investment funds, savings and credit in-
stitutions, and so on. As our systemic models evolve, we will include in our system
more and more components of the wider production and retail economy. It will
clearly be impossible to capture here in a brief overview the full range of holdings
and liabilities that such institutions might have, and that should in principle be un-
derstood.

Quarterly financial reports of a firm’s balance sheet offer a snapshot at a moment
in time of the details of a firm’s capital structure, that is, the valuation of the totality
of their assets and liabilities. It is helpful to imagine these balance sheet entries as
existing at all times, even if not observed by the market. One can imagine that the
bank management maintains its accounting books, updating them daily, and only
once a quarter makes them available to the public. Regulators, on the other hand,
have the power to examine the books of any bank, at any moment.

Figure 1.3 shows the main classes of assets (what the bank owns) and liabilities
(what the bank owes). All entries must be non-negative, and equity, which is the
value of the firm to the share owners, is defined to be the difference E = A� L
between asset value A and liability value L. The most fundamental characteristic of
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a bank’s balance sheet is its accounting ratio, leverage A/E. For banks, it has often
exceeded 50 in the past. Its reciprocal, E/A, measures the bank’s safety buffer to
absorb adverse balance sheet shocks.

Assets Liabilities and Equity
Loan portfolio: Deposits:

mortgages retail deposits
commercial loans wholesale deposits
credit cards certificates of deposit

other banks’ deposits
OTC Securities: OTC Securities:

bonds bond issues
OTC derivatives OTC derivatives

Market Securities Market Securities
exchange traded derivatives exchange traded derivatives

Reverse Repos Repos
Cash Hybrid Capital

cash equivalents preferred shares
COCOs

Other Assets Other Liabilities
Equity

Table 1.1 The main components of a bank’s balance sheet.

In studies of the “financial system”, it is important to carefully define the bound-
ary between the interior and exterior of the system. Correspondingly, for systemic
analysis, assets and liabilities will always be separated into intra- and extra-network
components. One important insight to keep in mind when considering capital struc-
ture is the formal duality between assets and liabilities. Almost any asset is someone
else’s liability and in many cases where a story can be told of asset side contagion,
an analogous story can be told of liability side contagion.

1.3.1 Bank Asset Classes

Assets, what the firm owns, are entered on the left side of the balance sheet. The
available classes of assets relevant in banking is extremely diverse, and this section
gives only a schematic overview of some of the most important basic types. From
a systemic risk perspective, assets’ most relevant characteristics are: duration or
maturity, credit quality (or collateral), interest rate and liquidity.

Loan portfolio: Banks, like any firm, invest heavily in endeavours for which they
have a competitive advantage. Such irreversible projects are by their nature illiquid,
and fail to recoup their full value when sold. For banks, this business line is called
the bank book, and consists of a heterogeneous portfolio of loans and mortgages of
all maturities, to counterparties ranging across the retail sector, small and medium
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enterprises (SMEs) and major corporates. Far from receding in importance since the
crisis, [57] shows that real estate lending in the form of mortgages in particular ac-
counts for an ever increasing percentage of bank assets. They comment: “Mortgage
credit has risen dramatically as a share of banks’ balance sheets from about one third
at the beginning of the 20th century to about two thirds today” and suggest that as
in the past, real estate bubbles will continue to be the dominant factor in triggering
future systemic risk events.

From an accounting perspective, loans are typically regarded as to be “held to
maturity”, and are therefore assigned book value, which is typically the value at the
time of origination. The book value may be marked down infrequently, if the asset
is regarded as sufficiently stressed.

As mentioned above, in systemic risk analysis, assets placed within the financial
system, called interbank assets are always distinguished from external assets placed
outside the system.

Over-the-counter securities: Bonds, derivatives and swap contracts between
banks are to a large extent negotiated and transacted in the OTC markets, some-
times bilaterally, but increasingly within a central clearing party (CCP) . Some of
these exposures fluctuate rapidly in time, both in magnitude and in sign, and may or
may not be collateralized by margin accounts to reduce counterparty risk. Between a
pair of financial counterparties there may be many contracts, each with positive and
negative exposures. To reduce risk, large counterparties often negotiate a bilateral
master netting agreement (MNA), subject to the regulations stipulated by ISDA,
that allows them to offset exposures of opposite signs. Entering into an MNA is a
costly endeavour, and thus existence of an MNA is an indication of a strong net-
work connection between two banks. Counterparty risk management, reviewed for
example in [28], is a particular flavour of credit risk management that has developed
rapidly since the crisis. As part of this methodology, banks now routinely forecast
the potential future exposure, or PFE, for all their important counterparties. This is
a high quantile of the positive part of their exposure to the given counterparty on a
given date in the near future. In the event that one bank suddenly defaults, PFE is a
pessimistic estimate of losses to which its counterparties are exposed.

A systemically important subclass of OTC securities are total return swaps (TRS)
that exchange the random returns on an underlying asset for a fixed periodic pay-
ment. An example of a TRS is the credit default swap (CDS) that exchanges fixed
quarterly payments for a large payment at the moment the underlier defaults, pro-
viding a form of default insurance. From a network perspective, complex and poorly
understood effects are bound to arise when the underlier is itself part of the system,
as would be the case of a CDS written on the default of another bank.

Cash and market securities: In addition to cash, the firm may hold other securi-
ties for which there is a liquid market, and low or moderate transaction costs. Such
cash equivalents are used to pay depositors on demand. Examples include money-
market lending that pays the over-night rate, stocks, T-bills, and exchange traded
derivatives. Since cash equivalent assets are regarded as “available for sale”, instead
of book value they are assigned their mark-to-market value. A new aspect of the
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Basel III regulatory framework requires banks to exercise active and prudent liquid-
ity management which means that a fraction of assets must be held in a portfolio
of cash and market securities that can be easily liquidated when the bank needs to
meet its short term debt obligations in a timely manner.

Reverse repo assets: As described in the next section on repos, a repo-lending bank
receives collateral assets known as reverse repos. Such assets can be “rehypothe-
cated”, which means they can themselves be used as collateral for repo borrowing.

Other assets: Of lesser importance are a range of further asset classes: real estate,
accounts receivable, goodwill and the like.

1.3.2 Debt and Liabilities

Debt and liability are regarded as the same thing, namely all obligations that the
firm owes to others. Equity, on the other hand, even if entered on the right side of
the balance sheet, is the value of firm ownership, and is not regarded as debt or
liability.

Deposits: A large fraction of the debt of a traditional bank is in the form of deposits
made by both institutional investors and small retail investors. Since there are many
of them, with a diverse range of maturities, the collective of deposits can be thought
of as a multiple of an asset that pays a constant dividend rate (for banks, we will
assume it is less than the risk free rate). One important class of wholesale deposi-
tor is short-term money-market funds. Their widespread meltdown in early stages
of the last financial crisis played an important contagion role. Small depositors are
typically protected by deposit insurance in the event of the bank’s default, while
institutional depositors have no such protection. Banks in particular seek protec-
tion through collateralization. Uncollateralized lending between banks takes other
forms: certificates of deposit and bankers’ acceptances are variants banks use to lend
to each other.

Bonds: Like most large firms, banks issue bonds as a primary means to raise long
term debt capital, each bond being characterized by its notional amount, maturity
and coupon rate, plus a variety of additional attributes. Sometimes a bank’s bonds
differ in seniority, meaning that in the event of default, the most senior bonds are
paid in full before junior bonds. Typically, the firm cannot retire existing bonds or
issue new bonds quickly.

Market securities Hedge funds and investment banks have the characteristic that
they often take large short positions in market securities, such as stocks and deriva-
tives. To a lesser extent, commercial banks also hold short positions for hedging
and risk management reasons. Short positions can be thought of as holding negative
amounts in market securities.

Collateralized Loans (Repos): Short for repurchase agreements, repos are an im-
portant class of collateralized short term debt issued between banks and other insti-
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tutional investors. Typically, money is borrowed for a short term, often overnight, at
an interest rate r called the repo rate. They are backed by assets (repo assets) whose
value exceeds the loan amount by a percentage h called the haircut. The haircut
reflects the liquidation value of the collateral in the event the money is not repaid.
This haircut thus compensates the lender, also called the asset buyer, for the coun-
terparty risk inherent in the contract when the borrower (or asset seller) defaults. To
illustrate how repos are used, suppose a bank has an excess $1 in cash. Then they
might undertake an overnight repo of $1 with another bank for collateral valued at
$1/(1� h). The next day the contract is closed by repurchase of the collateral for
the price $(1+r). While the lending bank holds the collateral, they may also elect to
use it to finance a second repo with another counterparty: we then say the collateral
has been rehypothecated.

Hybrid capital: This term denotes parts of a firm’s funding that possess both equity
and debt features. Preferred shares can be considered as hybrid capital: Like equity,
it may pay tax-deductible dividends, and like debt it maintains seniority over equity
in the event of default. There is now active interest in forms of hybrid capital issued
by banks such as contingent convertible bonds (COCOs) that behave like bonds as
long as the firm is healthy, but provide additional equity cushioning for the bank
when its balance sheets weaken.

Other Liabilities: Accounts payable are analogous to accounts receivable. Invest-
ment banks act as prime brokers and hold their clients’ securities in trust. They often
act on the right to borrow such securities to be used as collateral for purchasing fur-
ther assets. Such a debt can be understood as similar to a collateralized loan.

1.3.3 Equity

Equity, defined to be the value of a firm’s assets minus its liabilities, what it owns
minus what it owes, represents the total value conveyed by ownership of the firm.
For a publicly owned firm, ownership is divided into shares that have an observable
fluctuating market price: in this case, total market capitalization, the share price
times the number of shares outstanding, is a market value of equity. For privately
held firms, equity does not have a transparent market value: valuation of privately
held firms can only be gleaned through investigation of the firm’s accounts. Firms,
especially banks, are typically highly leveraged, meaning A/E is large. In such sit-
uations, equity, being a small difference of large positive numbers, is inherently dif-
ficult to estimate and this uncertainty is reflected in the high volatility of the stock
price.

Limited liability is the principle, applying to almost all publicly held companies,
that share owners are never required to make additional payments. In the event the
firm ceases to operate, the shareholders are not held responsible for unpaid liabili-
ties. We can say this means equity can never be negative, and is zero at the moment
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the firm ceases to operate. This is called bankruptcy, and limited liability is a central
principle in bankruptcy law worldwide.

Firms return profits to their shareholders two ways, either through the payment
of regular dividends, or through the increase in share price when the value of firm
equity rises. Share issuance and its opposite, the share buyback, are two further
financing strategies firms can adopt. A firm near to default may attempt a share is-
suance, hoping that new investors will view the decline in its fortunes as a temporary
effect before the firm’s return to health.

1.4 Channels of Systemic Risk

Systemic contagion that causes the failure or impairment of a large number of banks
will in reality always manifest itself through a multitude of different channels, with
spillover or domino effects from one to another. In the language of network science,
financial networks are multiplex, meaning there are interbank links of many differ-
ent types, and a contagious event that starts with one type of link will likely quickly
infect all other types of links. Nonetheless, it is important to identify the basic types
of shock mechanisms that we expect to find activated during a financial crisis, either
as the primary cause, or else as the result of spillover effects stemming from the
initial shock. For an in-depth discussion of various channels of systemic risk, and in
particular, contagion, please see [29].

Asset Correlation: Different banks tend to hold common assets in their portfolios.
Haldane [46] has argued that banks’ asset portfolios became increasingly similar
during the Great Moderation, making them more and more susceptible to correlated
asset shocks that can be considered as a channel of systemic risk. In 2007, most large
banks around the world held significant positions in the US sub-prime mortgage
market. The prolonged drawdown of US housing prices in that year acted as a huge
downward asset shock that dramatically increased most banks’ leverage and hence
the vulnerability of their asset portfolios. Such systemic events undermine the health
of the system, in the same way that famine impairs the health of a community. They
make it vulnerable to other types of contagion, but do not exhibit the amplification
effect that characterizes contagion.

Default Contagion: Bank deposits held in other banks can be considered as a form
of interbank lending, but banking practise in modern times has dramatically ex-
tended the range of interbank exposures. There are now a multitude of linkage types
between bank counterparties that range well beyond traditional interbank lending,
to include swaps, derivatives and other securitized assets. At any moment, banks
can at least in principle identify their exposures to all other banks and they work
hard to identify their expected potential exposure (EPE) over different future time
horizons. An insolvent bank, if it is not bailed out by a government agency, will be
forced into bankruptcy thereby disrupting promised contractual payments. Its cred-
itors, including other banks, will then experience severe losses given this default,
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possibly losing close to 100% of their total exposure in the short term aftermath.
Such shocks to creditor banks’ interbank assets at the time of default of a debtor
bank are the channel for default contagion. Such shocks can in principle chain to-
gether like dominos to create a default cascade. Default cascades can only happen
when interbank exposures are a high fraction of lending banks’ equity, and [80] pro-
vides evidence that this was the case in Europe before and during the crisis, when
many banks’ interbank exposures exceeded their capital by factors of 5 or more.
Despite being the first type of contagion most economists consider, default cascades
are rare in practise because defaulting banks are often bailed out by government.

Liquidity Contagion: Funding illiquidity is the situation of a bank with insufficient
access to short term borrowing. Such banks, being short of cash or other liquid
assets, will adopt a variety of strategies that can be considered as shrinking their
balance sheets. They will try to access the repo markets for untapped sources of
collateralized borrowing. They will refuse to rollover short term loans and repo
lending to other counterparties. The amplification characteristic of contagion occurs
when banks respond to funding illiquidity by curtailing a large fraction of their
interbank lending. The resulting funding shocks to other banks are the channel for
liquidity contagion in the system.

Market Illiquidity and Asset Fire Sales: As [5] discussed, in good times banks
tend to create upward asset price spirals by increasing their leverage through large
scale asset purchasing. This pushes up prices, creating the illusion of even better
times ahead and further increases in leverage. As they also discuss, the reverse is
true in bad times. This tendency for distressed banks to sell assets into a depressed
market creates the contagion mechanism known as an asset fire sale. A fire sale
cascade proceeds through a double step mechanism: first, asset sales by distressed
banks decreases prices, then marking-to-market leads to losses by other banks hold-
ing these assets.

Other Channels: Many authors have identified further channels for systemic risk.
Rollover risk is the name given to the effect that lenders to a bank may fail to renew
or “rollover” short term debt. [69] models this effect as a coordination game played
by the lenders to a single counterparty: a player that perceives that other players are
likely not to roll over their debt, will be more likely not to roll over their debt. Such
a decision may be due either to a lending bank’s assessment of the health of the
counterparty (which was termed structural uncertainty), or to that bank’s assess-
ment of the lending behaviour of other banks (termed strategic uncertainty ). [8]
extend this picture to a network setting by considering a multitude of simultaneous
coordination games, leading to runs in the interbank network. In [44], it is argued
that the 2008 crisis was largely a crisis of confidence in the repo market that led
to a drying up of banks’ funding opportunities. In normal times, the repo market
provides a huge source of short term funding for banks that is information insensi-
tive in the sense that the lender has little incentive to be concerned about the health
of its counterparty. During the crisis however, lenders became information sensitive
and questioned the quality of counterparties and their underlying collateral. Con-
sequently, they began to demand large increases in repo haircuts. In other words,
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they demanded collateral valued well above the loan amounts, and in consequence
dramatically decreased the availability of repo funding at a time it was most needed.
This effect was contagious: banks that raised haircuts imposed funding illiquidity on
their counterparties, leading to further questioning of the quality of counterparties
and their collateral.

1.5 Regulatory Capital and Constraints

The 1988 Basel Accord, also called Basel I, was a set of minimal capital require-
ments for banks that arose from the deliberations of international central bankers
who formed the Basel Committee on Banking Supervision. Largely as a result of
lessons hard learned during the 07-08 crisis, the world is now moving quickly be-
yond the Basel II regulatory regime, put in place in the early 2000s, that can be
characterized as microprudential in emphasis, with regulations that were imposed
bank by bank without taking into account the dependence of risks between banks.
For example, the capital adequacy ratio (CAR) which stipulates

Risk-weighted Assets  12.5⇥Total Capital

is the main requirement of Basel II, and is based only on the individual bank’s
balance sheets. The importance of network effects is now recognized at the core
of Basel III in measures that are macroprudential in nature, meaning they try to
account for the network and the interconnectivity of risks between banks.

An example of macroprudential regulation is the new requirement by Basel III
that banks must report their large exposures to individual counterparties or groups of
counterparties, both financial and non-financial. This is clear recognition that large
interbank linkages are systemically important during a crisis. It has also become
clear that the fixed regulatory capital ratios of Basel II were procyclical and can
dangerously amplify the swings of the credit cycle. When the financial system en-
ters a contraction phase, capital buffers of some banks will be squeezed below the
regulatory minimum, leading naturally to fire sales and further asset shocks. Basel
III seeks to ward off this tendency by making the capital requirements counter-
cyclical. During normal periods, capital requirements have a surcharge which can
be removed as the system begins to contract to provide banks with more flexibility.
Yet another example of macroprudential regulation is that Basel III now recognizes
the existence of SIFIs (for systemically important financial institutions ), also called
G-SIBs (for global systemically important banks ), and subjects them to a regulatory
capital surcharge that will hopefully make them more resilient. Clearly, the identi-
fication of SIFIs must be grounded in well established systemic risk theory, and
the SIFIs themselves will demand a theoretical basis for what is to them a punitive
measure.

The Basel II capital adequacy ratio, although it has been strengthened in Basel
III, still leads to distortions of banking balance sheets through its use of risk weights.
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For example, the risk weight for sovereign bonds of OECD countries remains zero,
meaning these assets require no offsetting equity capital, allowing banks to operate
with unsustainably high leverage ratios. Basel III provides a counterbalance to the
CAR by requiring an additional constraint on bank leverage. Liquidity risk is for the
first time explicitly addressed in Basel III through the implementation of two new
regulatory ratios. The Liquidity Coverage Ratio (LCR) ensures that every bank’s
liquid assets will be sufficient to cover an extreme stress scenario that includes a 30
day run off of its short-term liabilities. The Net Stable Funding Ratio (NSFR) sim-
ilarly seeks to ensure that enough long term (greater than one year) funding will be
available to cover a stress scenario that hits the bank’s long term assets. Considering
the Lucas critique [62](p. 41) that “any change in policy will systematically alter the
structure of econometric models”, we must expect that the systemic ramifications of
the LCR and NSFR will be subtle and far-reaching.

Critics, notably Haldane [47], argue that the Basel III regulatory framework has
become excessively complex, and that the regulatory community must do an about-
turn in strategy and operate by a smaller, less-detailed rulebook. Haldane writes:
“As you do not fight fire with fire, you do not fight complexity with complexity.
Because complexity generates uncertainty, not risk, it requires a regulatory response
grounded in simplicity, not complexity.”

Our task now is to begin exploring the channels of cascading systemic risks in
detail, with an aim to closing the gap in understanding that exists between knowing
bank-to-bank interactions and knowing how a large ensemble of banks will behave.





Chapter 2
Static Cascade Models

Happy families are all alike; every unhappy family is unhappy in its own way. 1

Abstract Network effects such as default contagion and liquidity hoarding are
transmitted between banks by direct contact through their interbank exposures. Dur-
ing asset fire sales, shocks are transmitted indirectly from a bank selling assets to
other banks via the impact on the price of their common assets. Banks maintain
safety buffers in normal times, but these may be weakened or fail during a cri-
sis. Asset prices that are relatively stable in normal times may collapse during a
crisis. Banks react to such stresses by making large adjustments to their balance
sheets. Such adjustments send further shocks to their counterparties both directly
through their exposures and indirectly via asset price impact, creating a cascade. All
these cascade mechanisms can be modelled mathematically starting from a com-
mon framework. In such models, the eventual extent of a crisis is a fixed point or
equilibrium of a cascade mapping. Towards the end of the chapter, a proposal is
made that the properties of cascade mappings can be most clearly understood when
implemented on very large random financial networks.

Keywords: Cascade mechanism, default and liquidity buffers, fixed point equations,
cascade equilibrium, asset fire sales, random financial network.

If one takes the Anna Karenina Principle seriously, one imagines that stable bank-
ing systems must all be alike, while every type of financial instability has its own
characteristics. This chapter will explore some of the different ways financial insta-
bility can propagate through the system. Paradoxically, we will find that while such
channels are definitely distinct, they retain common features that we can exploit in
the mathematical models developed in this book.

Contagion, meaning the transmission of a disease by direct or indirect contact,
is an appropriate term for the damaging effects that can be transmitted through the
network of banks (and possibly other financial entities) linked by the contracts they

1 Leo Tolstoy, Anna Karenina, Part 1, Chapter 1. First published 1874–1877.
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exchange. This chapter will develop various mathematical frameworks for conta-
gion, or cascading instability, both direct and indirect, that can arise in hypothetical
financial networks. The essential picture will be to treat banks and their behaviour
under stress as determined by their balance sheets, and to concentrate on damaging
shocks that can be transmitted through interbank links. In addition to direct bank-
to-bank effects, we will find that indirect effects can also be included by extending
the definition of node to include non-banks.

The cascade models of this chapter all follow a common script:

1. At the onset of the crisis, the system that was previously in a normal or quies-
cent state is hit by a damaging shock. This shock impacts banks’ balance sheets
sufficiently hard that one or more fail or become stressed;

2. Failed or stressed banks transmit balance sheet shocks to their network counter-
parties;

3. Thereafter, the network undergoes a sequence of updates as banks respond to
the balance sheet shocks they receive, thereby inflicting further shocks to their
counterparties.

The precise form of updating, called the cascade mechanism, amounts to a set of be-
havioural rules that banks are assumed to follow. Each updating step can be thought
of as leading to a cascade mapping of the system state into its new state. In our
models, the cascade mapping is always monotonically increasing in the damage it
causes, which is sufficient to guarantee that its iterations converge to a fixed point
called the cascade equilibrium. The total damage inflicted during the crisis on both
the financial system and the economy at large is determined from quantitative risk
measures computed in the equilibrium.

This script is sufficiently general to cover a wide variety of economic narratives.
For example, the stylized facts of the 2007-2009 US financial crisis can be mapped
schematically to this script: (1) prior to the active phase of the crisis, the year long
collapse of the US real estate market acted as a non contagious correlated asset
shock that brought the whole financial system to an unhealthy, susceptible state; (2)
the September 2008 collapse of Lehman Bros. provided the trigger for the conta-
gious phase of the crisis; (3) during the subsequent months, rounds of the crisis lead
to the defaults of other financial institutions, fire sales in the CDO markets, a freez-
ing of the repo market, liquidity hoarding and other elements that can be viewed
collectively as a cascade mechanism; (4) by Spring 2009, the contagion had slowed
down, leaving the US financial system close to a new, more quiescent cascade equi-
librium.

Obviously the cascade mechanism that underlay the most contagious period of
this crisis was an extremely complex interweaving of different effects. In this chap-
ter, we separate out three different contagion channels for mathematical study: de-
fault cascades, liquidity cascades and asset fire sales. Later, one can investigate more
complex models of higher dimensional cascades that combine two or more different
contagion transmission mechanisms, each with some of these basic characteristics.

The basic cascade models of this chapter concern a financial system assumed to
consist of N “banks”, labelled by v 2 {1,2, . . . ,N} := [N] (which may include non-
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regulated, non-deposit taking, leveraged institutions such as hedge funds, or other
regulated financial institutions such as insurance companies). Their balance sheets
can be characterized schematically as in Table 2.1.

Assets Liabilities
interbank assets Z̄ interbank debt X̄

external fixed assets ȲF external debt D̄
external liquid assets ȲL equity Ē

Table 2.1 An over-simplified bank balance sheet.

At the outset, the entries in these banks’ balance sheets refer to nominal values
of assets and liabilities, and give the aggregated values of contracts, valued as if all
banks are solvent. Nominal values, denoted by upper case letters with bars, can also
be considered book values or face values. Assets and liabilities are also decomposed
into interbank and external quantities depending on whether the loan or debt coun-
terparty is a bank or not. Banks and institutions such as foreign banks that are not
part of the system under analysis are deemed to be part of the exterior, and their
exposures are included as part of the external debts and assets. It is also convenient
to separate fixed assets, which comprises the assets such as the bank’s loan portfolio
that cannot be sold without high liquidation costs, from liquid assets, such as cash
and cash equivalents.

Definition 1. The nominal value of assets of bank v at any time consists of nomi-
nal external assets, both fixed and liquid, denoted by Ȳv = ȲF

v + ȲL
v , plus nominal

interbank assets Z̄v. The nominal value of liabilities of the bank includes nominal
external debt D̄v and nominal interbank debt X̄v. The bank’s nominal equity is de-
fined by Ēv = Ȳv + Z̄v � D̄v � X̄v. The nominal exposure of bank w to bank v, that
is the amount v owes w, is denoted by W̄vw. We define interbank loan fractions to
be P̄vw = W̄vw/X̄v as long as X̄v > 0. Interbank assets and liabilities satisfy the
constraints:

Z̄v = Â
w

W̄wv, X̄v = Â
w

W̄vw, Â
v

Z̄v = Â
v

X̄v, W̄vv = 0 .

The combined balance sheets of all banks in the network are shown in Table 2.2.

Such a schematic financial system can be pictured as a network of N nodes repre-
senting banks, connected by E = |{(v,w) : Wvw > 0}| directed edges that point from
debtor banks to creditor banks (a direction we sometimes call “downstream”).

Economic cascade models invoke the notion of limited liability, and define a
firm to be defaulted when its mark-to-market equity is non-positive which means
its aggregated assets are insufficient to pay its aggregated debt. Analogously, we
regard a bank without liquid assets available to pay demand depositors as subject to
liquidity stress.
Definition 2. A defaulted bank is a bank with E = 0. A solvent bank is a bank with
E > 0. A stressed bank is a bank with YL = 0.
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1 2 · · · N X̄ D̄ Ē
1 0 P̄12X̄1 · · · P̄1NX̄1 X̄1 D̄1 Ē1
2 P̄21X̄2 0 · · · P̄2NX̄2 X̄2 D̄2 Ē2
...

...
...

. . .
...

...
...

...
N P̄N1X̄N P̄N2X̄N · · · 0 X̄N D̄N ĒN
Z̄ Z̄1 Z̄2 · · · Z̄N

ȲF ȲF
1 ȲF

2 · · · ȲF
N

ȲL ȲL
1 ȲL

2 · · · ȲL
N

Table 2.2 The first N rows of this table represent different banks’ liabilities and the first N columns
represent their assets. The matrix of interbank exposures contains the values W̄vw = P̄vwX̄v.

When a bank v is known to be insolvent or defaulted, creditors of v will naturally
mark down their exposure to less than their nominal values. Similarly, the response
of a bank to liquidity stress on its liability side will naturally include reducing their
interbank lending. We denote by symbols Z,YF ,YL,X,D,E,W without upper bars,
the changing actual or mark-to-market values of balance sheets that typically de-
crease during the steps of the cascade.

With these common definitions, we are now in a position to discuss models of the
three basic contagion channels: default contagion, liquidity contagion and asset fire
sales. These models will be called “static” because they describe cascades whose
end result is a deterministic function of the initial balance sheets and exposures.
In typical applications, static cascades proceed from a random initial configuration
Z̄, ȲF , ȲL, X̄, D̄, Ē,W̄ through a cascade mechanism that generates a series of de-
terministic steps until a steady state or cascade equilibrium is reached. Of course
as a deterministic function of a random variable, the cascade equilibrium is a ran-
dom variable, and one is interested to compute a variety of systemic risk measures
defined as certain expectations over the cascade equilibrium.

2.1 Default Cascades

Basic default cascades depend on Ȳ but not on ȲF and ȲL separately. In such mod-
els, the triggering event can be taken to be an initial shock that leaves some banks
with nonpositive nominal equity Ē = 0 and therefore insolvent. As the cascade pro-
gresses, the market value of equity of all banks generally decreases, potentially lead-
ing to secondary defaulted banks. The relative claims by creditors in the event a
debtor bank defaults are determined by the nominal amounts Ȳ, Z̄, D̄, X̄,W̄ . The rule
by which defaulted claims are valued distinguishes the two different approaches we
now examine.
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2.1.1 The Eisenberg-Noe 2001 Model

A slightly extended version of the famous model of default contagion introduced
by Eisenberg and Noe in[33] makes two additional assumptions that determine a
precise default resolution mechanism:
Assumptions 1.
1. External debt is senior to interbank debt and all interbank debt is of equal senior-

ity;
2. There are no losses due to bankruptcy charges.

The original model discussed only the case when external assets Ȳ exceed ex-
ternal debt D̄ for all banks. As discussed in [35], the justification for making this
restriction was based on a faulty argument, and therefore we treat only the general
case here.

In tandem with the limited liability assumption, the first assumption means that
on default a bank’s equity is valued at zero, and none of its interbank debt is paid
before its external debt is paid in full. A variant of this assumption is if some or all of
the external debt has the same seniority as interbank debt. This can be incorporated
without additional modelling complexity by adding a fictitious bank labelled by
v = 0 that lends to but does not borrow from other banks and can never default.

The no-bankruptcy costs assumption is somewhat optimistic in the context of
systemic risk and has the strong consequence that when the system is viewed as a
whole, no system-wide equity is lost during the crisis. That is, the system equity,
defined as total assets minus total liabilities, is independent of the payments within
the interbank sector:

Ēsys = Â
v
(Ȳv + Z̄v � D̄v � X̄v) = Â

v
(Ȳv � D̄v) .

Let us suppose the banking network, previously in equilibrium with no defaulted
banks, experiences a catastrophic event, such as the discovery of a major fraud in
a bank or a system wide event, whereby the nominal assets of some banks sud-
denly contract. If one or more banks are then found to be in a state of primary
default, they are assumed to be quickly liquidated, and any proceeds go to pay off
these banks’ creditors, in order of seniority. We let p(n)v ,v 2 [N] denote the (mark-
to-market) amount available to pay v’s internal debt at the end of the nth step of the
cascade, and p(n) = [p(n)1 , . . . , p(n)N ]0. Similarly, we let q(n)v ,v 2 [N] denote the (mark-
to-market) amount available to pay v’s total debt and q(n) = [q(n)1 , . . . ,q(n)N ]0. We draw
the reader’s attention to the vector and matrix notation described in Appendix A.1.

By Assumption 1, the value p(n)v is split amongst the creditor banks of v in pro-
portion to the fractions P̄vw = W̄vw/X̄v (when X̄v = 0, we define P̄vw = 0,w 2 [N]).
Therefore, at step n � 1 of the cascade, every bank w values its interbank assets as
Z(n)

w = Âv P̄vw p(n�1)
v . Since by assumption there are no bankruptcy charges, we find

for all v 2 [N]:
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q(n)v = min(Ȳv +Â
w

P̄wv p(n�1)
w , D̄v + X̄v) , (2.1)

p(n)v = (q(n)v � D̄v)
+ . (2.2)

This can be written compactly in terms of p alone:

p(n) = F(EN)(p(n�1)) (2.3)

where F(EN) = [F(EN)
1 , . . . ,F(EN)

N ]0 with

F(EN)
v (p) = min(X̄v,max(Ȳv +Â

w
P̄wv pw � D̄v,0)) . (2.4)

Now we let p = [p1, . . . , pN ]0 denote the vector of banks’ internal debt values at
the end of the cascade. This clearing vector satisfies the clearing condition or fixed
point condition

p = F(EN)(p) := min(X̄,max(Ȳ+ P̄

0 ·p� D̄,0)) . (2.5)

The main theorem of Eisenberg and Noe is the following:

Theorem 1. Corresponding to every financial system (Ȳ, Z̄, D̄, X̄,W̄) satisfying As-
sumption 1 there exists a greatest and a least clearing vector p+ and p�.

Proof of Theorem 1: The result follows immediately from the Knaster-Tarski Fixed
Point Theorem2 once we verify certain characteristics of the mapping F(EN). We
note that F(EN) maps the hyperinterval [0, X̄] := {x 2 RN : 0  xv  X̄v} into it-
self. We also note that it is monotonic: x  y implies F(EN)(x)  F(EN)(y). Finally,
note that [0, X̄] is a complete lattice. We therefore conclude that the set of clearing
vectors, being the fixed points of the mapping F(EN), is a complete lattice, hence
nonempty, and with maximum and minimum elements p+ and p�. ut

Finding natural necessary and sufficient conditions on E-N networks to ensure
the uniqueness of the clearing vector proves to be more challenging. Figure 2.1
shows an example of non-uniqueness of the clearing vector.

We present here a complete characterization of the clearing vector set in the E-N
model without the condition Ȳ � D̄. First, we identify groups of banks called in-
subgraphs (these are essentially the same as the surplus sets in [33]), that do not
lend outside their group.

Definition 3.

1. In-subgraph: any subgraph M ⇢ N (possibly M = N ) with no out-links to its
complement M c.

2. Irreducible in-subgraph: an in-subgraph M ⇢N with at least 2 nodes that does
not contain a smaller in-subgraph.

2 A statement and proof of this result can be found at
http://en.wikipedia.org/wiki/Knaster-Tarski-theorem
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1

1

1

Fig. 2.1 This N = 4 bank network with Ȳ� D̄ = 0 has multiple clearing vectors p = l [1,1,1,0]
with l 2 [0,1].

The exposure matrix P̄

0 is always a substochastic matrix, and when projected
onto any irreducible in-subgraph M , is always an irreducible substochastic matrix,
where we recall the standard definitions:

Definition 4.

1. A stochastic (substochastic) matrix has non-negative entries and columns that
sum to 1 (respectively,  1).

2. An irreducible substochastic matrix G has the property that for every v,w 2 [N]
there is k � 1 such that (G k)vw > 0.

Having identified all the irreducible in-subgraphs of a given network, we can
simplify the following discussion by removing all singleton in-banks (i.e. that do
not lend to other banks). Any such bank v will have pv = X̄v = 0 and its state has
no effect on other banks. We then consider the exposure matrix P̄

0 restricted to the
reduced network ˜N without such in-banks, which may then be strictly substochastic
in some columns.

The theorem that characterizes the set of clearing vectors in the E-N model is:

Theorem 2. Let the reduced network ˜N have exactly K � 0 non-overlapping ir-
reducible in-graphs M1,M2, ...MK, and a decomposition ˜N = M0 [

�
[K

k=1Mk
�
.

Let the possible fixed points be written in block form p⇤ = [p⇤0,p
⇤
1, . . . ,p

⇤
K ]

0. Then:

1. In case K = 0, the clearing vector p⇤ = p⇤0 is unique;
2. In case there are exactly K � 1 (non-overlapping) irreducible in-graphs M1,M2,

...MK, then the multiplicity of the clearing vectors is characterized as follows: p⇤0
is unique, and each p⇤k is either unique or of the form p⇤k = akvk where the vector
vk is the unique normalized 1-eigenvector of the matrix Pk ·P̄ 0 ·Pk

0 projected onto
Mk and ak 2 [0, āk] for some āk. The precise form of each p⇤k is shown in the
proof.

Remark 1. This theorem demonstrates that non-uniqueness in this model is a highly
non-generic property: only very special arrangements of the network lead to multi-
plicity of solutions.
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The proof of the theorem involves extending the following lemma to the most
general kind of E-N fixed point equation.

Lemma 1. Consider the system

p = min(X,max(Y+G ·p,0) (2.6)

where G is substochastic and irreducible, X is a positive vector and Y is arbitrary.

1. If G is strictly substochastic, then there is a unique fixed point.
2. If G is stochastic, with y the unique eigenvector such that G · y = y and 1 · y = 1

where 1 = [1, . . . ,1], then one of two possible cases holds:

a. If 1 ·Y = 0, there is a one-parameter family of solutions that have the form
p⇤ = ly, l 2 [0,lmax].

b. If 1 ·Y 6= 0, there is a unique fixed point, of which at least one component is
either 0 or X.

Proof of Lemma: Note that for irreducible substochastic matrices, the largest
eigenvalue is simple and 1 if it is stochastic or less than one if it is strictly sub-
stochastic. Moreover, every submatrix obtained by deleting one or more nodes has
largest eigenvalue less than one. Thus in Part 1, uniqueness is guaranteed because
I�G has largest eigenvalue strictly less than one and hence an explicit inverse given
by the convergent matrix power series (I �G )�1 = Â•

k=0 G

k.
Under the conditions of Part 2, by dotting (2.6) with the vector 1 = [1, . . . ,1] and

noting that 1 ·G = 1, we see that the system p = Y+G ·p has a solution if and only
if 1 ·Y = 0. If 1 ·Y = 0 one can check that case 2(a) of the lemma holds. If 1 ·Y 6= 0,
at least one component of any fixed point of (2.6) must be X or 0. Substituting in
this component value, and reducing the system by one dimension now leads to a
new fixed point equation of the same form (2.6) but where the submatrix matrix G̃

has largest eigenvalue less than one. Such systems have a unique fixed point by part
1. ut

Proof of Theorem 2: We must now deal with the system (2.6) when G = P̄

0 is not
irreducible. In general, it is easy to see that N , itself an in-subgraph, contains within
it a maximal number of irreducible non-overlapping in-subgraphs M1,M2, ...MK ,
K � 0 plus the possibility of additional single non-lending nodes with X̄v = 0. As
discussed above, as a first step we can eliminate all non-lending nodes and consider
the reduced piece-wise linear fixed point problem on the subgraph ˜N . The case
when ˜N has no irreducible in-subgraphs, i.e. K = 0, has a unique clearing vec-
tor because then, by Part 1 of the Lemma, P̄

0 must be substochastic with largest
eigenvalue less than one.

If K > 0, we decompose into ˜N = M0 [
�
[K

k=1Mk
�
, and after reordering nodes

write the matrix P̄

0 in block form with respect to this decomposition:
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P̄

0 =

0

BBB@

A 0 · · · 0
B1 P1 0 0
... 0

. . . 0
BK 0 0 PK

1

CCCA

with the column sums less than or equal to one. We shall characterize the possible
fixed points written in block form p = [p⇤0,p

⇤
1, . . . ,p

⇤
K ]

0. We note that A is strictly
substochastic with largest eigenvalue less than 1. Therefore the fixed point equation
for p⇤0 is a closed equation that has a unique solution by part 1 of Lemma 1. Each of
the remaining pieces of p⇤, p⇤k ,k � 1, is a solution of a piecewise linear equation in
the following form:

p⇤k = min
�
X̄k,max

�
Bk ·p⇤0 + Ȳk � D̄k +Pk ·p⇤k ,0

��
.

Now we note that each Pk is an irreducible stochastic matrix, and by Part 2 of
Lemma 1, p⇤k is unique if 1k ·(Bk ·p⇤0+Ȳk�D̄k) 6= 0 and a point in a one-dimensional
interval if 1k · (Bk ·p⇤0 + Ȳk � D̄k) = 0. ut

2.1.2 Reduced Form E-N Cascade Mechanism

In models such as this, cascades of defaults arise when primary defaults trigger
further losses to the remaining banks. Theorem 1 proves the existence of an “equi-
librium” clearing vector, which is usually unique, that gives the end result of cas-
cades in the E-N framework. Sometimes different balance sheet specifications lead
to identical cascades, and we can characterize the cascade mechanism and resultant
clearing vectors in terms of a reduced set of balance sheet data. It turns out that the
most important information to track is something we call the default buffer, which
extends the notion of equity. We assume the initial default buffer D

(0)
v of bank v is

its nominal equity, but possibly negative:

D

(0)
v = D̄v := Ȳv +Â

w
W̄wv � D̄v � X̄v . (2.7)

As before, define p(n)v to be the amount available to pay X̄v at the end of cascade
step n, initialized to p(0)v = X̄v at n = 0. Introduce the normalized threshold function
h that maps the extended real line [�•,•] to the unit interval [0,1]:

h(x) = (x+1)+� x+ = max(0,min(x+1,1)) . (2.8)

Then an important but straightforward calculation shows that equations (2.1) and
(2.2) for n > 0 the nth step of E-N cascade are expressible in terms of the default
buffers D

(n�1):
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p(n)v = X̄v h(D (n�1)
v /X̄v) (2.9)

q(n)v = (D̄�
v + X̄v) h(D (n�1)

v /(D̄v + X̄v)) (2.10)

whereas the default buffers themselves satisfy a set of closed equations

D

(n) = F(EN)(D (n�1)); F(EN)
v (D) := D̄v �Â

w
W̄wv(1�h(Dw/X̄w)) . (2.11)

Thus the cascade mapping boils down to a vector-valued function D

(n�1) 7!
D

(n) = F(EN)(D (n�1)|D̄ ,W̄) that depends parametrically only on the initial default
buffers D̄ and the interbank exposures W̄ . The mark-to-market equity is the positive
part of the default buffer, E(n)

v = (D (n)
v )+, and default of bank v occurs at the first

step that D

(n)
v  0. As n ! •, the monotone decreasing sequence D

(n) converges to
the maximal fixed point of D = F(EN)(D) which is a well-defined function of the
reduced balance sheet data

D

+ = G+(D̄ ,W̄) ,

The corresponding maximal clearing vectors p+,q+ are given by

p+v = X̄v h(D+
v /X̄v) ,

q+v = (Ȳv + X̄v) h(D+
v /(Ȳv + X̄v)) .

If instead of starting the cascade at the optimistic initial values D

(0)
v = D̄v, we

had begun with the most pessimistic values D

(0)
v  D̄v � Z̄v, we would obtain

a monotone increasing sequence D

(n) that converges to the minimal fixed point
D

� := G�(D̄ ,W̄).
The scaled variable D/X̄, or alternatively D/(D̄+ X̄), has the interpretation of

a bank’s distance-to-default, and the threshold function h determines both the frac-
tional recovery on interbank debt and on total debt when D is negative. Other possi-
ble threshold functions h are an important characteristic of different cascade models.

Some simple systemic risk measures of the total damage caused by the crisis are
computable in terms of the cascade equilibrium (D+,p+,q+):

1. Default probability: DP = 1
N Âv 1(D+

v  0);
2. Default cascade impact on the financial sector: DCI(1) = Âv(X̄v � p+v );
3. Default cascade impact on the entire economy: DCI(2) = Âv(D̄v + X̄v �q+v ).

2.1.3 The Gai-Kapadia 2010 Default Model

The threshold function h(x) for the E-N 2001 model encodes a soft type of default
in which the interbank debt of a defaulted bank with D/X̄ = x ⇠ 0 recovers almost
all its value. In their 2010 paper [42], Gai and Kapadia offer a model with hard de-
faults: interbank debt on defaulted banks recovers zero value. They justify their zero
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recovery assumption with the statement3: “This assumption is likely to be realistic
in the midst of a crisis: in the immediate aftermath of a default, the recovery rate
and the timing of recovery will be highly uncertain and banks’ funders are likely to
assume the worst-case scenario.”

The G-K cascade mechanism boils down to the following assumptions:
Assumptions 2.
1. At step 0 of the cascade, one or more banks experience asset shocks that make

their default buffers D

(0)
v = D̄v  0 go negative.

2. A defaulted bank v’s interbank liabilities recover zero value and thus a default
shock of magnitude W̄vw is sent to each of v’s creditor banks w.

3. At each step n � 0 of the crisis, bank v marks to zero any interbank asset W̄wv
from a newly defaulted counterparty bank w.

This cascade mechanism turns out to be precisely of the E-N type, but with a
zero-recovery threshold function

h̃(x) = 1(x > 0) , (2.12)

and exactly as in Section 2.1.2 it defines the sequence of vectors p(n) and buffers
D

(n) satisfying equations (2.9) and (2.11), with h replaced by h̃. That is,

p(n)v = X̄vh̃(D (n�1)
v ) , (2.13)

D

(n)
v = D̄v �Â

w
W̄wv(1� h̃(D (n�1)

w )) . (2.14)

The clearing vector condition is now

p = X̄h̃(D)

where D is any fixed point of

D = F(GK)(D); F(GK)
v (D) := D̄v �Â

w
W̄wv(1� h̃(Dw)) . (2.15)

The existence of fixed points D = F(GK)(D) follows as in the E-N model by
repeating the proof of Theorem 1. On the other hand, uniqueness of fixed points
has not been carefully studied for this model, and appears to be considerably more
complicated. Like the E-N model, there are examples in which non-uniqueness
arises associated to irreducible in-graphs, but now the multiplicity of clearing vec-
tors is discrete. For example, the N = 4 bank network with W̄ as in Figure 2.1,
and with Ȳ = [0,0,0,4], D̄ = [1,1,1,0] has exactly two clearing vectors of the form
p= l [1,1,1,0]0 with l = 0 or l = 1. As in the E-N model in case of non-uniqueness,
our cascades typically start from p(0) = X̄ and therefore reach the maximal clearing
vector p+ with default buffers D

+.

3 [42], footnote 9.
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As before, the simplest systemic risk measure is default probability, given in
terms of the fixed point D

+ by

DP =
1
N Â

v
1(D+

v  0) .

The zero-recovery assumption implies there is a large cost to the financial system
for banks that default given by default cascade impact:

DCI = Â
v

X̄v 1(D+
v  0) . (2.16)

Recall that bankruptcy charges are ruled out in the E-N 2001 model and are
maximal in the G-K model. We can interpolate between these two extreme cases
with a single parameter t 2 [0,1] that represents the fraction of interbank debts that
are paid as bankruptcy charges at the time any bank defaults. The cascade mapping
is again given by equations (2.9) and (2.11), now with h replaced by the interpolated
threshold function

h(t)(x) = (1� t)h
⇣ x

1� t

⌘
+ t h̃(x) . (2.17)

The simple static default cascades just investigated can be summarized as fol-
lows:

1. They are characterized by shocks that are transmitted downstream from default-
ing banks to the asset side of their creditor banks’ balance sheets;

2. At each cascade step, banks update their default buffers by determining the cur-
rent amount lost given default of its counterparties;

3. Different default recovery assumptions arise through the choice of a threshold
function h, h̃ or h(t).

2.2 Liquidity Cascades

A funding liquidity cascade is a systemic phenomenon that occurs when stressed
banks hoard liquidity, that is they curtail lending to each other on a large scale.
In such a cascade, shocks are transmitted upstream, from creditor banks to their
debtors as they act to reduce their interbank lending. A fundamental treatment of
the connection between funding liquidity and market liquidity by Brunnermeier and
Pedersen [20] proposes a picture of how the funding constraints on a bank impact
the liquidity of its market portfolio, that its external assets. One finds the idea that
when a bank’s capital is reduced to below a threshold where a funding liquidity con-
straint becomes binding, that bank will reduce its assets by a discontinuous amount,
and experience a discontinuous increase in its margin and collateral requirements.
If, as is natural, we assume that at this threshold the bank will also reduce its in-
terbank lending by a discontinuous amount, then this picture provides the seed of a
cascade mechanism that is transmitted through the interbank network, from credi-
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tors to debtors. It turns out that our schematic default cascade models, when shocks
are reversed and reinterpreted, become basic models of funding liquidity cascades.

The first paper to introduce a network model of funding liquidity cascades is a
companion paper [41] to the default model by Gai-Kapadia in [42]. We now describe
the G-K liquidity cascade model and two variations, all based on banks that have
stylized balance sheets given as in Table 2.1.

2.2.1 Gai-Kapadia 2010 Liquidity Cascade Model

This systemic risk model aims to account for the observation that starting in August
2007 and continuing until after September 2008, interbank lending froze around
the world as banks hoarded cash and curtailed lending to other banks. As Gai and
Kapadia explain, during the build up of credit risk prior to 2007, some banks that
held insufficiently liquid assets began to face funding liquidity difficulties. Such
banks moved to more liquid positions by hoarding liquidity, in some cases reducing
their interbank lending almost entirely.

What would a counterparty bank do when impacted by such a hoarding bank? Of
course they might seek funding elsewhere, but in a climate of uncertainty they might
themselves elect to become liquidity hoarders, thereby propagating further liquidity
shocks.

The following liquidity cascade model assumes that prior to the crisis, banks hold
assets and liabilities as shown in Figure 2.2. On the asset side we have: ȲF

v (external
fixed assets, namely the bank book of loans to the economy at large), Z̄v (interbank
assets assumed to be short term unsecured loans to other banks) and liquid assets
ȲL

v . When non-zero, the liquid assets ȲL
v are used as a stress buffer S̄v from which

to pay liabilities as they arise. In analogy to the default buffers Dv, Sv can become
negative: such a bank is called a stressed bank. On the liability side we have as
before external debt D̄v, interbank debt X̄v and the default buffer D̄v.

In the new field of financial systemic risk, the network of interbank counterparty relationships can be described as a
directed random graph. In ”cascade models” of systemic risk, this ”skeleton” acts as the medium through which

financial contagion is propagated. It has been observed in real networks that such counterparty relationships exhibit
negative assortativity, meaning that a bank’s counterparties are more likely to have unlike characteristics. This paper
introduces and studies a general class of random graphs called the assortative configuration model, parameterized by
an arbitrary node-type distribution P and edge-type distribution Q. The first main result is a law of large numbers that
says the empirical edge-type distributions converge in probability to Q. The second main result is a formula for the

large N asymptotic probability distribution of general graphical objects called ”configurations”. This formula exhibits a
key property called ”locally tree-like” that in simpler models is known to imply strong results of percolation theory on

the size of large connected clusters. Thus this paper provides the essential foundations needed to prove rigorous
percolation bounds and cascade mappings in assortative networks.

Fig. 2.2 The stylized balance sheet of a bank v with three debtor banks w1,w2,w3 and two creditor
banks w0

1,w
0
2.
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Assumptions 3. 1. At step 0 of the cascade, one or more banks experience fund-
ing liquidity shocks or stress shocks that make their stress buffers S

(0)
v = S̄v go

negative.
2. Banks respond at the moment they become stressed by preemptively hoarding a

fixed fraction l  1 of interbank lending. This sends a stress shock of magnitude
lW̄wv to each of the debtor banks w of v. Stressed banks remain stressed for the
duration of the crisis.

3. At each step n � 0 of the crisis, bank v pays any interbank liabilities lW̄vw that
have been recalled by newly stressed banks w.
The assumption of a fixed hoarding fraction l across the network is clearly a

gross oversimplification that can be refined later. The essential point is that under
stress, banks act preemptively to shrink their balance sheets by a fraction close to
one. In order to disentangle default and stress, the third assumption implies that
unstressed banks are always able to meet recalled interbank liabilities without neg-
atively impacting their default buffers. In other words, this is a model of funding
liquidity with zero market illiquidity effects.

These simple behavioural rules lead to a cascade mechanism (CM) that can be
expressed succinctly as the recursive updating of the stress buffers of all banks start-
ing from an initial state with S

(0)
v = S̄v. Given the collection of stress buffers S

(n�1)
v

at step n�1 of the cascade, the updated stress buffers are given by

S

(n)
v = S̄v �l Â

w
W̄vw (1� h̃(S (n�1)

w )) . (2.18)

In this proposed cascade mechanism, the parameter l represents the average strength
of banks’ collective stress response. Under our assumptions, the iterated cascade
mapping converges to an equilibrium set of buffers given by the maximal fixed point
S

+. Two simple systemic risk measures quantify the effect of the crisis:

1. Stress probability: SP = 1
N Âv 1(S+

v  0);
2. Liquidity cascade impact on the financial system, that is, the total amount of

interbank assets frozen during the crisis: LCI = l Âv Zv1(S+
v  0).

It should not be a surprise that (2.18) is identical in form to (2.14), but with
shocks going upstream from creditors to debtors instead of downstream from debtor
banks to creditors. The pair of models [42] and [41] by Gai and Kapadia is a first
instance of a formal symmetry of financial networks under interchange of assets and
liabilities.

2.2.2 The Liquidity Model of S. H. Lee 2013

As a second illustration of how liquidity cascades are the mirror image of default
cascades, we now show how a simple liquidity cascade model proposed by S. H. Lee
[61] is formally identical to a version of the E-N cascade. This model is again based
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on banks with balance sheets as shown in Figure 2.2. The essential assumption of
the model is:
Assumptions 4. Banks pay all withdrawals from external and interbank depositors
first by selling liquid external and interbank assets in constant proportion, and then
when these assets are depleted, from the illiquid external assets.

To put this model into an E-N form while preserving the labelling of Lee’s paper,
we introduce a fictitious “source” bank labelled by 0 that borrows from but does not
lend to other banks and arbitrarily define Z̄0 = D̄0 = 0. We now label the interbank
exposures as in [61]:

W̄vw =

8
<

:

bvw v,w 6= 0
qw v = 0,w 6= 0
0 w = 0 .

As before, let Z̄v = Âw W̄wv, X̄v = Âw W̄vw and identify ȲF
v = zv, ȲL

v = qv =
W̄0v, D̄v = dv.

At time 0, each bank experiences deposit withdrawals (a liquidity shock) Ddv �
0. These withdrawals are paid immediately by each bank v in order of seniority:
first from the liquid interbank assets Z̄v (which now includes lending to the fictitious
bank W̄0v) until these are depleted, and then by selling fixed external assets ȲF

v . Let
us now define the initial stress buffer to be S

(0)
v = S̄v = �Ddv, and then at the nth

step of the liquidity cascade each buffer S

(n)
v , which is the negative of bank v’s total

liquidity needs `(n)v , will have accumulated shocks as follows

S

(n)
v = S̄v �Â

w
W̄vw

⇣
1�h(S (n�1)

w /Z̄w)
⌘
.

This equation, being formally identical to (2.11), reveals that the Lee model is a
special case of the E-N model provided Z̄ and X̄ are interchanged, and the exposures
are reversed. However, in the Lee model, we begin with buffers S

(0)
v  0 for all v

except v = 0. For completeness, at step n we can define p(n)v = Z̄vh(S (n�1)
v /Z̄v), the

amount of liquid and interbank assets remaining unsold, and
q(n)v = (ȲF

v + Z̄v)h(S
(n�1)
v /(ȲF

v + Z̄v)), the total assets remaining unsold. We can
call a bank illiquid when Sv �Z̄v. Two natural measures of systemic liquidity risk
are determined by the maximal cascade fixed point S

+:

1. Illiquidity probability: LP = 1
N Âv 1(S+

v �Z̄v);
2. Liquidity cascade impact on the entire economy, that is, the total amount of fixed

external assets sold during the crisis: LCI = Âv(�S

+
v � Z̄v)+.

2.2.3 Generalized Liquidity Cascades

The liquidity cascade model of S.H. Lee supposes that deposit withdrawals are
funded in equal proportion by interbank assets and liquid external assets. A reason-
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able alternative picture is that each bank keeps a first line reserve of liquid external
assets (or simply “cash”) ȲL to absorb liquidity shocks. We now think of this as
the stress buffer, labelled by S , to be kept positive during normal banking business.
When the stress buffer goes zero or negative, the bank becomes stressed and must
meet further withdrawals by liquidating first interbank assets Z̄, and finally illiquid
fixed assets ȲF .

As for the Lee model, we may also add a fictitious sink bank v = 0 to represent
external agents that borrow amounts W̄0v where in terms of liquidation priority, these
external loans will be considered a component of a bank’s interbank assets: Z̄v =
ÂN

w=0 W̄wv.
Let us suppose that just prior to an initial withdrawal shock that hits any or all of

the banks, the banks’ balance sheets are given as in Figure 2.2 by notional amounts
(ȲF , Z̄, ȲL, D̄, X̄, Ē,W̄). At the onset of the liquidity crisis, all banks are hit by with-
drawal shocks DDv that reduce the initial stress buffers S

(0)
v = ȲL

v �DDv of at least
some banks to below zero, making them stressed. Stressed banks then liquidate
assets first from Z̄, inflicting additional liquidity shocks to their debtor banks’ lia-
bilities, and then from ȲF . A stressed bank that has depleted all of Z̄ will be called
illiquid, and must sell external fixed assets ȲF to meet further liquidity shocks.

Let p(n)v be the amount of bank v’s interbank assets remaining unsold after n
steps of the liquidity cascade, starting with p(0)v = Z̄v. Illiquid banks have p(n)v = 0,
stressed banks are those with 0 < p(n)v < Z̄v while normal, unstressed banks have
p(n)v = Z̄v. If S

(n)
v is the stress buffer after n steps and each stressed bank liquidates

exactly enough additional interbank assets at each step to meet the additional liq-
uidity shocks, the update rule is

p(n)v = max(0,min(Z̄v,(Dv �DDv)� ȲF +Â
w

W̄vw(p(n�1)
w /Z̄w)) . (2.19)

We note that
S

(n)
v = S

(0)
v �Â

w
W̄vw(1� p(n�1)

w /Z̄w) , (2.20)

and that (2.19) can be written

p(n)v = Z̄vh(S (n�1)
v /Z̄v)

with the threshold function h of (2.8) used before.
Comparison of these equations with (2.9) and (2.11) reveals that our model is pre-

cisely equivalent to the full E-N 2001 model, with the role of assets and liabilities,
and stress and default buffers, interchanged: ȲF $ D̄, Z̄ $ X̄, ȲF $ Ē, D $ S . We
recover the Lee model simply by taking ȲL

v = 0, which also has the effect of making
all the banks initially stressed since the initial stress buffers are S

(0)
v = �DDv  0.

We also recover the G-K 2010 liquidity model by replacing h by h̃.
To keep various cascade mechanism separated, the funding liquidity cascade

models we have just described neglect market illiquidity, which of course is the
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very important systemic effect that large scale selling of assets will drive asset prices
down. The next type of cascade turns the focus on this effect.

2.3 Asset Fire Sales

Certainly one of the basic triggers of financial crises is when a major asset class held
by many banks is beset by bad news, resulting in a major devaluation shock that hits
these banks. We identify this as an asset correlation shock described in Section 1.4
in which the external assets Yv held by many banks exhibit a sharp one-time decline.
If this shock is sufficient to cause the default of some banks, we face the possibility
of a pure default cascade of the same nature as we have described already.

Of a different nature are asset fire sales, in which banks under stress (of which
there will be many during a crisis) react by selling external assets on a large scale,
driving their prices down. As described in detail in the 2005 paper by Cifuentes,
Ferrucci and Shin [25], an asset fire sale creates a negative feedback loop in the
financial network: large scale selling of an asset class by banks leads to strong
downward pressure on the asset price, which leads to market-to-market losses by
all banks holding that asset, to which they respond by selling this and other assets.

Of course, small and medium scale versions of such selling spirals are an ev-
eryday occurrence in financial markets, sometimes leading to an asset correlation
shock. In the present context, we will focus on large scale selling spirals that form
during and as a result of the crisis and are essential amplifiers of financial distress.
Our aim in this section is to provide a stylized modelling framework that highlights
the network cascade aspects of the fire sale mechanism.

2.3.1 Fire Sales of One Asset

The basic network picture of asset fire sales is most clearly explained by the
CFS model of Cifuentes, Ferrucci and Shin [25]. The baseline CFS model con-
sists of a network of N banks with balance sheets with the same components
(ȲF , Z̄, ȲL, D̄, X̄,W̄) as shown in Figure 2.2 for funding liquidity cascade models.
Since liquidity and solvency are both considered in this model, it can be regarded
as a generalization of the Eisenberg-Noe model. In the one asset model, all banks
hold their fixed assets ȲF

v in the same security, which we might view as the market
portfolio. We set the initial price of the asset to be p̄ = p(0) = 1 so that each bank v
holds s(0)v = ȲF

v units.
The essential new feature is to include a capital adequacy ratio (CAR) as a regu-

latory constraint: For some fixed regulatory value r⇤ (say 7%), the bank must main-
tain the lower bound4

4 We deviate from [25] at this point by omitting liquid assets ȲL from the denominator of the CAR.
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Dv

YF
v +Zv

� r⇤ . (2.21)

As soon as this condition is violated, any bank is compelled to restore the condition
by selling fixed illiquid assets (but, in contrast to the Gai-Kapadia and Lee liquidity
cascade models, not interbank assets5), which then triggers a downward impact on
asset prices.

The detailed assumptions of [25] are as follows:
Assumptions 5.
1. A bank with r⇤Zv  Dv < r⇤(YF

v +Zv) is called non-compliant but solvent, and
must sell fixed assets, but not interbank assets, to restore the CAR condition. 6

2. A bank with r⇤Zv > Dv is insolvent, and must be fully liquidated. The picture to
have is that such a bank can never achieve the CAR condition, and hence must
be terminated, even if its default buffer may still be positive.

3. In the event of insolvency, the defaulted interbank assets are distributed at face
value proportionally among the bank’s creditors, and the bank ceases to func-
tion. External deposits have equal seniority to interbank debt and thus defaulted
liabilities are valued in proportion to P̄vw = W̄vw/(X̄v + D̄v).

4. The asset price when sold is determined by an inelastic supply curve and a
downward sloping inverse demand function d(�1)(·). That is, the asset price
is p = d(�1)(s) when s = Âv sv is the aggregated amount sold. For the in-
verse demand function, [25] works with the family of exponential functions
d(�1)(s) = e�as for a specific value of a .

The crisis unfolds starting at step n= 0 from an initial balance sheet configuration
(ȲF , Z̄, ȲL, X̄,W̄) with default buffers

D

(0) = D̄ = ȲF + Z̄+ ȲL � X̄ (2.22)

in which at least one bank is found to be in violation of its CAR bound. In view of
the equal seniority assumption on the debt, we adopt here the usual trick of replacing
external debt by interbank debt owed to a non-borrowing fictitious bank v = 0 that
has lent D̄w := W̄w0 to each bank w. Recall we set p(0) = 1 so the number of fixed
assets is s(0) = ȲF . Then, the following recursive steps for the balance sheets of each
bank (YF(n),Z(n),YL(n),D (n)) and the asset price p(n) for n = 1,2, . . . are consistent
with the underlying model assumptions:

1. Each bank v adjusts its fixed asset holdings by selling7

d sv = min(s(n�1)
v ,max(0,s(n�1)

v +Z(n�1)
v /p(n�1)�D

(n�1)
v /(r⇤p(n�1))) (2.23)

5 It is interesting that these modelling frameworks make essentially contradictory assumptions at
this point. The assumption of [25] removes the need to consider how interbank assets are liquidated.
6 As [25] explains, “interbank loans normally cannot be expected to be recalled early in the event
of default of the lender.”
7 This is a slight modification of [25] who assume these units are sold at an n dependent equilibrium
price somewhat lower than p(n�1).
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units at the price p(n�1). Note that d sv = 0 corresponds to a compliant bank,
while d sv = s(n�1)

v corresponds to an insolvent bank. When d sv > 0, the sale of
the fixed asset increases the bank’s liquid assets to YL(n)

v = YL(n�1)
v + d sv p(n�1)

and the number of shares held becomes s(n)v = s(n�1)
v �d sv.

2. In case s(n)v = 0, the insolvent bank v must be liquidated in the manner de-
scribed above and the mark-to-market value of its debt adjusted: X(n)

v = X̄v +

min(0,D (n�1)
v ).

3. After all banks have completed their asset sales, the market price moves down-
wards according to the aggregate amount sold. Thus p(n) = d(�1)(Âv(s

(0)
v �s(n)v ))

and the interbank assets are updated to account for new default losses, Z(n)
v =

Âw P̄wvX(n)
w .

4. The updated default buffer of bank v becomes

D

(n)
v = s(n)v p(n) +YL(n)

v +Â
w

P̄wvX(n)
w � X̄v . (2.24)

Just as the E-N framework could be simplified into a reduced form cascade map-
ping by focussing on the default buffers D

(n)
v , it turns out the above recursion simpli-

fies in a very similar way if we focus on the pairs D

(n)
v ,s(n)v . The key fact to recognize

is that once the bank becomes noncompliant, it can never become compliant, nor can
a defaulted bank recover. Having seen this, one can easily verify that the result of
the n-th step of the CFS cascade is given by

X(n)
v = X̄v h(D (n�1)

v /X̄v) (2.25)

D

(n)
v = D̄v �

n

Â
m=1

(p(m�1)� p(m)) s(m)
v �Â

w
W̄wv(1�h(D (n�1)

w /X̄w)) (2.26)

s(n)v = max(0,min(s(n�1)
v ,

1
p(n�1)

⇥
D

(n�1)
v

r⇤
�Â

w
W̄wvh(D (n�1)

w /X̄w)
⇤
) (2.27)

p(n) = d(�1)�Â
v
(s(0)v � s(n)v

�
. (2.28)

The third of these equations corresponds to the trichotomy of possibilities of the
bank being compliant, noncompliant but solvent, and insolvent.

By comparison to the E-N cascade dynamics given by (2.9) and (2.11), we note
that the key effect of the fire sale on the cascade is to provide additional shocks that
further reduce the default buffers, thereby amplifying the contagion. Structurally,
the fire sale cascade mechanism can be expressed as a monotonically decreasing
mapping (D (n), p(n)) = FCFS(D (n�1), p(n�1)) from RN+1 to itself, which leads as
usual to a cascade equilibrium. In case the price impact is omitted by assuming
d(�1)(·) = 1, one reproduces the E-N model.

An interesting special case of the model emerges if we set the compliancy pa-
rameter r⇤ = 0 and take equation (2.27) to mean
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s(n)v = s(0)v 1(D (n�1)
v > 0) . (2.29)

We then interpret the breach of this regulatory condition as the insolvency of the
bank in two senses: first, the bank has insufficient assets to repay its liabilities; sec-
ond, the bank has insufficient equity to support its assets and thus needs to liquidate
all fixed assets. Thus the bank must sell all fixed assets at this moment. However, as
in the E-N model, the bank continues to lose money after it defaults, further eroding
the value of X(n)

v . Thus, when r⇤ = 0 this model looks very similar to the E-N 2001
model, albeit with a G-K-like condition to determine the amount of fixed assets sold.

The simplification r⇤ = 0 also provides a simpler setting to address a different
question: how do fire sales create contagion when banks hold different portfolios of
a multiplicity of assets. As it turns out, this variation has been studied already, in a
paper [21] we shall now describe.

2.3.2 Fire Sales of Many Assets

A model due to Caccioli et al [21] addresses the question: How do fire sales create
contagion when banks hold different but overlapping portfolios of a multiplicity
of assets? Their paper is a variation of the CFS approach in which N banks have
balance sheets (ȲF , ȲL, D̄) with the interbank sector set to zero Z̄v = X̄v = 0 for
simplicity, and the fixed assets are portfolios of M non-bank assets labelled by a 2
{1,2, . . . ,M} := [M]. One can describe their model in terms of a bipartite graph
with nodes of two colours, “blue” nodes that represent banks and “red” nodes that
represent non-bank assets, and links connecting banks to assets when the bank has
a significant holding of that asset. Figure 2.3 shows a typical network with 5 banks
and 4 assets.

A1 A2 A3 A4

B1 B2 B3 B4 B5

Fig. 2.3 A bipartite graph with 5 banks (blue nodes) co-owning 4 assets (red nodes).
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Again, banks are constrained by the regulatory CAR condition which says

Dv

YF
v
� r⇤ . (2.30)

The paper [21] deals only with the case r⇤ = 0, but here we consider the general case
with r⇤ � 0. The assumptions for the many asset fire sale are slight modifications
of Assumptions 5, but with some additional points: The solvency condition is now
Dv > 0, and ownership of insolvent banks goes to external debtholders; there is an
inverse demand function d(�1)

a for each asset; a portfolio policy must be specified
for each bank that determines its portfolio weights during rebalancing.

The cascade picture that arises from these assumptions is that non-compliant
banks that fail the CAR condition (2.30) are forced to liquidate some fixed assets,
and while insolvent banks sell all their remaining fixed assets to pay their external
creditors. At any cascade step, forced asset sales by a bank creates shocks that drive
down the prices of the assets it holds, causing a shock to be transmitted along each
link from the bank to its assets. Each asset price drop creates mark-to-market shocks
acting in the reverse direction, from the asset to the banks that hold it. As usual, the
iterated cascade steps converge monotonically to a cascade equilibrium.

Without loss of generality, we assume the initial share prices are p̄a = 1. The
initial external fixed asset value of bank v is then ȲF

v = Âa s̄av where s(0)av = s̄av
denotes the initial number of shares of asset a owned by v. If after n cascade steps
each bank v holds s(n)av shares of asset a, each asset share price will have been driven
down to the value

p(n)a = d(�1)
a (Â

v
(s(0)av � s(n)av )) (2.31)

determined by the total amount of selling and its inverse demand function. Various
portfolio selection rules can be proposed to determine in which proportion banks
choose to sell assets during the cascade. For illustrative purposes, we assume that
non-compliant banks follow a fixed-mix trading strategy that keeps the number of
shares in different assets in proportion to the initial ratios

f̄av :=
s̄av

Âb s̄bv
. (2.32)

Based on these assumptions, recursively for n = 1,2, . . . the balance sheets of
each bank (YF(n)

v ,YL(n)
v ,D (n)

v ), the portfolio allocations s(n)av and asset prices p(n)a are
updated according to the following steps, starting from the initial values YF(0) =
ȲF ,YL(0) = ȲL,D (0) = ȲF + ȲL � D̄:

1. Each bank v adjusts its fixed asset holdings by selling

d sav = s(n�1)
av min

�
1,max(0,1�D

(n�1)
v /(r⇤YF(n�1)

v )
�

(2.33)

units at the price p(n�1). Note that d sav = 0 for a compliant bank, while d sv =

s(n�1)
av corresponds to an insolvent bank. When d sv > 0, the sale of the fixed
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assets increases the bank’s liquid assets to YL(n)
v = YL(n�1)

v +Âa d sav p(n�1)
a and

the number of shares held becomes s(n)av = s(n�1)
av �d sav.

2. After all banks have completed their asset sales, the market prices move down-
wards according to the aggregate amount sold: p(n)a = d(�1)

a (Âv(s
(0)
av � s(n)av )).

3. The updated default buffer and fixed assets of bank v decrease:

D

(n)
v = D

(n�1)
v �Â

a
s(n)av (p(n�1)

a � p(n)a ) , (2.34)

YF(n) = Â
a

s(n)av p(n)a . (2.35)

We observe the formal similarity between this model and the original E-N 2001
model, in the sense that the cascade mechanism can be expressed as a cascade map-
ping

(D (n), p(n)) = FCSMF(D (n�1), p(n�1)) (2.36)

from RN+M to itself. This means asset prices p(n)a behave as if they were “asset
buffers” attached to the red nodes, in analogy to the buffers D

(n)
v attached to blue

nodes. In addition, the dynamics depends explicitly on the initial balance sheets only
through D̄ and the fixed-mix ratios f̄av that are analogous to the edge weights W̄wv.
The inverse demand functions d�1

a play a role similar to the h, h̃ threshold functions
in our default cascade models. Finally, the cascade mapping from step n�1 to n is
monotonic and bounded below, and thus its iterates converge to a fixed point.

2.4 Random Financial Networks

This chapter has explored stylistic features of various types of shocks that can be
transmitted through the interbank exposures (or, in one case, through bank-to-asset
exposures), and how they might potentially cascade into large scale disruptions of
the sort seen during the 2007-08 financial crisis. We have seen how to build these
shock channels into a variety of different financial network models, all of which
boil down to a monotone cascade mapping whose iterates converge to a cascade
equilibrium.

The real world financial systems in most countries are of course far from behav-
ing like these models. Bank balance sheets are hugely complex. Interbank exposure
data are never publicly available, and in many countries nonexistent even for central
regulators. Sometimes, the only way to infer exposures is indirectly, for example,
through bank payment system data as done in [40]. Interbank exposures are of a di-
versity of types and known to change rapidly day to day. In a large jurisdiction like
the US, the banking sector is highly heterogeneous, and the systemic impact due
to the idiosyncrasies of individual banks will likely overwhelm anything one might
predict from their average properties.
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Nonetheless, a large and rapidly growing web of economics and complex systems
research continues to address the real world implications of theoretical network cas-
cades. The conceptual tools that we will explore in the remainder of this book come
partly from the experience gained by modelling large complex networks that arise
in other areas, such as the world wide web, Facebook and power grids.

The central theme of this book is that something fundamental about financial sys-
tems can be learned by studying very large stochastic networks. There are at least
three important reasons why stochastic network models are a good way to approach
studying real world financial systems. The first and most fundamental reason comes
from over a century of statistical mechanics theory, which has discovered that the
macroscopic properties of matter, for example crystals, are determined by the en-
semble averages of the deterministic dynamics of constituent microscopic particles.
Even a completely known deterministic system, if it is large enough, can be well
described by the average properties of the system. From this fact we can expect that
for large N, an E-N model with fully specified parameters will behave as if it were
a stochastic model with averaged characteristics.

The second important reason is that in a concrete sense, the true networks are to
be thought of as stochastic at any moment in time. The balance sheets of banks, be-
tween reporting dates, are not observed even in principle. Moreover, they change so
quickly that last week’s values, if they were known, will have only limited correla-
tion with this week’s values. This fact is especially true for the interbank exposures
that provide the main channels for transmitting network cascades: even in jurisdic-
tions where they are reported to central regulators, they comprise a diversity of dif-
ferent securities, including derivatives and swaps whose mark-to-market valuations
fluctuate dramatically on intraday time-scales.

A third important reason is that a hypothetical financial system, with all balance
sheets completely known, will be hit constantly by random shocks from the outside,
stochastic world. A deterministic system, subjected to a generic random shock, be-
comes after only one cascade step a fully stochastic system.

For all these reasons, and more, the next chapters will consider the stochastic
nature of financial networks, and the extent to which the large scale properties of
cascades might be predictable from models of their stochastic properties. From now
on in this book, our various contagion channels will usually take their dynamics
within the framework of “random financial networks”, defined provisionally as fol-
lows:

Definition 5. A random financial network or RFN is a random object representing a
possible state of the financial network at an instant in time. It consists of three layers
of mathematical structure. At the base structural level, the skeleton is a random
directed graph (N ,E ) whose nodes N represent “banks” and whose directed edges
or links E represent the presence of a non-negligible “interbank exposure” between
a debtor bank and its creditor bank. Conditioned on a realization of the skeleton,
the second structural layer is a collection of random balance sheets, one for each
bank. In our simple models this is usually a coarse-grained description, listing for
example the amounts (Ȳv, Z̄v, D̄v, X̄v) for each v 2 N as in Section 2.1.1. Finally,
conditioned on a realization of the skeleton and balance sheets, the third level is a
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collection of positive random variables W̄` for each link `= (w,v)2 E that represent
the exposure of w to v, that is, what v owes w. The interbank assets and liabilities
are constrained to equal the aggregated exposures:

Z̄v = Â
w

W̄wv, X̄v = Â
w

W̄vw . (2.37)

Typically in cascade scenarios, we consider the RFN at the instant that a crisis
triggering event unexpectedly occurs. We will combine the choice of RFN with
the choice of a cascade mechanism such as the ones described in this chapter to
describe what happens next. Depending on the cascade mechanism, only reduced
balance sheet information in the form of buffer random variables D̄v and exposures
W̄` is needed to follow the progress of the cascade. In that case, and we can work
with a minimal parametrization of the RFN by the quadruple (N ,E , D̄ ,W̄).

This schematic definition will prove to be acceptable for the description of simple
contagion models. But more than that, it scales conceptually to much more complex
settings. Nodes may have additional attributes or “types” beyond their connectivity
to represent a more diverse class of economic entities. Links might have extended
meaning where the random variables W̄` take vector values which represent different
categories of exposures. We also recognize that even a very simple RFN is a compli-
cated random variable of enormous dimension. Before proceeding to any analysis of
network dynamics, the distributions of these collections of random variables must
be fully specified. We will proceed stepwise, first focussing in the next chapter on
characterizing possible models for the skeleton. In subsequent chapters we will con-
sider how to specify the random structure of balance sheets and interbank exposures.
Our optimistic view that something meaningful can be learned about systemic risk
in the real world through the study of schematic or stylized RFNs is derived from
our collective experience in other fields of complex disordered stochastic systems,
rooted in the theory of statistical mechanics.

2.5 Bibliographic Notes

A seminal paper in 2000 by Allen and Gale [6] relates the structure of a stylized net-
work of four banks to its resilience to default contagion, concluding that the com-
plete network is the most resilient. The Eisenberg-Noe model [33] was originally
intended to describe clearing mechanisms in payment systems or listed exchanges,
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specific to this case. In two papers, [36] and [37], Elsinger et al applied this frame-
work to the Austrian and UK networks and concluded that in the early 2000s these
systems were rather resilient. Elsinger [35], Gourieroux et al [45] and Elliot et al
[34] have studied model properties including uniqueness of clearing vectors in a
more general setting that includes interbank equity crossholdings and multiple debt
seniority layers. Rogers and Veraart [74] have explored the E-N model to understand
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when banks should cooperate to rescue a failing bank. Other authors have worked
with models similar to the E-N framework aiming to understand the dependence
between network connectivity and systemic resilience. In a simulation based study,
Nier et al [72] showed that the resiliency of finite size networks can depend non-
monotonically on key parameters. Glasserman and Young [43] and Acemoglu et al
[1] also show that while for small initial shocks, connectivity improves stability,
this relation can be reversed for large shocks. Upper, [80] gives an in-depth survey
of 15 different papers that use simulation techniques to determine the possibility of
contagion in interbank markets prior to 2007, concluding that none of them foresaw
any indication of the upcoming crisis. Under the zero recovery assumption as in the
G-K model, Amini et al [7] were able to prove asymptotic results on the cascade
equilibrium in large random networks.

A fundamental treatment of the connection between funding liquidity and market
liquidity by Brunnermeier and Pedersen [20] proposes a picture of how the funding
constraints on a bank impact and are impacted by the liquidity of its market portfo-
lio, that is its external assets. Funding liquidity cascades are a contagious, interbank
version of the classic problem of bank runs that was studied by Diamond and Dyb-
vig [31]. Despite a widespread opinion that funding liquidity cascades may be more
important in real world crises, they have been less studied than the classic default
cascade. Krishnamurthy [60] has investigated the systemic feedback due to both
funding liquidity hoarding triggered by uncertainty, and asset fire sales. A paper by
Minca and Amini [64] describes a number of network models for different chan-
nels for contagion, including funding liquidity cascades similar to those described
in Section 2.2.

The justification for studying financial contagion on large random financial net-
works has been discussed by Gai and Kapadia [42], Amini, Cont and Minca [7],[64]
and others.

Some recent papers have attempted to construct cascade mechanisms that effec-
tively combine two or more contagion channels. The double cascade model for fund-
ing illiquidity and insolvency proposed by Hurd et al [53] unifies the assumptions
of the Gai-Kapadia default model and the Gai-Kapadia liquidity model. Bookstaber
[17] has developed an agent-based cascade modelling framework that incorporates
versions of most of the contagion channels discussed in this chapter.





Chapter 3
Random Graph Models

Ye cannot live for yourselves; a thousand fibres connect you with your fellow-men, and
along those fibres, as along sympathetic threads, run your actions as causes, and return to
you as effects. 1

Abstract The network of interbank counterparty relationships, or skeleton, is the
random graph that acts as the medium through which financial contagion is prop-
agated. The basic properties are developed for several promising families of ran-
dom graph constructions including configuration graphs and inhomogeneous ran-
dom graphs. A new extension, called the assortative configuration model, is pro-
posed. The main results of this chapter are theorems describing the large graph
asymptotics of this new assortative configuration model, including a proof of the
locally tree-like property. Finally, measures of network structure are surveyed.

Keywords: Skeleton, counterparty network, configuration graph, inhomogeneous
random graph, assortativity, random graph simulation, large graph asymptotics, net-
work topology, locally tree-like.

Like people, banks are intensely social beings, and the “sympathetic threads” that
connect banks transmit causes and effects just as do human connections. Our goal
in this chapter is to explore models for the skeleton of a random financial network
or RFN. At any moment in time, the skeleton is the random graph whose links indi-
cate which pairs of nodes, representing banks, are considered to have a significant
counterparty relationship. Depending on the context, links may be undirected lines
or directed arrows that point from debtor to creditor.

Random graph theory is a general framework that can capture the most salient
and basic attributes of macroscopic ensembles of partly connected similar entities
that have been come to be called complex adaptive systems. Random graphs lie at
the lowest structural layer of such systems and general categories of networks can
be built by adding further layers of structure on top. The double adjective “complex
adaptive” has taken on an additional higher meaning in recent years to describe the

1 Rev. Henry Melvill, Golden Lectures, (London, 1855), p. 454
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nature of a system whose totality is “more than the sum of its parts” and whose
key responses and behaviours emerge in a way that cannot be anticipated from the
microscopic interactions. The apt analogy is the way consciousness is presumed to
emerge from the collective interaction of the brain’s myriad neurons. The list of cat-
egories of complex adaptive systems in the real world is ever-growing, and questions
about such systems reach beyond our depths of understanding. One might say that
the theme of the present book is to use mathematics to explore the profound “com-
plex adaptive” nature of the world’s financial systems, using the tools of network
science.

3.1 Definitions and Basic Results

In this section, we provide some standard graph theoretic definitions and develop
an efficient notation for what will follow. Since in this book we are most interested
in directed graphs rather than undirected graphs, our definitions are in that setting
and the term “graph” will have that meaning. Undirected graphs fit in easily as a
subcategory of the directed case.

Definition 6. 1. g 2 G (N), a graph on N nodes, is a pair (N ,E ) where the set of
nodes N is numbered by integers, N = {1, . . . ,N} := [N] and the set of edges is
a subset E ⇢N ⇥N . Each edge or link `2 E is an ordered pair `= (v,w), often
labelled by integers ` 2 {1, . . . ,E} := [E] where E = |E |. Normally, “self-edges”
with v = w are excluded from E , that is, E ⇢ N ⇥N \diag. For any N � 1, the
collection of directed graphs on N nodes is denoted G (N).

2. A given graph g = (N ,E ) 2 G (N) can be represented by its N ⇥N adjacency
matrix M(g) with components

Mvw(g) = 1((v,w) 2 g) =
⇢

1 if (v,w) 2 g
0 if (v,w) 2 N ⇥N \g .

3. The in-degree deg�(v) and out-degree deg+(v) of a node v are

deg�(v) = Â
w

Mwv(g), deg+(v) = Â
w

Mvw(g) .

A node v 2 N has node type ( j,k) when its in-degree and out-degree are
deg�(v) = j,deg+(v) = k; the node set partitions into node types, N = [ jkN jk.
We shall write kv = k, jv = j for any v 2 N jk.

4. An edge ` = (v,w) 2 E = [k jEk j has edge type (k, j) with in-degree j and out-
degree k if it is an out-edge of a node v with out-degree kv = k and an in-edge of
a node w with in-degree jw = j. We shall write deg+(`) = k` = k and deg�(`) =
j` = j whenever ` 2 Ek j.

5. For completeness, an undirected graph is defined to be any directed graph g for
which M(g) is symmetric.
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Remark 2. We use the term “type” for nodes and edges to denote characteristics
that potentially extend beyond degree characteristics to include other characteristics
such as the size, kind and location of a bank, or type of security. In this book, we
narrow the definition of edge-type of ` = (v,w) to the pair (kv, jw) rather than the
quadruple ( jv,kv; jw,kw) which may seem more natural: this is a choice that can be
relaxed without difficulty and is made purely to reduce model complexity.

The standard visualization of a directed graph g on N nodes is to plot nodes as
“dots” with labels v 2 N , and any edge (v,w) as an arrow pointing “downstream”
from node v to node w. In our systemic risk application, such an arrow signifies that
bank v is a debtor of bank w and the in-degree deg�(w) is the number of banks in
debt to w. In other words the existence of the edge (v,w) means “v owes w”. Figure
3.1 illustrates the labelling of types of nodes and edges.

Fig. 3.1 A type (3,2) debtor bank that owes to a type (3,4) creditor bank through a type (2,3)
link.

There are constraints on the collections of node type ( jv,kv)v2N and edge type
(k`, j`)`2E if they derive from a graph. If we compute the total number of edges
E = |E |, the number of edges with k` = k and the number of edges with j` = j we
find three conditions:

E := |E | = Â
v

kv = Â
v

jv

e+k := |E \{k` = k}| = Ầ1(k` = k) = Â
v

k1(kv = k)

e�j := |E \{ j` = j}| = Ầ1( j` = j) = Â
v

j1( jv = j) . (3.1)

It is useful to define further graph theoretic objects and notation in terms of the
adjacency matrix M(g):

1. The in-neighbourhood of a node v is the set N �
v := {w 2 N |Mwv(g) = 1} and

the out-neighbourhood of v is the set N +
v := {w 2 N |Mvw(g) = 1}.
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2. E +
v (or E �

v ) denotes the set of out-edges (respectively, in-edges) of a given node
v and v+` (or v�` ) denotes the node for which ` is an out-edge (respectively, in-
edge).

3. Similarly, we have second-order neighbourhoods N ��
v ,N �+

v ,N +�
v ,N ++

v
with the obvious definitions. Second and higher order neighbours can be deter-
mined directly from the powers of M and M>. For example, w 2N �+

v whenever
(M>M)wv � 1.

4. We usually write j, j0, j00, j1, etc. to refer to in-degrees while k,k0,k00,k1, etc. refer
to out-degrees.

Our financial network models typically have a sparse adjacency matrix M(g)
when N is large, meaning that the number of edges is a small fraction of the N(N �
1) potential edges. This reflects the fact that bank counterparty relationships are
expensive to build and maintain, and thus N +

v and N �
v typically contain relatively

few nodes even in a very large network.

3.1.1 Random Graphs

Random graphs are simply probability distributions on the sets G (N):

Definition 7. 1. A random graph of size N is a probability distribution P on the
finite set G (N). When the size N is itself random, the probability distribution P
is on the countably infinite set G := [NG (N). Normally, we also suppose that P
is invariant under permutations of the N node labels.

2. For random graphs, we define the node-type distribution to have probabilities
Pjk = P[v 2N jk] and the edge-type distribution to have probabilities Qk j = P[`2
Ek j].

P and Q can be viewed as bivariate distributions on the natural numbers, with
marginals P+

k = Â j Pjk,P�
j = Âk Pjk and Q+

k = Â j Qk j,Q�
j = Âk Qk j. Because they

derive from actual graphs, edge and node type distributions must satisfy the follow-
ing consistency conditions:

z := Â
jk

jPjk = Â
jk

kPjk; Q+
k = kP+

k /z, Q�
j = jP�

j /z 8k, j . (3.2)

Note that the mean in-degree and mean out-degree are both equal to z.
A number of random graph construction algorithms have been proposed in the

literature, motivated by the need to create tractable families of graphs that match
the types and measures of network topology observed in nature and society. The
remainder of this chapter reviews the properties of the random graph constructions
that are most closely related to the types of networks observed in financial systems.
The textbook “Random Graphs and Complex Networks” by van der Hofstad [81]
provides a complete and up-to-date review of the entire subject.
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In what follows, asymptotic results for sequences of random graphs labelled by
their size N are typically expressed in terms of convergence of random variables in
probability, defined as:

Definition 8. A sequence {Xn}n�1 of random variables is said to converge in prob-
ability to a random variable X , written limn!• Xn

P
= X or Xn

P�! X , if for any e > 0

P[|Xn �X |> e]! 0 .

We also recall further standard notation for asymptotics of sequences of real
numbers {xn}n�1,{yn}n�1 and random variables {Xn}n�1:

1. Landau’s “little oh”: xn = o(1) means xn ! 0; xn = o(yn) means xn/yn = o(1);
2. Landau’s “big oh”: xn = O(yn) means there is N > 0 such that xn/yn is bounded

for n � N;
3. xn ⇠ yn means xn/yn ! 1;
4. Xn = o(yn) means Xn/yn

P�! 0.
5. “w.h.p” means “with high probability, converging to 1”.

3.2 Configuration Random Graphs

In their classic paper [38], Erdös and Renyi introduced the undirected model
G(N,M) that consists of N nodes and a random subset of exactly M edges chosen
uniformly from the collection of

�N
M
�

possible such edge subsets. This model can
be regarded as the Mth step of a random graph process that starts with N nodes and
no edges, and adds edges one at a time selected uniformly randomly from the set of
available undirected edges. Gilbert’s random graph model G(N, p), which takes N
nodes and selects each possible edge independently with probability p = z/(N�1),
has mean degree z and similar large N asymptotics provided M = zN/2. In fact,
it was proved by [15] and [67] that the undirected Erdös-Renyi graph G(N,zN/2)
and G(N, pN) with probability pN = z/(N � 1) both converge in probability to the
same model as N ! • for all z 2 R+. Because of their popularity, the two models
G(N, p)⇠G(N,zN/2) have come to be known as “the” random graph or the Poisson
graph model since the degree distribution of G(N, p) is Bin(N�1, p)⇠N!• Pois(z).

Both the above constructions have obvious directed graph analogues: henceforth
we use the notation G(N,M) and G(N, p) to denote the directed graph models. In
the directed Gilbert G(N, p) model, each possible directed edge selection is an in-
dependent Bernoulli trial, and thus the adjacency matrix M(g) is easy to simulate in
Matlab:

M=( rand (N,N) < p ) ;
diag (M) = 0 ;

Another undirected graph construction of interest is the random r�regular model
with r � 3, that draws uniformly from the set of r-regular graphs on N nodes, that is,
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graphs for which each node has degree exactly r. This model is a particular case of
a general class called “undirected configuration graphs” which takes as data an ar-
bitrary degree distribution P = {Pk}; similarly “directed configuration graphs” take
as data an arbitrary bi-degree distribution P = {Pjk}. When P ⇠ Pois(z)⇥Pois(z)
the configuration graph turns out to be asymptotic for large N to both the directed
Erdös-Renyi and Gilbert models.

The well known directed configuration multigraph model introduced by Bollobas
[14] with general degree distribution P = {Pjk} j,k=0,1,... and size N is constructed by
the following random algorithm:

1. Draw a sequence of N node-degree pairs ( j1,k1), . . . ,( jN ,kN) independently
from P, and accept the draw if and only if it is feasible, i.e. Ân2[N]( jn � kn) = 0.
Label the nth node with kn out-stubs (picture this as a half-edge with an out-
arrow) and jn in-stubs.

2. While there remain available unpaired stubs, select (according to any rule,
whether random or deterministic) any unpaired out-stub and pair it with an in-
stub selected uniformly amongst unpaired in-stubs. Each resulting pair of stubs
is a directed edge of the multigraph.

The algorithm leads to objects with self-loops and multiple edges which are usu-
ally called multigraphs rather than graphs. Only “simple” multigraphs, those that are
free of self-loops and multiple edges, are considered to be graphs. For the most part,
we do not care over much about the distinction, because the density of self-loops
and multiple edges goes to zero as N ! •. In fact, Janson [55] has proved in the
undirected case that the probability for a multigraph to be simple is bounded away
from zero for well-behaved sequences (gN)N>0 of size N graphs with given P.

Exact simulation of the adjacency matrix in the general configuration model is
problematic because the feasibility condition met in the first step above occurs only
with vanishingly small asymptotic frequency ⇠ sp

2pN
. For this reason, practical

Monte Carlo implementations use some type of rewiring or clipping to adjust each
infeasible draw of node-degree pairs. We shall return to address this issue in Section
3.3.3.

3.3 Assortative Configuration Graphs

Because of the uniformity of the matching in step 2 of the configuration graph con-
struction, the edge-type distribution of the resultant random graph is

Qk j =
jkP+

k P�
j

z2 = Q+
k Q�

j (3.3)

which we call the independent edge condition. It has been observed that (3.3) is
not true in financial networks. Rather, as noted in [78], [11] and [27], small banks
have a tendency to choose large banks as counterparties, a property known as disas-
sortativity, or as we prefer, negative assortativity. Therefore we wish to construct a
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class of assortative configuration graphs (ACG), which encompasses all reasonable
type distributions (P,Q) and has special properties that make it suitable for exact
analytical results.

3.3.1 The ACG Construction

The assortative configuration (multi-)graph of size N parametrized by the node-edge
degree distribution pair (P,Q) that satisfy the consistency conditions (3.2) is defined
by the following random algorithm:

1. Draw a sequence of N node-type pairs X = (( j1,k1), . . . ,( jN ,kN)) independently
from P, and accept the draw if and only if it is feasible, i.e. Âv2[N] jv = Âv2[N] kv,
and this defines the number of edges E that will result. Label the vth node with kv
out-stubs (each out-stub is a half-edge with an out-arrow, labelled by its degree
kv) and jv in-stubs, labelled by their degree jv. Define the partial sums u�j =

Âv 1( jv = j),u+k = Âv 1(kv = k),u jk = Âv 1( jv = j,kv = k), the number e+k = ku+k
of k-stubs (out-stubs of degree k) and the number of j-stubs (in-stubs of degree
j), e�j = ju�j .

2. Conditioned on X , the result of Step 1, choose an arbitrary ordering `� and `+ of
the E in-stubs and E out-stubs. The matching sequence, or “wiring”, W of edges
is selected by choosing a pair of permutations s , s̃ 2 S(E) of the set [E]. This
determines the edge sequence `= (`� = s(`),`+ = s̃(`)) labelled by ` 2 [E], to
which is attached a probability weighting factor

’
`2[E]

Qk
s(`) j

s̃(`)
. (3.4)

Given the wiring W determined in Step 2, the number of type (k, j) edges is

ek j = ek j(W ) = Â
`2[E]

1(k
s̃(`) = k, j

s(`) = j) . (3.5)

These numbers are constrained by the e+k ,e
�
j determined by Step 1:

e+k = Â
j

ek j, e�j = Â
k

ek j, E = Â
k j

ek j . (3.6)

Intuitively, since Step 1 leads to a product probability measure subject to a single
linear constraint that is true in expectation, one expects that it will lead to the inde-
pendence of node degrees for large N, with the probability P. Similar logic suggests
that since the matching weights in Step 2 define a product probability measure con-
ditional on a set of linear constraints that are true in expectation, it should lead to
edge degree independence in the large N limit, with the limiting probabilities given
by Q. This logic turns out to be true, as proved in a recent paper [49]. In this sec-
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tion, we explore the highlights of the ACG results proved in that paper, but omit the
proofs given there.

First, the paper analyzes certain combinatorial properties of the wiring algorithm
of Step 2, conditioned on the node-type sequence X resulting from Step 1 for a finite
N. To see how this goes, define two sequences e�j (m),e+k (m) for 0  m  E to be
the number of available j-stubs and k-stubs available after m wiring steps.

Proposition 1 (Propositions 1 and 2, [49]). Consider Step 2 of the assortative con-
figuration graph construction for finite N with probabilities P,Q conditioned on the
X = ( ji,ki), i 2 [N].

1. The conditional probability of any wiring sequence W = (` 2 [E]) is:

P[W |X ] = C�1 ’
k j
(Qk j)

ek j(W ) , (3.7)

C = C(e�,e+) = E!Â
e

’
k j

(Qk j)
ek j

ek j! ’
j

⇣
e�j !
⌘
’

k

�
e+k !
�
, (3.8)

where the sum in (3.8) is over collections e = (ek j) satisfying the constraints
(3.6).

2. The conditional probability of the first edge of the wiring sequence W = (`2 [E])
having type k1, j1 is

P[(k1, j1)|X ] = E[ek1 j1 |X ]/E . (3.9)

3. The conditional probability of the first M edges of the wiring sequence W = (` 2
[E]) having types (ki, ji)i2[M] is

P[(ki, ji)i2[M]|X ] =
(E �M)!

E! ’
i2[M]

E[eki ji |e
�(i�1),e+(i�1)] . (3.10)

One can see from part 3 of this Proposition that the probability distribution of
the first M edge types will be given asymptotically by ’i2[M] Qki ji provided our

intuition is correct that E[E�1ek j]
P
= Qk j(1+ o(1)) asymptotically for large N. To

keep the discussion as clear as possible, we confine the analysis to the case the
distributions P and Q have support on the finite set ( j,k) 2 {0,1, . . . ,K}2. Then it
turns out one can rigorously apply the Laplace asymptotic method to the cumulant
generating function for the empirical edge-type random variables ek j, conditioned
on any feasible collection of (e+k ,e

�
j ) with total number E = Âk e+k = Â j e�j :

F(v;e�,e+) := logE[eÂk j vk jek j |e�,e+], 8v = (vk j) (3.11)

= log
Âe ’k j

(Qk je
vk j )

ek j

ek j! ’ j

⇣
e�j !
⌘

’k
�
e+k !
�

Âe ’k j
(Qk j)

ek j

ek j! ’ j

⇣
e�j !
⌘

’k
�
e+k !
� , (3.12)

The constraints on (ek j) can be introduced by auxiliary integrations over variables
u�j ,u

+
k of the form
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2p1(Â
j

ek j = e+k ) =
Z 2p

0
du+k eiũk(Â j ek j�e+k ) .

This substitution leads to closed formulas for the sums over ek j, and the expression
for eF : R

I d2Kuexp[H(v,�iu;e)]R
I d2Ku exp[H(0,�iu;e)]

(3.13)

where
H(v,a;e) = Â

k j
e(a

�
j +a

+
k )evk j Qk j � (Â

j
a

�
j e�j +Â

k
a

+
k e+k ) . (3.14)

The integration in (3.13) is over the set I := [0,2p]2K .
The Laplace asymptotic method (or saddlepoint method), reviewed for example

in [48], involves shifting the u integration in (3.13) into the complex by an imaginary
vector. The Cauchy Theorem, combined with the periodicity of the integrand in u,
ensures the value of the integral is unchanged under the shift. The desired shift
is determined by the e-dependent critical points a

⇤ = (a�
j ,a

+
k ) j,kK 2 R2K of H

which are solutions of the system of equations

Â
k

e(a
�
j +a

+
k )Qk j = e�j 8 j (3.15)

Â
j

e(a
�
j +a

+
k )Qk j = e+k 8k (3.16)

The main theorem of [49] confirms that the large N asymptotics of the empirical
node- and edge-type distributions agree with the target (P,Q) distributions.

Theorem 3 (Corollary 3.3, [49]). Consider the ACG model with (P,Q) supported
on {0,1, . . . ,K}2.

1. Conditioned on X,

E�1ek j
P
= [Qk je

1�H(0,a⇤(x);x)�(a�
j +a

+
k )[1+O(E�1/2)]

where x = E�1e and e = (e�(X),e+(X)).
2. Unconditionally,

N�1u jk
P
= Pjk[1+O(N�1/2)]

E�1ek j
P
= Qk j[1+O(N�1/2)] .

3.3.2 Locally Tree-like Property

To understand percolation theory on random graphs, or to derive a rigorous treat-
ment of cascade mappings on random financial networks, it turns out to be important
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that the underlying random graph model have a property sometimes called “locally
tree-like”. In this section, the local tree-like property of the ACG model will be char-
acterized as a particular large N property of the probability distributions associated
with configurations, that is, finite connected subgraphs g of the skeleton labelled by
their degree types.

First consider what it means in the (P,Q) ACG model with size N to draw a ran-
dom configuration g consisting of a pair of vertices v1,v2 joined by a link, that is,
v2 2 N �

v1
. In view of the permutation symmetry of the ACG algorithm, the random

link can without loss of generality be taken to be the first link W (1) of the wiring se-
quence W . Following the ACG algorithm, Step 1 constructs a feasible node degree
sequence X = ( jv,kv),v 2 [N], and conditioned on X , Step 2 constructs a random
Q-wiring sequence W =

�
`= (v+` ,v

�
` )
�
`2[E] with E = Âv kv = Âv jv edges. By an

abuse of notation, we label their edge degrees by k` = kv+`
, j` = jv�` for ` 2 [E] . The

configuration event in question, namely that the first link in the wiring sequence W
attaches to nodes of the required degrees ( j1,k1),( j2,k2), has conditional probabil-
ity p = P[vi 2 N ji,ki , i = 1,2|v2 2 N �

v1
,X ]. To compute this, note that the fraction

j1u j1k1/e�j1 of available j1-stubs come from a j1k1 node and the fraction k2u j2k2/e+k2
available k2-stubs come from a j2k2 node. Combining this fact with Part 2 of Propo-
sition 1, equation (3.9) implies the exact configuration probability conditioned on X
is

p = j1u j1k1k2u j2k2

E[ek2 j1 |e�,e+]
Ee+k2

e�j1
. (3.17)

By Theorem 3,

p P
=

j1k2Pj1k1Pj2k2Qk2 j1
z2Q+

k2
Q�

j1

[1+O(N�1/2)] . (3.18)

This argument justifies the following informal computation of the correct asymp-
totic expression for p by successive conditioning:

p = P[vi 2 N jiki , i = 1,2
��v2 2 N �

v1
] (3.19)

= P[v1 2 N j1k1

��v2 2 N �
v1

\N j2k2 ] P[v2 2 N j2k2

��v2 2 N �
v1
] (3.20)

= (Pk1| j1Q j1|k2)(Pj2|k2Q+
k2
) =

Pj1k1Pj2k2Qk2 j1
P+

k2
P�

j1

(3.21)

where we introduce conditional degree probabilities Pk| j = Pjk/P�
j etc.

Occasionally in the above matching algorithm, the first edge forms a self-loop,
i.e. v1 = v2. The probability of this event, jointly with fixing the degree of v1, can be
computed exactly for finite N as follows:

p̃ := E[v1 = v2,v1 2 N jk|v2 2 N �
v1
,X ] =

 
jku jk

e�j e+k

!
E[ek j|X ]

E
.

Again by Theorem 3, as N ! • this goes to zero, while N p̃ approaches a finite
value:
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N p̃ P�!
jkPjkQk j

z2Q+
k Q�

j
(3.22)

which says that the relative fraction of edges being self loops is the asymptotically
small Â jk

jkPjkQk j
Nz2Q+

k Q�
j

. In fact, following results of [55] and others on the undirected

configuration model, one expects that the total number of self loops in the multi-
graph converges in probability to a Poisson random variable with finite parameter

l = Â
jk

jkPjkQk j

z2Q+
k Q�

j
. (3.23)

A general configuration is a connected subgraph h of an ACG graph (N ,E ) with
L ordered edges and each node labelled by its degree type. It results from a growth
process that starts from a fixed node w0 called the root and at step `  L adds one
edge ` that connects a node w` to a specific existing node w0

`. The following is a
precise definition:

Definition 9. A configuration rooted to a node w0 with degree ( j,k) := ( j0,k0) is
a connected subgraph h consisting of a sequence of L edges that connect nodes
(w`)`2[L] of types ( j`,k`), subject to the following condition: For each ` � 1, w` is
connected by the edge labelled with ` to a node w0

` 2 {w j} j2{0}[[`�1] by either an
in-edge (that points into w0

`) (w`,w0
`) or an out-edge (w0

`,w`).

A random realization of the configuration results when the construction of the
size N ACG graph (N ,E ) is conditioned on X arising from Step 1 and the first L
edges of the wiring sequence of Step 2. The problem is to compute the probability
of the node degree sequence ( j`,k`)`2[L] conditioned on X , the graph h and the root
degree ( j,k), that is

p = P[w` 2 N j`,k` ,` 2 [L]|w0 2 N jk,h,X ] . (3.24)

Note that there is no condition that the node w` at step ` is distinct from the
earlier nodes w`0 ,`

0 2 {0}[ [`�1]. With high probability each w` will be new, and
the resultant subgraph h will be a tree with L distinct added nodes (not including the
root) and L edges. With small probability one or more of the w` will be preexisting,
i.e. equal to w`0 for some `0 2 {0}[ [`�1]: in this case the subgraph h will have
M < L added nodes, will have cycles and not be a tree.

The following sequences of numbers are determined given X and h:

• e j,k(`) is the number of j-stubs connected to ( j,k) nodes available after ` wiring
steps;

• ek, j(`) is the number of k-stubs connected to ( j,k) nodes available after ` wiring
steps.

• e�j (`) := Âk e j,k(`) and e+k (`) := Â j ek, j(`) are the number of j-stubs and k-stubs
respectively available after ` wiring steps.
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Note that e j,k(0) = ju jk and ek, j(0) = ku jk, and both decrease by at most 1 at each
step. The analysis of configuration probabilities that follows is inductive on the step
`.

Theorem 4 (Theorem 4.1, [49]). Consider the ACG sequence with (P,Q) supported
on {0,1, . . . ,K}2. Let h be any fixed finite configuration rooted to w0 2 N jk, with M
added nodes and L � M edges, labelled by the node-type sequence ( jm,km)m2[M].
Then, as N ! •, the joint conditional probability p = P[wm 2N jmkm ,m 2 [M]|w0 2
N jk,h,X ] is given by

p P
= ’

m2[M], out-edge
Pkm| jmQ jm|km0 ’

m2[M], in-edge
Pjm|kmQkm| jm0

h
1+O(N�1/2)

i

(3.25)
if h is a tree and

O(NM�L) . (3.26)

if h has cycles. For trees, the `th edge has m = `, and m0 2 {0}[ [`�1] numbers the
node to which w` attaches.

Remarks 1.

1. Formula (3.26) shows clearly what is meant by saying that configuration graphs
are locally tree-like as N ! •. It means the number of occurrences of any fixed
finite size graph h with cycles embedded within a configuration graph of size N
remains bounded with high probability as N ! •.

2. Even more interesting is that (3.25) shows that large configuration graphs ex-
hibit a strict type of conditional independence. Selection of any root node w0 of
the tree graph h splits it into two (possibly empty) trees h1,h2 with node-types
( jm,km),m 2 [M1] and ( jm,km),m 2 [M1+M2]\ [M1] where M = M1+M2. When
we condition on the node-type of w0, (3.25) shows that the remaining node-types
form independent families:

P[wm 2 N jmkm ,m 2 [M],h
��X ,w0 2 N jk]

= P[wm 2 N jmkm ,m 2 [M1],h1
��X ,w0 2 N jk]

⇥P[wm 2 N jmkm ,m 2 [M1 +M2]\ [M1],h2
��X ,w0 2 N jk] . (3.27)

We call this deep property of the general configuration graph the locally tree-like
independence property (LTI property). In [50], the LTI property provides the key
to unravelling cascade dynamics in large configuration graphs.

Proof of Theorem 4: First, suppose Step 1 generates the node-type sequence X .
Conditioned on X , now suppose the first step generates an in-edge (w1,w0). Then, a
refinement of the argument leading to Part 2 of Proposition 1 shows that the condi-
tional probability P[w1 2 N j1k1 |w0 2 N jk,h,X ] can be written

P[w1 2 N j1k1 ,w0 2 N jk|h,X ]

P[w0 2 N jk|h,X ]
=

 
k1uk1, j1
k1u+k1

! 
E[ek1 j|e�(0),e+(0)]

e�j (0)

!
. (3.28)
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Now, for N ! •, Part 2 of Theorem 3 applies and shows that for the case of an
in-edge on the first step, with high probability, X is such that:

P[w1 2 N j1k1 |w0 2 N jk,h,X ]
P
= Pj1|k1 Qk1| j

h
1+O(N�1/2)

i
.

The case of an out-edge is similar.
Now we continue conditionally on X from Step 1, assume inductively that (3.25)

is true for M�1, and prove it for M. Suppose the final node wM is in-connected to the
node wM0 for some M0 M. The ratio P[wm 2N jmkm ,m2 [M]|v2N jk,h,X ]/P[wm 2
N jmkm ,m 2 [M � 1]|w0 2 N jk,h,X ] can be treated just as in the previous step and
shown to be

 
ekM , jM (M�1)

e+kM
(M�1)

! 
E[ekM jM0 |e�(M�1),e+(M�1)]

e�jM0 (M�1)

!

which with high probability equals PjM |kM QkM | jM0

⇥
1+O(N�1/2)

⇤
. The case wM is

out-connected to the node wM0 is similar.
The first step m that a cycle is formed can be treated by imposing a condition that

wm = wm00 for some fixed m00 < m. One finds that the conditional probability of this
is

P[wm = wm00 ,w` 2 N j`k` ,` 2 [m�1]|w0 2 N jk,h,X ]

=
km00

e+km00 (m�1)
⇥ P[w` 2 N j`k` ,` 2 [m�1]|w0 2 N jk,h,X ] .

The first factor is O(N�1) as N ! •, which proves the desired statement (3.26) for
cycles.

Finally, since (3.26) is true for cycles, with high probability all finite configura-
tions are trees. Therefore their asymptotic probability laws are given by (3.25), as
required. ut

3.3.3 Approximate ACG Simulation

It was observed in Section 3.2 that Step 1 of the configuration graph construction
draws a sequence ( jv,kv)v2[N] of node types that is iid with the correct distribution P,
but is only feasible, Âv(kv� jv) = 0, with small probability. Step 2 of the exact ACG
algorithm in Section 3.3.1 requires is even less feasible in practice. Practical simu-
lation algorithms address the first problem by “clipping” the drawn node bidegree
sequence when the discrepancy D=DN :=Âv(kv� jv) is not too large, meaning it is
adjusted by a small amount to make it feasible, without making a large change in the
joint distribution. Step 1 of the following simulation algorithm generalizes slightly
the method introduced by [23] who verify that the effect of clipping vanishes with
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high probability as N ! •. The difficulty with Step 2 of the ACG construction is
overcome by an approximate sequential wiring algorithm.

The approximate assortative configuration simulation algorithm for multigraphs
of size N, parametrized by the node-edge degree distribution pair (P,Q) that have
support on the finite set ( j,k)2 {0,1, . . . ,K}2, involves choosing a suitable threshold
T = T (N) and modifying the steps identified in Section 3.3.1:

1. Draw a sequence of N node-type pairs X = ( jv,kv),v 2 [N] independently from
P, and accept the draw if and only if 0 < |D|  T (N). When the sequence X is
accepted, it is adjusted by adding a few stubs, either in- or out- as needed. First
draw a random subset s ⇢ N of size |D| with uniform probability

� N
|D|
��1

, and
then define the feasible sequence X̃ = ( j̃v, k̃v),v 2 [N] by adjusting the degree
types for v 2 s as follows:

j̃v = jv +x

�
v ; x

�
v = 1(v 2 s ,D > 0) (3.29)

k̃v = kv +x

+
v ; x

+
v = 1(v 2 s ,D < 0) . (3.30)

2. Conditioned on X̃ , the result of Step 1, randomly wire together available in and
out stubs sequentially, with suitable weights, to produce the sequence of edges
W . At each `= 1,2, . . . ,E, match from available in-stubs and out-stubs weighted
according to their degrees j,k by

C�1(`)
Qk j

Q+
k Q�

j
. (3.31)

In terms of the bivariate random process (e�j (`�1),e+k (`�1)) with initial values
(e�j (0),e

+
k (0)) = (e�j ,e

+
k ) that at each ` counts the number of available degree

j in-stubs and degree k out-stubs, the ` dependent normalization factor C(`) is
given by:

C(`) = Â
jk

e�j (`�1)e+k (`�1)
Qk j

Q+
k Q�

j
. (3.32)

Remark 3. An alternative simulation algorithm for the ACG model has been pro-
posed and studied in [30].

Chen and Olvera-Cravioto, [23], addresses the clipping in Step 1 and shows that
the discrepancy of the approximation is negligible as N ! •:

Theorem 5. Fix d 2 (0,1/2), and for each N let the threshold be T (N) = N1/2+d .
Then:

1. The acceptance probability P[|DN | T (N)]! 1 as N ! •;
2. For any fixed finite M, L , and bounded function f : (Z+⇥Z+)M ! [�L ,L ]

��E[ f
�
( j̃i, k̃i)i=1,...,M

�
]�E[ f

�
( ĵi, k̂i)i=1,...,M

�
]
��! 0 ; (3.33)

3. The following limits in probability hold:
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1
N

ũ jk
P�! Pjk,

1
N

ũ+k
P�! P+

k ,
1
N

ũ�j
P�! P�

j . (3.34)

Similarly it is intuitively clear that the discrepancy of the approximation in Step 2
is negligible as N ! •. As long as e�j (`�1),e+k (`�1) are good approximations of
(E � `)Q�

j ,(E � `)Q+
k , (3.31) shows that the probability that edge ` has type (k, j)

will be approximately Qk j. Since the detailed analysis of this problem is not yet
complete, we state the desired properties as a conjecture:

Conjecture 1. In the approximate assortative configuration simulation algorithm
with probabilities P,Q, the following convergence properties hold as N ! •.

1. The fraction of type (k, j) edges in the matching sequence (kl , j`)`2[E] concen-
trates with high probability around the nominal edge distribution Qk j:

ek j

E
= Qk j +o(1) . (3.35)

2. For any fixed finite number L, the first L edges `,` 2 [L] have degree sequence
(kl , j`)`2[L] that converges in distribution to (k̂l , ĵ`)`2[L], an independent sequence
of identical Q distributed random variables.

Although the conjecture is not yet completely proven, extensive simulations have
verified the consistency of the approximate configuration simulation algorithm with
the theoretical large N probabilities.

We will soon find that random financial networks with ACG skeletons are useful
for modelling default and liquidity cascades in simple settings where banks proper-
ties can be assumed to be determined by their node degrees. Even if such an assump-
tion is too simple to be very realistic, such models are able to explain very clearly
how system resilience is related to the connectivity of the network. However, a more
complicated cascade mechanism such as the many asset fire sale mechanism of Sec-
tion 2.3.2 cannot be placed on an ACG skeleton. The next class of random graph
models shows how to extend the notion of node-type to support complex cascades
such as this.

3.4 Inhomogeneous Random Graphs

Generalizations of the Erdös-Renyi random graph known as inhomogeneous ran-
dom graphs (IRG) or generalized random graphs (GRG) provide an alternative to
the ACG framework for modelling large scale financial networks. Now nodes have
types other than degree: we can have commercial banks, investment banks, hedge
funds, and so on, each with additional continuous characteristics such as geograph-
ical location or size. This class originates in papers [24] and [18] and has been stud-
ied in generality in [16]. Although this book deals mostly with directed graphs, for
simplicity, we present here the discussion for undirected graphs. For further details
about this class, please see the textbook [81].
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Recall that for the ER graph (or rather the Gilbert graph) one selects each poten-
tial edge (v,w) independently with a fixed probability p = z/(N � 1). In the IRG,
we select conditionally independently, with probabilities pvw = pwv that depend on
the random type of the nodes v and w. We suppose that the collection u = (uv)v2[N]

of node types are identical independent non-negative random variables with cumu-
lative distribution function F : R+ ! [0,1]. Then, conditioned on the node types
uv,uw the probability of an edge between v and w is defined to be

pvw =
k(uv,uw)

1+k(uv,uw)

where k : R+⇥R+ ! R+ is symmetric and nondecreasing in both arguments. For
example, when k(u,u0) = uu0, we obtain a variant of the Chung-Lu model [24].
Taking k,F subject to the above conditions, but otherwise arbitrary, gives the most
general IRG.

One example of an IRG, a bipartite undirected Erdös-Renyi graph described by
two parameters, is the simplest possible setting for the asset fire sale model of Sec-
tion 2.3.2. We take uv 2 {0,1} with P[uv = 0] = p where type 0 nodes are banks
that connect only to the asset classes they own, which are the type 1 nodes. k is a
two-by-two symmetric matrix

k =

✓
0 k01

k01 0

◆
,

with k01 > 0.
A big advantage of the IRG model is that it is almost as easy to simulate as the

Gilbert model. To generate the adjacency matrix M of a graph with N nodes, one
can follow these steps:

1. Simulate the iid random variables uv, v 2 [N] from the distribution F ;
2. Compute the N by N upper-triangular matrix A with the v,w entry given by

k(uv,uw)
1+k(uv,uw)

;
3. Generate an upper-triangular matrix B with each entry iid uniform on [0,1];
4. Let the ones of the adjacency matrix M be put where B  A .

The following discussion aims to understand the large N asymptotics of both
the node and edge degree distributions of the IRG g = (N ,E ) with given k,F .
Conditioned on the values of u = (uv)v2[N], the independent Bernoulli variables
Xvw = 1((v,w) 2 g),1  v < w  N have values xvw 2 {0,1} with joint probabil-
ity

P[Xvw = xvw,1  v < w  N|(uv),v 2 [N]] = ’
1v<wN

k(uv,uw)xvw

1+k(uv,uw)
. (3.36)

The degree of node v in a given configuration is

dv(x) = Â
w<v

xvw + Â
w>v

xvw , (3.37)
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where we define xvw = xwv for w < v.

Lemma 2. The conditional joint probability generating function is given by

Y

⇣
(tv),v 2 [N]

���(uv),v 2 [N]]
⌘

:= E
h

’
v2[N]

(tv)dv(X)
���(uv),v 2 [N]

i

= ’
1v<wN

1+ tvtwk(uv,uw)

1+k(uv,uw)
. (3.38)

Proof of Lemma 2: Since the total probability is 1, (3.36) implies an identity

Â
x

’
1v<wN

k(uv,uw)
xvw = ’

1v<wN
(1+k(uv,uw)) (3.39)

where the sum is over all possible configurations x=(xvw),xvw 2 {0,1}. From (3.37)
we deduce a second identity

N

’
v=1

(tv)dv(x) = ’
v

"

’
1w<v

txvw
v ⇥ ’

v<wN
txvw
v

#

=

"

’
1w<vN

txvw
v

#
⇥
"

’
1v<wN

txvw
v

#

=

"

’
1v<wN

txvw
w

#
⇥
"

’
1v<wN

txvw
v

#
= ’

1v<wN
(tvtw)xvw .

These two formulas lead to

Y

⇣
(tv),v 2 [N]

���(uv),v 2 [N]]
⌘
= E

"

’
1v<wN

(tvtw)Xvw
���(uv),v 2 [N]

#

=
Âx ’1v<wN (tvtwk(uv,uw))

xvw

’1v<wN(1+k(uv,uw))
= ’

1v<wN

1+ tvtwk(uv,uw)

1+k(uv,uw)
. (3.40)

ut
To obtain interesting asymptotic behaviour of the node degree distribution as

N ! •, the next theorem assumes that k := k

(N) scales with N.

Theorem 6. In the IRG sequence with cumulative distribution function F : R+ !
[0,1], assume for all N that

k

(N)(u,u0) = (N �1)�1
k(u,u0) (3.41)

where for some a > 0

||k||1+a,F :=
Z

R2
+

|k(u,u0)|1+a dF(u)dF(u0)< • . (3.42)
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1. As N ! •, the univariate generating function is given by

Y

(N)(t1) = E[e(t1�1)G�1(U)] (1+o(1)) , (3.43)

G�1(u) :=
Z •

0
k(u,u0)dF(u0) . (3.44)

where U is F distributed.
2. For any fixed integer M > 1, the joint degrees dv,v 2 [M] converge in distribution

to an independent collection of identical random variables.

Part (1) tells us that the degree of a randomly selected node converges in distri-
bution as N ! • to a random variable whose probability distribution is given by
(Pk)k�0 where

Pk =
Z

R+

e�l

l

k

k!
dF(G(l )) .

In other words, the node degrees all converge to a mixture of Poisson random vari-
ables with random parameter l having the mixing cumulative distribution function
F(G(l )). The mean node-degree is thus z =

R
R+

l dF(G(l )). Part (2) ensures the
asymptotic independence of any finite collection of degrees.

We can see from the theorem that the model parametrization by an arbitrary pair
(k,F) contains redundant information. By defining

k̃(v,v0) = k(G(v),G(v0)), F̃(v) = F(G(v)) (3.45)

one finds that the pair (k̃, F̃) leads to the same model:

Y

(N)(t1) = E[e(t1�1)V ] (1+o(1))

where V is F̃ distributed, and

v =
Z •

0
k̃(v,v0)dF̃(v0) . (3.46)

Without loss of generality therefore, one can take a pair (k,F) such that (3.44) holds
with G the identity mapping, under which condition the Poisson mixing distribution
turns out to be F .

A rule of thumb says that a mixed Poisson distribution with an unbounded dis-
tribution of the mixing variable inherits the tail distribution of the mixing variable.
Thus, if F has a Pareto tail of order t � 1 for some t > 2, Theorem 6 applies with
a < t � 2, and leads to a fat-tailed degree distribution with the same order. Note
further that many potential integer degree distributions are not Poisson mixtures, for
example any distribution with finite support.

Proof of Theorem 6: Part (1). For fixed N we compute Y by an intermediate
conditioning on the random variables uv and use (3.38) to write
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Y((tv),v 2 [N]) = E
"

’
1v<wN

1+ tvtwk

(N)(uv,uw)

1+k

(N)(uv,uw)

#
.

Putting tv = 1 for v > 1 leads to cancellations of numerator and denominator factors:

Y(t1) = E(N)

"

’
2vN

1+ t1k

(N)(u1,uv)

1+k

(N)(u1,uv)

#
= E

h
(y(N)(t1,u1))

N�1
i

(3.47)

where

y

(N)(t,u) =
Z

R+

1+ tk(N)(u,u0)
1+k

(N)(u,u0)
dF(u0) =

Z

R+

1+ t(N �1)�1
k(u,u0)

1+(N �1)�1
k(u,u0)

dF(u0) .

Now, for any a > 0 and every x � 0, there is C(a) such that

1+ tx
1+ x

= 1+(t �1)x+R(x)

where the remainder is bounded |R(x)| |t�1|C(a)x1+a . Using this bound and the
definition of G�1 we find

y

(N)(t,u) =
Z

R+

�
1+(t �1)(N �1)�1

k(u,u0)
�

dF(u0)+ R̃

= 1+(t �1)(N �1)�1G�1(u)+ R̃ .

By the bound (3.42) on k , the remainder R̃ is bounded by (N � 1)�1�a times a
function with bounded L1+a -norm. Now, by a standard limiting argument, as N !
•, ⇥

1+(t �1)(N �1)�1G�1(u)+ R̃
⇤N�1

= e(t�1)G�1(u)(1+O(N�a))

which leads to the desired result.
The proof of part (2) is similar, and left as an exercise. ut

We can go further and investigate the shifted bivariate distribution of edge de-
grees (k`� 1,k0`� 1) by computing the expectation e = E(N)[td1�1

1 td2�1
2 |(1,2) 2 g]

under the parametrization with G equal to the identity mapping. Following exactly
the same steps as above, we find the expression

e =
⇣
P(N)[(1,2) 2 g]

⌘�1

⇥ E(N)

"
k

(N)(u1,u2)

1+k

(N)(u1,u2)
’
v�3

 
1+ t1k

(N)(u1,uv)

1+k

(N)(u1,uv)

! 
1+ t2k

(N)(u2,uv)

1+k

(N)(u2,uv)

!#
.

The same logic that leads to Theorem 6 leads to

e = (E[k(u1,u2)])
�1 E

h
k(u1,u2)e(t1�1)u1 e(t2�1)u2

i
(1+o(1))) . (3.48)
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In the Chung-Lu class of models where k(u1,u2) = u1u2, (3.48) implies that
asymptotically, the edge degree distribution is the independent case

Qkk0 =
kk0PkPk0

z2 .

In general there is correlation between the edge degrees, i.e. the graph is assortative,
where the edge-type distribution Q equals a bivariate mixture of independent Pois-
son random variables, shifted up by the vector (1,1). To verify this statement one
needs to check that Q defined by

Qkk0 =
Z •

0

Z •

0
Pois(v,k�1) Pois(v0,k0 �1) dG(v,v0), 8k,k0 � 1 (3.49)

with
dG(v,v0) := z�1

k(v,v0) dF(v)dF(v0) (3.50)

is consistent with
e = Â

kk0
tk�1
1 tk0�1

2 Qkk0 .

As a useful variation of the IRG framework, one can introduce a more abstract
node type space A with probability measure d f and a mapping u : A ! R+. We
define the probability of a type a and type b node to wire together to be

k(u(a),u(b))
1+k(u(a),u(b))

where k and d f are consistent:

u(a) =
Z

A
k(u(a),u(b)) d f (b), 8a 2 A .

Then u(a) will be the average degree of a type a node. The next example illustrates
this kind of network construction.

Example 1. (Three Bank Types) Consider a financial network with small, medium
and large banks whose network fractions are f = ( fa)a=1,2,3 = [0.80,0.15,0.05] and
whose conditional average degrees are u = (ua)a=1,2,3 = [2,31/3,51/2]. The mean
degree is z = f · u = 4.35. One connectivity kernel that satisfies the consistency
condition Â3

b=1 kab fb = z�1ua is:

k

(1) =

2

66664
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77775
.

It is easy to verify that this choice leads to the consistent negatively assortative pair
of degree distributions
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Q(1)
kk0 = z�1

3

Â
a,b=1

k

(1)
ab Pois(ua,k�1) Pois(ub,k0 �1) fa fb (3.51)

Pk =
3

Â
a=1

Pois(ua,k) fa . (3.52)

The independent edge type distribution Q(2) arises by taking k

(2)
ab = z�1 ua ub. To

simulate a random network with N banks that has such large N asymptotics, one
draws N bank types a1, . . . ,aN from the f distribution. Then for each pair of banks
v < w 2 [N] one creates an undirected edge between them independently with prob-
ability kav ,aw

N�1+kav ,aw
.

The undirected IRG construction parametrized by pairs (k,F) that satisfy (3.44)
with G equal to the identity, defines a rich class that generalizes the Erdös-Renyi
graph. When the skeleton of a random financial network is modelled by an IRG,
nodes can have a continuum of types, giving a flexibility not possible within the
class of ACG models. IRG models have nice properties: They are straightforward to
simulate on a computer, and their asymptotic node type and edge type distributions
can be fully characterized as mixtures of Poisson random variables. The natural
question is what the IRG class has to do with the configuration graph model. It
has been proven in [18] that the subclass of Chung-Lu models is asymptotic to a
subclass of non-assortative simple configuration graphs. Although it appears not to
have been proven yet, it seems that IRG models, like the ACG model, always have
the desirable locally tree-like property and are therefore a promising foundation for
implementing cascade mechanisms on financial networks.

3.5 Measures of Network Topology

The term network topology is used to refer to a wide variety of characteristics ob-
served in the random graphs underlying large scale networks, both synthetic and in
the real world. A measure of network topology is a summary statistic that tells us
something important about the way nodes connect or about the relative importance
of different node and edge types.

3.5.1 Connectivity

Overall connectivity of the network can be measured by the fraction of the number of
actual directed links to the number of potential links. Thus, in a finite network with
N nodes and E directed edges, the connectivity is given by C = E

N(N�1) . However,
since our networks are typically sparse enough that C ! 0 for large N, we normally
focus instead on the mean degree z = E/N.
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3.5.2 Measures from the Degree Distributions

In addition to measuring moments of the degree distribution Pjk, such as the mean
(in- and out-) degree z = Â j,k jPjk = Â j,k kPjk, network practitioners also focus on
the tail properties. Tail exponents are defined by large graph limits:

a

± =� limsup
j!•

logP±
j

log j
.

Finite tail exponents are indicators of what are called Pareto tails, and signal the
existence of non-negligible numbers of hubs, or highly connected nodes that can be
significant focal points for systemic risk. Log-log plots capture the characteristic tail
exponents as the negative of the slope of the best fit line, above a certain cutoff level.
Clauset et al [26] provides the definitive statistical inference method for determining
Pareto tail exponents for random samples from a distribution with power law tail.

3.5.3 Centrality Measures

Centrality measures require the full adjacency matrix M(g), and aim to decide the
relative importance of nodes. At their heart they rest on the fact that the kth power of
the adjacency matrix provides the number of (directed) k-step paths between nodes.
Different centrality measures typically formalize the idea that important nodes are
those that have important neighbours, by summing over these paths with different
weights. For directed graphs where we need to distinguish forward paths from back-
ward paths, centrality measures come in several versions.

1. Degree centrality: For undirected graphs, this is simply the degree of the node,
while for directed graphs, one refers to the in-degree and out-degree centralities.

2. Eigenvalue centrality: By the Perron-Frobenius theorem for non-negative matri-
ces, there exists a non-negative right-eigenvector of M, and this eigenvector is
associated with the maximal eigenvalue l (which is necessarily positive). If M
is irreducible, or equivalently if the directed graph g is strongly connected, then
there is a unique right-eigenvector, call it x+ = [x+1 , . . . ,x

+
N ], normalized so that

Âi x+i = 1. The component for node i is positive, x+i > 0, and is called its forward
eigenvalue centrality measure. Conversely, the backward eigenvalue centrality
measures x�i derive from the maximal left-eigenvector of M. Both measures can
be easily computed by power iteration using the formulas:

x+i = l

�1 Â
j

Mi jx+j ; x�i = l

�1 Â
j

Mjix�i .

In more generality, one can apply the same measure to a weighted adjacency
matrix, where the link weights are arbitrary non-negative values.
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3. Katz centrality: This is a parametric family of measures that generalizes both
degree and eigenvalue centrality by penalizing long paths with an attenuation
factor. For any a 2 (0,l�1), we define the forward and backward Katz-centrality
indices by

xa,+
i =

•

Â
k=1

Â
j

a

k(Mk)i j ; xa,�
i =

•

Â
k=1

Â
j

a

k(Mk) ji .

We can see that xa,+
i = Â j aMi j(x

a,+
j + 1) from which it can be shown that the

eigenvalue centrality x+i is proportional to the limit of xa,+
i as a approaches l

�1

from below.
4. Betweenness centrality: This measure differs from the others in considering only

shortest paths between nodes. For two nodes v 6= v0, we define svv0 to be the
number of shortest directed paths from v to v0; for any third node w 6= v,v0, svv0(w)
is the number of shortest directed paths from v to v0 that go through w. Then the
betweenness centrality of node w is defined by the formula

bw = Â
v,v0 6=w

svv0(w)
svv0

.

3.5.4 Clustering Coefficients

Clustering in social networks refers to the propensity of the friends of our friends to
be our friends. In a general setting it means the likelihood that a connected triple of
nodes forms a triangle. It is usually measured by the clustering coefficient, the ratio
of the number of triangles to connected triples,

C(g) =
3⇥ (number of triangles)

( number of connected triples)
,

where the factor of 3, corresponding to the number of connected triples in a triangle,
ensures that C 2 [0,1].

In directed networks, an even more basic notion of clustering is reflexivity, that
refers to the fraction of the number of node pairs that have a reflexive pair of edges
(i.e. an edge pointing in both directions) to the total number of directed edges. For
triples of nodes, accounting for the direction of edges means there are two different
kinds of triangles in directed graphs, and three different connected triples. One can
use the results of Section 3.3.1 to compute asymptotic values for all these ratios in
the ACG model.
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3.5.5 Connectivity and Connected Components

Contagion can only propagate across connected components in a network, and thus
the sizes of connected subgraphs of a network are additional measures of its sus-
ceptibility to large scale contagion. A strongly connected component (SCC) of a
network is a subgraph each of whose nodes are connected to any other node by a
path of downstream edges, and which is maximal in the sense that it is not properly
contained in a larger SCC. For any SCC, one defines its in-component to be the
maximal subgraph of nodes that are downstream connected to the SCC. Similarly,
its out-component is the maximal subgraph of nodes that are upstream-connected to
the SCC. A weakly connected component (WCC) of a network is a maximal sub-
graph each of whose nodes are connected to any other nodes by a path consisting
of undirected edges. A WCC may contain a multitude of side branches that are not
downstream or upstream connected to the SCC: pieces called tendrils and tubes
form subgraphs that are not connected to the SCC but are either upstream connected
to the in-component or downstream connected to the out-component, or both. In
undirected graphs, there is no distinction between strong and weak connectivity,
and thus any WCC is an SCC.

In random graph models, the probability distribution of sizes of connected com-
ponents is a topic of interest. When we consider infinite random graphs, a critical
question is whether there is strongly connected component that is infinite or even a
positive fraction of the entire network. When this happens in a random graph model,
the infinite SCC is typically unique, and we call it the giant strongly connected com-
ponent (GSCC). Its associated giant in- and out-components are called G-IN and G-
OUT, and GWCC denotes the giant weakly connected component. Clearly we have
the inclusions:

GSCC = G-IN\G-OUT ⇢ G-IN[G-OUT ⇢ GWCC

The complement of the GWCC falls into a disjoint collection of finite sized weakly-
connected pieces. Figure 3.2 shows a schematic “bow-tie” rendering of the various
connected components of a typical directed network, in this instance the World Wide
Web as it appeared in 1999.

It has been found that the existence of a giant connected component in a large
network is the single most relevant and important distinguishing characteristic that
determines its susceptibility to domino-like cascades. The next chapter develops
this intuitive observation into a theory called percolation on random graphs, and
explores its relation to cascade modelling.
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Fig. 3.2 The connected components of the World Wide Web in 1999. (Source: [19].)





Chapter 4
Percolation and Cascades

Abstract The right kind of connectivity turns out to be both necessary and sufficient
for large scale cascades to propagate in a network. After outlining percolation theory
on random graphs, we develop an idea known as “bootstrap percolation” that proves
to be the precise concept needed for unravelling and understanding the growth of
simple network cascades. These principles are illustrated by the famous Watts model
of information cascades.

Keywords: Graph connectivity, branching process, bond and site percolation, boot-
strap percolation, vulnerable edge, vulnerable cluster, Watts’ cascade model, with-
out regarding property, local tree-like independence.

As a warmup to understanding cascading shocks on random financial networks,
we can answer simpler questions about whether or not the network is highly con-
nected. Obviously cascades cannot propagate if the network isn’t sufficiently con-
nected, but what is not so obvious is that the right kind of connectivity is also a suffi-
cient condition for the possibility of large scale cascading to occur. Fortunately, there
is a rich and beautiful theory on the connectivity of networks known as percolation,
and as it will turn out, this idea of percolation actually permeates our problems of
cascades. The connected components, called “clusters” , of a given undirected graph
g = (N ,E ) can be ordered in decreasing size from largest to smallest. Percolation
theory answers the question of whether the largest cluster, denoted by C , of the in-
finite graph, its itself infinite. When this occurs, we say the graph has a giant cluster
or giant component. More precisely, given a well-behaved sequence of a finite size
random graphs, percolation theory says finite graphs will have, with high probabil-
ity, a large cluster exceeding a certain size whenever there exists a giant cluster in
the infinite graph limit.

Our primary aim in this chapter is to understand, and in some cases, to prove, con-
ditions under which a simple model of undirected networks due to Duncan Watts is
susceptible to large scale cascades. It will be revealed as we proceed that sometimes
our understanding extends beyond what we are able to prove. For this reason, we
shall label most of our results as “formal propositions”, for which a “formal”, but
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not rigorous, proof is given. The shortfall in rigour is always of the same nature:
while we can prove the existence of an asymptotic cascade mapping, we cannot eas-
ily prove the consistency of the fixed point problem. In one simple case, however,
we provide rigorous proof of a weakened version of such a formal proposition.

The clearest results on percolation on random graphs apply to the family of con-
figuration graphs, because as Section 3.3.2 shows, when a configuration graph is
large enough and the density of edges is not too great, it has the “locally treelike”
property that with high probability the graph has few short cycles or closed loops.
The “locally treelike” property provides the key to obtaining exact analytical formu-
las for percolation. Some intuition about percolation on configuration graphs stems
because when we start from a random node, and consider growing its connected
component one neighbourhood at a time, the process looks like a growing tree or
pure branching process, of the type known as a Galton-Watson (GW) process. The
potential for this graph component to become large is measured by the potential for
the associated GW process to be unbounded. This relation to Galton-Watson pro-
cesses can then be established rigorously in the asymptotic regime as the number of
nodes goes to infinity. Therefore, before considering percolation, we first review the
essential properties of GW branching processes.

4.1 Branching Processes

A Galton-Watson process, the simplest class of branching process, describes a pop-
ulation evolving in time, starting with a single individual in the 0th generation. In
the nth (non-overlapping) generation, let there be Zn individuals. Each individual i
of the nth generation, n � 0, is assumed to produce a random number Xn,i of chil-
dren or offspring, each drawn independently from an identical distribution X on the
non-negative integers.

The central question to answer about a GW process is whether the population
will ultimately survive or go extinct. The answer is best expressed in terms of the
probability generating function of the X distribution:

g(s) := EsX = Â
k�0

Pk sk, Pk = P[X = k] .

We also need the generating functions Hn(s) :=EsZn for n � 0, and the fundamental
dynamic identity:

Zn =
Zn�1

Â
i=1

Xi,n . (4.1)

Using iterated conditioning, one computes



4.1 Branching Processes 81

Hn(s) = EsZn = E
"
E
"

Zn�1

’
i=1

sXn,i
���Zn�1

##
= E

"
Zn�1

’
i=1

E
h
sXn,i
���Zn�1

i#
(4.2)

= E
h
(g(s))Zn�1

i
= (Hn�1 �g)(s) (4.3)

where (Hn�1 �g)(s) := Hn�1(g(s)). Here, the third equality follows from the mutual
conditional independence property of the two index collection Xn,i. This composi-
tion identity, when iterated, leads to the key formula:

Hn = g�g · · ·�g| {z }
n factors

= g�Hn�1 . (4.4)

The extinction probability is h := P[ 9 n : Zn = 0] and for each n, define hn =
P[Zn = 0] = Hn(0). Since {Zn�1 = 0} ⇢ {Zn = 0}, the sequence hn is increasing,
and converges to h . Since hn = Hn(0),

hn = g(Hn�1(0)) = g(hn�1) .

Like any generating function, g has g(1) = 1 and is continuous, increasing and
convex on [0,1]. Therefore, by continuity,

h = lim
n!•

hn = lim
n!•

g(hn�1) = g
⇣

lim
n!•

hn�1

⌘
= g(h) ,

so h 2 [0,1] is a fixed point of g. By the convexity of g, there can be at most 2 fixed
points. By induction, one can easily verify that if y is any fixed point of g, then
hn  y for all n, and hence h  y: Note that h0 = P0  y , and if hn�1  y then
hn = g(hn�1)  g(y) = y . Thus h is the smallest fixed point of g on [0,1]. This
argument proves the following:

Theorem 7. The extinction probability h 2 [0,1] is the smallest fixed point of g.

1. If EX > 1, then h < 1, which says that with positive probability 1�h the popu-
lation will survive forever.

2. If EX  1, then apart from a trivial exception, h = 1 and the population becomes
extinct almost surely. The single trivial exception is if EX = 1 and g”(1) = 0,
which implies P[X = 1] = 1 and that the population remains 1 for all time.

Note that this theorem applies even if one or both of g0(1)=EX ,g”(1)=EX(X�
1) are infinite. Case (1), when survival is possible, is called the supercritical case.
The case of almost sure extinction subdivides: case EX < 1 is called subcritical, and
the case EX = 1 and g”(1)> 0 is called critical.

From our comments about the relation between percolation and GW processes,
it should not be a surprise that in the next section we will find that the possibility of
a giant cluster boils down to conditions similar to those given in this theorem.
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4.2 Percolation on Configuration Graphs

The paper of Janson [54], based on work by Molloy and Reed [68], considers perco-
lation on undirected configuration (multi)graphs for each finite N based on a general
degree sequence d = (dv)N

v=1 with an even number of stubs Âv dv = 2E (note that
usually we neglect to show explicit N dependence). In what follows, we consider
asymptotics of the sequence of random degree sequences as N ! • and continue
to use the asymptotic notation summarized in Section 3.1. The finite random con-
figuration multigraph model is denoted by G⇤(N,d) and G(N,d) denotes G⇤(N,d)
under the condition that the multigraph is simple, that is that the multigraph is in
fact a graph.

Assumption 1. The sequence of undirected multigraphs G⇤(N,d) is well-behaved
in the sense that there exists a probability distribution (Pk)k=0,1,... over nonnegative
integers such that:

• The empirical degree density converges in distribution:

N�1 Â
v

1(dv = k) P�! Pk .

• The mean degree is finite and positive: N�1 Âv Âk k1(dv = k) P�! z where z :=
Â•

k=1 kPk < •.

For undirected random graphs, the “size-biased” distribution of dv denotes the
probabilities Qk that either of the nodes attached to an arbitrary edge `= (v,w) has
k�1 remaining edges, and one can show that

Qk := P[kw = k|w 2 Nv] =
kPk

z
. (4.5)

This fact is relevant to understanding the growth of successive neighbourhoods of
a randomly selected node. The degree of v, i.e. the number of neighbours of v, has
PMF P. However, neglecting the possibility of cycles, we can see that each neigh-
bour of v has k new neighbours with probability P⇤

k := Qk+1. Therefore, the growth
of neighbourhoods of a random node v, that is the growth of the cluster containing v,
approximately follows a GW process whose zeroth generation has offspring proba-
bility governed by P while for each successive generation, the offspring distribution
is given by P⇤.

If we let g(x)=Âk Pkxk be the generating function of P then g⇤(x)= g0(x)/z is the
generating function of P⇤. Now, from Theorem 7 for GW processes, the extinction
probability x of any node other than the root node is determined by the condition
x = g⇤(x ). If there is a fixed point x < 1 then the GW process is supercritical and
non-extinction occurs with positive probability 1�x , otherwise x = 1 is the unique
fixed point and extinction occurs almost surely. The key insight is that the same
condition determines whether the random graph is supercritical or not. The follow-
ing is a refinement of the main theorem of [68] proved rigorously in [56], which
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asserts the precise conditions under which the random graph has a giant cluster (i.e.
is supercritical). We will present here only a more intuitive “formal” argument.

Proposition 2 (Proposition 3.1, [54]). Consider the random multigraph sequence
G⇤(N,d) satisfying Assumption 1. Let g(x) be its generating function and let C be
the largest cluster. Then the empirical probabilities of a random node or edge being
in C are governed by the following asymptotic properties:

1. If Âk k(k�2) Pk > 0, then there is a unique x 2 (0,1) such that g⇤(x ) = x and

P[v 2 C ]
P�! 1�g(x )> 0 , (4.6)

P[v 2 C \Nk]
P�! Pk(1�x

k), for every k � 0 , (4.7)

P[` 2 C ]
P�! (1�x

2)> 0 . (4.8)

2. If Âk k(k�2) Pk  0, then unless P2 = 1, P[v 2 C ]
P�! 0 and P[` 2 C ]

P�! 0.
3. In the trivial special case when P2 = 1, then Âk k(k�2) Pk = 0 and P[v2C ]

P�! 1
and P[` 2 C ]

P�! 1.

This proposition can be phrased in w.h.p. terms: for example, Part 1 means that
with high probability each G⇤(N,d) has a giant cluster if Âk k(k� 2) Pk > 0. The
formal proof of this result is based on the asymptotic locally tree-like property of
large configuration graphs expressed in equation (3.27) that says the outgoing edges
of any node connect to random subgraphs that can be treated as independent. First
we introduce a useful definition that will enable us to interpret x as a probability of
a specific event.

Definition 10. Suppose a node property P is local, meaning the condition w2P is
determined by conditions on the nearest neighbours v 2 Nw. Then, for any directed
edge (v,w), we say that w satisfies the local property P without regarding v, and
write “w 2 P WOR v”, if the property is determined by these conditions on all
nearest neighbours v0 2 Nw excluding v.

In our problem, connectedness is a local node property and so for any directed
edge (v,w),

{w 2 C c WOR v}= {(Nw \ v)\C = /0}

whereas
{w 2 C c}= {Nw \C = /0} .

Formal Proof of Proposition 2: We can analyze the probability a = P[v 2 C c]
in terms of WOR probabilities. If v has degree k, then v 2 C c is a local property
equivalent to w 2 C c WOR v for each of the k neighbours wi 2Nv, i  k. Moreover,
by the LT property, these k events form a mutually independent collection. Thus, if
we define

x = P[w 2 C c WOR v|w 2 Nv] (4.9)
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then

P[v2C c] =Â
k
P[kv = k]P[wi 2C c WOR v, i k|Nv = {wi}ik] =Â

k
Pkx

k := g(x ) .

(4.10)
If w has degree k and w 2 Nv then w 2 C c WOR v is equivalent to w0 2 C c WOR w
for each of the remaining k�1 neighbours w0 2 Nw \ v. Thus, just as before,

x = Â
k

P[kw = k|w 2 Nv]x
k�1 = Â

k
Qkx

k�1 = g⇤(x ) . (4.11)

Since g⇤ is itself the generating function of the P⇤ distribution, the discussion lead-
ing to Theorem 7 applies here, and we find the three cases for percolation, super-
critical, critical and subcritical, correspond to the cases g⇤

0
(1) > 1, g⇤

0
(1) = 1, and

g⇤
0
(1)< 1. We also have

P[v 2 C c,v 2 Nk] = P[v 2 C c|kv = k]Pk = Pkx

k

which verifies (4.7). Finally, for `= (v,w), one can easily see that `2C c means both
w 2 C c WOR v and v 2 C c WOR w and since these two events are independent and
have probability x , (4.8) follows. We also see that the fixed point x of the equation
g⇤(x ) = x can be interpreted as a “without regarding” probability. ut

To show why this formal proof cannot easily be made rigorous, but nonetheless
it indicates a fundamental fact about finite N configuration graphs, we now provide
a rigorous proof of an analogous, but very much weaker result. For any sequence of
size N undirected random graphs g = (N ,E ), define the following WOR proba-
bilities recursively:

ĥ

(n,N)
k = EN

h
E�1 Â

`=(v,w)2E

1(kw = k,N n
w = /0 WOR v)

i
(4.12)

where N 1
w = /0 WOR v means N 1

w = {v} and for n > 1, N n
w = /0 WOR v means

N n�1
w0 = /0 WOR w for all w0 2 Nw \ v.

Proposition 3. Consider the undirected configuration graph sequence with P sup-
ported on the finite set {0,1, . . . ,K}. Then for any finite n � 1 and k  K, as N ! •

|ĥ(n,N)
k �Qk(xn�1)

k�1| P
= O(N�1/2) (4.13)

where xn�1 = (g⇤ �g⇤ · · ·�g⇤| {z }
n factors

)(0), g⇤(x) = Âk>0 Qk xk�1, and Qk := kPk/z.

Proof of Proposition 3: The proof depends on having a rigorous proof of the LT
property for the underlying undirected configuration graph construction. This can
be proved by a much simpler version of the proof of Theorem 4 for the directed
ACG model. Fortunately, we do not need to spell out these details here, but we will
use its basic properties.
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Note that by edge permutation symmetry of Step 2 of the configuration graph
construction, and iterated expectations with the intermediate conditioning on the
result X of Step 1,

ĥ

(n,N)
k = EN

h
EN [1(kw1 = k,N n

w1
= /0 WOR w0)|X ]

i
(4.14)

where ` = (v,w) = (w0,w1) has been taken as the first link of the wiring sequence
W . Now introduce a recursive labelling of the nodes in the increasing sequence of
neighbourhoods N 0

w1
⇢N 1

w1
· · ·⇢N n�1

w1
. Label w1 :=N 0

w1
by l (w1) = 1 and let its

degree be k(l (w1)) = k1. Label any w 2 N i
w1

\N i�1
w1

, i > 0 by the i+1 component
vector (l (s(w)), j) for some index j  k(l (s(w)) where s(w) 2 N i�1

w1
denotes the

node to which w attaches . Assign this node w a positive degree k(l (w)). Finally,
note that for N n

w1
= /0 WOR w0) it is necessary and sufficient for k(l (w)) = 1 for

all w 2 N n�1
w1

\N n�2
w1

.
For fixed n, the set of all possible degree labellings is finite, and has a natural

lexicographic order which we follow in growing the skeleton graph link-by-link.
The inner expectation of (4.14) can be written

Â
k1

· · · Â
kn�1

EN
h
1(kw1 = k) ’

w2N n�1
w1

1(kw = k(l (w)))
���h,X

i
. (4.15)

Here each sum over ki is a sum over the possible degrees of the nodes in N i
w1

\
N i�1

w1
. Each term in the overall sum corresponds to one possible neighbourhood

h=N n�1
w1

, which is a fully labelled “configuration” h rooted to w0, as it was defined
in Section 3.3.2. By an undirected, non-assortative version of Theorem 4, we can
conclude that the finite sum in (4.15) equals its N ! • limit ĥ

(n,•)
k up to an 1+

O(N�1/2) factor.
Since by Theorem 4, configurations h in (4.15) with cycles go to zero in the limit,

(4.15) is asymptotic to a sum over tree configurations h, which has the value

ĥ

(n,•)
k = Qk Â

k1

· · · Â
kn�1

’
w2N n�1

w1

Qkw

which is an exact version of the GW process with generating function g⇤. We can
therefore conclude that ĥ

(n,N)
k

P
= Qk(xn�1)k�1 +O(N�1/2) as required. ut

Remarks 2.

1. Obviously, this proposition gives little indication of the accuracy of the N = •
approximation to ĥ

(n,N)
k . Nor does it allow us to interchange the N ! • and

n ! • limits to deduce anything about ĥ

(•,N)
k .

2. On the other hand, the logic of the proof is completely robust, and can be applied
whenever an LT property similar to Theorem 4 is true. It proves that the first n
steps of the limiting branching process with generating functions g,g⇤ approx-
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imates the probability that a random connected cluster has diameters less than
n.

3. We can argue that this type of rigorous result is sufficient to justify the validity
of the formal propositions discussed in this chapter.

4.3 Site Percolation

Site percolation on a random graph asks about the connected clusters of subgraphs
created by the deletion of random nodes and their edges, and it has been found that
Proposition 2 extends beautifully to this more general setting. If we delete nodes v
(and their incident edges) of a configuration multigraph independently with proba-
bilities 1� dk determined by their degree k, it can be shown that the resultant sub-
graph is also a configuration multigraph with a new degree distribution P0. The
following theorem due to [54] gives the rigorous statement:

Theorem 8 (Theorem 3.5, [54]). Consider site percolation with deletion probabil-
ities 1�dk 2 [0,1], on the random configuration multigraph sequence G⇤(N,d) sat-
isfying Assumption 1. Then the subgraph has a giant cluster C with high probability
if and only if

Â
k

k(k�1) dk Pk > z := Â
k

k Pk . (4.16)

1. If (4.16) holds then there is a unique x 2 (0,1) such that

Â
k

k dk Pk(1�x

k�1) = z(1�x ) (4.17)

and then

P[v 2 C ]
P�! Â

k�1
dk Pk(1�x

k)> 0 , (4.18)

P[` 2 C ]
P�! 2

z

"
(1�x ) Â

k
k dk Pk �

1
2
(1�x )2 Â

k
k Pk

#
. (4.19)

2. If (4.16) does not hold, P[v 2 C ]
P�! 0 and P[` 2 C ]

P�! 0.

Why is this apparently special result relevant to our problem of financial cas-
cades? The detailed answer will be revealed shortly, but in the meantime, we can
explain that the key to understanding cascades in a simple financial network is to
focus on banks that are “vulnerable” in the sense that they default if only one debtor
bank defaults, and to delete all other banks (or edges). The resultant network of vul-
nerable banks has a giant in-cluster G� INV if and only if the analogue of (4.16) for
directed graphs holds. In this case, if any bank owing money to a bank in this giant
vulnerable in-cluster were to default, then all of the giant strongly connected vulner-
able cluster GSCCV eventually defaults. Moreover, the giant vulnerable out-cluster
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G�OUTV , must also eventually default. The result will be a global cascade. The
size of the global cascade will clearly be at least as big as G�OUTV . However, it
may be much larger since some banks that are not vulnerable to a single debtor’s
default may be vulnerable to two or more debtor defaults. Such secondary defaults
may seem unlikely in a locally-tree-like network since they are impossible on a tree.
However, they are likely to happen in a large LTI network if G�OUTV is itself
a large fraction of the network. This fact illustrates a subtlety in the term “locally
tree-like”: Even if there are few short cycles in a large LTI network, there are many
large cycles that connect the network on a large scale, and allow secondary defaults
to occur starting from a single seed default.

To understand this better, we now follow the idea that each bank has a threshold
number of defaulted neighbours that when exceeded implies its own default, which
is reminiscent of a concept that goes by the name of bootstrap percolation.

4.4 Bootstrap Percolation

We have just seen that the theory of site percolation can give an indication of the
conditions under which a global cascade can occur in a random network. When any
node adjacent to the giant vulnerable in-cluster defaults, then the entire giant vul-
nerable out-cluster will default. However, the resultant global cascade may be much
larger in extent than this, because of the possibility that less vulnerable nodes may
eventually succumb if they are susceptible when more than one neighbour is trig-
gered. Bootstrap percolation considers the general problem of dynamical cascades
on random networks where each susceptible (or inactive) node has a threshold r and
will succumb or become activated when the number of its succumbed (activated)
neighbours exceeds r.

In general, given a set of nodes v 2 N (which may be a graph or a regular
lattice) and a threshold function r : v 2 N ! {0,1, . . .}, then bootstrap percolation
is an increasing process of subgraphs defined by setting A0 = {v 2 N |r(v) = 0}
and for t � 1,

At = {v 2 N | r(v)  |Nv \At�1|} .

One can say that the threshold model percolates if the closure A = [t�0At grows
linearly with N as |N |! •.

The name bootstrap percolation was introduced in a paper [22] in a statistical
physics context to denote this type of dynamic percolation theory, and the subject
has had a rich development since then. The recent paper [10] focusses on a ver-
sion of bootstrap percolation on the random regular graph, and contains results and
references that are quite relevant to financial cascades.

Our investigations will now follow a similar type of process as we next con-
sider the simplest cascade model, that is essentially bootstrap percolation on the
undirected Poisson random graph. The Watts Cascade Model introduced in [82] has
been the inspiration for much subsequent work on financial cascades, and provides
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a prototype for the analytical techniques we shall develop in the remainder of the
book.

4.5 Watt’s 2002 Model of Global Cascades

This classic paper [82] at the heart of network science considers the problem of cas-
cades on a generic undirected random graph. A nice illustrative context is of a social
network, with nodes representing people linked to their friends. Each individual is
assigned a random threshold and is assumed to adopt a specific new technology,
say the latest iPhone, as soon as the number of their adopting friends exceeds this
threshold. The model addresses the question “how can one understand how social
contacts influence people to adopt the new technology?”. The mathematical analysis
of the model focuses on the transmission of “adoption” shocks over the friendship
links of the network. It determines conditions under which these shocks accumulate
and create a large scale adoption cascade, explaining why the product may even-
tually gain a large share of the market. This simple cascade model will serve as
a template for studying financial cascades such as the propagation of defaults and
liquidity shocks.

4.5.1 The Framework

The framework of the Watts model consists of two layers: the skeleton graph of
individuals linked to their friends, and an assignment of random values to people
that represents the threshold number of friends having adopted the technology that
will trigger that person to adopt. Amongst these nodes are the early adopters or
seed nodes defined to be those whose thresholds are zero. In comparison to our
notion of random financial network, we don’t need a third layer for exposures since
friendship links are all trivially set to have weights equal to 1. The full specification
of the model is:

1. The skeleton graph is the random undirected Gilbert graph model G(N, p)
of Section 3.2 with edge probability p and mean degree z = (N � 1)p. Here
N 2 {1,2, . . .} denotes the finite number of people and we introduce the node-
degree distribution P= (Pk)k=0,1,... with Binomial probabilities Pk = P[v2Nk] =

Bin(N �1, p,k).1 Recall that Bin(N �1,z/(N �1)) D�! Pois(z) as N ! •.
2. The thresholds are integer random variables D̄v � 0 meaning v will adopt when at

least D̄v of her friends have adopted. Conditioned on the skeleton, the collection
D̄v is assumed to be independent, and distributed depending on the degree kv, that

1 For any 0  k  N and p 2 [0,1], the Binomial probability Bin(N, p,k) =
�N

k
�

pk(1� p)N�k is the
probability of exactly k successes in N independent Bernoulli trials each with success probability
p.
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is,
P[D̄v = m|v 2 Nk] = dk,m, k,m 2 Z+

for discrete probability distributions dk,· parametrized by k. Let the cumulative
probability distributions be given by

Dk,m := P[D̄v  m|v 2 Nk] =
m

Â
y=0

dk,m, k,m 2 Z+ .

3. For each n = 0,1, . . . , we let Dn denote the set of nodes that have adopted after
n steps of the adoption cascade. These sets are defined inductively by D0 = {v 2
N : D̄v = 0} and

Dn = {v 2 N : D̄v  |Nv \Dn�1|} (4.20)

for n � 1. Their conditional probabilities are defined to be

p(n)k := P[v 2 Dn|v 2 Nk] . (4.21)

A randomly selected degree k node will be an early adopter or seed with probabil-
ity p(0)k := dk,0. Also, observe that the sequence {Dn}n�0 is increasing and converges
in at most N steps to D•, the set of nodes that eventually adopt.

In [82], the benchmark threshold specification was dk,m = r1(m = 0) + (1 �
r)1(m� 1 < 0.18k  m) which means early adopters are selected independently
with uniform probability p(0)k = r and the remaining nodes adopt when at least a
fraction f = 0.18 of their friends have adopted.

Exact large N results about the Watts model derive from a property based on the
without regarding concept introduced in Definition 10 in Section 4.2. This property
implies that a source of feedback that can be expected in general cascade models
is not present in the Watts model. Let Dn

v be the indicator function for the node
set Dn, and D̃n

v,w be the indicator for the set of directed edges (v,w) such that v 2
Dn WOR w. That is, with initial conditions D�1

v = 0, it holds that for n � 0:

Dn
v = 1(v 2 Dn) = 1

 
D̄v  Â

w02Nv

Dn�1
w0

!
(4.22)

D̃n
v,w = 1

 
D̄v  Â

w02Nv

Dn�1
w0 1(w0 6= w)

!
. (4.23)

Although (4.23) seems an intuitive definition for the condition v 2 Dn WOR w, the
next proposition shows that it is in fact natural to replace it by a self-consistent, not
equivalent, definition: Let D�1

v,w = 0 and for n � 0,

Dn
v,w = 1(v 2 Dn WOR w) = 1

 
D̄v  Â

w02Nv

Dn�1
w0,v 1(w0 6= w)

!
. (4.24)
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Proposition 4 (The WOR property of the Watts model). Let the Watts model
be specified by (N ,E ,{D̄v}) and the sequences {Dn

v , D̃n
v,w,Dn

v,w}n=�1,0,1,... de-
fined by the recursive equations (4.22), (4.23), (4.24) with the initial conditions
D�1

v ,D�1
v,w, D̃�1

v,w = 0. Then for all n � 0 and (v,w) 2 E

Dn
v = 1

 
D̄v  Â

w02Nv

Dn�1
w0,v

!
(4.25)

= 1

 
D̄v  Â

w02Nv

D̃n�1
w0,v

!
. (4.26)

In general, Dn
v,w  D̃n

v,w, with strict inequality only occurring if Dn�1
w = 1.

The last part of the theorem says that adoption shocks Dn
v,w and D̃n

v,w transmitted
to w can only differ when their impact is inconsequential because w has already
adopted.

Proof of Proposition 4: To prove (4.25) we introduce additional variables D̃n
v de-

fined recursively for n ��1 by D̃�1
v = 0 and

D̃n
v = 1

 
D̄v  Â

w02Nv

Dn�1
w0,v

!
. (4.27)

We show by induction on n that
D̃n

v = Dn
v (4.28)

for all n,v. The proof is based on the monotonicity in n of these recursive mappings,
that is Dn�1

v  Dn
v etcetera. First, note that (4.28) is true for n = �1,0. Then note

that by monotonicity D̃n
v  Dn

v for all n,v.
Now assume there is a minimal n � 1 and v such that 0 = D̃n

v < Dn
v = 1. Parsing

the defining conditions leads to the implication that Âw2Nv Dn�1
w,v < Âw2Nv Dn�1

w .
Since n is minimal, this in turn implies Dn�1

w,v < Dn�1
w = D̃n�1

w for some w 2 Nv.
Thus Dn�2

v,w = 1. This means Dn�2
v � Dn�2

v,w = 1 while D̃n�2
v  D̃n

v = 0. But by the
minimality of n, we must have that Dn�2

v = D̃n�2
v , which is a contradiction. We

conclude the non-existence of a minimal n � 2 and v such that 0 = D̃n
v < Dn

v = 1.
Thus (4.25) follows.

Since Dn
v,w  D̃n

v,w  D̃n
v = Dn

v it must be the case that

Dn
v = D̃n

v = 1

 
D̄v  Â

w02Nv

Dn�1
w0,v

!

 1

 
D̄v  Â

w02Nv

D̃n�1
w0,v

!
 1

 
D̄v  Â

w02Nv

Dn�1
w0

!
= Dn

v
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which proves (4.26). Finally, to prove the last part of the theorem, suppose Dn
v,w =

0, D̃n
v,w = 1. In this case D̃n

v = Dn
v � D̃n

v,w = 1 as well. Hence it must be that Dn�1
w,v = 1

and thus Dn�1
w = 1. ut

4.5.2 The Main Result

To state the core result in the Watts model, we introduce conditional and uncondi-
tional without regarding adoption probabilities:

p̂(n)k := P[w 2 Dn WOR v|w 2 Nk \Nv] (4.29)

p̂

(n) := P[w 2 Dn WOR v|w 2 Nv] (4.30)

and make use of (4.24) and (4.25) to derive inductive formulas for the collection of
probabilities p(n)k := P[v 2 Dn|v 2 Nk], p̂(n)k , p̂(n) for n � 1 in terms of the WOR-
probabilities p̂

(n�1), with the initial conditions p̂(0)k := dk,0, p̂(0) = Âk dk,0Qk. These
formulas are valid asymptotically in the limit as the network size N goes to infinity,
while keeping the probability data (Pk,dk,0) fixed.

Formal Proposition 9 (Watts Cascade Theorem). Consider the Watts model in the
limit as N ! •, with fixed mean degree z > 0 and with adoption threshold distribu-
tion functions dk,·,Dk,· for k � 0. Then:

1. The initial adoption probabilities are p(0)k = p̂(0)k = dk,0, p̂(0) = Âk dk,0Qk.
2. The collections p(n)k , p̂(n)k , p̂(n) for n � 1 are given by the recursion formulas

p(n)k = Gk( p̂(n�1)) :=
k

Â
m=0

Dk,m Bin(k, p̂(n�1),m) (4.31)

p̂(n)k = Ĝk( p̂(n�1)) :=
k�1

Â
m=0

Dk,m Bin(k�1, p̂(n�1),m) (4.32)

p̂

(n) = Â
k

p̂(n)k Qk . (4.33)

3. The probability p̂

(n) is given by a scalar mapping p̂

(n) = G(p̂(n�1)) where

G(p) = Â
k

k�1

Â
m=0

kPk

z
Dk,m Bin(k�1,p,m) . (4.34)

The mapping G : [0,1]! [0,1] is continuous, monotonically increasing and has
G(0) = p̂

(0). Therefore the sequence p̂

(n) converges to the least fixed point p 2
[0,1] with p = G(p).
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Formal Proof of Proposition 9: Part 1 is trivial. The proof of Part 2 is based on
two properties of the model. The first is the LT property of the skeleton as long
as N is sufficiently large, and the second is the conditional independence of the
thresholds D̄ , conditioned on the skeleton. Therefore, adoption shocks coming into
a node v along different links are always asymptotically independent as N ! •, and
this collection of shocks is independent of the threshold D̄v.

By the original definition of the set Dn,

p(n)k = P
h
D̄w  Â

w02Nw

1(w0 2 Dn�1)|w 2 Nk

i
(4.35)

One might try to argue that conditioned on w 2 Nk, the events {w0 2 Dn�1} over
nodes w0 2 Nw are mutually independent in the limit N ! • because of the locally
tree-like property that becomes exact as N ! •, and independent of D̄v because of
the further independence assumption. But this is erroneous: because the links are
bi-directional, each {w0 2 Dn�1} is in fact dependent on {w 2 Dn�2} and hence on
D̄w. However, by (4.24) each {w0 2 Dn�1 WOR w} is conditionally independent of
the state of D̄w. Using (4.25), (4.35) can be rewritten

p(n)k = P
h
D̄w  Â

w02Nw

1(w0 2 Dn�1 WOR w)|w 2 Nk

i
(4.36)

where the terms in the sum are k independent Bernoulli random variables. Further-
more, because of the independent edge condition, the Bernoulli probabilities are in-
dependent of kw, and thus are each p̂

(n�1). This leads to equation (4.31). Similarly,
using (4.24) we can compute that for random links (v,w)

p̂(n)k := P[w 2 Dn WOR v|w 2 Nv \Nk]

= P
h
D̄w  Â

w02Nw\v
1(w0 2 Dn�1 WOR w)|w 2 Nv \Nk

i
.

where now there are k�1 independent Bernoulli random variables in the sum, lead-
ing to (4.32). We also note that

p̂

(n) = Â
k
P[w 2 Dn WOR v|w 2 Nv \Nk] P[kw = k|w 2 Nv] (4.37)

and since P[kw = k|w 2 Nv] = Qk =
kPk
z from (4.5), we find

p̂

(n) = Â
k
P[w 2 Dn WOR v|w 2 Nv \Nk] Qk (4.38)

which leads to (4.38). This verifies Part 2 of the proposition.
For Part 3, we note that the argument why limn!• p̂

(n) = p is the smallest fixed
point of G is precisely the same as the argument given for the extinction probability
h for percolation in Section 4.2. ut
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Reviewing for a moment Section 4.4, we can see that the main Proposition of the
Watts model and its formal proof are a template for what we can expect in variations
of bootstrap percolation dynamics.

4.5.3 The Cascade Condition

In this version of the Watts model, we notice that two initial seed probability dis-
tributions (p(0)k ) giving the same scalar value p̂

(0) lead to the same sequence (p(n)k )
for n � 1. So we can consider equally weighted schemes where initial seeds are uni-
formly random with p(0)k = p̂

(0). Then, essentially, the cascade is the iterated scalar
mapping G that converges to the fixed point p , and the probability that a degree k
node eventually defaults is

p(•)
k = Gk(p)

Let us consider initial seed probabilities p(0)k = p̂

(0) = e and small e > 0. We
can write Dk,m = e +(1� e)D̃k,m where D̃k,m = P[D̄v  m|v 2 Nk, D̄v 6= 0] is the
threshold CDF conditioned on not being an early adopter and consider the fixed
point of G(·;e, D̃) as a function of e for fixed D̃. The most important question to
ask is whether the fixed point p(e) is of order e or of order 1 as e ! 0. In other
words, what is the cascade condition that determines if an infinitesimally small
seed fraction will grow to a large-scale cascade? It turns out this depends on the
derivative ∂G(0;e, D̃)/∂p at e = 0, which is easy to calculate:

∂G(0;0, D̃)

∂p

=Â
k

k�1

Â
m=0

kPk

z
D̃k,m

✓
k�1

m

◆
[1(m= 1)�(k�1)1(m= 0)] =Â

k

k(k�1) Pk dk,1

z
.

(4.39)

Formal Proposition 10. Consider the Watts model in the limit as N ! •, with fixed
mean degree z > 0.

1. If the cascade condition ∂G(0;0, D̃)/∂p > 1 is true, then there is ē > 0 such
that |p(e)| > ē for all e > 0. That is, under this condition, an initial seed with
a positive fraction of nodes will almost surely trigger a cascade fraction larger
than ē .

2. If ∂G(0;0, D̃)/∂p < 1 then there is ē > 0 and C such that for all 0 < e < ē ,
|p(e)|Ce . That is, this network will almost surely not exhibit large scale cas-
cades for any initial seed with fractional size less than ē .

We can interpret this condition by comparing (4.39) to the main result Proposi-
tion 8 for site percolation. We see that the above cascade condition is identical to
the site percolation condition of (4.16), if we look at the connectivity of the sub-
graph obtained by deleting all sites except those with D̄  1. This connection to site
percolation becomes even clearer in the next subsection.
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4.5.4 The Frequency of Global Cascades

A necessary condition for a single seed node to trigger a very large cascade is that
some of its neighbours are vulnerable in the sense that they are susceptible to adopt
given that only one of their neighbours adopts. If there are few cycles in the graph,
then any potential large scale cascade must first grow through vulnerable nodes, and
only when the cascade is sufficiently developed will less vulnerable nodes begin to
adopt.

In the infinite network with a single seed, dk,0 = 0 for all k and the set of vulner-
able nodes V ⇢ N is defined by the condition D̄v  1, which has probability dk,1 if
kv = k. We consider whether or not V has a giant cluster CV . Supposing the cluster
CV is giant, then the condition v 2 C c

V means either v /2 V or v 2 V and all neigh-
bours w 2 Nv are not in C without regarding v. If x = P[w 2 C c

V WOR v|w 2 Nv],
the logic outlined in Section 4.5.2 implies

P[v 2 C c
V ] = Â

k
Pk

h
(1�dk,1)+dk,1x

k
i
. (4.40)

Moreover, following the same logic,

x := P[w 2 C c
V WOR v|w 2 Nv] = Â

k
Qk

h
(1�dk,1)+dk,1x

k�1
i

:= f (x ) . (4.41)

Now the function f maps [0,1] to itself, is increasing and convex, and has f (0)> 0
and f (1) = 1. As illustrated by Figure 4.1, for (4.41) to have a non-trivial fixed point
x < 1, it is necessary and sufficient that f 0(1)> 1, that is,

Â
k

k(k�1)Pkdk,1 > z

which we recognize as the cascade condition from the previous subsection. When
Âk k(k�1)Pkdk,1 < z, the argument can be reversed and one finds that there can be
no giant vulnerable cluster.

For a global cascade to arise from a single seed, it is sufficient and almost nec-
essary for the random seed to have at least one neighbour in the giant vulnerable
cluster CV , which occurs with frequency

f = Â
k

Pk (1�x

k) . (4.42)

In this case, a cascade of at least the size of CV will result. However, since the
CV is a positive fraction of the entire network, a positive fraction of adoptions by
less vulnerable nodes is possible, and therefore the extent of the global cascade that
results may be substantially larger than CV .
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Fig. 4.1 Two possible fixed point configurations are illustrated. The supercritical case is found for
the green curve showing the function f (x ) = e�3(x�1)/2, which has a non-trivial fixed point x < 1.
The blue curve showing f (x ) = e�2(x�1)/3 has only the trivial fixed point at x = 1 and corresponds
to a sub-critical random graph.

4.6 Numerical Experiments on the Watts Model

We illustrate the Watts Cascade model by reproducing some of the numerics of the
original specification:

• The skeleton is an undirected G(N, p) (Gilbert) random graph with N = 10000
and edge probability p = z/(N � 1), chosen with the mean node degree z 2
[0,10]⌧ N so that the graph is sparse.

• There is an initial seed of adopters chosen uniformly with probability P[v 2
D0] := p(0) ⌧ 1 and the remaining nodes have thresholds

D̄v = min{i : i � f

⇤kv}1(v /2 D0)

for the default value f

⇤ = 0.18.
• Link weights are equal to one: W̄wv = 1.

Since N = 10000 is large, and the G(N, p) model is a configuration graph, we
expect Proposition 9 to yield the probability of eventual default p(•)

k = Gk(p) with
only small finite size error effects. To make a proper comparison between the finite
network computed by Monte Carlo simulation and the infinite network computed
analytically, it is important to understand how to generate the initial seed. In the
infinite network, any positive initial seed probability generates an infinite set of early
adopters. When the density of adopters p(0) is small, each seed generates a “mini-
cascade” far from the others, and a large scale cascade will be generated if at least
one seed succeeds in generating a large cascade. This will happen almost surely if
each single seed has a positive probability of generating a large cascade, that is when
the cascade condition of Proposition 10 is true. Moreover, in this case percolation
theory suggests that the fractional size of the large scale cascade, that is, the expected
default probability, will exceed the fractional size of the giant vulnerable cluster
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CV (recall that on undirected networks, the various giant clusters coincide: CV =
G� INV = GSCCV = G�OUTV ). On the other hand, the probability of a “mini-
cascade” growing to a global cascade is zero when there is no giant vulnerable
cluster: This defines the non-cascading region of parameter space, where almost
surely no global cascade will arise.

In a Monte Carlo realization of the finite network, we can assert that with high
probability a single random adoption seed will grow to a large fraction of the net-
work if and only if it lands on or beside a giant vulnerable cluster CV . This will
happen with probability f given approximately by (4.42). On the other hand, taking
an intermediate seed fraction, say 100/10000, will generate 100 roughly indepen-
dent “mini-cascades”, each of which has a probability f of becoming a large scale
cascade taking up a significant fraction of the network. Supposing the probability
f of hitting CV is not too small, say f & 0.01, then the probability of a large scale
cascade will be about 1� (1� f )100, which will be close to one.

Experiment 1: We generated Nsim = 50 realizations of the network, each with 50
randomly generated seed nodes and compared the results to the analytic formula for
the eventual adoption probability p(•) = Âk Pk p(•)

k from Theorem 9 with initial seed
probability p

(0) = 0.005. Figure 4.2(a) shows the results.
In addition to the close agreement between the Monte Carlo and analytical re-

sults, we observe in this graph the well known “contagion window” for z in the
approximate range [1,7]. The upper and lower thresholds of this windowcorrespond
to the values of the mean degree for which the connected vulnerable out-component
CV becomes “giant”. The contagion window determined by the analytical formula
becomes exact as p

(0) ! 0. The transition near the upper threshold shown in the
Monte Carlo result corresponds to the region where the default frequency f ⌧ 0.01
and thus in most realizations none of the initial seeds hits CV . CV is small in this
parameter region because when f

⇤ = 0.18 only links pointing to nodes with degree
5 or less are vulnerable.

Experiment 2: To make the correct comparison between the cascade frequency
f computed analytically by (4.42), and the Monte Carlo simulations, we should
generate only a single seed in our Monte Carlo simulations, and count the number
of simulations that lead to a cascade that can be considered “large” or “global”. In
a 10000 node network, we consider that a cascade of more than 50 adoptions is a
global cascade. Figure 4.2(b) shows the frequency at which single seeds trigger a
global cascade of at least 50 nodes in the finite network, and the infinite network
frequency given by (4.42).

Taken together, the two parts of Figure 4.2 verify the vulnerable percolation pic-
ture that global cascades can arise whenever CV is a significant fraction of the entire
network (say any positive fraction if N = •, or 0.5% if N = 10000). When this hap-
pens, a single isolated seed that happens to have at least one neighbour in CV will
trigger all of CV and more, a possibility that happens with probability f given by
the frequency formula (4.42).
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Fig. 4.2 These two graphs show (a) the mean fractional cascade size, and (b), the fractional ex-
tended vulnerable cluster size, in the benchmark Watts model with f

⇤ = 0.18, as a function of
mean degree z, as computed using the large N analytics of Theorem 9 (blue curve) and by Monte
Carlo simulation (red crosses). In Figure (a), the Monte Carlo computation involved Nsim = 50
realizations of the N = 10000 node graph, each with an initial seed generated by selecting nodes
independently with probability 0.5%. In Figure (b), the simulation involved Nsim = 2500 realiza-
tions of the N = 10000 node graph and a single random initial seed node.

4.7 Extensions of the Watts Model

The basic construction and main results of the previous section have been worked
out in many different guises. We outline here some of the main lines that have been
developed.

1. General degree distributions: The Poisson random graph model fails to cap-
ture most of the structural features observed in real world social networks. In
particular, it has a thin tailed degree distribution that is incompatible with the
type of fat-tails and power laws observed in real world networks. It turns out to
be straightforward to analyze the Watts model on general configuration graphs,
obtaining the same result as given by Proposition 9, for an arbitrary degree dis-
tribution Pk.

2. Mixtures of directed and undirected edges: In [13], percolation results are
proved in random networks with both directed and undirected edges and arbitrary
two-point correlations. Analysis of the Watts model in this network seems to be
a straightforward next step.

3. Assortative graphs: In Section 3.3, the usual directed configuration graph
structure was generalized to allow for assortativity, that is, non-independent
edge-type distributions Qk j. This generalization is important because observed fi-
nancial networks are typically disassortative, and this fact is expected to strongly
influence a network’s resilience to default. It was demonstrated in [51] that for
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the Gai-Kapadia 2010 default cascade model on assortative directed configura-
tion graphs, similar arguments lead to a characterization of the limiting default
probabilities in terms of the fixed points of a vector valued cascade mapping
G : RZ+ ! RZ+ .

4. Random edge weights: The Watts model allows only equal link weights,
whereas in reality, one might expect the strength of friendship links to be stochas-
tic. One might also expect that the statistical properties of friendship strength will
be related to the degree of connectivity of social contacts, i.e to the edge-type. As
first shown in [52], even capturing the adoption cascade with purely determinis-
tic dependence between link-strength and edge-degree in the Watts model turns
out to require an analysis of random link weights. In this more general setting,
that paper finds that limiting adoption probabilities are characterized in terms of
the fixed points of another vector-valued cascade mapping G : RZ+ ! RZ+ .

In the next chapter, we will explore such extensions, no longer in the Watts model
but in the context of systemic risk, by studying variations of the Gai-Kapadia de-
fault cascade model. First however, we pay a bit more attention to the mathematical
structure at its core that leads to such elegant large graph asymptotic results.

4.8 Dependence in Random Financial Networks

A random financial network, as defined in Section 2.4, consists of a skeleton graph,
decorated by additional random structures, namely balance sheets for each node
and exposures for each directed link. We have not yet considered how these nearly
infinite-dimensional random variables might be provided with multivariate distribu-
tions that reflect the nature of banks and their balance sheets, as well as the often
high uncertainty in our observations and knowledge of the system at an arbitrary
moment in time. Let us consider what reasonable constraints can be made on the
possible dependence relating different balance sheet entries and exposures.

A reasonable hypothesis is that banks control their balance sheets while subject
to constraints imposed by the financial regulator. Important constraints are usually
expressed in the form of capital ratios, such as the minimum core tier one capital or
“capital adequacy ratio” (CAR), the liquidity coverage ratio (LCR) and net stable
funding ratio (NSFR). However, banks are monitored only intermittently by the reg-
ulators, and therefore banks have non-negligible probability of being non-compliant
at a random moment in time. Indeed, a financial crisis, almost by definition, typi-
cally occurs at a moment when one or more banks have been hit by shocks that have
made them non-compliant.

A second reasonable hypothesis is that individual banks control their balance
sheets without knowledge of the balance sheets of other banks in the system. Inter-
bank exposure size is the result of a bargaining game between two counterparties
whose outcome depends on their connectivity and balance sheets. Notice the in-
trinsic conceptual difficulty in imagining the results of the myriad of overlapping
games being played within the network: to move forward will require overarching
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assumptions that capture some salient features of the observed interbank exposure
sizes. Moreover, each interbank link leads to some dependence between the inter-
bank components of balance sheets of counterparty banks, through the consistency
relations (2.37).

Pushing harder, we might make a third reasonable hypothesis that banks’ balance
sheets depend on the “type” of the bank, but when conditioned on the type of bank,
can be treated as independent of other banks. In the simplest RFN settings where we
equate bank type to node-degree, imagining that bank size (measured by total assets)
is strongly correlated with bank connectivity, implies that balance sheet dependency
arises only through the skeleton graph.

As a final consideration, we note that real financial network data is often highly
aggregated across counterparties and it is a problem to identify bank specific ran-
dom variables consistent with these observations. Treating such aggregated mea-
surements as constraints leads to system-wide dependence amongst banks’ balance
sheets that is impractical to model. Instead, one can impose such aggregate observa-
tions in expectation, providing linear constraints on the means of the more basic (and
independent) bank-specific random variables. This type of inconsistency is reduced
by the law of large numbers that assures that such aggregated random variables
become equal to their means in the large network limit.

We are about to commit to making a conceptual leap that will tame balance
sheet and exposure dependence by tying it directly to the dependence built into the
skeleton. Before doing so, one should imagine the alternative as an arbitrarily high-
dimensional random describing a large, partly measured financial network. Such an
object is extremely complex. Even the marginal distributions of essential quantities
necessarily have high uncertainty, while specifying dependence in such a setting is
orders of complexity beyond specifying marginals. The dependence assumptions we
now make are intended to be reasonable: they enable both Monte Carlo and analyti-
cal experiments to run side by side, and so computational tools become available to
explore the consequences of the assumptions. We do not claim that our dependence
assumptions rest on fundamental economic principles.

We consider a RFN adapted to a cascade mechanism such as those discussed in
Chapter 2, parametrized by the reduced quadruple (N ,E , D̄ ,W̄). The key to taming
dependence is to allow the skeleton (N ,E ) to determine the overall dependence in
the network. Conceptually, we first draw a random skeleton, finite or infinite. Then,
conditioned on the realization of the skeleton, we draw remaining random variables
independently. Moreover, the dependence of these random variables on the skeleton
will be local. That is, the marginal distributions of node variables (buffers) depend
only on the type of the node itself and not on the type of its neighbours. Similarly,
the marginal distribution of each edge variable (exposure) depends only on the type
of the edge.

It is helpful to express this definition in terms of general probability theory as
developed for example in Chapters One and Two in Volume Two of the popular
book on stochastic calculus by Shreve [77]. The probability framework is expressed
in terms of the triple (W 0,F ,P), where W

0 is the sample space, P is the probability
measure, and F is the information set, or sigma-algebra. F can be reduced to a



100 4 Percolation and Cascades

union of sub-sigma-algebras

F = G _F
D

_F
W

.

where: G denotes the information contained in the directed skeleton (N ,E ); F
D

denotes the information of the collection of buffers D̄v; F
W

denotes the informa-
tion of the collection of exposures W̄`. Then the dependence of D̄v only on the type
( jv,kv) of the node v can be expressed in terms of expectations conditioned on know-
ing all information apart from the information of D̄v, measured by the sigma algebra
s(D̄v it generates: it holds that for any bounded Borel function f and a randomly
selected node v 2 N , there is a bounded Borel function g : Z2

+ ! R such that

E[ f (D̄v)|F \s(D̄v)] = g( jv,kv) .

This implies that the conditional CDF of D̄v is a function that depends only on its
type: there are Borel functions D jk such that for all x � 0

E[D̄v  x|F \s(D̄v),v 2 N jk] = D jk(x) . (4.43)

In the same way, for the exposure on a type (k, j) edge, it holds that there are Borel
functions Wk j such that for all x � 0

E[W̄`  x|F \s(W̄`),` 2 Ek j] =Wk j(x) . (4.44)

While the dynamics of cascades is determined by the specification of the reduced
RFN, questions of interpretation, and in particular, the impact of the cascade on the
financial system and the larger economy also require specifying the remaining bal-
ance sheet random variables. Of course, the interbank assets and liabilities Z̄v, X̄v are
determined endogenously by the exposures W̄ , and the buffer variables D̄ typically
amount to additional linear constraints on external balance sheet entries. In absence
of more detailed information than this, it makes sense to model such additional
random variables as combinations of a minimal collection of further independent
random variables.

The proposal to build RFNs this way is common in the literature on random
financial networks. For example, Nier et al in [72], start with a random directed
Poisson skeleton with 25 nodes, and conditioned on the skeleton, specify random
variables for buffers and exposures that depend on node and edge types, but are
otherwise independent.

4.8.1 The LTI Property

In the subsequent sections of the book, our analysis will focus on random ACG
skeletons, which in the large N limit have the locally tree-like property. In the ACG
setting, our dependence hypothesis becomes the following definition.
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Definition 11. A random financial network (RFN) (N ,E , D̄ ,W̄) is said to have the
locally tree-like independence (LTI) property when it satisfies the following condi-
tions:

1. The skeleton graph is an infinite (directed, indirected or mixed) ACG (N ,E ),
with arbitrary node and edge type distributions {P,Q}. In this general setting,
each node v is assigned its degree type tv, that is jk or k in the case of directed
and undirected graphs and more general for mixed graphs. Similarly, each edge `
is assigned its type t`, which may be k j or kk0 or more general. Here, the indices
j,k,k0 run over the collection of possible integer degrees.

2. Conditioned on the realization of the skeleton graph (N ,E ), the buffer random
variables D̄v, v 2 N and exposure random variables W̄`, ` 2 E form a mutually
independent collection. Moreover, the buffer distribution of D̄v depends only on
the type tv of v and the exposure distribution of W̄` depends only on the type t`

of `.

4.8.2 Ramifications of the LTI Property

As we shall see in the remainder of this book, the LTI property is designed to enable
a cascade analysis in complex RFNs that follows the computational template laid out
in our simple version of the Watts cascade model. This works essentially because
under LTI, the shocks transmitted through different edges entering a node never
have a chance to become dependent. The mathematical advantages that stem from
LTI will become clear as we proceed to other models.

To reiterate a second point, an essentially arbitrary dependence structure for the
balance sheet random variables D̄v,W̄` is dramatically reduced under LTI to the de-
pendence encoded into the skeleton graph. Thus LTI reins in the amount of informa-
tion needed to completely specify an RFN model. If one feels a given dependence
structure induced by the skeleton is overly restrictive, yet wishes to retain the LTI
property, one can explore the further option to add complexity to the RFN at the
skeleton level, for example, by extending the concept of node and edge types using
the IRG construction described in Section 3.4.

The question to ask of our proposed conceptual framework is thus pragmatic:
why or when can we hope that computations based on the LTI assumption will have
some predictive power when transferred to a real world network model where the
assumption is apparently far from true. Pushing further, is it possible to weaken the
LTI assumption, and to extend its exact consequences to a broader setting? Some
measure of optimism that LTI computations are predictive even when the skeleton
graph has high clustering or is otherwise far from locally-treelike can be gained by
extensive investigations of the question in the random network literature. For ex-
ample, [63] makes a strong case for the “unreasonable effectiveness” of tree-based
theory for networks with clustering, and gives some guidelines to predict the cir-
cumstances under which tree-based theory can provide useful approximations.





Chapter 5
Zero Recovery Default Cascades

Abstract This chapter realizes the central aim of the book, which is to understand
a simple class of cascades on financial networks as a generalization of percolation
theory. The main results apply to random financial networks with locally tree-like in-
dependence and characterize zero-recovery default cascade equilibria as fixed points
of certain cascade mappings. The proofs of the main results follow a new and dis-
tinctive template presented here for the first time, that has the important virtue that
its logic extends to LTI financial networks of arbitrary complexity. Numerical com-
putations, both large network analytics and finite Monte Carlo simulations, verify
that essential characteristics such as cascade extent and cascade frequency can be
derived from the properties of the cascade fixed points.

Keywords: Directed configuration graph, random buffers, random edge weights,
cascade mapping theorem, numerical implementation.

In Chapter 3 we have understood something about possible models for the skele-
ton of a financial network, and in Chapter 4 we showed how two concepts, bootstrap
percolation and site percolation, reveal the nature of the cascades observed in the
Watts model. It is time to return our attention to financial networks and to investi-
gate how well the various systemic cascade mechanisms described in Chapter 2 can
be adapted to the setting of random financial networks, using the Watts model as a
template. In this chapter, we confine the discussion to simple default cascades, un-
der the condition of zero recovery as assumed by [42]: during a crisis banks recover
none of their assets loaned to a defaulted bank.

At a theoretical level, perhaps the most important new contribution of this chapter
is the proof of Theorem 12 which provides the explicit large N asymptotic limit of
the cascade mapping for the extended G-K default cascade model. This proof is very
different in spirit and detail than the well-known proof given in a similar setting by
Amini, Cont and Minca [7].

We begin again with a network of N banks whose schematic balance sheets are
as shown in Table 2.1, consisting of the collection of book values (Ȳ, Z̄, D̄, X̄,W̄)
with interbank exposures W̄` = W̄wv (what w owes v) that are consistent with the

103
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interbank assets and liabilities

Z̄v = Â
w

W̄wv, X̄v = Â
w

W̄vw .

The initial capital buffer of bank v is defined by D̄v = Ȳv + Z̄v � D̄v � X̄v. At the
onset of our schematic financial crisis, certain banks are found to be initially insol-
vent, defined by the condition D̄v  0. By the law of limited liability, insolvency
is assumed to trigger immediate default. Under an assumption about the loss given
default, losses will be transmitted to both external creditors, and, importantly for
systemic risk, to creditor banks. This implies the possibility of a default cascade
crisis.

We suppose that counterparty relations, i.e. links, are expensive to maintain, and
so in a large network, the matrix of counterparties is sparse. These relationships are
also changing in time, and not easily observable, and can therefore considered to be
random: the skeleton graph is a large, sparse, directed random graph (N ,E ). The
balance sheets likewise change rapidly, are not well observed, and can be thought
of as random variables. Under such conditions, we have argued that it is appropriate
to adopt the notion of random financial network (RFN) with the locally tree-like
independent (LTI) assumption of Section 4.8.1 as the underlying dependence hy-
pothesis.

In the present chapter we focus our attention on the simplest of default mecha-
nisms, namely the zero recovery mechanism of Gai and Kapadia [42], governed by
the cascade equation (2.14) we derived in Chapter 2 :

D

(n)
v = D̄v �Â

w
W̄wv(1� h̃(D (n�1)

w )) = D̄v �Â
w

W̄wv1(D (n�1)
w  0)) (5.1)

with initial values D

(0)
v = D̄v. As we observed earlier, these equations, and there-

fore the entire cascade dynamics, depend only on the skeleton graph (N ,E ) and
the reduced balance sheet variables D̄ ,W̄ . Our central aim is to apply this cascade
mechanism to a RFN that satisfies the LTI hypothesis, and to determine the large
scale properties of the behaviour that results.

5.1 The Gai-Kapadia Model

The specification of the Gai-Kapadia model we first present generalizes the default
cascade introduced by [42] in several respects, but retains a restrictive condition
on exposures W̄ that will be removed later in the chapter. It also satisfies the LTI
property of Section 4.8.1.
Assumptions 6.
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1. As in the description of the model in Section 2.1.3, banks have limited liability
and receive a zero recovery1 of interbank liabilities from any defaulted debtor
bank.

2. The skeleton graph is a directed ACG with probabilities (P,Q) that satisfy the
consistency conditions (3.2) with mean degree z.

3. Conditionally on the skeleton, banks’ capital buffers D̄v are a collection of inde-
pendent non-negative random variables whose cumulative probability distribu-
tions depend on the node type ( jv,kv) and are given by

P[D̄v  x|v 2 N jk] := D jk(x), x � 0 . (5.2)

4. Interbank exposures W̄wv are deterministic constants that are equal across the
debtors w 2 N �

v of each bank v, and depend on the degree type ( jv,kv) of v.2
This implies W̄wv = W̄ jk when v 2 N jk where W̄ jk = Z̄ jk/ j for a collection of
interbank asset parameters Z̄ jk.

5. The remaining balance sheet quantities are freely specified.

Apart from the restrictive condition on exposures W̄ , this is a natural setting for
the G-K default cascade. The G-K cascade mechanism has a symmetry that allows
the rescaling of every bank and its exposures, while leaving the sequence of defaults
unchanged. As one checks easily, if lv,v 2N is any collection of positive numbers,
specifications D̄v,W̄wv and lvD̄v,lvW̄wv lead to identical cascades. Therefore, our
restriction on exposures is equivalent to saying that they can simultaneously be set
to 1 under this symmetry, by taking lv = l jk = j/Z̄ jk for each v2N jk. For example,
taking l jk = 5 j changes the benchmark exposures chosen by Gai and Kapadia in
their paper [42] to constant exposures W̄ = 1.

5.1.1 Shocks and the Solvency Condition

Like the early adopters that initiate Watts’ adoption cascades, our schematic finan-
cial crises are triggered by a set D0 of initially defaulted banks. Perhaps they default
as the result of a collective shock to the system, leaving the remaining banks with
depleted capital buffers. Or perhaps one bank defaults for idiosyncratic reasons. All
such cases can be modelled by supposing these initially defaulted banks have D̄v = 0
while the remaining banks have positive buffers. The set of initially defaulted banks
D0 = {v : D̄v = 0} thus has conditional probability

p(0)jk := P[v 2 D0|v 2 N jk] = D jk(0) . (5.3)

1 It is a trivial matter to extend the model slightly to allow for a constant fractional recovery with
R < 1.
2 Temporarily, we allow W̄wv to depend only on the node type of v rather than the edge type of wv.
In the next section we will revert to the usual convention.
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If we define D�1
v = 0 for all v, then the indicator functions for the set Dn of

defaulted banks at step n � 0 are defined recursively by the formula

Dn
v := 1(v 2 Dn) = 1

 
D̄v  Â

w02Nv

W̄w0vDn�1
w0

!
. (5.4)

Note that the directed graph condition means that W̄w0v 6= 0 only if w0 2N �
v , which

implies the sum in (5.4) is actually over N �
v . We now present a formal derivation

of a recursive formula for the conditional default probabilities p(n)jk := P[v 2 Dn|v 2
N jk] after n � 0 cascade steps.

Consider first (5.4) for bank v at the n = 1 step, conditioned on the locally
tree-like skeleton (N ,E ). By the LTI property, when v 2 N jk, the debtor nodes
wi 2 N �

v , i 2 {1, . . . , j} := [ j] are distinct and {D̄v,D0
wi
} are independent random

variables. Therefore,

P[v 2 D1|N ,E ,v 2 N jk] = P
"

D̄v  W̄ jk · Â
i2[ j]

D0
wi

���N ,E ,v 2 N jk

#
(5.5)

=
j

Â
m=0

P
h
D̄v  W̄ jkm

���v 2 N jk

i
P
"

Â
i2[ j]

D0
wi
= m

���N ,E ,v 2 N jk

#

where we sum over all possible values m for the number of defaulted neighbours.
Knowing the skeleton determines the node types ( ji,ki) of each wi, and so summing
over s , denoting the possible size m subsets of the index set [ j], leads to

P
"

Â
i2[ j]

D0
wi
= m

���N ,E ,v 2 N jk

#

= Â
s⇢[ j],|s |=m

 

’
i2s

p(0)jiki

!  

’
i/2s

(1� p(0)jiki
)

!
. (5.6)

Now, to take the expectation over the skeleton (N ,E ) we refer back to the details
of the ACG construction of Section 3.3, in particular Theorem 4, which we apply
to the tree graph g which consists of v joined to its debtor nodes wi, i 2 [ j]. Using
a conditional version of (3.25) for this tree graph leads to the asymptotic large N
formula

E
" 

’
i2s

p(0)jiki

!  

’
i/2s

(1� p(0)jiki
)

!���v 2 N jk

#

= Â
j1,k1

· · · Â
j j ,k j

’
i2s

p(0)jiki ’
i/2s

(1� p(0)jiki
) ’

i2[ j]
(Pji|kiQki| j) .

By introducing p̃

(0)
j := Â j0,k0 p(0)j0k0Pj0|k0Qk0| j this expectation can be written
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(p̃(0)
j )m (1� p̃

(0)
j ) j�m . (5.7)

Finally, we put (5.6), (5.6), (5.7) together with the cumulative distribution function
for D̄v to obtain the formula for the n = 1 conditional default probability:

p(1)jk = P[v 2 D1|v 2 N jk] =
j

Â
m=0

D jk(mW̄ jk) Bin( j, p̃(0)
jk ,m) (5.8)

where W̄ jk = Z̄ jk/ j, Bin(·, ·, ·) denotes a binomial probability just as in (4.34), and

p̃

(0)
jk = P[w 2 D0|w 2 N �

v ,v 2 N jk] = Â
j0,k0

p(0)j0k0Pj0|k0Qk0| j . (5.9)

Note that p̃

(0)
jk = p̃

(0)
j is independent of k.

The extension of this argument to all n � 1 rests on the special relation between
the G-K mechanism and the LTI dependence structure of the model. We observe
that conditioned on (N ,E ), the event v 2 D1 depends on D̄v, D̄wi , i 2 [ jv] where
the wi 2 N �

v are nodes “up-stream” from v. We see that this upstream dependence
extends to all n when (N ,E ) is a tree graph, and will be asymptotically true as
N ! • on configuration graphs. Thus, under the LTI assumption, by induction on
n, the event v 2 Dn depends on the events wi 2 Dn�1 for wi 2 N �

v , i 2 [ jv] which
are conditionally independent and have identical default probabilities

p̃

(n�1)
j := P[w 2 Dn�1|w 2 N �

v , v 2 N jk] (5.10)

that do not depend on k. For reasons that will become clear in the next section, it is
natural to reexpress (5.10) in terms of a further collection of conditional probabili-
ties:

p̃

(n�1)
j = Â

k0
p

(n�1)
k0 Qk0| j (5.11)

p

(n�1)
k0 := P[w 2 Dn�1|kw = k0] = Â

j0
p(n�1)

j0k0 Pj0|k0 . (5.12)

Moreover, the conditional default probabilities p(n)jk = P[v 2 Dn|v 2 N jk] will be
given by a formula just like (5.8). This completes the formal justification for cascade
mapping formulas for the basic G-K model:

Formal Proposition 11 (Gai-Kapadia Cascade). Consider the sequence of G-K fi-
nancial networks (N,P,Q, D̄ ,W̄) satisfying Assumptions 6. Let p(0)jk = D jk(0) and

p

(0)
k0 = P[w 2 D0|kw = k0]. Then the following formulas hold in the limit as N ! •:

1. p̃

(0)
j = P[w 2 D0|w 2 N �

v , v 2 N jk] = Âk0 p
(0)
k0 Qk0| j , which is independent of k.

2. For any n= 1,2, . . . , the quantities p̃

(n�1)
j , p(n)jk ,p

(n)
k satisfy the recursive formulas
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p̃

(n�1)
j = Â

k0
p

(n�1)
k Qk0| j , (5.13)

p(n)jk := = P[v 2 Dn|v 2 N jk] =
j

Â
m=0

D jk(mW̄ jk) Bin( j, p̃(n�1)
j ,m) ,(5.14)

p

(n)
k = Â

j0
p(n)j0k Pj0|k . (5.15)

3. The new probabilities p

(n) = (p(n)
k ) are a vector valued function G(p(n�1)) which

is explicit in terms of the specification (N,P,Q, D̄ ,W̄).
4. The cascade mapping G maps [0,1]Z+ onto itself, and is monotonic, i.e. G(a)

G(b) whenever a  b, under the partial ordering relation defined by a  b if and
only if ak  bk for all k. Since p

(0) = G(0), the sequence p

(n) converges to the
least fixed point p

⇤ 2 [0,1]Z+ , that is

p

⇤ = G(p⇤) . (5.16)

Remark 4. When the skeleton is non-assortative, meaning Qk0| j =Q+
k0 is independent

of j, then each p̃

(n)
j = p̃

(n) is independent of j. Under this condition, the cascade
mapping can be reduced to a scalar function G̃ : p̃ 2 [0,1]! [0,1] and our theorem
is subsumed in the scalar cascade mapping of Theorem 3.6 in [7].

As compelling as Proposition 11 is, its power is weakened by the restrictive as-
sumption on the form of the interbank exposures. Let us therefore repair this de-
ficiency in the next section, before exploring the broader implications of the G-K
cascade mapping theorem.

5.2 The G-K Model with Random Link Weights

The primary motivation for allowing the link weights to become random variables
is to correct the asymmetry in the way interbank exposures are specified in the pre-
vious section. According to Assumption 6.4, “interbank exposures are deterministic
constants that are equal across the debtors of each bank”, which means essentially
that the creditor bank is choosing to lend equally to its counterparties. One can easily
argue the opposite case that the debtor bank might be the counterparty that chooses
to borrow equally. And that the reality is likely closer to a compromise, wherein
exposure sizes depend on attributes of both the borrower and the lender.

A look at the argument leading to Proposition 11 will convince one that if the
exposures W̄` for ` 2 E �

v depend deterministically on k` rather than j`, then they
will be effectively random variables when conditioned on the degree j`= jv. And the
main Proposition 11 cannot handle this fact. As we will now find, dealing with the
simple variation where the W̄` depend deterministically on k` rather than j` is just as
difficult as to deal with the more general case where the exposures W̄` are arbitrary
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random variables depending on both k`, j`. It is in this more general specification
that we find what is arguably the most natural setting for LTI default models with
zero recovery.

Thus, in this section we analyze the final version of the model assumptions,
namely Assumptions 6 with 6.4 replaced by 4.40

Assumption (6.4’). Each interbank exposure W̄` depends randomly on its edge
type (k`, j`). Conditionally on the skeleton, they form a collection of independent
nonnegative random variables, independent as well from the default buffers D̄v.
Their cumulative distribution functions (CDFs) and probability distribution func-
tions (PDFs) are given for x � 0 and any k, j by

Wk j(x) = P[W̄`  x|` 2 Ek j],

wk j(x) = dWk j(x)/dx . (5.17)

Note that these generalized assumptions, particularly the assumed independence
built into Assumptions 6.3, 6.40, are still consistent with the basic LTI structure
identified in Section 4.8. But now that exposures W̄` are random variables, we must
reconsider the previous analysis of the default cascade.

First we reconsider (5.5) which now takes the form

P[v 2 D1|N ,E ,v 2 N jk] = P
"

D̄v  Â
i2[ j]

W̄`iD
0
wi

���N ,E ,v 2 N jk

#

where `i = (wiv) for each i. Now, under this condition, W̄`i ,D
0
wi
, i2 [ j] is a collection

of independent random variables. We can calculate that

eW (0)
j (x) := P[W̄`iD

0
wi
 x|N ,E ,`i 2 E �

v ,v 2 N jk]

is independent of k and given by

eW (0)
j (x) = Â

k0
Qk0| j

⇣
(1�p

(0)
k0 )1(x � 0)+p

(0)
k0 Wk0 j(x)

⌘
. (5.18)

where as before, p

(0)
k0 = Â j0 p(0)j0k0 Pj0|k0 . By the LTI property, this conditional inde-

pendence of edge weights W̄`i and indicators Dn�1
wi

continues for higher n, and we
find that (5.18) extends to

eW (n�1)
j (x) = Â

k0
Qk0| j

⇣
(1�p

(n�1)
k0 )1(x � 0)+p

(n�1)
k0 Wk0 j(x)

⌘
(5.19)

for all n � 1. For this, we need to make the inductive verification using the LTI
property that for n � 0 the collection of defaulted node events wi 2 Dn�1 is mu-
tually independent, and independent of all buffer and exposure random variables
downstream to wi. Then it follows that, conditioned on (N ,E ) and v 2 N jk, the
collection of random variables 1(wi 2 Dn�1),W̄`i and D̄v are mutually independent.
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Bringing these pieces together, we find that for v 2 N jk, the conditional default
event v 2 Dn = {D̄v  Âi2[ j] W̄`iD

n�1
wi

} has the form

X  Z, Z :=
j

Â
i=1

Yi

where X ,Y1, . . . ,Yj are independent non-negative random variables. Moreover, their
CDFs are FX (x) = D jk(x) and FY (x) = eW n�1

j (x) with Yi ⇠Y , respectively. The prob-
ability in question is thus

P[X  Z] =
Z •

0

Z •

0
1(x  z) fX (x) fZ(z)dxdz =

Z

R
FX (z) fZ(z)dz = hFX , fZi (5.20)

where h f ,gi :=
R
R f̄ (x)g(x)dx is the usual (Hermitian) inner product over R. To

determine the PDF fZ(z) = F 0
Z(z) of Z, let us stop for a moment to review the con-

volution of probability density functions.
The sum of independent random variables Z = Â j

i=1 Yi with known PDFs fi(x)
has a PDF fZ(x) given by convolution:

fZ(x) = [ f1 ~ f2 ~ · · ·~ f j](x)

where the convolution product of functions is defined by

[ f ~g](x) =
Z

R
f (x� y)g(y)dy . (5.21)

In the present context, this means fZ is a convolution power, fZ = ( fY )~ j with

fY (x) = w̃(n�1)
j (x) =

d eW (n�1)
j (x)
dx

= Â
k0

Qk0| j

⇣
(1�p

(n�1)
k0 )d0(x)+p

(n�1)
k0 wk0 j(x)

⌘
.

(5.22)
Note that here we need to represent the point masses at Yi = 0 and other potential
point masses using delta functions da(x).

We can now put together what is perhaps the main result of this book, which is
the generalization of Proposition 11 to account for random link weights. Given its
importance to the overall theory of financial cascades, we will also provide in the
subsequent section a rigorous justification, similar to Proposition 3 in Section 4.2,
for the formal N = • arguments we have been contented with until now.

Formal Proposition 12 (Gai-Kapadia Cascade, RLW version). Consider the se-
quence of G-K financial networks (N,P,Q, D̄ ,W̄) satisfying Assumptions 6, with
Assumption 6.4 replaced by the random link weight Assumption 6.4’ above. Let
p(0)jk = D jk(0) and p

(0)
k = P[w 2D0|kw = k] be initial default probabilities. Then the

following formulas hold as N ! •:

1. For any n = 1,2, . . . , the quantities p(n)jk ,p
(n)
k satisfy the recursive formulas
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p(n)jk = hD jk,(ew
(n�1)
j )~ ji , (5.23)

p

(n)
k = Â

j0
p(n)j0k Pj0|k (5.24)

where the PDFs ew(n�1)
j (x) are given by (5.22).

2. The new probabilities p

(n) are a vector valued function G(p(n�1)) which is ex-
plicit in terms of the specification (N,P,Q, D̄ ,W̄).

3. The cascade mapping G maps [0,1]Z+ onto itself, and is monotonic. Since p

(0) =
G(0), the sequence p

(n) converges to the least fixed point p

⇤ 2 [0,1]Z+ , that is

p

⇤ = G(p⇤) . (5.25)

Remarks 3.

1. We observe that the main conclusion of Proposition 11, namely the existence of
a vector-valued monotonic cascade mapping G : [0,1]Z+ ! [0,1]Z+ remains true
with general random link weights.

2. The vector-valued fixed point equation seems to be the natural feature of this type
of model. In order to get a scalar fixed point condition such as the one obtained
in [7], we need to assume both non-assortatitivity, i.e. Qk j = Q+

k Q�
j , and that the

probability distributions of W̄wv depend on the degree type of v but not w.
3. The numerical computation of this cascade mapping now makes intensive use

of equation 5.23, which involves repeated high-dimensional integrations. Fortu-
nately, as demonstrated in [52], Fourier Transform methods make this type of
computation extremely efficient.

5.2.1 A Theorem on the G-K Cascade

The aim here is to support the formal argument for Proposition 12 with a rigorous
proof of a weaker statement about the same model. Amini, Cont and Minca, in [7],
have proved a scalar fixed point theorem for the cascade equilibrium in a narrower
version of the G-K model by an argument that extends random graph methods de-
veloped by [68] and many others. However, it seems difficult to extend their method
and ideas directly to more general settings. The method we now present provides an
alternative, flexible and simple approach that is applicable to a broad range of LTI
cascade models. We focus on computing the probability of events v 2 Dn:

p̃(n,N)
jk := EN

h
N�1 Â

v2N

1(v 2 Dn \N jk)] . (5.26)

on G-K networks of finite size N.

Theorem 13. Consider the sequence of G-K financial networks (N,P,Q, D̄ ,W̄) sat-
isfying Assumptions 6, with Assumption 6.4 replaced by the random link weight As-
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sumption 6.4’ above. Suppose also P,Q are supported on the finite set {0,1, . . . ,K}2.
Then for any finite n � 1 and j,k  K, as N ! •

|p̃(n,N)
jk �Pjk p(n)jk |

P
= O(N�1/2) (5.27)

where the quantities p(n)jk are given by the recursive formulas (5.23), (5.24).

Proof of Theorem 13: Note that by the node permutation symmetry of the ACG
construction, and iterated expectations with the intermediate conditioning on the
skeleton (N ,E )

p̂(n,N)
j0k0

= EN
h
EN [1(w0 2 Dn \N j0k0)|,(N ,E )]

i
(5.28)

where v = w0 is defined as the root of the wiring sequence W . The key observa-
tion is that the inner conditional expectation depends only on the n-th order in-
neighbourhood N �,n

w0 of w0 in (N ,E ) and is completely N independent. The N-
dependent outer expectation can be analyzed similarly to the proof of Proposition
3.

Introduce a recursive labelling l (w) of the nodes w 2 N �,n
w0 , together with their

node types t = ( j,k), in the increasing sequence of in-neighbourhoods N �,i
w0 . We

grow the neighbourhoods by sequentially adding in-edges following precisely the
algorithm developed in Section 3.3.2. Label w0 := N �,0

w0 by l (w0) = 0 and note
its type is t(w0) = ( j0,k0). Recursively, label any w 2 N �,i

w0 \N �,i�1
w0 , i > 0 by the

i+1 component vector (l (s(w)), j) for some index j  j(s(w)). Here s(w)2N i�1
w0

denotes the node to which w attaches. Assign node w a node-type t(l (w)).
For fixed n, the set L of all possible node labelings l is finite, and has a natural

lexicographic order which we follow in growing the skeleton graph link-by-link.
The expectation in (5.28) can be written

Pj0k0 Â
t1

· · ·Â
tn

PN [t1, . . . ,tn|h,w0 2 N j0k0 ] E[1(w0 2 Dn)|t1, . . . ,tn] (5.29)

We emphasize that here the expectation is N independent. Each sum over t i is a sum
over the possible types of the nodes in N �,i

w0 \N �,i�1
w0 , and thus each term in the

overall sum corresponds to one possible neighbourhood h = N �,n
w0 , which is a fully

labelled “configuration” h rooted to w0 as defined in Section 3.3.2. By Theorem 4
we can conclude that

PN [t1, . . . ,tn|h,w0 2 N j0k0 ] = ’
w2N �,n

w0

(Pjw|kwQkw| js(w) )(1+O(N�1/2))

when h is a tree, and O(N�1 when h has cycles. Therefore, up to an 1+O(N�1/2)
factor, the finite sum in (5.29) equals its N ! • limit which is a sum over tree
configurations h which by inspection has the value p(n)j0k0

given by Proposition 12.
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We conclude that
p̂(n,N)

j0k0

P
= Pj0k0 p(n)j0k0

+O(N�1/2) as required. ut

The structure of this proof is indeed not sensitive to the specific nature of the
cascade dynamics and random financial network, but is highly dependent on the
LTI property. Therefore, we have confidence that large N asymptotics will continue
to hold for a wide range of more complex network models as long as they have a
generalized LTI property. Note also that this strategy clearly works to yield rigorous
proofs for the Watts model of Section 4.5.2 and the basic G-K model of Section 5.1.

5.3 Measures of Cascade Impact

In cascade modelling, it is always important to have a number of economic measures
of the impact of such hypothetical crises. In this section, we explore some simple
statistical measures that can be computed analytically using the cascade mapping of
Proposition 12. The first global measure of cascade impact is of course the uncon-
ditional probability of eventual default, computed by

p⇤ := P[v 2 D•] = Â
jk

Pjk p(•)
jk . (5.30)

Also of interest are two variants of default probability that condition on a bank being
either a debtor or creditor of another bank. That is, if w 2 N �

v ,

p⇤� = P[w 2 D•|w 2 N �
v ] = Â

jk
Pj|k Q+

k p(•)
jk (5.31)

p⇤+ = P[v 2 D•|w 2 N �
v ] = Â

jk
Pk| j Q�

j p(•)
jk . (5.32)

Recall from Section 2.1.3 that the zero-recovery assumption implies there is a
large cost to the system at the time any bank defaults, and we are certainly interested
in computing measures of this impact. The first measure was defined by (2.16):

Default Cascade impact: DCI = N�1 Â
v

X̄v 1(v 2 D•) .

The expected default cascade impact per bank can easily be computed in terms
of the fixed point p

⇤ and the eventual default probabilities p⇤ = F(p⇤):

E[DCI] = Â
jk

PjkE

2

4 Â
`2E+

v

W̄` 1(v 2 D•)
���v 2 N jk

3

5 .

In an LTI model, the collection W̄`,` 2 E +
v and 1(v 2 D•) is mutually independent

conditioned on v 2 N jk , and for large N we have the asymptotic formula
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E[DCI] = Â
jk

kPjk p(•)
jk Â

j0
Q j0|kEW̄k j0 (5.33)

where EW̄k j := E[W̄`|` 2 Ek j] =
R
R+ x dWk j(x).

By comparing default cascade impact to the average buffer size E[D̄v] =Â jk Pjk
R
R+ x dD jk(x)

we also get a measure of the average eventual buffer size:

E[D (•)
v ] = N�1E

2

4Â
v

0

@
D̄v � Â

w2N �
v

W̄wv1(w 2 D•)

1

A

3

5= E[D̄v �DCI] . (5.34)

A slightly different measure of the cascade impact is the average shortfall of
banks’ buffers compared to the default shocks impacting them:

Average Shortfall: AS = N�1 Â
v

0

@ Â
w2N �

v

W̄wv1(w 2 D•)� D̄v

1

A
+

.

The expected average shortfall also has a nice formula which we can compute using
a formula related to (5.20): for two independent random variables X ,Z,

E[(Z�X)+]=
Z

R2
(z�x)+ fX (x) fZ(z) dxdz=

Z

R
F̃X (z) fZ(z) dz= hF̃X , fZi (5.35)

where F̃X (z) =
R z
�•(z� x) fX (x)dx is the integrated CDF of X . Thus we find the

expected average shortfall is

EAS = Â
jk

Pjk hD̃ jk,(ew
(•)
j )~ ji (5.36)

where D̃0
jk(x) = D jk(x) and ew(•)

j is the limit of (5.22) .

Default Correlation: We are also interested in default correlation and more refined
measures of joint default such as CoVaR introduced by [4]. The most basic network
measure of dependence is the joint probability of eventual default for counterparty
pairs (w,v):

p(•)
joint := P[w 2 D•,v 2 D•|w 2 N �

v ] .

Equivalently, one can compute the default probabilities of a bank conditioned on
default of one of its counterparties:

P[v 2 D•|w 2 D•,w 2 N �
v ] =

p(•)
joint

p⇤�
, P[w 2 D•|v 2 D•,w 2 N �

v ] =
p(•)

joint

p⇤+
(5.37)

where the denominators are the two natural conditional marginal default probabil-
ities from (5.31),(5.32). The easiest way to compute such quantities is first to dis-
aggregate the joint probability of nondefault over the types of w and v. We then
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have

P[w /2 D•,v /2 D•|w 2 N �
v \N j0k0 , v 2 N jk]

= P

2

4
Dw  Â

w02N �
w

Ww0wD•
w0 ,Dv  Â

w02N �
v

Ww0vD•
w01(w0 6= w)

���w 2 N �
v \N j0k0 , v 2 N jk

3

5

=
⇣

1�hD j0k0 ,(ew
(•)
j0 )~ j0 i

⌘⇣
1�hD jk,(ew

(•)
j )~ j�1i

⌘
.

Note that the convolution power in the second factor is reduced by 1 since it is
known that one counterparty of v has definitely not defaulted. Therefore, the uncon-
ditional joint probability of non-default is

P[w /2 D•,v /2 D•|v 2 N +
w ]

= Â
j0k0, jk

Pj0|k0Qk0 jPk| j

⇣
1�hD j0k0 ,(ew

(•)
j0 )~ j0 i

⌘⇣
1�hD jk,(ew

(•)
j ) j�1i

⌘

= Â
jk

Pk| j (1� p̃

⇤
j )
⇣

1�hD jk,(ew
(•)
j )~ j�1i

⌘

where p̃

⇤
j = Âk0 p

⇤
k0Qk0 j. Since the marginal probabilities of default are p⇤� and p⇤+

one can see that

p(•)
joint = P[w /2 D•,v /2 D•|v 2 N +

w ]+ p⇤�+ p⇤+�1 . (5.38)

5.4 The Cascade Condition

Just as in Section 4.5.3 we derived a cascade condition that characterizes the growth
of small cascades in the Watts model, we now consider the possibilities for cascades
on the Gai-Kapadia RFN that start with small initial default probabilities. That is,
we let D jk(0) = p(0)jk := e jk � 0 and suppose these are uniformly bounded by a small
positive number ē > 0:

|e| := max
jk

|e jk| ē .

Then the default buffer CDF (5.39) becomes

D jk(x) = e jk +(1� e jk)D̃ jk(x), x � 0 (5.39)

with D̃ interpreted as the CDF of D̄v conditioned on v not initially defaulted.
As we have remarked already, a very low density of initially defaulted banks

means they are likely to be far apart in the network and the only probable way for a
large cascade to develop is that there should be a positive probability for any single
bank to trigger an increasing sequence of defaults, without regard to other initially
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defaulted banks. In Section 4.5.3 we found for the Watts model that this statement
can be related to the existence of a giant connected “vulnerable” cluster.

We again write G(p) = G(p;e) for the cascade mapping, to highlight the depen-
dence on the parameters e and suppress the dependence on D̃. Now the sequence
p

(n) starting from the initial values p

(0) = G(0;e) must converge to the least fixed
point p

⇤(e). The question now is: is p

⇤(e) of order e or of order 1 as e ! 0? In other
words, is there a cascade condition that determines if an infinitesimally small initial
“seed” fraction will grow to a large-scale cascade? In view of the vector valued na-
ture of the cascade mapping, it turns out that the answer depends on the spectral ra-
dius of the derivative matrix —G with —Gk,k0 = ∂Gk/∂pk0 evaluated at p = 0;e = 0.
Recall that the spectral radius of —G, defined by ||—G|| := maxa:|a|=1 |—G ·a|, is the
largest eigenvalue of —G in absolute value.

In our framework, the derivative —G is easy to calculate:

—Gk,k0 = Â
j

j
�
hD̃ jk,wk0 ji� D̃ jk(0)

�
Qk0| j Pj|k . (5.40)

Note each component of —G is non-negative: To enable an elementary proof of the
following result, we assume each component is strictly positive and the degrees are
bounded.

Proposition 5 (Cascade Condition). Suppose the sequence of G-K financial net-
works (N,P,Q, D̄ ,W̄) has P,Q supported on the finite set {0,1, . . . ,K}2, and G is the
N = • cascade mapping defined by Proposition 12. Then —G defined by (5.40) is a
component-wise positive (K +1)-dimensional matrix such that:

1. If ||—G||> 1 , then there is ē > 0 such that for all e with 0 < |e|< ē , |p⇤(e)|> ē .
That is, in the N = • network, any uniform seed with a positive fraction will
trigger a cascade with default fraction bigger than ē almost surely.

2. If ||—G|| < 1, then there is ē > 0 and C such that for all e with 0 < |e| < ē ,
|p⇤(e)|  Ce . That is, the N = • network will almost surely not exhibit large
scale cascades for any infinitesimal seed.

Proof: Part 1: We write —G = M0 where M
e

= ∂G/∂p|
p=0,e . By continuous de-

pendence in e , there are values ē1 > 0 and l > 1 such that the matrix M
e

is positive
and has spectral radius ||M

e

||� l for all e with 0  e jk < ē1. Let us fix any such e .
By the Perron-Frobenius Theorem for positive matrices, there is a unique nor-

malized eigenvector v such that M
e

· v = |M
e

|v: it has all positive entries and nor-
malization |v|= 1. Taylor’s Theorem with a second order remainder implies that for
ē1 small enough there is C0 > 0 such that

G(a;e) = G(0;e)+M
e

·a+R(a), |R(a)|C0|a|2

for all a 2 [0,1]Z+ with |a| ē1 (note we drop the · notation in the following).
Now we show that the sequence a(1) = G(0;e),a(n+1) = G(a(n);e) leaves the set

|a| ē provided ē is chosen small enough (independently of e). For this, since ē1 >
0 there is b1 > 0 and a non-negative vector y1 such that a(1) = b1v+ y1. Assuming
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inductively that a(n) = bnv+yn for some bn > 0 and a non-negative vector yn and that
|a(n)| ē1, the monotonic property of G combined with Taylor’s Theorem implies

a(n+1) = G(a(n);e)� G(bnv;e)

= G(0;e)+bnM
e

· v+R(bnv)

� b1v+ y1 +
1
2
(1+l )bnv+

✓
1
2
(l �1)bnv+R(bnv)

◆

Let bn+1 = b1 +
1
2 (1+l )bn and note that yn+1 = a(n+1)�bn+1v � 0 provided ē 

min(ē1,
1

2C0 (l �1)min j v j). Since the sequence bn increases without bound, we can
iterate the inductive argument only a finite number of steps before |a(n+1)|> ē .

Part 2: By continuous dependence in both a and e , there are now values ē > 0 and
l = 1

2 (1+ ||—G||) < 1 such that the matrix Ma;e = ∂G/∂a|a;e has spectral radius
||Ma;e ||  l for all 0  e < ē and |a|  ē . Fix any such e . Now we note that for
vectors a,b with |a|, |b| ē we can use Taylor’s Theorem again to write

G(a;e)�G(b;e) = M
e

· (a�b)+R(a,b)

where the remainder has bound C00|a�b|2 for some C00 > 0. Then provided
|a(n+1)|, |a(n)| ē and ē  1�||—G||

4C00

|a(n+1)�a(n)| = |G(a(n);e)�G(a(n�1);e)|

 1
2
(l +1)|a(n)�a(n�1)|+

✓
1
2
(l �1)|a(n)�a(n�1)|+ |R(a(n),a(n�1))|

◆

 1
2
(l +1)|a(n)�a(n�1)|

for all n � 1. Since |G(0;e)|C0
e for some C0 > 0, we can iterate this inequality to

show |a(•)|Ce with C = 4C0
1�||—G|| . ut

We can understand the cascade condition more clearly by introducing the notion
of vulnerable edge which means a directed edge `= (wv) whose weight W̄` exceeds
the default buffer of its downstream node v = N +

` . For the following argument,
we suppose the network has only solvent banks, i.e. D jk(0) = 0 for all j,k. An
edge `= (wv) is thus vulnerable if and only if D̄v  W̄`. The matrix element —Gkk0

has a simple explanation that gives more intuition about the nature of the cascade
condition: it is the expected number of vulnerable edges ` with k` = k0 that enter a
node v with kv = k. Then for small values of p , one has a linear approximation for
the change in p in a single cascade step:

p

(m+1)
k �p

(m)
k = Â

k0
Gk,k0 (p

(m)mk0 �p

(m�1)
k0 )+O(|p|2) . (5.41)
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The condition for a global cascade starting from an infinitesimal seed is that the
matrix —G must have an expanding direction, i.e. an eigenvalue with magnitude
bigger than 1.

It turns out that the cascade condition is indeed a strong measure of systemic
risk in simulated networks. One can check that in the setting of independent edge
probabilities Qk j =Q+

k Q�
j and deterministic edge weights W̄wv = W̄ jk when v2N jk,

the spectral radius becomes

||—G||= Â
jk

jk
z

PjkP[D̄ j0k  W̄ j0k] ,

a result that has been derived in a rather different fashion by Gai and Kapadia [42]
and Amini, Cont and Minca [7]. [42] also extends Watt’s percolation theory ap-
proach [82] from undirected networks to directed nonassortative networks. We will
see in the next section that the percolation approach to the cascade condition further
extends to the general setting of directed assortative networks with random edge
weights.

5.4.1 Frequency and Size of Global Cascades

We learned in Section 4.5.3 that the possibility of a large scale cascade in the Watts
model depends on the connectivity of the directed subnetwork of vulnerable edges
and nodes, a problem related to site percolation. The previous section addressed the
potential for a small seed to grow into a global G-K cascade, and now we wish to
understand how the frequency of global cascades in large random networks is related
to the so-called extended in-component associated to the giant vulnerable cluster. In
the present context, a vulnerable cluster has the meaning of a connected subgraph
of the network consisting of vulnerable directed edges, where a vulnerable directed
edge is one whose weight is sufficient to exceed the default buffer of its downstream
node. We define:

• EV ⇢ E , the set of vulnerable directed edges;
• Es, the largest strongly connected set of vulnerable edges (the giant vulnerable

cluster of EV );
• Ei and Eo, the in-component and out-component of the giant vulnerable cluster,

i.e. the set of vulnerable edges that are connected to or from Es by a directed path
of vulnerable edges;

• 1�bk := P[` 2 Ei|k` = k], a conditional probability of an edge being in Ei;
• ak, jk0 = P[D̄v  W̄wv|` 2 E �

v ,k` = k,v 2 N jk0 ], the conditional probability of an
edge being vulnerable.

Now note that ` = (w,v) 2 E c
i (i.e. the complement of Ei) means either D̄v > W̄wv

or D̄v  W̄wv and all the kv “downstream” directed edges `0 2 E +
v are in the set E c

i .
Thus, invoking the LTI property of the model, one determines that for all k 2 Z+
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bk = Â
j

Q j|k Â
k0

Pk0| j

⇣
1�ak, jk0 +ak, jk0(bk0)

k0
⌘

:= Hk(b) (5.42)

where ak, jk0 = hD̃ jk0 ,wk ji. In other words, the vector b= (bk) satisfies the fixed point
equation b = H(b) where

Hk(b) = Â
jk0

Q j|k Pk0| j

⇣
1�hD̃ jk0 ,wk ji+ hD̃ jk0 ,wk ji(bk0)

k0
⌘
, k 2 Z+ . (5.43)

The equation b = H(b) has a trivial fixed point e = (1,1, . . .). In case e is a stable
fixed point, we expect that the set Ei will have probability zero. We now verify that
the cascade condition ||—G|| > 1 of Proposition 5 is equivalent to the condition
that e is an unstable fixed point, in which case there will be a nontrivial fixed point
0  b• < e that corresponds to the set Ei having positive probability. A sufficient
condition for e to be an unstable fixed point is that ||—H||> 1 where the derivative
—Hkk0 = (∂Hk/∂bk0)|b=e is given by

—Hkk0 = Â
j

k0Q j|kPk0| jhD̃ jk0 ,wk ji . (5.44)

One can verify directly that

—H = L

�1 · (—G)0 ·L

for the diagonal matrix Lkk0 = dkk0kQ+
k and from this it follows that the spectrum,

and hence the spectral radii and spectral norms, of —H and —G are equal. Hence
||—H||> 1 if and only if ||—G||> 1.

As long as the cascade condition ||—H|| > 1 is satisfied, a global cascade will
arise from a random single seed v if it triggers at least one edge (v,v0) 2 Ei. The
cascade frequency f is at least as large as the probability that this occurs, and is
therefore bounded from below:

f � Â
k
(1� (bk)

k)P+
k . (5.45)

Given that the single seed triggers an edge in the giant in-cluster Ei, how large
will the resultant global cascade be? Well, certainly, the cascade will grow to the
strongly-connected giant cluster Es, and continue to include all of the extended out-
component Eo of the giant cluster. From this point, higher order defaults become
likely, so the cascade may grow much further. But, without restriction, we can say
that when the cascade condition holds, whenever the giant vulnerable cluster is trig-
gered, the resultant cascade will include all of Eo. To compute the fractional size of
this set, it is convenient to introduce the conditional probability

ck = P[v /2 Eo|kv = k] (5.46)
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where the event v /2 Eo is defined to mean that it has no in-edges ` that are in Eo. For
this calculation, we recognize that the event `= (w,v) /2 Eo means either w /2 E0 or
w 2 E0 and W̄wv < D̄v. The events `= (w,v) /2 Eo for all w 2N �

v are mutually inde-
pendent only when conditioned on the state of v and D̄v, and conditioning carefully
leads to the fixed point equation for the vector of probabilities c = (ck):

ck = Â
j

Pj|k

Z
dD̃ jk(x)

h
Â
k0

Qk0| j
�
Wk0 j(x)+(1�Wk0 j(x))ck0

�i j
. (5.47)

Again, the cascade condition ||—G||> 1 is sufficient for the trivial fixed point c = e
to be unstable, meaning the size of the vulnerable out-component Eo is a positive
fraction of the network, computable by the formula

P[v 2 Eo] = 1�Â
jk

Pjk

Z
dD̃ jk(x)

h
Â
k0

Qk0| j
�
Wk0 j(x)+(1�Wk0 j(x))ck0

�i j
(5.48)

This is a lower bound on the size of the default cascade that results when the initial
seed triggers a global cascade. It is interesting that the form of the expectation in
(5.47) involves the point-wise power of the W distribution rather the convolution
power that appears in (5.23).

5.5 Testing and Using the Cascade Mapping

The cascade mapping framework, both mathematical and conceptual, was developed
for a larger purpose, namely to help understand the nature of real cascades in real
world networks. So, how well does it work after all this effort?

While we have considered in this chapter only the simplest cascade mechanism,
namely the zero-recovery default cascade of Gai-Kapadia, we have placed this cas-
cade mechanism on RFNs that have a rich complexity. Determining what our cas-
cade mapping has to say about actual cascades is still a question of experimental
computation. Since we have made a number of uncontrolled approximations, the
analytical method should be validated by comparing with the results of Monte Carlo
simulation experiments under a broad range of model specifications. Before contin-
uing, it is helpful to consider the types of questions we wish to address.

Robustness of the formalism: The LTI formalism on RFNs, and the resultant
cascade mapping results, rest on bold assumptions that need to be checked. First, we
can gain from the experience of others who have studied the Locally Treelike ansatz
for a great number of models on random networks. As a general rule, validated for
example by [63], when benchmarked against Monte Carlo simulation experiments,
the LT analytical formulas have been found to work effectively under a broad range
of conditions. This is hard, slow work that must continue to push back the modelling
frontiers as new models are introduced.
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The framework developed in this chapter extends the original Gai-Kapadia paper
in many respects. We have extended the skeleton construction to allow configuration
graphs with general node and edge degree distributions. We have allowed buffers
and exposures to be random with arbitrary marginal distributions. We have new
formulas for the cascade condition and the economic impact of the cascade. The
corresponding Monte Carlo validation experiments have not yet been completed,
and will take considerably more time and effort.

Usefulness of the formalism: While a systematic Monte Carlo survey to validate
the LTI analytic framework is pending, which will build confidence in the reliabil-
ity of the framework, it is worthwhile to press forward using the formal analytical
framework as a freestanding tool. Without the need for Monte Carlo, there are many
purely analytical experiments on simple networks that are quick and easy to im-
plement on a computer. The scope of our default cascade formalism now includes
flexibility in new dimensions never before explored. The skeletons are now assorta-
tive. Our balance sheets and exposures are now stochastic, and their variances are
key parameters that represent our uncertainty in the network. These new features
have unknown implications on the cascades that can result in simple models.

Learning about real cascades: As network data for financial systems grows and
becomes available, network models will grow in complexity to incorporate new,
more realistic features drawn from the data. Moreover, the problem of calibrating
network models to data will become increasingly challenging. Our framework has
been designed to scale up in complexity to adapt to such needs.

Economic and financial implications: Analytical models can provide insight into
purely economic problems. One important example is capital adequacy: Regulators
want to know how a fixed amount of regulatory capital can be spread optimally
across different banks to reduce systemic risk. The answer to such a question can be
used to decide how much excess capital should be held by systemically important
financial institutions (SIFIs). The behaviour of bankers is complex: they use evolv-
ing strategies and game theory continuously in time to navigate their firm through
tortuous waters. Analytical models make it possible for policy makers, regulators
and market participants to test such strategies under stressful scenarios.

5.6 A New Model for Default Cascades with Asymmetric Shocks

It turns out that the Watts model of Chapter 4 can be unified with the Gai-Kapadia
zero recovery mechanism of the present chapter to give an economically natural
default cascade model on a undirected network with bivariate link exposures that
represent the unnetted positive exposures between counterparties.

The links in the Gai-Kapadia model are directed, and represent an idealized
debtor-creditor relationship that is usually described in terms of unsecured over-
night lending. The reality of banking is that counterparty relations are arbitrarily
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complex, and certainly cannot be boiled down to a single value at a moment in time.
Counterparty banks will likely have overnight lending relations, will likely share a
portfolio of interest rate and FX swap exposures, will owe each other certificates
of deposit and the like, will trade repos, and so on. Determining the value of such
exposures at any moment is exceedingly complicated. Banks exert major efforts to
compute their potential future exposures to other banks at all times, following reg-
ulatory guidelines on counterparty credit risk. If at some moment one bank were
to default, these exposures will often have opposite signs, and it is the positive part
of the unnetted exposure that will impact the nondefaulted counterparty. To reduce
counterparty risk, banks enter into master netting agreements (MNAs) with all of
their important counterparties. This standardized agreement aims to specify exactly
how the positive and negative exposures in the portfolio of different contracts be-
tween them can be offset in the event one bank defaults. An ideal fully netted posi-
tion would leave only a single exposure in one direction at any time. It follows that
the pervasiveness of MNAs in the interbank network provides a partial justification
for taking edges to point in only one direction and for neglecting reflexive edges
(those with links of both directions), as we have done in the Gai-Kapadia model.
However, despite the existence of MNAs, allowing counterparty exposures to be
unnetted or partially netted, and therefore bi-directional, is clearly a very natural
modeling generalization.

In this section, we introduce a default cascade model that combines features of
the Watts and Gai-Kapadia models while allowing edges to take on a more nuanced
meaning. It views the financial system as a network of banks connected by undi-
rected edges, with edges placed where there are deemed to be strong counterparty
relations. For example, these edges should certainly include all pairs of banks that
share a master netting agreement. It is known that building and maintaining counter-
party relations is expensive for banks, particularly when the relationship is governed
by the MNA. Thus it is reasonable to expect the network to be sparse, and that the
existence of edges may be slowly varying while the exposures they carry might
change quickly.

Given an edge ` = (w,v) between two banks v and w, the exposure W̄` carried
by the edge will now be assumed to be multi-dimensional to represent the aggre-
gated exposures across different types of securities. In the simplest variant we now
consider, the multidimensional vector W̄` can be reduced to a pair of non-negative
exposures (W̄w,v,W̄v,w) where W̄w,v is the loss to v given the default of w. The model
is then akin to the Watts model, but with asymmetric shocks that may be transmitted
in either direction across edges. If min(W̄w,v,W̄v,w) = 0 (i.e. only one direction is
ever non-zero), this new setting reduces to a slightly non-standard specification of
the Gai-Kapadia model.

With an aim to develop large N asymptotics, we now provide an LTI-compatible
RFN specification for this model:
Assumptions 7 (Watts-Gai-Kapadia Default Cascade Model).

1. Banks have limited liability and receive zero recovery of interbank liabilities
from any defaulted bank.
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2. The skeleton consists of a random graph (N ,E ) on N banks which is an undi-
rected assortative configuration model with node and edge type distributions
(Pk,Qkk0) with mean degree z = Âk k Pk, bounded degrees k  K and satisfy-
ing the consistency conditions:

Qkk0 = Qk0k, Â
kk0

Qkk0 = 1

Qk := kPk/z =
1
2 Â

k0 6=k
Qk0k +Qkk

Qk0|k := (1+dkk0)
Qkk0

2Qk
. (5.49)

3. Conditionally on the skeleton, the default buffers D̄v are a collection of inde-
pendent non-negative random variables whose distributions depend only on the
degree kv:

P[D̄v  x|v 2 Nk] := Dk(x), k,x � 0

for cumulative probability distributions Dk(·) parametrized by k.
4. For each undirected link `= (w,v) 2 E , the exposure is a bivariate random vari-

able (W̄w,v,W̄v,w) on R2
+. Conditioned on the skeleton, the collection of edge ex-

posures is independent with a bivariate distribution function that depends only
on the bi-degree (kw,kv)

P[W̄w,v  x,W̄v,w  y|w 2Nk \Nv,v 2Nk0 ] :=Wkk0(x,y) =Wk0k(y,x), x,y � 0 .

The conditional marginals are

Wkk0(x) :=Wkk0(x,•) =Wk0k(•,x) .

5. The remaining balance sheet quantities are freely specified.

Since W̄v,w represents the shock that will be transmitted from v to w at the mo-
ment v defaults, and D̄w � 0 represents the threshold for the default of w, the set
of defaulted banksDn and its indicator Dn

v = 1(v 2 Dn) after n steps of the cascade
again follows a recursion for all n � 0 and v 2 N :

Dn
v = 1

 
D̄v  Â

w2Nv

W̄w,vDn�1
w

!
(5.50)

starting with D�1
v = 0. Just as Proposition 4 shows for the Watts model, we can

show that this model has the WOR threshold property. First we define WOR default
events for directed edges (v,w) by the recursion

Dn
v,w := 1(v 2 Dn WOR w) = 1

 
D̄v  Â

w02Nv

W̄w0,vDn�1
w0,v 1(w0 6= w)

!
(5.51)
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starting with D�1
v,w = 0 for all directed edges. Then, one finds that the default cascade

has the WOR form because for all n � 0

Dn
v = D̃n

v (5.52)

where

D̃(n)
v := 1

 
D̄v  Â

w2Nv

W̄w,vDn�1
w,v

!
. (5.53)

The following proposition is analogous to Proposition 12 and can be justified by
similar formal arguments:

Formal Proposition 14 (Watts-Gai-Kapadia Cascade). Consider the LTI sequence
of Watts-Gai-Kapadia financial networks (N,P,Q, D̄ ,W̄) satisfying Assumptions 7.
Let p̂(0)k := P[w 2 D0 WOR v|w 2 Nv \Nk] = Dk(0) denote initial WOR default
probabilities. Then the following formulas hold in the limit as N ! •:

1. For any n= 1,2, . . . , the quantities p̂(n)k =P[w2Dn WOR v|w2Nv\Nk] satisfy
the recursive formulas

p̂(n)k = hDk,(ew
(n�1)
k )~k�1i , (5.54)

and the full default probabilities p(n)k = P[w 2 Dn|w 2 Nk] are given by

p(n)k = hDk,(ew
(n�1)
k )~ki . (5.55)

Here the marginal exposure PDFs ew(n�1)
k (x) are given by

ew(n�1)
k (x) = Â

k0
Qk0|k

⇣
(1� p̂(n�1)

k0 )d0(x)+ p̂(n�1)
k W 0+

k0k(x)
⌘

(5.56)

with Qk0|k defined by (5.49).
2. The new probabilities p̂(n) = (p̂(n)k ) are given recursively by p̂(n) = G(p̂(n�1))

for a vector valued function which is explicit in terms of the specification
(N,P,Q, D̄ ,W̄). The cascade mapping G maps [0,1]Z+ onto itself, and is mono-
tonic. Since p̂(0) = G(0), the sequence p̂(n) converges to the least fixed point
p̂⇤ 2 [0,1]Z+ , that is

p̂⇤ = G(p̂⇤) . (5.57)

Note that a consequence of the WOR property is that the asymptotic cascade
mapping depends only on the collection of marginal distributions W+

kk0(x), and not
the full bivariate distribution for W̄wv,W̄vw. In other words, without affecting the
cascade probabilities, W̄wv,W̄vw can be taken to be conditionally independent, so
that

Wkk0(x,y) =W+
kk0(x)W

+
k0k(y)
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for an arbitrary collection W+
kk0(x) of univariate CDFs. Alternatively, we may assume

W̄wv = W̄vw for all (w,v) 2 E . Then the theorem reduces to the cascade mapping
theorem proved in [52] for the Watts model on an assortative skeleton with random
edge weight CDFs

P[W̄w,v  x|w 2 Nk,v 2 Nk0 ] =Wkk0(x), x � 0 .

It is interesting that the more realistic meaning attached to exposures is consistent
with a skeleton that is undirected instead of directed. One nice modeling feature is
therefore that the node-degree kv can be unambiguously correlated with the size of
v’s balance sheet. In contrast, by focussing on the directionality of edges, the Gai-
Kapadia model on RFNs is forced to live on a directed skeleton, whose bi-degrees
( jv,kv) need to be specified, creating an additional complexity that now seems of
less importance.

We have seen already in the Watts and Gai-Kapadia models that the cascade
mapping function G determines essential features beyond the eventual default prob-
abilities p̂⇤. We will not be surprised that it is the spectral norm of —Gkk0 =
∂pk0 Gk|p=0;e=0 that determines whether the model admits global cascades or not.
Or that estimates of the frequency and size of global cascades can be computed
using percolation ideas. We leave such exercises to the interested reader.

5.7 Cascade Computations

While the simplified version of the Gai-Kapadia cascade mapping given in Propo-
sition 11 is straightforward to implement on a computer, the structure of the convo-
lution power in (5.23) and similar equations at the heart of the generalized cascade
mapping of Proposition 12 is more difficult from the point of view of numerical
approximations. Numerical evaluation of the implied integrals leads to truncation
errors and discretization errors, both of which will be awkward to handle in our set-
ting. In this section, we follow the method developed in [52] for the case where the
random variables {D̄v,W̄`} all take values in the finite discrete set

M = {0,dx, . . . ,(M�1)dx} (5.58)

with a large value M and a common grid spacing dx. We can think of this as spec-
ifying both the truncation and discretization of non-negative continuous random
variables. In such a situation, the convolutions in (5.23) can be performed exactly
and efficiently by use of the discrete Fast Fourier Transform (FFT), whose detailed
properties are summarized in Appendix A.2. For the moment, let us take dx = 1 for
simplicity.

Let X ,Y be two independent random variables with probability mass functions
(PMF) pX , pY taking values on the non-negative integers Z+ := {0,1,2, . . .}. Then
the random variable X +Y also takes values on this set and has the probability mass
function (PMF) pX+Y = pX ~ pY where the convolution of two functions f ,g is
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defined to be

( f ~g)(n) =
n

Â
m=0

f (m)g(n�m), n 2 Z+ . (5.59)

Note that pX+Y will not necessarily have support on the finite set M if pX , pY have
support on M , a fact that can lead to so-called aliasing problems.

We now consider a probability given as in (5.23)

P = P[X 
j

Â
i=1

Yi]

for independent random variables X ,Y1,Y2, . . . ,Yj where each Yi is distributed with
PMF gi(m) and X has PMF f (m). We suppose that f has support on M while
each gi has support on {0,1, . . . ,bM � 1/ jc}. We also define the CDF F(n) =
Ân

m=0 f (m) =P(X  n) for n2M . Then these M-vectors have M-dimensional FFTs
f̂ =F ( f ), ĝi =F (gi), F̂ =F (F). Using the FFT identities (A.1) to (A.4), we are
led to a means to compute P for any j involving matrix operations and the FFT:

P[X 
j

Â
i=1

Yi] = Â
m2M

(g1 ~ · · ·~g j)(m)
m

Â
n=0

f (n) = Â
m2M

(g1 ~ · · ·~g j)(m)F(m)

= hF,g1 ~ · · ·~g ji=
1
M
hF̂ , \(g1 ~ · · ·~g j)i=

1
M
(F̂)0 · (ĝ1 ·⇤ . . . ·⇤ĝ j) . (5.60)

Here in the final expression, A0 denotes the conjugate transpose of a matrix A, · de-
notes matrix multiplication between a size [1,M] matrix and a size [M,1] matrix, and
·⇤ denotes component-wise (“Hadamard”) multiplication of vectors and matrices.

Remark 5. There is no aliasing problem and the identity (5.60) is true if g1~ · · ·~g j
has support on M . We formalise this requirement as the Aliasing Assumption.

To summarize, as long as no aliasing errors arise, we can compute equation (5.23)
efficiently using the FFT identity (5.60). Having realized this fact, it becomes suf-
ficient to store as initial data only the Fourier transformed probability data for the
random variables D̄v,W̄`, that is

D̂ jk := F (D jk) 2 CM, ŵk j := F (wk j) 2 CM, j,k 2 Z+ . (5.61)

Then the node update step becomes

p jk =
1
M

⌧
D̂ jk,d(ew j)

~ j
�

(5.62)

where
d(ew j) = Â

k0
[1�pk0 +pk0ŵk0 j] Qk0| j .

Remark 6. The overall computation time for any numerical implementation of the
cascade formulas in Proposition 12 will be dominated by computing convolutions
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such as those in (5.23). In particular, one can check that negligible total time will be
taken in precomputing FFTs (each of which take of the order of M log2 M additions
and multiplications). One can compare the efficiency of our recommended FFT ap-
proach to the direct approach by considering a single evaluation of the convolution:
to compute f ~ g using (5.59) for M-vectors f ,g requires M2 additions and multi-
plications, whereas to compute f̂ ·⇤ĝ requires only M multiplications. All else being
equal, we can expect a speedup by a factor of O(M) when the FFT method is used
instead of the direct method. Since in our implementations we often have M & 210,
this is a huge improvement. This speedup factor is too optimistic in practice when
one takes care of the aliasing problem by taking a large, conservative value for M.

5.8 Numerical Experiments

The formalism developed in this chapter already raises a great variety of questions
and unanswered issues concerning the G-K model, which is of course the simplest of
all default cascade models. Most such questions can only be studied with computer
experiments. In this section, we report briefly on some of the simplest experiments
that test the usefulness and validity of the LTI analytics developed so far in this
chapter.

5.8.1 Experiment 1: Benchmark Gai-Kapadia Model

We choose as our benchmark the model specification given in the Gai and Kapa-
dia paper [42], and develop variations on the theme that explore certain interesting
dimensions away from this benchmark. Here is their original model specification:

1. The skeleton graph comprises N = 1000 banks (which we change to N = 10000)
taken from the Poisson random directed graph model with mean in and out degree
z, and thus P = Bin(N,z/(N �1))⇥Bin(N,z/(N �1)) and Q = Q+Q�.

2. Capital buffers and assets are identical across banks, with D̄v = 4% and Z̄v =
20%.

3. Exposures are equal across the debtors of each bank, and so W̄wv =
20
jv .

4. The number of Monte Carlo simulations performed is Nsim = 1000.

It is also interesting to use the invariance property of the cascade mapping
to rescale exposures W̄wv and buffers D̄v by jv/20, leading to (i) D̄v = jv/5; (ii)
Z̄v = jv; (iii) W̄wv = 1. This rescaled specification is very similar to the benchmark
parametrization used in the Watts model.

Figure 5.1(a) shows the dependence of the mean cascade size as a function of the
mean degree z computed both analytically using Proposition 11 and by Monte Carlo
simulation. The analytical results were obtained with seed probabilities dk,0 = 10�3
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for all k and for the Monte Carlo simulation we took the initial seed to be 1% of the
network (100 banks).

Figure 5.1(b) shows how the analytical formula (5.45) for the frequency of global
cascades compares to the frequency of global Monte Carlo cascades that started
from a single random seed, where in the Monte Carlo simulations, a global cascade
was deemed to be one that exceeds 50 banks (0.5% of the network).
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Fig. 5.1 These two graphs show (a) the mean fractional cascade size, and (b), the fractional ex-
tended vulnerable cluster size (analytic) and global cascade frequency (Monte Carlo), in the bench-
mark Gai-Kapadia model as a function of mean degree z, as computed using the large N analytics
of Theorem 9 (blue curve) and by Monte Carlo simulation (red crosses). In Figure (a), the Monte
Carlo computation involved Nsim = 50 realizations of the N = 10000 node graph, each with an
initial seed generated by selecting nodes independently with probability 0.5%. In Figure (b), the
simulation involved Nsim = 2500 realizations of the N = 10000 node graph and a single random
initial seed node.

Comparison of these figures with the Watts model experiments in Chapter 4 ex-
hibits striking similarities. Clearly this G-K model specification is very similar to
the benchmark Watts 2002 model implemented in [82]. In fact, in both models,
nodes with in-degree j are vulnerable if and only if j  5. Apart from differences
stemming from the directed nature of the G-K model, the cascade results shown in
Figure 5.1 are almost identical to those found in Chapter 4. When z is smaller than 2
or 3, almost all nodes are vulnerable, and thus the contagion condition is essentially
the condition for the giant cluster to exist, which suggests a phase transition at the
value z = 1. On the other hand, when z is larger than about 7, most nodes are not
vulnerable, and there is no giant vulnerable cluster. As z increases into this range
it becomes harder for a single seed default to trigger a cascade. Occasionally, how-
ever a seed may have a large degree, opening the possibility for finite size effects
causing higher order defaults that can lead to a large scale cascade. Although infre-
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quent, when they occur such cascades usually trigger almost 100% of the network
to default.

5.8.2 Experiment 2: Assortative Networks

For various reasons, configuration graphs with general edge assortativity parametrized
by the Q matrix have been little studied in network science. On the other hand, nu-
merous statistical studies of financial networks in the real world, notably [78], [11]
and [27], have pointed out their strongly negative assortativity and speculated that
this property is likely to strongly influence the strength of cascades that the network
will exhibit. In this experiment, we explore the GK model close to the benchmark
specification but with different parametrizations of the edge type matrix Q. Address-
ing this question provides us with a good starting point to test a number of points.
How effective is the simulation algorithm for assortative configuration graphs given
in Section 3.3.1? Does edge assortativity have a strong effect on the possibility of
cascades?

We twist the benchmark GK model described above by replacing the independent
edge probability matrix Qk j =Q+

k Q�
j by an interpolated matrix that exhibits positive

or negative assortativity

Q(a)k j =

⇢
aQ+

k j +(1�a)Q+
k Q�

j a � 0
|a|Q�

k j +(1� |a|)Q+
k Q�

j a < 0

Here Q+
k j = dk jQ+

k has 100% correlation and is the maximally assortative matrix
with the prescribed marginals. On the other hand, the maximally negative assortative
matrix turns out to be given by

Q�
k j = P

h
U 2 (bk�1,bk],1�U 2 (b j�1,b j]

i

where U is uniform [0,1] and bk = Âk0k Q+
k0 for k = 0,1, . . . ,Kmax.

With some surprise we noticed that with Pjk given as in Experiment 1, the mean
cascade size had no variation with a! After a moment’s thought, however, we realize
that because this model has an independent bivariate distribution of node degrees,
any possible dependence on a is wiped out. We need some dependence between in
and out node degrees to allow for the cascade to depend on assortativity. Figure 5.2
shows the dependence of the mean cascade size on the parameter a for four values
of z, when we replace the independent matrix P by the fully correlated matrix

Pjk = P+
k d jk .

As we hoped, we see a strong nonmonotone dependence of cascade frequency on the
assortativity parametrized by a , with a maximum effect for a positive assortativity
value a ⇠ 0.4.
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Throughout this experiment, we need to pay attention to discrepancies between
the Monte Carlo results and the analytics. While for the most part the match is quite
good, surprisingly it breaks down completely for z = 7.5 and negative assortativ-
ity where the Monte Carlo results are particularly erratic. One important “rule of
thumb” that can partly account for such anomalies is that they seem likely to occur
in the neighbourhood of discontinuous phase transitions, in this case the one near
z ⇠ 7. It seems likely we will see even larger discrepancies when the finite Monte
Carlo samples are taken from a less heterogeneous model.

This experiment also shows that Monte Carlo simulation can become quite chal-
lenging as the random graph model becomes more complex, and provides motiva-
tion to explore widely using large N analytics which are relatively straightforward
to implement.
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Fig. 5.2 These two graphs show (a) the mean cascade size, and (b) the fractional extended vul-
nerable cluster size (analytic) and global cascade frequency (Monte Carlo), in the GK model, as
a function of positive and negative assortativity when P is maximally correlated. The analytical
results are shown by the solid curves, with four values of z: 1.5 (red), 3.5 (blue), 5.5 (green),
7.5 (black). In Figure (a), the Monte Carlo computation involved Nsim = 50 realizations of the
N = 10000 node graph, each with an initial seed generated by selecting nodes independently with
probability 0.5%. In Figure (b), the analytical formula for the extended giant vulnerable cluster is
compared to the result of an Nsim⇥Nfreq Monte Carlo simulation of global cascades consisting of
Nsim = 25 realizations of the N = 10000 node graph, and for each graph realization Nfreq = 2000
random initial seed nodes.
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5.8.3 Experiment 3: Random Buffers and Link Weights

What is the effect of uncertainty in the network? In reality, even with excellent
databases we might never expect to know actual exposures and buffers with any
precision. We can model this uncertainty by taking these to be random variables
and testing how the variance parameters affect the resultant cascade sizes and fre-
quencies. Furthermore, we can check whether the analytic approximations get much
worse or not.

To test the impact of this idea, we can introduce collections of log normally
distributed buffer and exposure random variables with four additional parameters
s

D

,s
W

� 0 and r

D

,r
W

2 (�1,1). That is,

Dv =
jv
5

exp[s
D

(r
D

Z
D

+
q

1�r

2
D

Xv)+s

2
D

/2] (5.63)

W` = exp[s
W

(r
W

Z
W

+
q

1�r

2
W

Yvw)+s

2
W

/2] (5.64)

with a collection {Z
D

,Xv,Z
W

,Y`}, v 2 N , ` 2 E of independent standard normals.
Note that the benchmark Gai-Kapadia model of Experiment 1 arises by taking s

D

=
s

W

= 0, and for all parameters, the new specification agrees with the benchmark
in expectation. The case of s

W

= 0 and varying s

D

,r
D

has been studied to some
extent in [51] and so is of lesser interest. Also, by the rescaling property, the cascade
mapping when r

W

6= 0 can be transformed into the case r

W

= 0. However, the
case of random exposures has not been studied previously, and therefore we take
s

D

= 0,r
W

= 0 and focus on the dependence of the default cascade on the shape
parameter s

W

.
In our implementation of equations (5.23) and (5.24) of Proposition 12 we trun-

cated and discretized the log normal exposure random variables by placing their
values on a grid of M = 212 points with spacing dx = 0.1. Then we applied the FFT
algorithm for computing the cascade equilibrium of Proposition 12. Prior to plotting
our results we confirmed that they were insensitive to this approximation by com-
paring to the results when the grid was coarsened to M = 210 and dx = 0.2 (results
not shown).

Figure 5.3 plots the dependence of the mean cascade size and cascade frequency
as a function of the shape parameter of the exposure distribution, s

W

, for four values
of the Poisson mean degree z: 1.5 (red), 3.5 (blue), 5.5 (green), 7.5 (black).

Again, we see a general agreement between the Monte Carlo and analytical re-
sults, but with some significant departures when z = 1.5. Further exploration shows
that the lower phase transition at z= 1 is pushed to higher values of z as s

W

grows: it
appears that the anomalous behaviour we observed when z = 1.5 is connected with
this fact.

These three experiments illustrate only a very limited set of possible analytical
experiments on the simplest of all default cascade models. Already we observe that
while the analytical formulas agree with the Monte Carlo simulation results for
the most part, there are always circumstances that undermine the accuracy of the
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Fig. 5.3 These two graphs show (a) the mean cascade size, and (b) the fractional extended vulner-
able cluster size (analytic) and global cascade frequency (Monte Carlo), in the G-K model, as a
function of s

W

for s

D

= 0 The analytical results are shown by the solid curves, with four values
of z: 1.5 (red), 3.5 (blue), 5.5 (green), 7.5 (black). In Figure (a), the Monte Carlo computation
involved Nsim = 10 realizations of the N = 10000 node graph, each with an initial seed generated
by selecting nodes independently with probability 0.5%. In Figure (b), the analytical formula for
the extended giant vulnerable cluster is compared to the result of Monte Carlo simulation of global
cascades consisting of Nsim = 10 realizations of the N = 10000 node graph, and for each graph
realization averaging ove Nfreq = 1000 random initial seed nodes.

agreement. It is important to try to develop “rules of thumb” that supply the intuition
of the circumstances when the agreement is not acceptable.



Chapter 6
Future Directions for Cascade Models

Abstract The prospects are considered for extending the mathematical framework
of cascade mechanisms on locally tree-like random financial networks to address
problems of real financial importance.

Keywords: Random financial networks, local tree-like independence, cascade
mechanism, balance sheet models, bank behaviour.

This book has set out to show that systemic risk and contagion in financial net-
works have a rich underlying mathematical structure: contagion shocks spread out
in a way that can be understood in terms of percolation theory. Along the way, we
have explored a variety of combinations of the three acronyms, a RFN (random fi-
nancial network) with the LTI property (locally tree-like independence) on which
we place a CM (cascade mechanism), to create contagion models of insolvency,
illiquidity and asset fire sales. Towards the end of the book, we developed analytical
methods in the context of default contagion, but which extend to other types of con-
tagion as well. These models exhibit key stylized features of market contagion that
economists have identified in financial crises from the past. In some circumstances,
these ingredients fit together in a natural way that retains mathematical properties
of percolation analysis as it has been developed in probability theory, leading to
explicit cascade mappings and a host of associated concepts.

The concept of RFN, or random financial network, was introduced as a gen-
eral stochastic setting appropriate either for hypothetical banking systems, or for
simplifying the description of real-life banking systems that are sufficiently large
and homogeneous. It was taken to comprise a skeleton of nodes representing banks
connected by edges representing counterparty links, together with a stochastic spec-
ification of bank balance sheets and interbank exposures. Typical cascade models
on RFNs can be computed using Monte Carlo simulation. What we have shown
is that these models sometimes also admit an explicit analytical formulation from
which we can understand much more. Ultimately, sych RFNs can be created with
ever more complex combinations of random skeletons, balance sheets and cascade
mechanisms.

133
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LTI combines an assumption about the stochastic properties of the underlying
skeleton related to sparsity of the edges together with an assumption about the mul-
tivariate dependence of balance sheet random variables. Roughly, it means that the
dependence structure of the entire network is coded into the random skeleton: the
multivariate distributions of remaining balance random variables are built with in-
dependence conditionally on the skeleton. Since there are a variety of approaches
to modelling skeletons available in the random graph literature, such a framework
provides a useful compromise between tractability, parsimony and flexibility.

A number of cascade mechanisms have been proposed in the literature, notably
the model of Eisenberg and Noe [33]. Typically they amount to assumptions or be-
havioural rules that determine how banks adjust their balance sheets in response to
the evolution of the financial crisis. We have reviewed in Chapter 2 different CMs
describing a variety of effects such as liquidity shocks, bank defaults, and forced as-
set sales. The key observation was that these CMs tend to have a common threshold
structure. Noticing this commonality is helpful in developing intuition about how
different cascades will behave. Of course, such CMs provide only a caricature of
the complex decision making of banks and must certainly develop in sophistication
in future research, perhaps by following the theory of global games developed for
example in [70].

What then are the advantages of having systemic risk models with such ingre-
dients in which crises can be viewed as cascade mappings that lead to fixed points
that describe new network equilibria? Typically, this structure leads to a number of
advantageous features. Analytics in such models can often be easier to program and
faster to compute than Monte Carlo simulations, facilitating exploration of sensitiv-
ities to key structural parameters. Sometimes simple specifications of such models
can be directly understood by comparison with previously studied models. As well
we have seen in Section 5.3 that certain systemic risk measures are computable
directly from the fixed point.

Simple static cascade models are often criticized because they exclude important
institutional elements, most notably central clearing parties (CCP), central banks
and regulators. However, principles of model building in science suggest that it is
important to understand the behaviour of uncontrolled isolated systems before try-
ing to understand how to control them. Cascade mappings provide a level of un-
derstanding about the uncontrolled network that will guide the actions of regulators
and governments. For a concrete example, it is now fully recognized in Basel III that
systemically important financial institutions (SIFIs) must be subjected to regulatory
capital surcharges. How such punitive measures are implemented should be defensi-
ble by economic and scientific principles. With a reliable cascade model, one can in
principle provide such a rationale by finding the optimal distribution of regulatory
capital amounts across the network, subject to a fixed aggregated budget.

The three elements, RFNs with an LTI specification upon which a CM is pro-
posed, are intended to be a template for further explorations of systemic risk in ever
more complex settings. So what are some of the most promising avenues to follow?

First, RFNs can be far from as simple as those investigated here. Nodes might
take on richer characteristics: in our language, the type of the node will no longer
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mean the node degree, but may come to include information about the geographical
location, the style of banking undertaken, the size of the institution and so on. For
this, skeletons modelled by inhomogeneous random graphs generalizing the con-
struction of Section 3.4 will be useful. Similarly, the network itself will expand to
include insurance firms, hedge funds, mutual funds, pension funds, asset classes
and even corporates. See [17] for an agent-based model of such an extended net-
work. Describing community structure, also called modularity, is an active topic
of network science that will directly impact systemic risk research. Similarly, the
meaning of edges will become more nuanced, and depend in subtle ways on the
types of the adjoined banks. Skeletons will evolve into hypergraphs to account for
important classes of tri-party contracts such as credit default swaps, repos and asset
return swaps.

The balance sheets of banks in this book all have a simple stylistic structure.
Papers by [35] and [45] have shown how more complex debt seniority structures
can be included in the cascade picture. Similar ideas applied to the asset side will
allow rich structures that account for features of different asset classes such as credit
rating, maturity and liquidity properties.

The structure of interbank contracts considered here is similarly stylistic: for the
most part, these have been described as short term unsecured lending. In reality,
such contracts are complex, and have structure and magnitude that are the result of
bilateral strategic games played continuously between pairs of counterparty banks
who seek to control risk and maximize returns.

This book has focussed on systemic risk, that is to say, the risk of large scale
or even catastrophic disruptions of the financial markets. But good models of the
financial system must account for the behaviour of markets in normal times as well.
This is already recognized in macroprudential models used by central banks that
link together modules describing parts of the economy, such as the Systemic Risk
Monitor of the Austrian Central Bank, the RAMSI model used by the Bank of Eng-
land and the MFRAF model used by the Bank of Canada. One important module
in such economic models is always the financial network submodel that should be-
have realistically in normal times, and should generate endogenously an adequate
spectrum of crisis scenarios.

Systemic risk modelling has advanced enormously on a range of fronts since
the great financial crisis of 2007-08. It is my hope that this book will be viewed
as a timely contribution to the field that provides researchers with two different
things: first, a flexible set of mathematical techniques for analyzing cascades in
general categories of networks, and second, a scientific modelling framework of the
financial economy that can scale up to account for all the important dimensions of a
type of risk that has the potential to critically impact the entire global economy.





Appendix A
Background Material

A.1 Special Notation

Matrix and Vector Notation: For vectors x = [xv]v=1,...,N ,y = [yv]v=1,...,N 2 RN

define relations

x  y means 8 v, xv  yv,

x < y means x  y, 9 v : xv < yv,

min(x,y) = [min(xv,yv)]v=1,...,N

max(x,y) = [max(xv,yv)]v=1,...,N

(x)+ = max(x,0),
(x)� = max(�x,0) .

Whenever x  y we can define the hyperinterval [x,y] = {z : x  z  y}. Column
N-vectors are often treated as [1,N] matrices, X ·Y denotes the matrix product, and
X 0 denotes the Hermitian (complex conjugate) transpose.

Function Notation: For functions f ,g, f �g denotes composition and f ~g denotes
convolution.

Graph Notation: For a complete description of the graphical notation used in this
book, please see Section 3.1.

Set Notation and Indicators: For any set A⇢W in the sample space W , Ac :=W \A
is its complement. For elements x 2 W and Boolean propositions P:

Indicator 1(P) =

⇢
1 if P is true
0 if P is false

Indicator function 1A(x) means 1(x 2 A) .
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A.2 The Discrete Fourier Transform

We consider the space CM of C-valued functions on M = {0,1, . . . ,M � 1}. The
discrete Fourier transform, or fast Fourier transform (FFT), is the linear mapping
F : a = [a0, . . . ,aM�1] 2 CM ! â = F (a) 2 CM defined by

âk = Â
l2M

zklal ,k 2 M .

where the coefficient matrix Z = (zkl) has entries zkl = e�2pikl/M .
It is easy to prove that its inverse, the “inverse FFT” (IFFT), is given by the map

a ! ã = G (a) where

ãk =
1
M Â

l2M

z̄klal ,k 2 M .

If we let ā denote the complex conjugate of a, we can define the Hermitian inner
product between

ha,bi := Â
m2M

āmbm .

We also define the convolution product of two vectors:

(a~b)(n) = Â
m2M

a(m) b(n�m modulo M), n 2 M .

Now we note the following easy-to-prove identities which hold for all a,b 2CM:

1. Inverse mappings:
a = G (F (a)) = F (G (a)) ; (A.1)

2. Conjugation:

G (a) =
1
M

F (ā) ; (A.2)

3. Parseval Identity:

ha,bi= Mhã, b̃i= 1
M
hâ, b̂i ; (A.3)

4. Convolution Identities:

ã ·⇤b̃ = (̂a~b) ; â ·⇤b̂ = \(a~b) (A.4)

where ·⇤ denotes the component-wise product.

The primary application of the FFT in this book is its use in accelerating the
computation of convolutions of probability mass functions supported on the set CM.
If the support of the sum of two M -valued random variables X ,Y is itself in M , that
is, if supp(X +Y ) = {n|9m 2 supp(X)s.t. n�m 2 supp(Y )} 2 M , then pX+Y , the
PMF of X +Y , is given by pX ~ pY . On the other hand, if there are m 2 supp(X),n 2
supp(Y ) such that m+ n � M, then pX+Y � pX ~ pY is not zero. Such a difference
is called an “aliasing error”, and implies that pX+Y 6= G (F (pX )F (pY )). In any
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application, we must take care to keep all such aliasing errors sufficiently small by
choosing M sufficiently large but finite.
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[13] Marián Boguñá and M. Ángeles Serrano. Generalized percolation in random
directed networks. Phys. Rev. E, 72:016106, 2005.
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