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Preface

This slim volume logs the development of a cascade of contagious ideas that has
occupied my space, time and mind in recent years. There was a clear triggering event
that occurred in April 2009. Late in that month, Michael Lynch and his colleagues at
MITACS Canada brought together a host of scientists, mathematicians and finance
industry participants for three days to brainstorm about underlying causes of the
ongoing financial crisis and how mathematical thinking could be brought to bear on
it. My role there was as gadfly to provoke discussion on a special topic no one at the
meeting was very aware of, namely financial systemic risk.

Since that event introduced me to the subject, I have had many opportunities to
present to a diversity of audiences an evolving view of how the architecture of the
financial system can be described in terms of network science, and how such a net-
work formulation can be made amenable to a certain type of mathematical analysis.
This book is not intended to be a definitive work on the subject of financial systemic
risk, and does not try to represent a broad consensus. Instead, it is a personal at-
tempt to crystallize the early results of research that focuses on the basic modelling
structure that ensures some kind of mathematical tractability, while allowing a great
deal of both reality and complexity in the actual finance network specification. I
owe a debt of thanks to a great number of people who have listened, commented,
and added new nodes to this complex network of ideas, too many to list here in this
preface.

My McMaster colleague, Matheus Grasselli, was instrumental in many ways,
not least in providing the original impetus to write this SpringerBrief. Nizar Touzi
encouraged and supported me in my first attempt at delivering a minicourse on Sys-
temic Risk. The scope of this minicourse grew over time: Jorge Zubelli hosted me
for an extended period at IMPA, where I delivered another version; Peter Spreij ar-
ranged a session for me to speak at the Winter School on Financial Mathematics in
Lunteren; James Gleeson provided me with multiple invitations to Limerick. The
Fields Institute for Research in Mathematical Sciences gave me encouragement and
organized multiple events relevant to my work. The Global Risk Institute for Finan-
cial Services, in particular Michel Maila and Catherine Lubochinsky, have provided
substantial financial and moral support for this research. I give my hearty thanks to
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Mario Wüthrich and Paul Embrechts who hosted my extended stay at ETH Zürich
in 2014 where I was extremely fortunate to be able to deliver a Nachdiplom lec-
ture series based on the material contained in this book. Finally, to my wife, Rita
Bertoldi, I offer my affectionate acknowledgment of her patient support throughout
my lengthy exposure to this dangerous contagion.
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Chapter 1
Systemic Risk Basics

Annual income twenty pounds, annual expenditure nineteen nineteen six, result happiness.
Annual income twenty pounds, annual expenditure twenty pounds ought and six, result mis-
ery. The blossom is blighted, the leaf is withered, the god of day goes down upon the dreary
scene, and—and, in short, you are for ever floored.1

Abstract Attempts to define systemic risk are summarized and found to be deficient
in various respects. In this introductory chapter, after considering some of the salient
features of financial crises in the past, we focus on the key characteristics of banks,
their balance sheets and how they are regulated.

Bankruptcy! Mr. Micawber, David Copperfield’s debt-ridden sometime mentor,
knew first hand the difference between surplus and deficit, between happiness and
the debtors’ prison. In Dickens’ fictional universe, and perhaps even in the real world
of Victorian England, a small businessman’s unpaid debts were never overlooked but
were always a trigger leading him and his family to the unmitigated misery of the
poorhouse. On the other hand, the bigger players, the aristocrats and upper middle
classes, were treated more delicately, and were usually able to find a comfortable
escape.

For people, firms, and in particular banks, bankruptcy in modern times is more
complicated yet still retains the flavour of the olden days. When a bank fails, the
rich financiers responsible for its collapse and the collateral damage it inflicts, often
walk away from the wreckage with their bonuses and compensation packages intact.
Occasionally, a particularly egregious case arises where a scapegoat is needed: then
a middle rank banker is identified who takes the bullet for the disaster. A cynic might
say that despite the dictates of Basel I, II, III ...∞, bank executives are still free to
take excessive risks with their company, receiving a rich fraction of any upside while
insulating themselves from any possible disaster they might cause.

As we learn afresh during every large scale financial crisis, society at large pays
the ultimate costs when banks fail. Spiking unemployment leads to the poverty of

1 CHARLES DICKENS, David Copperfield, Chapter 12, p. 185 (1950). First published 1849–
1850.
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10 1 Systemic Risk Basics

the less well-to-do, while salary freezes and imploded pension plans lead to belt-
tightening and delayed retirement for the better-off. Those at the top of the pile,
even those responsible, seem to do just fine. Banks are bailed out by central banks
and governments, their debts taken over and paid by the taxpayers.

If anything is different since the crisis of 2007-08, perhaps it is the wide recog-
nition of the fact that society needs to find ways and rules to ensure that the respon-
sible parties pay the downside costs of bank failure. New ideas on bank resolution,
including contingent capital and bail-in regulation, aim to force the financial stake-
holders, not the central bank, to pay much higher fractions of the costs of failure:
banks’ creditors, bondholders and equity investors should in the future be forced to
take their fair share of losses. Bank failures might then be better anticipated, pre-
pared for and managed to reduce more catastrophic threats of serial collapse of the
financial system.

1.1 The Nature of this Book

The title of this book, “Contagion! The Spread of Systemic Risk in Financial Net-
works”, suggests that financial contagion is analogous to the spread of disease, and
that damaging financial crises may be better understood by bringing to bear ideas
that have been developed to understand the breakdown of other complex systems in
our world. It also suggests that the aim of systemic risk management is similar to a
primary aim of epidemiology, namely to identify situations when contagion danger
is high, and then make targetted interventions to damp out the risk.2

This book is intended to be two things, a timely summary of a growing body of
systemic risk research as well as a unified mathematical framework for the primary
channels that can transmit damaging shocks through financial systems. Much of its
contents are new, not having appeared previously in published journals. It aims to
serve as a coherent guide of equal interest to quantitative finance practitioners, finan-
cial regulators and a broad range of academics doing network research, including
economists, physicists, applied mathematicians and computer scientists.

The introductory Chapter One develops the setting for the problem of systemic
risk in financial networks. It provides a brief survey of how people view financial
crises and systemic risk, a look at the type of business banks and other financial
institutions deal with, and some of what we know about the state of actual finan-
cial networks, both in terms of stylized features and datasets that have been studied.
From Chapter Two onwards, we delve more deeply into the mechanics of the in-
teractions between banking counterparties. Chapter Two puts a sharp focus on the
type of bank behaviour that can negatively impact the functioning of the entire sys-
tem, by surveying and classifying the range of economic cascade models that have

2 Interestingly, I found on Wikipedia that epidemiology has a code of nine principles, called the
“Bradford Hill criteria”, that should be considered to help assess evidence of a causal relationship
between an incidence and a consequence. Perhaps, researchers can codify an analogous set of
principles for assessing systemic risk.
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been proposed in recent years. We will make the important discovery that simi-
lar mathematical models can describe a multiplicity of financial cascade channels.
Given the intrinsic opacity of financial institutions and their interconnections, we
eventually argue for the usefulness of what we call random financial networks that
provide a statistical representation of networks of banks and their balance sheets.
The design of this concept, fleshed out in subsequent chapters, reflects the type of
models that network science has already developed in other domains, allowing us
to bring their understanding to bear on our new problem. Chapter Three therefore
provides the mathematical underpinning we need for systemic risk, by surveying,
developing and adapting the theory of random graphs to describe the skeleton struc-
ture at the heart of the financial network. Four distinct classes of random graphs,
each characterized by its specific stochastic construction algorithm, are described in
detail. Chapter Four is devoted to understanding the relation between the Watts 2002
model of information cascades and the concept of bootstrap percolation in random
networks. The Watts model provides us with a template for more specific financial
networks, and therefore we analyze it in detail from first principles. We shall learn
that its properties can be best understood in terms of the mathematics of percolation
which addresses the size distribution of connected network components. Chapter
Five returns to the simplest possible financial network model, the zero recovery cas-
cade mechanism due to Gai and Kapadia, and develops a purely analytical approach
based on an assumption called locally treelike independence. This theory provides
us with a computational methodology that is independent of and complementary to
the usual Monte Carlo simulation techniques used everywhere in network science.

Do there exist classes of mathematical systemic risk models that provide a degree
of realism, but at the same time are sufficiently tractable that all critical parameters
can be varied at will and resulting network characteristics computed? Can these
model systems be tested for their systemic susceptibility? Are the mathematical
conclusions robust and relevant to the real world of financial crisis regulation? Ulti-
mately we hope this book will persuade the reader that the answer to these questions
is an emphatic “YES”!

1.2 What is Systemic Risk?

First it is helpful to identify what systemic risk is not. For example, Duffie and Sin-
gleton [31] identify five categories of risk faced by financial institutions: (i) market
risk: the risk of unexpected changes in market prices; (ii) credit risk: the risk of
changes in value due to unexpected changes in credit quality, in particular if a coun-
terparty defaults on one of their contractual obligations; (iii) liquidity risk: the risk
that costs of adjusting financial positions may increase substantially; (iv) operational
risk: the risk that fraud, errors or other operational failures lead to loss in value; (v)
systemic risk: the risk of market wide illiquidity or chain reaction defaults. The first
four risk categories are for the most part focussed on individual institutions, while
the topic of this book must be the market wide risks of the fifth category.



12 1 Systemic Risk Basics

Kaufman and Scott [50], John B. Taylor [69] and others all seem to agree that
the concept of systemic risk must comprise at least three ingredients. First, a trig-
gering event. Second, the propagation of shocks through the financial system. And
third, significant impact of the crisis on the macroeconomy. Possible triggers might
come from outside the financial system, for example a terrorist attack that physically
harms the system. Or triggers might come internally, for example as the surprise
spontaneous failure of a major institution within the system. Propagation of shocks
may be through direct linkages between banks or indirectly, such as through the im-
pact on the asset holdings of many banks caused by the forced sales of a few banks
or through a crisis of confidence. The impact of systemic crises on the macroecon-
omy may take many forms: on the money supply, on the supply of credit, on major
market indices, on interest rates, and ultimately on the production economy and the
level of employment.

As Admati and Hellwig [2] have argued, ambiguity in the definition of systemic
risk implies that mitigation of systemic risk might mean different things to different
people. One approach might seek to reduce impact on the financial system, whereas
a different approach might instead try to mitigate the damage to the economy at
large. These aims do not necessarily coincide: the demise of Lehman Bros. illus-
trates that key components of the financial system might be sacrificed to save the
larger economy during a severe crisis.

1.2.1 Defining SR

The economics literature has used the term systemic risk in the context of financial
systems for many years. Nonetheless, Kaufman and Scott, Taylor and many oth-
ers argue that there is as yet no generally accepted definition of the concept, and
furthermore, that without an agreed definition, it may be pointless and indeed dan-
gerous to implement public policy that explicitly aims to reduce systemic risk. To
see that there is as yet no consensus definition over the years, consider the following
examples of definitions proposed in the past.

1. Mishkin 1995 [57]: “the likelihood of a sudden, usually unexpected, event that disrupts
information in financial markets, making them unable to effectively channel funds to
those parties with the most productive investment opportunities.”

2. Kaufman 1995 [49] “The probability that cumulative losses will accrue from an event
that sets in motion a series of successive losses along a chain of institutions or markets
comprising a system. . . . That is, systemic risk is the risk of a chain reaction of falling
interconnected dominos.”

3. Bank for International Settlements 1994 [34] “ the risk that the failure of a participant
to meet its contractual obligations may in turn cause other participants to default with a
chain reaction leading to broader financial difficulties.”

4. Board of Governors of the Federal Reserve System 2001 [63] “In the payments system,
systemic risk may occur if an institution participating on a private large- dollar payments
network were unable or unwilling to settle its net debt position. If such a settlement
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failure occurred, the institution’s creditors on the network might also be unable to settle
their commitments. Serious repercussions could, as a result, spread to other participants
in the private network, to other depository institutions not participating in the network,
and to the nonfinancial economy generally.”

In the light of the 2007-08 financial crisis, the above style of definitions, defi-
cient as they are in several respects, can be seen to miss or be vague about one
key attribute of any systemic crisis, namely that it also causes damage outside the
network, through its failure to efficiently perform its key function of providing liq-
uidity, credit and services. S. L. Schwarcz’ definition [65] of systemic risk explicitly
includes this important aspect:

The risk that (i) an economic shock such as market or institutional failure triggers (through
a panic or otherwise) either (X) the failure of a chain of markets or institutions or (Y) a
chain of significant losses to financial institutions, (ii) resulting in increases in the cost of
capital or decreases in its availability, often evidenced by substantial financial-market price
volatility.

While the Schwarcz definition is hardly elegant in its phrasing, we will accept
it provisionally as the closest thing we have to a concise definition of the spirit of
systemic risk.

However, if this definition captures much of the spirit of systemic risk, it fails
to address how to measure or quantify the level of systemic risk, and how it might
be distributed over the network. Much of current research on systemic risk is dedi-
cated to defining measures of systemic risk and identifying where it is concentrated.
Some of the important concepts are counterparty value at risk (CoVaR) introduced
by Brunnermeier and Pedersen [20]; and systemic expected shortfall introduced by
Acharya, Pedersen, Philippon, and Richardson [1]. For a recent and comprehensive
review of these and many other systemic risk measures, please see [11].

1.2.2 Haldane’s 2009 Speech

In 2009, in the aftermath of the crisis, Andrew G. Haldane, Executive Director of
Financial Stability at the Bank of England, gave a provocative and visionary talk,
entitled “Rethinking the Financial Network” [41]. In this brilliant summary of the
nature of networks, he compares the 2002 SARS epidemic to the 2008 collapse
of Lehman Bros, with the aim to inspire efforts to better understand the nature of
systemic risk. For a very broad free thinking overview, we can’t do better than sum-
marize the high points of his speech.

In these two examples of contagion events he identifies the following pattern:

• an external event strikes;
• panic ensues and the complex system seizes up;
• collateral damage is wide and deep;
• in hindsight, the trigger event was modest;
• during the event itself, dynamics was chaotic.
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He claims this type of pattern is a manifestation of any complex adaptive system,
and should be the target where we need to direct our attention.

So, in more detail, what went wrong with the financial network in 2008? Haldane
identifies two contributing trends: increasing complexity and decreasing diversity.
In real world networks these two trends are observed to lead to fragility, and ring
alarm bells for ecologists, engineers, geologists. Figure 1.1 illustrates how the global
financial network has grown in complexity. Highly connected, heterogeneous net-
works may be robust yet fragile, by which he means that they may be resistant to
average or typical shocks, yet highly susceptible to an attack that targets a highly
connected or dominant node. In such networks, connections that we think of as
shock absorbers may turn out to act as shock amplifiers during a crisis. There may
be a sharp tipping point that separates normal behaviour from a crisis regime. Thus,
a network with a fat-tailed degree distribution (i.e. where there is a significant num-
ber of highly connected nodes) may be robust to random shocks while vulnerable to
shocks that preferentially target these highly connected nodes.

Fig. 1.1 The global financial network in 1985 (left) and 2005 (right). Here line thickness denotes
link strength as fraction of total GDP. (figure taken from Haldane [41].)

In both of Haldane’s examples of contagion events, agents exhibit a variety of be-
havioural responses that create feedback and influence the stability of the network.
In epidemics, two classic responses, “hide” or “flee”, may prevail and the virulence
of the event is highly dependent on which behaviour dominates. In a financial crisis,
two likely responses of banks are to hoard liquidity or to sell assets. Both responses
are rational, but both make the systemic problem worse. Massive government inter-
vention to provide liquidity and restore capital to banks in a timely manner may be
needed in order to curtail systemic events.

Financial networks generate chains of claims and at times of stress, these chains
can amplify uncertainties about true counterparty exposures. In good times, coun-
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terparty risk is known to be small, and thus “Knightian” uncertainty3 is small, and
in such times we might expect that stability will improve with connectivity. In bad
times, counterparty risk can be large and highly uncertain, due to the complicated
web and the nature of the links: we then expect stability to decline with connectiv-
ity. Financial innovation, particularly securitization, created additional instability.
As CDOs, MBSs, RMBSs and similar high dimensional products proliferated in-
ternationally, they dramatically expanded the size and scope of the precrisis bubble
(see [66]). The structure of these contracts was opaque not transparent. They dra-
matically increased the connectedness and complexity of the network, and moreover
adverse selection made them hard to evaluate. As Haldane wrote:

Haldane 2009 [41]: “With no time to read the small-print, the instruments were instead
devoured whole. Food poisoning and a lengthy loss of appetite have been the predictable
consequences. ”

In ecosystems, many instances have been observed that show that biodiversity
tends to improve stability. On the other hand, Haldane argues that during the Great
Moderation prior to 2007, financial diversity has been reduced. Pursuit of returns led
many major players, including global banks, insurance companies and hedge funds,
to follow similar strategies leading to averaged portfolio correlations in excess of
90% during 2004-2007. Moreover, risk management regulation following Basel II
led to similar risk management strategies for banks. As a result of such trends, bank
balance sheets became increasingly homogeneous. Finance became almost a mono-
culture, and thus vulnerable to viral infection.

What one learns from Haldane’s analysis is that networks arising in ecology, en-
gineering, the internet, and in finance, are complex and adaptive. Such networks are
in a sense robust yet fragile. He asks “what properties of the financial network most
influence stability?” and expresses the hope that the key determinants for financial
stability can be deduced from studies of other types of networks.

1.2.3 A Lesson from Network Science: The Sandpile Model

Is there more specific guidance to understanding systemic risk that comes from
other branches of the science of complex adapted systems? Consider the follow-
ing thought experiment, first proposed by Bak, Tang and Wiesenfeld [7]. A very
slow trickle of sand is allowed to fall in the middle of a large circular table. How do
we expect the system to evolve? The growing accumulation of sand forms a pile on
the table and our common experience tells us that the steepness of the pile cannot
exceed a certain critical slope that depends on the microscopic and statistical prop-
erties of the sand. As more sand is added, the sandpile, still near its critical slope,

3 In Knightian terms, uncertainty describes modelling situations where probabilities cannot plau-
sibly be assigned to outcomes. On the other hand, risk describes situations where uncertainty can
be adequately captured in a probability distribution.
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eventually expands to cover the entire surface of the table. Having reached this max-
imal extent, the properties of the system take on a new character. On average, as sand
is added near the centre of the table, an equal amount of sand must fall off the edge.
The interesting thing however is the probabilistic nature of the likelihood of n grains
falling off, for each single grain added: BTW’s assertion, vindicated since by exper-
iments, is roughly that the frequency for between N and 2N grains to fall is twice the
frequency as for 2N to 4N grains. In other words, it is a power law or scale-invariant
distribution similar to the Gutenberg-Richter frequency law for earthquakes, that
carries the implication that disturbances of unbounded size can be triggered by a
very small event. They coined the term self-organized criticality, or “SOC”, for this
type of phenomenon, and boldly claimed that such large scale driven systems have
an innate tendency to build into a steady state that exhibits power law statistics that
are universal, or insensitive to the microscopic details of the system.

Self-organized criticality has also been invoked to explain the widespread obser-
vation of fat-tailed Pareto distributions in economic contexts, such as the size of
cities, the distribution of wealth, and the distribution of firm sizes. Network scien-
tists are thus not surprised to see evidence of Pareto tails in the size and connectivity
of financial networks, with large, highly connected hub banks that form a core within
a periphery of intermediate and small banks.

It might sound naive to assert that something like sand piling is happening
in financial systems. However, as Minsky wrote in [56], “Stability–even of an
expansion–is destabilizing in that more adventuresome financing of investment pays
off to the leaders, and others follow.” Perhaps the financial system is like a sand
pile near its maximal size, where unbounded disturbances are possible. The Min-
sky moment when a financial bubble bursts might then be analogous to one of these
large scale disturbances. Adrian and Shin [4] provide a possible explanation. They
demonstrate that in the 10 year period leading up to the 2007-08 crisis, financial
institutions exhibited strongly pro cyclical investment strategies: as asset prices rose
during the prolonged period of stability, so did the balance sheets and leverage ratios
of banks, showing that they pursued ever more adventurous strategies. Eventually,
as the financial system approached a critical state with little government oversight,
only small triggers were needed to create the inevitable collapse.

1.3 Channels of Systemic Risk

Systemic contagion that causes the failure or impairment of a large number of banks
will in reality always manifest itself through a multitude of different channels, with
spillover or domino effects from one to another. In the language of network science,
financial networks are multiplex, meaning there are interbank links of many differ-
ent types, and a contagious event that starts with one type of link will likely quickly
infect all other types of links. Nonetheless, it is important to identify the basic types
of shock mechanisms that we expect to find activated during a financial crisis, either
as the primary cause, or else as the result of spillover effects stemming from the
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initial shock. For an in-depth discussion of various channels of systemic risk, and in
particular, contagion, please see [29].

Asset Correlation: Different banks tend to hold common assets in their portfolios.
Haldane [41] has argued that banks’ asset portfolios became increasingly similar
during the Great Moderation, making them more and more susceptible to correlated
asset shocks that can be considered as a channel of systemic risk. In 2007, most
large banks around the world held significant positions in the US sub-prime mort-
gage market. The prolonged drawdown of US housing prices in that year acted as
a huge downward asset shock that exposed the vulnerability of most banks’ asset
portfolios. Such systemic events undermine the health of the system, in the same
way that famine impairs the health of a community without exhibiting the amplifi-
cation factors that characterize contagion, but make it vulnerable to other types of
contagion.

Default Contagion: Bank deposits held in other banks can be considered as a
form of interbank lending, but banking in modern times has dramatically expanded
the range of interbank exposures. There is a multitude of linkage types between
bank counterparties that range well beyond traditional interbank lending, to include
swaps, derivatives and other securitized assets. At any moment, banks can at least
in principle identify their exposures to all other banks and they also work hard to
identify their expected potential exposure over different future time horizons. When
a bank becomes insolvent, if it is not bailed out by a government agency, it will
be forced into bankruptcy. Its creditors, including other banks, will then experience
severe losses given this default, possibly losing close to 100% of their total expo-
sure in the short term aftermath. Such shocks to creditor banks’ interbank assets at
the time of default of a debtor bank are the channel for default contagion. If left
unchecked by government intervention, such shocks can in principle chain together
like dominos to create a default cascade. Default cascades can only happen when
interbank exposures are a high fraction of lending banks’ equity, and [70] provides
evidence that this was the case in Europe before and during the crisis, when many
banks’ interbank exposures exceeded their capital by factors of 5 or more.

Liquidity Contagion: Funding illiquidity is the situation of a bank with insuffi-
cient access to short term borrowing. Such banks, being short of cash or other liquid
assets, will adopt a variety of strategies that can be considered as shrinking their
balance sheets. They will try to access the repo markets for untapped sources of col-
lateralized borrowing. They will refuse to rollover short term loans and repo lending
to other counterparties. When banks respond to funding illiquidity by curtailing a
large fraction of their interbank lending, the resulting funding shocks to other banks
are the channel for liquidity contagion in the system.

Market Illiquidity and Asset Fire Sales: As [4] discussed, in good times banks
tend to create upward asset price spirals by increasing their leverage through large
scale asset purchasing. This pushes up prices, creating the illusion of even better
times ahead and further increases in leverage. As they also discuss, the reverse is
true in bad times. This tendency for distressed banks to sell assets into a depressed
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market creates the contagion mechanism known as an asset fire sale. A fire sale
cascade proceeds through a double step mechanism: first, asset sales by distressed
banks decreases prices, then marking-to-market leads to losses by other banks hold-
ing these assets.

Other Channels: Many authors have identified further channels for systemic risk.
Rollover risk is the name given to the effect that lenders to a bank may fail to renew
or “roll-over” short term debt. [60] models this effect as a coordination game played
by the lenders to a single counterparty: a player that perceives that other players
are likely not to rollover their debt, will be much more likely not to rollover their
debt. Such a decision may be due either to a lending bank’s assessment of the health
of the counterparty (which was termed structural uncertainty), or to that bank’s as-
sessment of the lending behaviour of other banks (termed strategic uncertainty ). [6]
extend this picture to a network setting by considering a multitude of simultaneous
coordination games, leading to runs in the interbank network. In [39], it is argued
that the 2008 crisis was largely a crisis of confidence in the repo market that led
to a drying up of banks’ funding opportunities. In normal times, the repo market
provides a huge source of short term funding for banks that is information insensi-
tive in the sense that the lender has little incentive to be concerned about the health
of its counterparty. During the crisis however, lenders became information sensitive
and questioned the quality of counterparties and their underlying collateral. Con-
sequently, they began to demand large increases in repo haircuts. In other words,
they demanded collateral valued well above the loan amounts, and in consequence
dramatically decreased the availability of repo funding at a time it was most needed.
This effect was contagious: banks that raised haircuts imposed funding illiquidity on
their counterparties, leading to further questioning of the quality of counterparties
and their collateral.

1.4 Capital Structure of a Bank

Banks around the globe form a diverse family of firms, spanning a huge range of
sizes and types. In addition to traditional retail and investment banks, financial net-
work models need eventually to include a whole host of shadow banking institu-
tions, including hedge funds, pension and investment funds, savings and credit in-
stitutions, and so on. As our systemic models evolve, we will include in our system
more and more components of the wider production and retail economy. It will
clearly be impossible to capture here in a brief overview the full range of holdings
and liabilities that such institutions might have, and that should in principle be un-
derstood.

Quarterly financial reports of a firm’s balance sheet offer a snapshot at a moment
in time of the details of a firm’s capital structure, that is, the valuation of the totality
of their assets and liabilities. It is helpful to imagine these balance sheet entries as
existing at all times, even if not observed by the market. One can imagine that the
bank management maintains its accounting books, updating them daily, and only
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once a quarter makes them available to the public. Regulators, on the other hand,
have the power to examine the books of any bank, at any moment.

In studies of the “financial system”, it is important to carefully define the bound-
ary between the interior and exterior of the system. Correspondingly, for systemic
analysis, assets and liabilities will always be separated into intra- and extra-network
components. The available classes of assets relevant in banking is extremely diverse,
but from a systemic risk perspective their most important characteristics are in the
following dimensions: duration or maturity, credit quality, interest rate and liquidity.
Similarly, liabilities primary characteristics are maturity, interest rate, and seniority.

One important insight to keep in mind when considering capital structure is the
formal duality between assets and liabilities. Almost any asset is someone else’s
liability and in many cases where a story can be told of asset side contagion, an
analogous story can be told of liability side contagion.

1.4.1 Bank Asset Classes

This section gives a schematic overview of some of the most important basic forms
that bank assets take, and how these assets may be controlled. The key attributes of
bank assets are duration or maturity, credit quality and liquidity.

Loan portfolio: The main business line of a bank, like any other firm, is to invest
in endeavours for which it has a competitive advantage. Such irreversible projects
are by their nature illiquid, and fail to recoup their full value when sold. Indeed,
their mark-to-market value may not even be well-defined, and we should suppose
that when liquidated suddenly are sold well below their book value. For banks, this
business line, the bank book, consists of a vast portfolio of loans and mortgages
of all maturities, to a wide variety of counterparties ranging from the retail sector,
to small and medium enterprises (SMEs) and major corporates. Far from receding
in importance since the crisis, [48] shows that real estate lending (i.e. mortgages) in
particular accounts for an ever increasing percentage of bank assets. They comment:
“Mortgage credit has risen dramatically as a share of banks’ balance sheets from
about one third at the beginning of the 20th century to about two thirds today” and
suggest that real estate bubbles will continue to provide a dominant component of
future systemic risk events.

As mentioned above, in systemic risk analysis, assets placed within the financial
system, called interbank assets are always distinguished from external assets placed
outside the system.

Over-the-counter securities: Bonds, derivatives and swap contracts between
banks are to a large extent negotiated and transacted in the OTC markets, some-
times bilaterally, but increasingly within a central clearing party (CCP) . Some of
these exposures fluctuate rapidly in time, both in magnitude and in sign, and may or
may not be collateralized by margin accounts to reduce counterparty risk. Between a
pair of financial counterparties there may be many contracts, each with positive and
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negative exposures. To reduce risk, counterparties often negotiate a bilateral master
netting agreement (MNA), subject to the regulations stipulated by ISDA, that allows
them to offset exposures of opposite signs. Entering into an MNA is a costly endeav-
our, and thus existence of an MNA is an indication of a strong network connection
between two banks. Methods of counterparty risk management, reviewed for ex-
ample in [28], is a particular flavour of credit risk management that has developed
rapidly since the crisis. As part of this methodology, banks now routinely forecast
the potential future exposure, or PFE, for all their important counterparties. This is
a high quantile (often 95%) of the positive part of their exposure to the given coun-
terparty on a given date in the near future. The PFE of one bank to another comes
close to what we mean when we assign a weight to an interbank link: in the event
that one bank suddenly defaults, PFE is a pessimistic estimate of losses to which its
counterparties are exposed.

An important subclass of OTC securities are total return swaps (TRS) that ex-
change the random returns on an underlying asset for a fixed periodic payment. An
example of a TRS is the credit default swap (CDS) that exchanges fixed quarterly
payments for a large payment at the moment the underlier defaults, providing a form
of default insurance. From a network perspective, complex and poorly understood
effects are bound to arise when the underlier is itself part of the system, as would be
the case of a CDS written on the default of another bank.

Cash and market securities: In addition to cash, the firm may hold other securities
for which there is a liquid market, and low or moderate transaction costs. Some
examples would be the money-market account that pays the over-night rate, stocks,
T-bills, or exchange traded derivatives. In the case of banks, a new aspect of the
Basel III regulatory framework requires active and prudent liquidity management
which means that a fraction of assets must be held in a portfolio of cash and market
securities that can be easily liquidated when the bank needs to meet its short term
obligations in a timely manner.

Reverse repo assets: A repo-lending bank (see the next section on repos) receives
collateral assets known as reverse repos. Such assets can be “rehypothecated”, which
means they can themselves be used as collateral for repo borrowing.

Other assets: Of lesser importance are a range of further asset classes such as real
estate, accounts receivable, and the like.

1.4.2 Debt and Liabilities

Deposits: A large fraction of the debt of a traditional bank is in the form of deposits
made by both institutional investors and small retail investors. Since there are many
of them, with a diverse range of maturities, the collective of deposits can be thought
of as a multiple of an asset that pays a constant dividend rate (for banks, we will
assume it is less than the risk free rate). One important class of wholesale deposi-
tor is short-term money-market funds. Their widespread meltdown in early stages



1.4 Capital Structure of a Bank 21

of the last financial crisis played an important contagion role. Small depositors are
typically protected by deposit insurance in the event of the bank’s default, while
institutional depositors have no such protection. Banks in particular seek protec-
tion through collateralization. Uncollateralized lending between banks takes other
forms: certificates of deposit and bankers’ acceptances are variants banks use to lend
to each other.

Bonds: Like most large firms, banks issue bonds as a primary means to raise long
term debt capital, each bond being characterized by its notional amount, maturity
and coupon rate, plus a variety of additional attributes. Sometimes a bank’s bonds
differ in seniority, meaning that in the event of default, the most senior bonds are
paid in full before junior bonds. Typically, the firm cannot retire existing bonds or
issue new bonds quickly.

Market securities Hedge funds and investment banks have the characteristic that
they often take large short positions in market securities, such as stocks and deriva-
tives. To a lesser extent, commercial banks also hold short positions for hedging
and risk management reasons. Short positions can be thought of as holding negative
amounts in market securities.

Collateralized Loans (Repos): Short for repurchase agreements, repos are an im-
portant class of collateralized short term debt issued between banks and other insti-
tutional investors. Typically, money is borrowed for a short term, often overnight, at
an interest rate r called the repo rate. They are backed by assets (repo assets) whose
value exceeds the loan amount by a percentage h called the haircut. The haircut
reflects the liquidation value of the collateral in the event the money is not repaid.
This haircut thus compensates the lender, also called the asset buyer, for the coun-
terparty risk inherent in the contract when the borrower (or asset seller) defaults. To
illustrate how repos are used, suppose a bank has an excess $1 in cash. Then they
might undertake an overnight repo of $1 with another bank for collateral valued at
$1/(1− h). The next day the contract is closed by repurchase of the collateral for
the price $(1+r). While the lending bank holds the collateral, they may also elect to
use it to finance a second repo with another counterparty: we then say the collateral
has been rehypothecated.

Hybrid capital: This term denotes parts of a firm’s funding that possess both equity
and debt features. Like equity, it may pay tax-deductible dividends, and like debt it
maintains seniority over equity in the event of default. There is now active interest
in forms of hybrid capital issued by banks such as contingent convertible bonds
(COCOs) that behave like bonds as long as the firm is healthy, but provide additional
equity cushioning for the bank when its balance sheets weaken.

Other Liabilities: Accounts payable are analogous to accounts receivable. Invest-
ment banks act as prime brokers and hold their clients’ securities in trust. They often
act on the right to borrow such securities to be used as collateral for purchasing fur-
ther assets. Such a debt can be understood as similar to a collateralized loan.
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1.4.3 Equity

Equity, defined to be the value of a firm’s assets minus its liabilities, what it owns
minus what it owes, represents the total value conveyed by ownership of the firm.
For a publicly owned firm, ownership is divided into shares that have an observable
fluctuating market price: in this case, total market capitalization, the share price
times the number of shares outstanding, is a market value of equity. For privately
held firms, equity does not have a transparent market value: valuation of privately
held firms can only be gleaned through investigation of the firm’s accounts. Firms,
especially banks, are typically highly leveraged, meaning their assets are a large
multiple of their equity. In such situations, equity, being a small difference of large
positive numbers, is inherently difficult to estimate and this uncertainty is reflected
in the high volatility of the stock price.

Limited liability is the principle, applying to almost all publicly held companies,
that share owners are never required to make additional payments. In the event the
firm ceases to operate, the shareholders are not held responsible for unpaid liabili-
ties. We can say this means equity can never be negative, and is zero at the moment
the firm ceases to operate. This is called bankruptcy, and limited liability is a central
principle in bankruptcy law worldwide.

Firms return profits to their shareholders two ways, either through the payment
of regular dividends, or through the increase in share price when the value of firm
equity rises. Share issuance and its opposite, the share buyback, are two further
financing strategies firms can adopt. A firm near to default may attempt a share is-
suance, hoping that new investors will view the decline in its fortunes as a temporary
effect before the firm’s return to health.

1.5 Regulatory Capital and Constraints

Largely as a result of lessons hard learned during the crisis, the world is currently
moving quickly beyond a Basel II regulatory regime that can be characterized as
microprudential in emphasis. This means Basel II regulations are imposed bank
by bank without taking into account the dependence of risks between banks. For
example, the capital adequacy ratio (CAR) which stipulates

Risk-weighted Assets≤ 12.5×Total Capital

is the main requirement of Basel II, and is based only on the individual bank’s
balance sheets. The importance of network effects is recognized at the core of Basel
III in measures that are macroprudential in nature, meaning they try to account for
the network and the interconnectivity of risks between banks.

An example of macroprudential regulation is the new requirement by Basel III
that banks must report their large exposures to individual counterparties or groups of
counterparties, both financial and non-financial. This is clear recognition that large
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interbank linkages are systemically important during a crisis. It has also become
clear that the fixed regulatory capital ratios of Basel II were procyclical and can
dangerously amplify the swings of the credit cycle. When the financial system en-
ters a contraction phase, capital buffers of some banks will be squeezed below the
regulatory minimum, leading naturally to fire sales and further asset shocks. Basel
III seeks to ward off this tendency by making the capital requirements counter-
cyclical. During normal periods, capital requirements have a surcharge which can
be removed as the system begins to contract to provide banks with more flexibility.
Yet another example of macroprudential regulation is that Basel III now recognizes
the existence of SIFIs (for systemically important financial institutions ), also called
G-SIBs (for global systemically important banks ), and subjects them to a regulatory
capital surcharge that will hopefully make them more resilient. Clearly, the identi-
fication of SIFIs must be grounded in well established systemic risk theory, and
the SIFIs themselves will demand a theoretical basis for what is to them a punitive
measure.

The Basel II capital adequacy ratio, although it has been strengthened in Basel
III, still leads to distortions banking balance sheets through its use of risk weights.
For example, the risk weight for sovereign bonds of OECD countries remains zero,
meaning these assets require no offsetting equity capital, allowing banks to operate
with unsustainably high leverage ratios. Basel III provides a counterbalance to the
CAR by requiring an additional constraint on bank leverage. Liquidity risk is for the
first time explicitly addressed in Basel III through the implementation of two new
regulatory ratios. The Liquidity Coverage Ratio (LCR) ensures that every bank’s
liquid assets will be sufficient to cover an extreme stress scenario that includes a 30
day run off of its short-term liabilities. The Net Stable Funding Ratio (NSFR) sim-
ilarly seeks to ensure that enough long term (greater than one year) funding will be
available to cover a stress scenario that hits the bank’s long term assets. Considering
the Lucas critique [53](p. 41) that “any change in policy will systematically alter the
structure of econometric models”, we must expect that the systemic ramifications of
the LCR and NSFR will be subtle and far-reaching.

Critics, notably Haldane [42], argue that the Basel III regulatory framework has
become excessively complex, and that the regulatory community must do an about-
turn in strategy and operate by a smaller, less-detailed rulebook. Haldane writes:
“As you do not fight fire with fire, you do not fight complexity with complexity.
Because complexity generates uncertainty, not risk, it requires a regulatory response
grounded in simplicity, not complexity.”

Our task now is to begin exploring the channels of cascading systemic risks in
detail, with an aim to closing the gap in understanding that exists between knowing
bank-to-bank interactions and knowing how a large ensemble of banks will behave.





Chapter 2
Static Cascade Models

Abstract Distinct financial network effects such as default contagion and liquidity
hoarding share the characteristic that they are transmitted between banks by direct
contact through their interbank exposures. It follows they should be modelled start-
ing from a common framework. In this chapter, a number of different cascade mech-
anisms are developed and shown to have common features. Banks maintain safety
buffers in normal times, but these may be weakened or fail during a crisis. Banks
react to such stresses by making large adjustments to their balance sheets, send-
ing shocks to their counterparties that have the potential to trigger further stresses.
The eventual extent of a crisis can be described mathematically as a fixed point or
equilibrium of a cascade mapping. Asset fire sales can be modelled analogously as
a form of single buffer contagion, while more complex effects arise when banks’
behaviour is determined by multiple buffers. In the end, we propose a definition of
a random financial network.

Keywords: Cascade mechanism, default and liquidity buffers, fixed point equations,
cascade equilibrium, asset fire sales, random financial network.

Contagion, meaning the transmission of a disease by direct or indirect contact,
is an appropriate term for the damaging effects that can be transmitted through the
interbank network, and which are the essential point of interest in this book. This
chapter will focus on the development of a number of frameworks for stylized static
cascades that model contagion that can arise in hypothetical financial networks. The
essential picture will be to treat banks and their behaviour as determined by their
balance sheets, and to concentrate on effects that can be transmitted between banks
through the contracts they exchange.

We begin in the traditional fashion by considering first how the default of one
bank might directly impact other banks, leading to what we call a default cascade.
In such situations, the default of any bank that occurs when its assets are insufficient
to cover its liabilities, will have a large impact on each of its creditor banks. These
default shocks might then build up and cause further bank defaults, and trigger new
shocks, creating a default cascade. In an analogous way, part of the recovery strat-
egy of an illiquid bank may be to call its loans to its debtor banks, thereby inflicting
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liquidity shocks on these banks. In view of this formal similarity, it is interesting
to consider how the same basic cascade framework, reinterpreted, can also model
such a simple liquidity cascade. A third type of contagious effect, called asset fire
sales, occurs when large scale selling of an asset class by a stressed bank can lead
to price shocks that in turn negatively impact other banks holding the same asset
class. Finally, one can investigate more complex models of double or higher dimen-
sional cascades that combine different contagion transmission mechanisms, each
with some of these basic characteristics.

Our primary purpose is therefore to focus on contagion effects that are trans-
mitted through interbank linkages. These are genuinely network effects that cannot
be understood within traditional financial mathematics modelling. The models we
consider are simple and stylistic and are intended to capture the essence of conta-
gion rather than specific details. By studying the schematics of financial cascades,
we can hope to connect with more developed and better understood domains of net-
work science where analogous mechanisms have been well-studied, allowing us to
carry over their intuition and rigorous results. In later chapters, we will attach these
aspects of systemic risk firmly to the rich mathematical framework that has been
developed to understand cascades and contagion in network science. At some basic
level, cascades of failing banks are not so different from certain phenomena that are
seen in other complex networks, such as the failure of power grids, the spread of
memes in society or cascades of nerve impulses in neural networks.

A model of static default cascades starts with a set of banks characterized by
their balance sheets that are interconnected through directed links representing sim-
ple interbank loans. The balance sheets contain the information of the nominal (or
book) values of all the relevant securities held as assets or liabilities of each bank.
Insolvency, or default, of a bank arises when its assets are insufficient to cover their
debt liabilities. It is natural to assume that a defaulted bank can no longer repay the
full nominal values of its debt. The solvency of banks are then determined by the
reduced, or “mark-to-market”, values of interbank assets.

In this book, we use the word “static” to describe a cascade whose end result is a
deterministic function of the initial balance sheets and exposures. We shall assume
that such cascades proceed from a possibly random initial configuration through a
cascade mechanism that generates a series of deterministic steps until a steady state
or cascade equilibrium is reached. At the outset of a default cascade, a subset of
banks, called the seed, are taken to be defaulted due to some triggering event coming
from outside the system. In each cascade step, banks update the mark-to-market
valuation of their assets to assess their own solvency, and any newly insolvent bank
is identified. The cascade equilibrium is reached at the step when no further banks
default. In a static cascade, it is assumed that balance sheets do not experience cash
flows, such as interest or dividend payments, in any cascade step. Each cascade step
can be viewed as a mapping from the collection of marked-to-market bank balance
sheets to itself, depending on the nominal bank balance sheets. The state of the
network at the end of the cascade is then necessarily a fixed point of this cascade
mapping.
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The well-known Eisenberg-Noe model [32] is the prototype of a static cascade
model. As we shall review in this chapter, the systemic risk literature contains many
variations, that differ in the types of securities and exposures considered, and in the
way defaulted assets are marked-to-market. Underlying all such cascade models are
some interesting mathematical questions. Is the cascade mapping well-defined, and
does it necessarily have an economically acceptable fixed point? If there is a fixed
point, is it unique? When the fixed point is unique, many pathological behaviours
can be ruled out. On the other hand, when there are many fixed points, determining
their stability properties may be a challenging problem. The main goal in this chap-
ter is to create a framework flexible enough to cover the spectrum of known static
cascade models.

2.1 Bank Balance Sheets

The financial cascade framework of Eisenberg and Noe [32] begins with a financial
system assumed to consist of N “banks”, labelled by v = 1,2, . . . ,N := [N] (which
may include non-regulated, non-deposit taking, leveraged institutions such as hedge
funds, or other regulated financial institutions such as insurance companies). Their
balance sheets can be characterized schematically like this:

Assets Liabilities

external assets Ȳ external debt D̄
interbank assets Z̄ interbank debt X̄

equity Ē

Table 2.1 An over-simplified bank balance sheet.

At the outset, the entries in these banks’ balance sheets refer to nominal values
of assets and liabilities, and give the aggregated values of contracts, valued as if all
banks are solvent. Nominal values, denoted by upper case letters with bars, can also
be considered book values or face values. Assets and liabilities are also decomposed
into interbank and external quantities depending on whether the loan or debt coun-
terparty is a bank or not. Banks and institutions such as foreign banks that are not
part of the system under analysis are deemed to be part of the exterior, and their
exposures are included as part of the external debts and assets.

Definition 1. The nominal value of assets of bank v at any time consists of nominal
external assets denoted by Ȳv plus nominal interbank assets Z̄v. The nominal value
of liabilities of the bank includes nominal external debt D̄v and nominal interbank
debt X̄v. The bank’s nominal equity is defined by Ēv = Ȳv + Z̄v − D̄v − X̄v. The
nominal exposure of bank w to bank v, that is the amount v owes w, is denoted by
Ω̄vw. We define interbank loan fractions to be Π̄vw = Ω̄vw/X̄v as long as X̄v > 0.
Interbank assets and liabilities satisfy the constraints:
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Z̄v = ∑
w

Ω̄wv, X̄v = ∑
w

Ω̄vw, ∑
v

Z̄v = ∑
v

X̄v, Ω̄vv = 0 .

The stylized balance sheets of all banks in the network can be combined into a table,
as shown in Table 2.2.

1 2 · · · N X̄ D̄ Ē
1 0 Π12X̄1 · · · Π̄1NX̄1 X̄1 D̄1 Ē1
2 Π̄21X̄2 0 · · · Π̄2NX̄2 X̄2 D̄2 Ē2
...

...
...

. . .
...

...
...

...
N Π̄N1X̄N Π̄N2X̄N · · · 0 X̄N D̄N ĒN
Z̄ Z̄1 Z̄2 · · · Z̄N
Ȳ Ȳ1 Ȳ2 · · · ȲN

Table 2.2 The matrix of interbank exposures contains the values Ω̄vw = Π̄vwX̄v. The first N rows
of this table represent different banks’ liabilities and the first N columns represent their assets.

When a bank v is known to be insolvent or defaulted, certain contracts connected
to v will naturally be valued at less than their nominal values. These actual or mark-
to-market values, denoted by symbols Z,Y,X,D,E,Ω without upper bars, typically
decrease during the steps of the cascade.

Economic cascade models usually invoke the notion of limited liability, and de-
fine a firm to be defaulted when its mark-to-market equity is non-positive. This
means its aggregated assets are insufficient to pay the aggregated debt. At the onset
of the cascade, initially defaulted banks are therefore identified as those banks whose
nominal equity Ē is non-positive. As a static default cascade progresses, the market
value of equity of banks generally decreases, potentially leading to secondary de-
faulted banks.

Definition 2. A defaulted bank is a bank with E≤ 0. A solvent bank is a bank with
E > 0.

The nominal amounts Ȳ, Z̄, D̄, X̄,Ω̄ are used to determine the relative claims by
creditors in the event a debtor bank defaults. The precise mechanism by which de-
faulted claims are valued is an important modelling decision that distinguishes dif-
ferent approaches.

Later in the chapter we will study cascade models of illiquidity, in which the
impairment banks suffer is not default, but rather insufficient funding. We can call
such banks stressed. The static cascade models we shall discuss all share a number
of timing assumptions, which we describe as if the cascade proceeds in daily steps.

Assumption 1. 1. Prior to the cascade, all banks are in the normal state, not insol-
vent.

2. The crisis commences on day 0 triggered by the default of one or more banks;
3. Balance sheets are recomputed daily on a mark-to-market basis;
4. Banks respond daily on the basis of their newly computed balance sheets;
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5. All external cash flows, interest payments, and external asset price changes are
ignored throughout the cascade.

2.2 The Eisenberg-Noe 2001 Model

This famous model of default contagion makes three additional assumptions that
determine a precise default resolution mechanism1:

Assumption 2. 1. External debt is senior to interbank debt and all interbank debt is
of equal seniority; 2. There are no losses due to bankruptcy charges; and 3. Ȳv ≥ D̄v.

In tandem with the limited liability assumption, the first of these means that on
default, a bank’s equity is valued at zero, and its external debt must be paid in full
before any of its interbank debt is paid. A variant of this assumption is discussed
at the end of this section. The third assumption means that defaulted banks always
have sufficient external assets to pay their external debt in full.

The no-bankruptcy costs assumption is very important, and somewhat optimistic
in the context of systemic risk. It has the strong consequence that when the system
is viewed as a whole, no system-wide equity is lost during the crisis. It is easy to see
that the system equity, defined as total assets minus total liabilities, is independent
of the payments within the inter banking sector:

Ēsys = ∑
v
(Ȳv + Z̄v− D̄v− X̄v) = ∑

v
(Ȳv− D̄v) .

Let us suppose the banking network, previously in equilibrium with no defaulted
banks, experiences a catastrophic event, such as the discovery of a major fraud in a
bank or a system wide event, whereby the nominal assets of some banks suddenly
contract. If one or more banks are then found to be in such a state of primary de-
fault, they are assumed to be quickly liquidated, and any proceeds go to pay off
these banks’ creditors, in order of seniority. We let p(n)v ,v ∈ [N] denote the (mark-
to-market) amount available to pay v’s internal debt at the end of the nth step of the
cascade, and p(n) = [p(n)1 , . . . , p(n)N ]. By Assumption 2, the value p(n)v is split amongst
the creditor banks of v in proportion to the fractions Π̄vw = Ω̄vw/X̄v (when X̄v = 0,
we define Π̄vw = 0,w = 1, . . . ,N). Therefore, at step n+1 of the cascade, every bank
w values its interbank assets as Z(n+1)

w = ∑v Π̄vw p(n)v . Since by assumption there are
no bankruptcy charges, we find

p(n+1)
v = F(EN)

v (p(n)); F(EN)
v (p) := min(X̄v, Ȳv +∑

w
Π̄wv pw− D̄v), v = [N] . (2.1)

Now we let p = [p1, . . . , pN ] denote the vector of banks’ internal debt values at
the end of the cascade. This clearing vector satisfies the clearing condition, or fixed

1 The original paper is expressed in terms of the differences ēv := Ȳv− D̄v
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point condition:
p = F(EN)(p) . (2.2)

For any clearing vector p, the equity of bank v at the end of the cascade is given
by

Ev = (Ȳv +∑
w

Π̄wv pw− D̄v− X̄v)
+ = Ȳv +∑

w
Π̄wv pw− D̄v− pv, (2.3)

where one can see that the second equality holds because bankruptcy charges are
zero.

The first main theorem of Eisenberg and Noe, written using a vector and matrix
notation described in Appendix A.1, is the following:

Theorem 1. Corresponding to every financial system (Ȳ, Z̄, D̄, X̄,Ω̄) satisfying As-
sumption 2,

1. There exists a greatest and a least clearing vector p+ and p−.
2. Under all clearing vectors, the value of the equity at each node is the same, that

is, if p′ and p′′ are any two clearing vectors,

(Ȳ+ Π̄
T ·p′− D̄− X̄)+ = (Ȳ+ Π̄

T ·p′′− D̄− X̄)+ .

Proof: Part (1) of the Theorem follows by the Knaster-Tarski Fixed Point Theorem2

once we verify certain characteristics of the mapping FEN . We note that FEN maps
the hyperinterval [0, X̄] := {x ∈ RN : 0≤ xv ≤ X̄v} into itself. We also note that it is
monotonic: x ≤ y implies FEN(x) ≤ FEN(y). Finally, note that [0, X̄] is a complete
lattice. We therefore conclude that the set of clearing vectors, being the fixed points
of the mapping FEN , is a complete lattice, hence nonempty, and with maximum and
minimum elements p+ and p−.

Part (2) follows by showing that for any clearing vector p′,

(Ȳ+ Π̄
T ·p′− D̄− X̄)+ = (Ȳ+ Π̄

T ·p+− D̄− X̄)+ .

By monotonicity, p′ ≤ p+ implies

(Ȳ+ Π̄
T ·p′− D̄− X̄)+ ≤ (Ȳ+ Π̄

T ·p+− D̄− X̄)+

and equivalently

Ȳ+ Π̄
T ·p′− D̄−p′ ≤ Ȳ+ Π̄

T ·p+− D̄−p+ .

Then we take the inner product of this equation with the vector 1 = [1, . . . ,1] and
use the fact that 1 · Π̄ T = 1 to show that

1 · (Ȳ+ Π̄
T ·p′− D̄−p′) = 1 · (Ȳ+ Π̄

T ·p+− D̄−p+)

2 A statement and proof of this result can be found at
http://en.wikipedia.org/wiki/Knaster-Tarski-theorem
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and the result is proved. Note there is a glitch in this proof because when X̄v = 0
we have defined Π̄ T

wv = 0, invalidating the condition 1 · Π̄ T = 1: however for this v,
pv = 0, and hence it is still true that 1 · Π̄ T ·p = 1 ·p. ut

Remark 1. We note that by Part 2 of the Theorem, Π̄ T ·p′−p′ = Π̄ T ·p′′−p′′. Also,
note that Part (2) depends crucially on the assumption of no-bankruptcy charges.

Finding natural necessary and sufficient conditions on E-N networks to ensure
the uniqueness of the clearing vector proves to be more challenging. Theorem 2
of [32] gives a sufficient condition, and some economic intuition that underlies it.
We will address this question in a slightly more general setting shortly, but in the
meantime, the following is an example of non-uniqueness of the clearing vector.

Remark 2. The N = 4 bank network shown in Figure 2.1 with

Ω̄ =


0 1 0 0
0 0 2 0
3 0 0 0
1 1 1 0


and Ȳ− D̄ = 0 has multiple clearing vectors p = λ [1,1,1,0] with λ ∈ [0,1].

1

2

3

4

1

2

3
1

1

1

Fig. 2.1 A simple network with an irreducible in-graph consisting of the nodes {1,2,3}.

Including debt Ȳ′ with equal seniority to interbank debt can be handled easily by
introducing a fictitious source bank v= 0. However, despite a contrary claim made in
[32], it is not trivial to extend the above results to networks which allow Ȳ < D̄: The
extension to this general case, which we now describe, seems to have first been done
by [30]. By writing Ȳ−D̄ = (Ȳ−D̄)+−(Ȳ−D̄)− one can now express the clearing
condition in terms of a vector q = [q1, . . . ,qN ]

T where qv denotes the amount bank
v has available to pay both the excess external debt (Ȳv− D̄v)

− and the interbank
debt X̄v:

q = min((Ȳ− D̄)++ Π̄
T ·p , (Ȳ− D̄)−+ X̄)

p = (q− (Ȳ− D̄)−)+ .
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This can be written more compactly in terms of p alone:

p = min
(
X̄,max(Ȳ− D̄+ Π̄

T ·p,0)
)
. (2.4)

We present here a complete characterization of the clearing vector set in the E-N
model without the condition Ȳ ≥ D̄. First, we identify groups of banks called in-
subgraphs (these are essentially the same as the surplus sets in [32]), that do not
lend outside their group.

Definition 3.

1. In-subgraph: any subgraph M ⊂N (possibly M = N ) with no out-links to its
complement M c.

2. Irreducible in-subgraph: an in-subgraph M ⊂N with at least 2 nodes that does
not contain a smaller in-subgraph.

Having identified all the irreducible in-subgraphs of a given network, we can
simplify the following discussion by removing all singleton in-banks (i.e. that do
not lend to other banks). Any such bank v will have pv = X̄v = 0 and its state has no
effect on other banks. We then consider the exposure matrix Π̄ T restricted to the re-
duced network ˜N without such in-banks, which may then be strictly substochastic3

in some columns.
The theorem that characterizes the set of clearing vectors in the E-N model is:

Theorem 2. Let the reduced network ˜N have exactly K ≥ 0 non-overlapping ir-
reducible in-graphs M1,M2, ...MK , and a decomposition ˜N = M0 ∪

(
∪K

k=1Mk
)
.

Let the possible fixed points be written in block form p = [p∗0, p∗1, . . . , p∗K ]
T . Then:

1. In case K = 0, the clearing vector p∗ = p∗0 is unique;
2. In case there are exactly K≥ 1 (non-overlapping) irreducible in-graphs M1,M2, ...MK ,

then the multiplicity of the clearing vectors is characterized as follows: p∗0 is
unique, and each p∗k is either unique or of the form p∗k = αkvk where the vector
vk is a 1-eigenvector of the matrix Pk · Π̄ T ·Pk projected onto Mk and αk ∈ [0, ᾱk]
for some ᾱk. The precise form of each p∗k is shown in the proof.

Remark 3. This theorem demonstrates that non-uniqueness in this model is a highly
non-generic property: only extremely special arrangements of the network lead to
multiplicity of solutions.

The proof of the theorem involves extending the following lemma to the most
general kind of E-N fixed point equation.

Lemma 1. Consider the system

p = min(X ,max(Y +Π · p,0) (2.5)

where Π is substochastic, X is a positive vector and Y is arbitrary.

3 A stochastic (substochastic) matrix has non-negative entries and columns that sum to 1 (respec-
tively, ≤ 1).
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1. If Π is strictly substochastic and has spectral radius less than one, then there is
a unique fixed point.

2. If Π is stochastic and irreducible, with y the unique eigenvector such that Π ·y =
y and 1 · y = 1, then one of two possible cases holds:

a. If 1 ·Y = 0, there is a one-parameter family of solutions that have the form
p∗ = λy, λ ∈ [0,λmax].

b. If 1 ·Y 6= 0, there is a unique fixed point, of which at least one component is
either 0 or X.

Proof of Lemma: In Part 1, uniqueness is guaranteed because I−Π has an explicit
inverse given by the convergent matrix power series (I−Π)−1 = ∑

∞
k=0 Π k.

Under the conditions of Part 2, by dotting (2.5) with the vector 1, we see that the
system p =Y +Π · p has a solution if and only if 1 ·Y = 0. If 1 ·Y = 0 one can check
that case 2(a) of the lemma holds. If 1 ·Y 6= 0, at least one component of any fixed
point of (2.5) must be X or 0. Substituting in this component value, and reducing
the system by one dimension now leads to a new fixed point equation of the same
form (2.5) but with the matrix Π̄ strictly substochastic with spectral radius less than
one. Such systems have a unique fixed point by part 1. ut

Proof of Theorem: We must now deal with the system (2.5) when Π is neither
strictly substochastic nor stochastic and irreducible. In general, it is easy to see
that N , itself an in-subgraph, contains within it a maximal number of irreducible
non-overlapping in-subgraphs M1,M2, ...MK , K ≥ 0 plus the possibility of addi-
tional single non-lending nodes with X̄v = 0. As discussed above, as a first step
we can eliminate all non-lending nodes and consider the reduced piece-wise linear
fixed point problem on the subgraph ˜N . The case when ˜N has no irreducible in-
subgraphs, i.e. K = 0, has a unique clearing vector because then, by Part 1 of the
Lemma, Π̄ T must be substochastic with spectral radius less than one.

If K > 0, we decompose into ˜N = M0∪
(
∪K

k=1Mk
)
, and after reordering nodes

write the matrix Π̄ T in block form with respect to this decomposition:

Π̄
T =


A 0 · · · 0
B1 Π1 0 0
... 0

. . . 0
BK 0 0 ΠK


with the column sums less than or equal to one. We shall characterize the possible
fixed points written in block form p = [p∗0, p∗1, . . . , p∗K ]

T . First we note that M0 is
itself an out-subgraph, and A is easily seen to be strictly substochastic with spectral
radius strictly less than 1. Therefore the fixed point equation for p∗0 is a closed equa-
tion, that has a unique solution by part 1 of Lemma 1. Each of the remaining pieces
of p∗, p∗k ,k ≥ 1, is a solution of a piecewise linear equation in the following form:

p∗k = min
(
X̄k,max

(
Bk · p∗0 + Ȳk− D̄k +Πk · p∗k ,0

))
.
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Now we note that each Πk is an irreducible stochastic matrix, and by Part 2 of
Lemma 1, p∗k is unique if 1k ·(Bk · p∗0+Ȳk−D̄k) 6= 0 and a point in a one-dimensional
interval if 1k · (Bk · p∗0 + Ȳk− D̄k) = 0. ut

2.2.1 Reduced Form E-N Cascade Mechanism

In models such as this, cascades of defaults arise when primary defaults trigger fur-
ther losses to the remaining banks. Theorem 1 proves the existence of an “equilib-
rium” clearing vector, which is usually unique, that gives the end result of cascades
in the E-N framework. Typically, however, different balance sheet specifications
lead to identical cascades, and we can characterize the cascade mechanism and re-
sultant clearing vectors in terms of a reduced set of balance sheet data. It turns out
that the key information to track is something we call the default buffer, which ex-
tends the notion of equity. We define the initial default buffer ∆

(0)
v of bank v to be

its nominal equity:

∆
(0)
v := Ēv = Ȳv +∑

w
Ω̄wv− D̄v− X̄v . (2.6)

As before, define p(n)v to be the amount available to pay X̄v at the end of cascade step
n, initialized at n = 0 to be p(0)v = X̄v. Introduce the normalized “threshold function”
h that maps the extended real line [−∞,∞] to the unit interval [0,1]:

h(x) = (x+1)+− x+ = max(0,min(x+1,1)) . (2.7)

Then, as one can easily verify, the result of the nth step of E-N cascade is expressible
as 

p(n)v = X̄v h(∆ (n−1)
v /X̄v)

q(n)v = ((Ȳv− D̄v)
−+ X̄v) h(∆ (n−1)

v /((Ȳv− D̄v)
−+ X̄v))

∆
(n)
v = ∆̄v−∑w Ω̄wv(1− p(n)w /X̄w))

= ∆̄v−∑w Ω̄wv(1−h(∆ (n−1)
w /X̄w)) .

(2.8)

The mark-to-market equity is the positive part of the default buffer, E(n)
v = (∆

(n)
v )+,

and default of bank v occurs at the first step that ∆
(n)
v ≤ 0. As n→ ∞, the monotone

decreasing sequence p(n) converges to the maximal fixed point p+. We can now see
clearly that in each step, the cascade mapping boils down to a vector-valued function
p(n−1) 7→ p(n) = F(p(n−1)|∆̄ ,Ω̄)

Fv(p) = X̄v h
(

∆̄v/X̄v−∑
w

Π̄wv(1− p(n−1)
w /X̄w)

)
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that depends parametrically only on the initial equity buffers ∆̄ and the interbank
exposures Ω̄ . Thus, the resulting maximal clearing vector p+ is a well-defined func-
tion of the reduced balance sheet data

p+ = G+(∆̄ ,Ω̄) .

If instead of starting the cascade at the initial value p(0)v = X̄v, we had begun with
p(0)v = 0, we would obtain a monotone increasing sequence p(n) that converges to
the minimal fixed point p− := G−(∆̄ ,Ω̄).

The scaled variable ∆/X̄ (which if X̄ = 0 we can define to be sgn(∆)×∞), or al-
ternatively ∆/((Ȳ−D̄)−+X̄), has the interpretation of a bank’s distance-to-default,
and the threshold function h determines both the fractional recovery on interbank
debt and on total debt when ∆ is negative. Different threshold functions h are an
important characteristic of different cascade models.

To determine the amount of external debt that bank v eventually repays, one
obviously also needs the value of (Ȳv− D̄v):

q+v =((Ȳv−D̄v)
−+X̄v) h(∆+

v /((Ȳv−D̄v)
−+X̄v)); ∆

+
v = ∆̄v−∑

w
Ω̄wv(1− p+w/X̄w)) .

2.2.2 Clearing Algorithm

The previous algorithm, while financially natural, typically takes an infinite number
of steps to converge to the maximal fixed point p+, even for finite N. The following
algorithm resolves the E-N cascade to the fixed point p∗ in at most 2N iterations by
constructing an increasing sequence of defaulted banks Ak ∪Bk,k = 0,1, . . . .

1. Step 0 Determine the primary defaults by writing a disjoint union [N] :=
{1, . . . ,N}= A0∪B0∪C0 where

A0 = {v |Yv + Z̄v− D̄v < 0}
B0 = {v |Yv + Z̄v− D̄v− X̄v < 0}\A0

C0 = [N]\ (A0∪B0) .

2. Step k, k = 1,2, . . . Solve, if possible, the |Bk−1| dimensional system of equa-
tions4:

pv = Yv− D̄v + ∑
w∈Ck−1

Π̄wvX̄w + ∑
w∈Bk−1

Π̄wv pw, v ∈ Bk−1

and define result to be pk∗. Define a new decomposition

4 Remember that if Bk−1 is an in-subgraph, the restriction to Bk−1 of I− Π̄ is not invertible
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Ak = Ak−1∪{v ∈ Bk−1|pk∗
v ≤ 0}

Bk = (Bk−1 \Ak)∪{v ∈Ck−1|Yv− D̄v + ∑
w∈Ck−1

Π̄wvX̄w + ∑
w∈Bk−1

Π̄wv pk∗
w ≤ X̄v}

Ck = [N]\ (Ak ∪Bk)

and correspondingly

pk
v =


0 v ∈ Ak

Yv +∑w∈Ck Π̄wvX̄w +∑w∈Bk Π̄wv pk∗
w − D̄v v ∈ Bk

X̄v v ∈Ck.
(2.9)

If Ak = Ak−1 and Bk = Bk−1, then halt the algorithm and set A∗ = Ak,B∗ =
Bk,p∗ = pk∗. Otherwise perform step k+1.

2.3 The Gai-Kapadia 2010 Default Model

The threshold function h(x) for the E-N 2001 model encodes a soft type of default
in which the interbank debt of defaulted banks with x ∼ 0 recover almost all their
value. In their 2010 paper [38], Gai and Kapadia offer a model with very hard de-
faults: interbank debt on defaulted banks recover zero value. They justify their zero
recovery assumption with the statement5: “This assumption is likely to be realistic
in the midst of a crisis: in the immediate aftermath of a default, the recovery rate
and the timing of recovery will be highly uncertain and banks’ funders are likely to
assume the worst-case scenario.”

While the main results of their paper concern random financial networks, the
underlying cascade mechanism is precisely of the E-N type, but with a zero-recovery
threshold function

h̃(x) = 1(x≤ 0) , (2.10)

Exactly as in Section 2.1.2, the cascade can be defined by the sequence of vectors
p(n) and buffers ∆ (n) satisfying equations (2.6) and (2.8), with h replaced by h̃, that
is,

p(n)v = X̄vh̃(∆ (n−1)
v ) , (2.11)

∆
(n)
v = ∆̄v−∑

w
Ω̄wv(1− h̃(∆ (n−1)

w )) . (2.12)

The clearing vector condition is simply

p = X̄ 1(Ȳ+ Π̄
T ·p− D̄− X̄≥ 0) ,

or equivalently,

5 [38], footnote 9.
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∆ = ∆̄ −∑
w

Ω̄w·(1− h̃(∆w)) .

Note that the second version of the clearing vector condition depends only on the
reduced balance sheet information (∆̄ ,Ω̄), which is a special simplifying feature of
the zero recovery framework.

The uniqueness of clearing vectors p∗ has not been carefully studied for this
model. Nonetheless, we conjecture that a result similar to Theorem 2 still holds, in
which non-uniqueness arises only connected to irreducible in-graphs. Now, when
there are one or more irreducible in-graphs, the multiplicity of clearing vectors is
parametrized by discrete values of λ . For example, the N = 4 bank network with Ω̄

as in the previous examples, and with Ȳ = [0,0,0,4], D̄ = [1,1,1,0] has exactly two
clearing vectors of the form p∗ = λ [1,1,1,0]T with λ = 0 or λ = 1.

The zero-recovery assumption implies there is a large cost to the system at the
time any bank defaults, which gives us a simple measure of cascade impact:

CI = ∑
v

X̄v 1(v ∈D∗) . (2.13)

We are also interested in default correlation, especially for counterparty pairs (w,v)
where w owes to v.

Recall that bankruptcy charges are ruled out in the E-N 2001 model and are
maximal in the GK model. We can interpolate between these two extreme cases
with a single parameter τ ∈ [0,1] that represents the fraction of interbank debts that
are paid as bankruptcy charges at the time any bank defaults. The cascade mapping
is again given by equations (2.6) and (2.8), now with h replaced by the interpolated
threshold function h(τ)(x) = (1− τ)h( x

1−τ
)+ τ h̃(x). It seems to be true that for any

τ > 0, the multiplicity of clearing vectors will coincide with those that arise in case
τ = 1.

2.4 Liquidity Cascades

We have just learned that default cascades can be characterized by shocks that are
transmitted downstream from defaulting banks to the asset side of their creditor
banks’ balance sheets. Funding illiquidity cascades are a systemic phenomenon that
occur when banks curtail lending to each other on a large scale. In such a cascade,
shocks are naturally transmitted upstream, from creditor banks to their debtors. A
fundamental treatment of the connection between funding liquidity and market liq-
uidity can be found in [20], who propose an economic model that provides a picture
of how the funding constraints a bank must satisfy impact the market portfolio, that
is external assets, that the bank holds. In this paper, one finds the idea that when a
bank’s capital is reduced to below a threshold at which a funding liquidity constraint
becomes binding, that bank will reduce its assets by a discontinuous amount, and ex-
perience a discontinuous increase in its margin and collateral requirements. It is nat-
ural to assume that at this threshold, the bank will also reduce its interbank lending



38 2 Static Cascade Models

by a discontinuous amount. This picture provides the seed of a cascade mechanism
that is transmitted through the interbank network, from creditors to debtors. In view
of this, it should not be a surprise that our schematic default cascade models, when
reversed and reinterpreted, can turn into models of funding illiquidity cascades.

To our knowledge, the first paper to introduce a schematic model of funding
illiquidity cascades is a companion paper [37] to the default model by Gai-Kapadia
in [38]. It, and a related model by Gai, Haldane and Kapadia [36] aim to provide a
cascade mechanism of liquidity hoarding that can describe the observed freezing of
liquidity that was a key feature of the period during the great financial crisis.

Assets Liabilities

Unsecured
Interbank

Assets
Z̄

Fixed Assets
ȲF

External
Deposits

D̄

Unsecured
Interbank
Liabilities

X̄

Default
Buffer

∆

Liquid Assets
ȲL = Σ

Ωw1v

Ωw2v

Ωw3v

Ωvw′1

Ωvw′2

Fig. 2.2 The stylized balance sheet of a bank v with in-degree jv = 3 and out-degree kv = 2. Banks
w1,w2,w3 are debtors of v while w′1,w

′
2 are its creditors.

2.4.1 Gai-Kapadia 2010 Liquidity Cascade Model

This systemic risk model aims to account for the observation that starting in August
2007 and continuing until after September 2008, interbank lending froze around the
world as banks hoarded cash and curtailed lending. As Gai and Kapadia explain,
during the build up of credit risk prior to 2007, some banks that held insufficiently
liquid assets might have faced funding liquidity difficulties. Such banks would be
expected to move to a more liquid position by hoarding liquidity, in particular by
reducing their interbank lending almost entirely.

What would a counterparty bank of such a hoarding bank do? Of course they
might seek funding elsewhere, but alternatively they might themselves elect to be-
come liquidity hoarders by preemptively curtailing interbank lending. In such a way,
a liquidity cascade can ensue.
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In their model they make assumptions about a network where prior to the crisis,
all banks hold assets and liabilities as shown in Figure 2.2. External fixed assets ȲF

v
correspond to the bank book of loans to the economy at large, interbank assets Z̄v
are assumed to be short term unsecured loans to other banks while the liquid assets
ȲL

v correspond to cash or liquid securities such as treasury bonds. When positive, the
liquid assets ȲL

v are used as a stress buffer Σ̄v from which to pay liabilities as they
arise. In analogy to the default buffers, Σv can become negative: such a bank is called
a stressed bank. On the liability side we have as before external debt D̄v, interbank
debt X̄v and the equity or default buffer ∆̄v. The nominal interbank exposure of v
to w is represented by Ω̄wv and hence there are the constraints Z̄v = ∑w Ω̄wv and
X̄v = ∑w Ω̄vw.

Assumption 3. 1. At step 0 of the cascade, one or more banks experience funding
liquidity shocks or stress shocks that make their stress buffers Σ

(0)
v = Σ̄v ≤ 0 go

negative.
2. Banks respond at the moment they become stressed by preemptively hoarding

a fixed fraction λ of interbank lending. This sends a stress shock of magnitude
λΩ̄wv to each of the debtor banks w of v.

3. At each step n ≥ 0 of the crisis, bank v pays any interbank liabilities λΩ̄vw that
have been recalled by newly stressed banks w.

These simple behavioural rules lead to a cascade mechanism (CM) that can be
expressed entirely in the recursive updating of the stress buffers of all banks. Given
the collection of stress buffers (Σ

(n−1)
v ) at step n− 1 of the cascade, the updated

stress buffers are given by

Σ
(n)
v = Σ̄v−λ ∑

w
Ω̄vw (1− h̃(Σ (n−1)

w )) . (2.14)

In this proposed cascade mechanism, the parameter λ represents the average strength
of banks’ collective stress response.

It should not be a surprise that (2.14) is identical in form to (2.12), but with
shocks going upstream from creditors to debtors instead of downstream from debtor
banks to creditors. The pair of models [38] and [37] by Gai and Kapadia is a first
instance of a formal symmetry of financial networks under interchange of assets and
liabilities.

2.4.2 The Liquidity Model of S. H. Lee 2013

As another illustration of how liquidity cascades are the mirror image of default
cascades, we now show how a simple liquidity cascade model proposed by S. H.
Lee [51] is formally identical to a version of the E-N cascade. This model is based
on banks with balance sheets as shown Table 2.3.

To put this model into an E-N form while preserving the labelling of Lee’s paper,
we introduce a fictitious “source” bank labelled by 0 that borrows from but does not
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Assets external illiquid liquid assets liquid interbank
assets ȲF

v ȲL
v assets ∑w Ω̄wv

Liabilities external deposits interbank debt equity
D̄v ∑w Ω̄vw Ēv

Table 2.3 The stylized balance sheet of the Lee liquidity model.

lend to other banks and arbitrarily define Z̄0 = D̄0 = 0. We now label the interbank
exposures

Ω̄vw =

bvw v,w 6= 0
qw v = 0,w 6= 0
0 w = 0 .

As before, let Z̄v =∑w Ω̄wv, X̄v =∑w Ω̄vw and identify ȲF
v = zv, ȲL

v = Ω̄0v, D̄v = dv.
At time 0, each bank experiences deposit withdrawals (which we can call a liq-

uidity shock) ∆dv ≥ 0. These withdrawals are paid immediately by each bank v in
order of seniority: first from the liquid interbank assets Z̄v (which includes Ω̄0v) un-
til these are depleted, and then by selling fixed external assets ȲF

v . Let us define the
notional liquidity buffer to be Σ

(0)
v = Σ̄v =−∆dv, then at the nth step of the liquidity

cascade each buffer Σ
(n)
v , which is the negative of bank v’s total liquidity needs `(n)v ,

will have accumulated shocks as follows

Σ
(n)
v = Σ̄v−∑

w
Ω̄vw

(
1−h(Σ (n−1)

w /Z̄w)
)
.

This equation reveals a formal identity with (2.8), provided Z̄ and X̄ are inter-
changed, and the exposures are reversed. However, in the Lee model, we begin with
all buffers Σ

(0)
v ≤ 0 except when v = 0. For completeness, at step n we can define

p(n)v = Z̄vh(Σ (n−1)
v /Z̄v), the amount of interbank assets remaining. The amount of

fixed assets sold after n steps is `(n)v − Z̄v + p(n)v =−Σ
(n)
v − Z̄v + p(n)v .

2.4.3 Generalized Liquidity Cascades

The liquidity cascade model of S.H. Lee supposes that deposit withdrawals are
funded in equal proportion by interbank assets and liquid assets. A reasonable alter-
native picture is that each bank keeps a “first line” reserve of liquid external assets
(or simply “cash”) ȲL to absorb liquidity shocks. We think of this as the stress
buffer, labelled by Σ , to be kept positive during normal banking business. However,
when the stress buffer becomes zero or negative, we will call the bank “stressed”,
and the bank then meets further withdrawals by liquidating first interbank assets Z̄,
and finally the illiquid fixed assets ȲF .
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As for the Lee model, we add a fictitious sink bank v = 0 to represent external
agents that borrow amounts Ω̄0v. In terms of liquidation priority, these external loans
will be considered a component of a bank’s interbank assets: Z̄v = ∑

N
w=0 Ω̄wv.

Let us suppose that just prior to a withdrawal shock that hits any or all of the
banks, the banks’ balance sheets are given by notional amounts (ȲF , Z̄, ȲL, D̄, X̄, Ē,Ω̄).
At the onset of the liquidity crisis, all banks are hit by withdrawal shocks ∆Dv that
reduce the initial stress buffers Σ

(0)
v = ȲL

v −∆Dv of at least some banks to below
zero, making them stressed. Stressed banks then liquidate assets first from Z̄, inflict-
ing additional liquidity shocks to their debtor banks’ liabilities, and then from ȲF .
A stressed bank that has depleted all of Z̄ will be called “illiquid”, and must sell
external fixed assets ȲF in order to survive.

Let p(n)v be the amount of bank v’s interbank assets remaining after n steps of
the liquidity cascade, starting with p(0)v = Z̄v. Stressed and illiquid banks will be
those with p(n)v < Z̄v while normal, unstressed banks have p(n)v = Z̄v. We also define
Σ
(n)
v to be the stress buffer after n steps. Assuming each stressed bank liquidates ex-

actly enough additional interbank assets at each step to meet the additional liquidity
shocks, the update rule is

p(n)v = max(0,min(Z̄v,(Dv−∆Dv)− ȲF +∑
w

Ω̄vw(p(n−1)
w /Z̄w)) . (2.15)

We note that
Σ
(n)
v = Σ

(0)
v −∑

w
Ω̄vw(1− p(n−1)

w /Z̄w) , (2.16)

and that (2.15) can be written

p(n)v = Z̄vh(Σ (n−1)
v /Z̄v)

with the threshold function h of (2.7) used before.
Comparison of these equations with (2.8) reveals that our model is now precisely

equivalent to the extended E-N 2001 model, with the role of assets and liabilities,
and stress and default buffers, interchanged: ȲF ↔ D̄, Z̄↔ X̄, ȲF ↔ Ē, ∆ ↔ Σ . As
we expect, we recover the Lee model simply by taking ȲL

v = 0, which also has the
effect of making all the banks initially stressed since the initial stress buffers are
Σ
(0)
v =−∆Dv ≤ 0.

2.5 Asset Fire Sales

Certainly one of the basic triggers of financial crises is when a major asset class
held by many banks is suddenly beset by bad news, resulting in a major devaluation
shock that hits these banks. In our language we could identify this as a situation in
which the external assets Yv held by many banks exhibit a sharp one-time decline. If
this asset correlation shock is sufficient to cause the default of some banks, we face
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the possibility of a pure default cascade of the same nature as we have described
already.

Of a different nature are asset fire sales, the name given to the crisis effect in
which banks under stress (of which there will be many during a crisis) react by
selling external assets on a large scale. As described in detail in the 2005 paper by
Cifuentes, Ferrucci and Shin [25], an asset fire sale creates a negative feedback loop
in the financial network: large scale selling of an asset class by banks leads to strong
downward pressure on the asset price, which leads to market-to-market losses by all
banks holding that asset, to which they respond by selling this and other assets.

Of course, small and medium scale versions of such selling spirals are an ev-
eryday occurrence in financial markets, sometimes leading to an asset correlation
shock. In the present context, we will focus on large scale selling spirals that form
during and as a result of the crisis and are essential amplifiers of financial distress.
Our aim in this section is to provide a simple stylized modelling framework that
highlights the network cascade aspects of this mechanism.

2.5.1 Fire Sales of One Asset

The basic network picture of asset fire sales is most clearly explained by the
CFS model of Cifuentes, Ferrucci and Shin [25]. The baseline CFS model con-
sists of a network of N banks with balance sheets with the same components
(ȲF , Z̄, ȲL, D̄, X̄,Ω̄) as shown in Table 2.3 for the Lee 2013 model [51]. Since
liquidity and solvency are both considered in this model, it can be regarded as a
generalization of the Eisenberg-Noe model. In the one asset model, all banks hold
their fixed assets in the same security, which we might view as the market portfolio.
We set the initial price of the asset to be p̄ = p(0) = 1, of which each bank v holds
s(0)v = ȲF

v units.
The essential new feature is to include a capital adequacy ratio (CAR) as an

additional regulatory constraint: for some fixed regulatory value r∗ (say 7%), the
bank must maintain the lower bound

∆v

YF
v +YL

v +Zv
≥ r∗ . (2.17)

As soon as this condition is violated, one assumes that the bank is compelled to
restore the condition by selling, first the liquid assets, then the fixed illiquid assets.
In contrast to the Gai-Kapadia and Lee liquidity cascade models who explicitly
assume that interbank assets are fully recallable instantaneously and are sold before
fixed assets, [25] assumes that “interbank loans normally cannot be expected to be
recalled early in the event of default of the lender.”6 Based on this assumption, the
solvency condition assumed in [25] differs as well: a bank must be liquidated in the

6 It is interesting that these modelling frameworks make essentially contradictory assumptions at
this point. The assumption of [25] removes the need to consider how interbank assets are liquidated.
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event that
∆v

Zv
< r∗ . (2.18)

This inequality indicates that even the selling of all non-interbank assets is insuffi-
cient to restore the CAR condition, which implies the bank is insolvent and must be
fully liquidated. Finally, [25] assume that in the event of insolvency the defaulted
interbank assets are distributed at face value proportionally among the bank’s cred-
itors, and the bank ceases to function. The picture to have is that such a bank can
never achieve the CAR condition, and hence must be terminated, even if its equity
buffer may still be positive.

The remaining important economic assumption determines the impact on prices
when assets are sold. When boiled down to its essentials, the assumption of [25] is of
an inelastic supply curve and a downward sloping inverse demand function d−1(·),
such that the asset price is p = d−1(s) when s = ∑v sv is the aggregated amount sold.
For the inverse demand function, they work with the family of exponential functions
d−1(s) = e−αs for a specific value of α .

We deviate from the original model in our treatment of cash: in line with the
logic of the GK and Lee liquidity models, we consider cash as exactly equivalent to
other liquid assets and remove both from the denominator of the CAR so that (2.17)
is replaced by

∆v

YF
v +Zv

≥ r∗ . (2.19)

Then YL has the interpretation of a liquidity buffer, and is used until depleted to
pay liabilities before any fixed assets are sold. Finally, it is assumed that external
deposits have equal seniority to interbank debt: one then introduces a non-borrowing
fictitious bank v = 0 that lends D̄w := Ω̄w0 to each bank w.

The crisis unfolds starting at step n= 0 from an initial balance sheet configuration
(ȲF , Z̄, ȲL, X̄,Ω̄) with equity buffers

∆
(0) = ∆̄ = ȲF + Z̄+ ȲL− X̄ (2.20)

in which at least one bank is found to be in violation of its CAR bound. Recall we set
p(0) = 1 so the number of fixed assets is s(0) = ȲF . Then, recursively for n= 1,2, . . .
the balance sheets of each bank (YF(n),Z(n),YL(n),∆ (n)) and the asset price p(n) are
updated according to the following steps:

1. Each bank v adjusts its fixed asset holdings by selling7

δ sv = min(s(n−1)
v ,max(0,s(n−1)

v +Z(n−1)
v /p(n−1)−∆

(n−1)
v /(r∗p(n−1))) (2.21)

units at the price p(n−1). Note that δ sv = 0 corresponds to a compliant bank,
while δ sv = s(n−1)

v corresponds to an insolvent bank. When δ sv > 0, the sale of

7 This is a slight modification of [25] who assume these units are sold at an n dependent equilibrium
price somewhat lower than p(n−1).
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the fixed asset increases the bank’s liquid assets to YL(n)
v = YL(n−1)

v +δ sv p(n−1).
We also remember to update the number of shares to s(n)v = s(n−1)

v −δ sv.
2. In case s(n)v = 0, bank v is now insolvent, and must be liquidated in the manner

described above and the mark-to-market value of its debt adjusted: X(n)
v = X̄v +

min(0,∆ (n−1)
v ).

3. After all banks have completed their asset sales, it is assumed that the mar-
ket price moves downwards according to the aggregate amount sold so p(n) =
d(−1)(∑v(s

(0)
v − s(n)v )) and that the interbank assets are updated to account for

new default losses, Z(n)
v = ∑w Π̄wvX(n)

w .
4. Finally, corresponding to these changes, the updated equity buffer of bank v be-

comes
∆
(n)
v = s(n)v p(n)+YL(n)

v +∑
w

Π̄wvX(n)
w − X̄v . (2.22)

Just as the E-N framework could be simplified into a reduced form cascade map-
ping by focussing on the default buffers ∆

(n)
v , it turns out the above recursion simpli-

fies in a very similar way if we focus on the pairs ∆
(n)
v ,s(n)v . The key fact to recognize

is that once the bank becomes noncompliant, it can never become compliant, nor can
a defaulted bank recover. Having seen this, one can easily verify that the result of
the n-th step of the CFS cascade is given by

X(n)
v = X̄v h(∆ (n−1)

v /X̄v)

∆
(n)
v = ∆̄v−∑

n
m=1(p(m−1)− p(m)) s(m)

v −∑w Ω̄wv(1−h(∆ (n−1)
w /X̄w))

s(n)v = max(0,min(s(0)v , 1
p(n−1)

[
∆
(n−1)
v
r∗ −∑w Ω̄wvh(∆ (n−1)

w /X̄w)
]
)

(2.23)

together with the equation for the price

p(n) = d(−1)(
∑
v
(s(0)v − s(n)v

)
.

The third of these equations corresponds to the trichotomy of possibilities of the
bank being compliant, noncompliant but solvent, and insolvent.

By comparison to the E-N cascade dynamics given by (2.8), we note that the key
effect of the fire sale on the cascade is to provide additional price shocks that further
reduce the default buffers, thereby amplifying the contagion step. In case the price
impact is omitted by assuming d(−1)(·) = 1, one reproduces the E-N model.

An interesting special case of the model emerges if we set the compliancy pa-
rameter r∗ = 0 and interpret the third equation of (2.23) to mean

s(n)v = s(0)v 1(∆ (n−1)
v > 0) . (2.24)

We then interpret the breach of this regulatory condition as the insolvency of the
bank in two senses: first, the bank has insufficient assets to repay its liabilities; sec-
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ond, the bank has insufficient equity to support its assets and thus needs to liquidate
all fixed assets. Thus the bank must sell all fixed assets at this moment. However, as
in the E-N model, the bank continues to lose money after it defaults, further eroding
the value of X(n)

v . Thus, when r∗ = 0 this model looks very similar to the E-N 2001
model, albeit with a GK-like condition to determine the amount of fixed assets sold.

The simplification r∗ = 0 also provides a simpler setting to address a different
question: how do fire sales create contagion when banks hold different portfolios of
a multiplicity of assets. As it turns out, this variation has been studied already, in a
paper [21] we shall now describe.

2.5.2 Fire Sales of Many Assets

A model due to Caccioli et al [21] addresses exactly this question: how do fire sales
create contagion when banks hold different portfolios of a multiplicity of assets?
Their paper considers a variation of the CFS approach that takes r∗ = 0 and M
assets, and assumes moreover, that the interbank sector is set to zero: Zv = Xv = 0.
One can describe their model in terms of a bipartite graph with nodes of two colours,
blue nodes that represent banks and red nodes that represent non-banking assets,
and links connecting banks to assets when the bank has a significant holding of that
asset. Figure 2.3 shows a typical network with 5 banks and 4 assets.

A1 A2 A3 A4

B1 B2 B3 B4 B5

Fig. 2.3 A bipartite graph with 5 banks (blue nodes) co-owning 4 assets (red nodes).

In this section we consider a multi-asset fire sale model with bank balance sheets
(ȲF , ȲL, D̄) where the interbank sector is set to zero Z̄v = X̄v = 0. The fixed assets
are portfolios of the M assets, and the CAR condition is
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∆

YF ≥ r∗ (2.25)

with r∗ ≥ 0. When r∗ = 0, this reduces to the [21] model. The cascade picture that
arises from these assumptions is that banks are forced to liquidate some fixed assets
when the compliance condition (2.25) no longer holds, and all their fixed assets at
the moment of their default. Forced asset sales drive down the prices of assets (in
other words, causing a shock to be transmitted along each link from the defaulted
bank to the assets it holds). Then, any other bank with a link to any of these depre-
ciated assets will suffer a mark-to-market loss transmitted along that link. If after
such losses some banks are still found to be non-compliant or insolvent, the cascade
continues to the next step.

We label the assets by a ∈M := {1,2, . . . ,M} := [M] and let the total initial
market capitalization of asset a be labelled Āa. Without loss of generality, we can
assume the initial share prices are p̄a = 1. The fixed (illiquid) external assets of bank
v can then be written

ȲF
v = ∑

a
s̄av . (2.26)

where s̄av denotes the initial number of shares of asset a owned by bank v.
If after n cascade steps each bank v holds s(n)av shares of asset a, the asset share

price will have been driven down to the value

pa(n) = d(−1)
a

(
Ā−1

a ∑
v
(s(0)av − s(n)av )

)
(2.27)

determined by the total amount of selling and the inverse demand function.
It is necessary to specify a portfolio selection rule that determines in which pro-

portion banks choose to sell (and buy) assets. We make a very natural assumption
that banks follow a fixed-mix strategy that keeps the dollar amounts in different as-
sets in proportion to the initial ratios

φ̄av :=
s̄av

ȲF
v

(2.28)

at all times. Just as in the single asset model, banks also manage the total fixed
assets YF(n)

v close to a target ỸF(n)
v which depends on the state of the bank. Thus

each cascade step n, banks behave depending on whether they are compliant, non-
compliant but solvent, or newly insolvent:

• Compliant banks rebalance their portfolios, with the target that assumes the
prices have not changed, that is ỸF(n)

v = ∑a s(n−1)
av p(n−1)

a with the updated fixed-
mix ratios s(n)av = φ̄avỸF(n)

v /p(n−1)
a . Note that the fixed-mix strategy requires buy-

ing assets, i.e. s(n)av > s(n−1)
av that have just dropped in price, and selling assets that

have just gained.
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• Non-compliant solvent banks have the target ỸF(n)
v = r−1∆

(n−1)
v with the updated

fixed-mix ratios s(n)av = φ̄avỸF(n)
v /p(n−1)

a . This amounts to a net selling of assets,
although since rebalancing still happens, some assets may be bought.

• Newly insolvent banks sell all assets, so s(n)av = 0.

Based on these assumptions, recursively for n = 1,2, . . . the balance sheets of
each bank (YF(n),YL(n),∆ (n)), the portfolio allocations s(n)av and asset prices p(n)a are
updated according to the following steps, starting from the initial values YF(0) =
ȲF ,YL(0) = ȲL,∆ (0) = ȲF + ȲL− D̄:

1. The bank adjusts its asset holdings by picking the target

ỸF(n)
v = min(YF(n−1)

v ,max(0,∆ (n−1)
v /r∗)) (2.29)

and the new share holdings

s(n)av = φ̄avỸF(n)
v /p(n−1)

a . (2.30)

The liquid assets increase:

YL(n)
v = YL(n−1)

v +∑
a
(s(n−1)

av − s(n)av )p(n−1)
a . (2.31)

2. After all banks have completed their asset sales, it is assumed that the mar-
ket prices move downwards according to the aggregate fraction sold, so p(n)a =

d(−1)
a

(
Ā−1

a ∑v(s
(0)
av − s(n)av )

)
.

3. Finally, corresponding to these price changes, the updated equity buffer and fixed
assets of bank v decrease:

∆
(n)
v = ∆

(n−1)
v −∑

a
s(n)av (p(n−1)

a − p(n)a ) , (2.32)

YF(n) = ∑
a

s(n)av p(n)a . (2.33)

We observe the formal similarity between this model and the original E-N 2001
model, in the sense that ultimately the cascade dynamics is Markovian in the buffer
variables ∆

(n)
v attached to blue nodes and asset prices p(n)a attached to the red nodes.

In addition, the dynamics depends explicitly on the initial balance sheets only
through the fixed-mix ratios φ̄av, analogous to the edge weights Ω̄wv. The inverse
demand functions d−1

a play a role similar to the h, h̃ functions in our default cascade
models. Therefore the asset prices behave as if they were “asset buffers”. One can
easily verify that the mapping from step n−1 to n is monotonic in the collection of
buffer variables ∆v, pa and bounded below, and thus its iterates converge to a fixed
point.
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2.6 Random Financial Networks

This chapter has explored stylistic features of various types of shocks that can be
transmitted through the interbank exposures (or, in one case, through bank-to-asset
exposures), and how they might potentially cascade into large scale disruptions of
the sort seen during the 2007-08 financial crisis. We have seen how to build these
shock channels into a variety of different financial network models.

The real world financial systems in most countries are of course far from behav-
ing like these models. Bank balance sheets are hugely complex. Interbank exposure
data are never publicly available, and in many countries nonexistent even for central
regulators. Sometimes, the only way to infer exposures is indirectly, for example,
through bank payment system data as done in [35]. Interbank exposures are of a di-
versity of types and known to change rapidly day to day. In a large jurisdiction like
the US, the banking sector is highly heterogeneous, and the systemic impact due
to the idiosyncrasies of individual banks will likely overwhelm anything one might
predict from their average properties.

Nonetheless, a large and rapidly growing web of economics and complex systems
research continues to address the real world implications of theoretical network cas-
cades. The conceptual tools that we will explore in the remainder of this book come
partly from the experience gained by modelling large complex networks that arise
in other areas of science.

The central theme of this book is that something fundamental about financial sys-
tems can be learned by studying very large stochastic networks. There are at least
three important reasons why stochastic network models are a good way to approach
studying real world financial systems. The first and most fundamental reason comes
from over a century of statistical mechanics theory, which has discovered that the
macroscopic properties of matter, for example crystals, are determined by the en-
semble averages of the deterministic dynamics of constituent microscopic particles.
Even a completely known deterministic system, if it is large enough, can be well
described by the average properties of the system. From this fact we can expect that
for large N, an E-N model with fully specified parameters will behave as if it were
a stochastic model with averaged characteristics.

The second important reason is that in a concrete sense, the true networks are to
be thought of as stochastic at any moment in time. The balance sheets of banks, be-
tween reporting dates, are not observed even in principle. Moreover, they change so
quickly that last week’s values, if they were known, will have only limited correla-
tion with this week’s values. This fact is especially true for the interbank exposures
that provide the main channels for transmitting network cascades: even in jurisdic-
tions where they are reported to central regulators, they comprise a diversity of dif-
ferent securities, including derivatives and swaps whose mark-to-market valuations
fluctuate dramatically on intraday time-scales.

A third important reason is that a hypothetical financial system, with all balance
sheets completely known, will be hit constantly by random shocks from the outside,
stochastic world. A deterministic system, subjected to a generic random shock, be-
comes after only one cascade step a fully stochastic system.
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For all these reasons, and more, the next chapters will consider the stochastic
nature of financial networks, and the extent to which the large scale properties of
cascades might be predictable from models of their stochastic properties. From now
on in this book, our various contagion channels will usually take their dynamics
within the framework of “random financial networks”, defined provisionally as fol-
lows:

Definition 4. A random financial network or RFN is a random object representing a
possible state of the financial network at an instant in time. It consists of three layers
of mathematical structure. At the base structural level, the skeleton is a random
directed graph (N ,E ) whose nodes N represent “banks” and whose edges or links
represent the presence of a non-negligible “interbank exposure” between a debtor
bank and its creditor bank. Conditioned on a realization of the skeleton, the second
structural layer is a collection of random balance sheets, one for each bank. In our
simple models this is usually a coarse-grained description, listing for example the
amounts (Ȳv, Z̄v, D̄v, X̄v) for each v ∈N as in Section 2.1. Finally, conditioned on
a realization of the skeleton and balance sheets, the third level is a collection of
positive random exposures Ω̄` for each link `= (w,v)∈ E . The interbank assets and
liabilities are constrained to equal the aggregated exposures:

Z̄v = ∑
w

Ω̄wv, X̄v = ∑
w

Ω̄vw . (2.34)

Typically in cascade scenarios, we consider the RFN at the instant that a crisis
triggering event unexpectedly occurs. We will combine the choice of RFN with
the choice of a cascade mechanism such as the ones described in this chapter to
describe what happens next. Depending on the cascade mechanism, only reduced
balance sheet information in the form of buffer random variables ∆̄v and exposures
Ω̄` is needed to follow the progress of the cascade. In that case, and we can work
with a minimal parametrization of the RFN by the quadruple (N ,E , ∆̄ ,Ω̄).

This schematic definition will prove to be acceptable for the description of simple
contagion models. But more than that, it scales conceptually to much more complex
settings. Nodes may have additional attributes or “types” beyond their connectivity
to represent a more diverse class of economic entities. Links might have extended
meaning where the random variables Ω̄` take vector values which represent different
categories of exposures. We also recognize that even a very simple RFN is a compli-
cated random variable of enormous dimension. Before proceeding to any analysis of
network dynamics, the distributions of these collections of random variables must
be fully specified. We will proceed stepwise, first focussing in the next chapter on
characterizing possible models for the skeleton. In subsequent chapters we will con-
sider how to specify the random structure of balance sheets and interbank exposures.
Our optimistic view that something meaningful can be learned about systemic risk
in the real world through the study of schematic or stylized RFNs is derived from
our collective experience in other fields of complex disordered stochastic systems,
rooted in the theory of statistical mechanics.





Chapter 3
Random Graph Models

Abstract The network of interbank counterparty relationships, or “skeleton”, can be
described as a random graph that acts as the medium through which financial con-
tagion is propagated. The basic properties are developed for a number of promising
families of random graph constructions including the configuration models, prefer-
ential attachment models, and the inhomogeneous random graphs. A new extension,
called the assortative configuration model, is proposed. The main results of this
chapter are theorems describing the large graph asymptotics of this new assorta-
tive configuration model, including a proof of the locally tree-like property. Finally,
measures of network structure are briefly surveyed.

Keywords: Skeleton, counterparty network, configuration graph, preferential at-
tachment, inhomogeneous random graph, assortativity, random graph simulation,
large graph asymptotic, network topology, locally tree-like.

The “skeleton” of a random financial network or RFN at a moment in time is
most simply thought of as the directed random graph that indicates which pairs of
banks are deemed to have a significant counterparty relationship, where the arrow
on each link points from debtor to creditor. Later on, we will consider alternative,
more complex, specifications of skeletons, such as to replace directed links by two-
dimensional undirected links whose two components represent the directed expo-
sures in either direction. In this chapter we survey what the random graph literature
can tell us about models that will be useful in describing the skeleton. We begin with
definitions, then a description of four rich and useful families of random graphs.

Random graph theory is a general framework mathematicians and physicists have
developed to capture the most salient and basic attributes of what have been come to
be called complex adapted systems. Random graphs form the lowest structural layer
of networks: general categories of “networks” can be built by adding further lay-
ers of structure on top of random graphs. The double adjective “complex adapted”
has taken on a higher meaning in recent years to describe the nature of a system
whose totality is “more than the sum of its parts”. In other words, complex adap-
tivity refers to the property that key responses and behaviours of a system emerge
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in a way that cannot be anticipated from the microscopic interactions, in analogy to
the way consciousness is presumed to emerge from the collective interaction of the
brain’s myriad neurons. The list of categories of complex adapted systems in the real
world is ever-growing, and questions about such systems reach beyond our depths of
understanding. The theme of the present book is to explore the profound “complex
adapted” nature of the world’s financial systems, using the tools of network science,
as it extends random graph theory.

3.1 Definitions and Basic Results

In this section, we provide some standard graph theoretic definitions and develop
an efficient notation for what will follow. Since in this book we are most interested
in directed graphs rather than undirected graphs, our definitions are in that setting
and the term “graph” will have that meaning. Undirected graphs fit in easily as a
subcategory of the directed case.

Definition 5. 1. For any N ≥ 1, the collection of directed graphs on N nodes is
denoted G (N). We consider that the set of nodes N is numbered by integers, i.e.
N = {1, . . . ,N} := [N]. Then g ∈ G (N), a graph on N nodes, is a pair (N ,E )
where the set of edges is a subset E ⊂N ×N and each element ` ∈ E is an
ordered pair `= (v,w) called an edge or link. We often label links by integers ` ∈
{1, . . . ,E} := [E] where E = |E |. Normally, “self-edges” with v=w are excluded
from E , that is, E ⊂N ×N \diag.

2. A given graph g ∈ G (N) can be represented by its N×N adjacency matrix M(g)
with components

Mvw(g) =
{

1 if (v,w) ∈ g
0 if (v,w) ∈N ×N \g .

3. The in-degree deg−(v) and out-degree deg+(v) of a node v are

deg−(v) = ∑
w

Mwv(g), deg+(v) = ∑
w

Mvw(g) .

4. A node v ∈N has node type ( j,k) if its in-degree is deg−(v) = j and its out-
degree is deg+(v) = k; the node set partitions into node types, N = ∪ jkN jk. We
shall write kv = k, jv = j for any v∈N jk and allow degrees to be any non-negative
integer.

5. An edge ` = (v,w) ∈ E = ∪k jEk j is said to have edge type (k, j) with in-degree
j and out-degree k if it is an out-edge of a node v with out-degree kv = k and an
in-edge of a node w with in-degree jw = j. We shall write deg+(`) = k` = k and
deg−(`) = j` = j whenever ` ∈ Ek j.

6. For completeness, we define an undirected graph to be any directed graph g for
which M(g) is symmetric.
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Remark 4. We use the term “type” for nodes and edges to denote characteristics
that potentially extend beyond degree characteristics to include other characteristics
such as the size, kind and location of a bank, or type of security. In this book, we
narrow the definition of edge-type of ` = (v,w) to the pair (kv, jw) rather than the
quadruple ( jv,kv; jw,kw) which may seem more natural: this is a choice that can be
relaxed without difficulty and is made purely to reduce model complexity.

The standard visualization of a graph g on N nodes is to plot nodes as “dots” with
labels v ∈N , and any edge (v,w) as an arrow pointing “downstream” from node v
to node w. In our systemic risk application, such an arrow signifies that bank v is a
debtor of bank w and the in-degree deg−(w) is the number of banks in debt to w, in
other words the existence of the edge (v,w) means “v owes w”. Figure 3.1 illustrates
the labelling of types of nodes and edges.

Fig. 3.1 A type (3,2) debtor bank that owes to a type (3,4) creditor bank through a type (2,3)
link.

There are obviously constraints on the collections of node type ( jv,kv)v∈N and
edge type (k`, j`)`∈E if they derive from a graph. If we compute the total number
of edges E = |E |, the number of edges with k` = k and the number of edges with
j` = j we find three conditions:

E := |E | = ∑
v

kv = ∑
v

jv

e+k := |E ∩{k` = k}| = ∑
`

1(k` = k) = ∑
v

k1(kv = k)

e−j := |E ∩{ j` = j}| = ∑
`

1( j` = j) = ∑
v

j1( jv = j) . (3.1)

It is useful to define some further graph theoretic objects and notation in terms
of the adjacency matrix M(g):

1. The in-neighbourhood of a node v is the set N −
v := {w ∈N |Mwv(g) = 1} and

the out-neighbourhood of v is the set N +
v := {w ∈N |Mvw(g) = 1}.
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2. We write E +
v (or E −v ) for the set of out-edges (respectively, in-edges) of a given

node v and v+` (or v−` ) for the node for which ` is an out-edge (respectively, in-
edge).

3. Similarly, we have second-order neighbourhoods N −−
v ,N −+

v ,N +−
v ,N ++

v
with the obvious definitions. Second and higher order neighbours can be deter-
mined directly from the powers of M and M>. For example, w∈N −+

v whenever
(M>M)wv ≥ 1.

4. We will always write j, j′, j′′, j1, etc. to refer to in-degrees while k,k′,k′′,k1, etc.
refer to out-degrees.

Our financial network models typically have a sparse adjacency matrix M(g)
when N is large, meaning that the number of edges is a small fraction of the N(N−
1) potential edges. This reflects the fact that bank counterparty relationships are
expensive to build and maintain, and thus N +

v and N −
v typically contain relatively

few nodes even in a very large network.

3.1.1 Random Graphs

Random graphs are simply probability distributions on the sets G (N):

Definition 6. 1. A random graph of size N is a probability distribution P on the
finite set G (N). When the size N is itself random, the probability distribution P
is on the countable infinite set G := ∪NG (N). Normally, we also suppose that P
is invariant under permutations of the N node labels.

2. For random graphs, we define the node-type distribution to have probabilities
Pjk = P[v∈N jk] and the edge-type distribution to have probabilities Qk j = P[`∈
Ek j].

P and Q can be viewed as bivariate distributions on the natural numbers, with
marginals P+

k = ∑ j Pjk,P−j = ∑k Pjk and Q+
k = ∑ j Qk j,Q−j = ∑k Qk j. Edge and node

type distributions cannot be chosen independently however, but must be consistent
with the fact that they derive from actual graphs. The following additional assump-
tions impose that equations (3.1) hold in expectation, and convenient finite moment
conditions.

Assumption 4. The P distribution has finite first and second moments

z :=∑
jk

jPjk =∑
jk

kPjk; σ
2
K :=∑

k
k2P+

k −z2 <∞; σ
2
J :=∑

j
j2P−j −z2 <∞ (3.2)

and Q is “consistent” with P:

Q+
k = kP+

k /z, Q−j = jP−j /z ∀k, j . (3.3)
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A number of random graph construction algorithms have been proposed in the
literature, motivated by the desire to create families of graphs that match the types
and measures of network topology that have been observed in nature and society.
The remainder of this chapter reviews the properties of the random graph construc-
tions that seem most closely related to the types of networks observed in financial
systems. The textbook “Random Graphs and Complex Networks” by van der Hofs-
tad [71] provides a much more complete and up-to-date review of the entire subject.

In the analysis to follow, asymptotic results are typically expressed in terms of
convergence of random variables in probability, defined as:

Definition 7. A sequence {Xn}n≥1 of random variables is said to converge in prob-

ability to a random variable X , written limn→∞ Xn
P
= X or Xn

P−→ X , if for any ε > 0

P[|Xn−X |> ε]→ 0 .

We also recall further standard notation for asymptotics of sequences of real
numbers {xn}n≥1,{yn}n≥1 and random variables {Xn}n≥1:

1. Landau’s “little oh”: xn = o(1) means xn→ 0; xn = o(yn) means xn/yn = o(1);
2. Landau’s “big oh”: xn = O(yn) means there is N > 0 such that xn/yn is bounded

for n≥ N;
3. xn ∼ yn means xn/yn→ 1;

4. Xn = o(yn) means Xn/yn
P−→ 0.

3.2 Configuration Random Graphs

In their classic paper [33], Erdös and Renyi introduced the undirected model
G(N,M) that consists of N nodes and a random subset of exactly M edges chosen
uniformly from the collection of

(N
M

)
possible such edge subsets. This model can

be regarded as the Mth step of a random graph process that starts with N nodes and
no edges, and adds edges one at a time selected uniformly randomly from the set of
available undirected edges. Gilbert’s random graph model G(N, p), which takes N
nodes and selects each possible edge independently with probability p = z/(N−1),
has mean degree z and similar large N asymptotics provided M = zN/2. In fact,
it was proved by [14] and [58] that the undirected Erdös-Renyi graph G(N,zN/2)
and G(N, pN) with probability pN = z/(N− 1) both converge in probability to the
same model as N → ∞ for all z ∈ R+. Because of their popularity, the two models
G(N, p) ∼ G(N,zN/2) have come to be known as “the” random graph. Since the
degree distribution of G(N, p) is Bin(N−1, p)∼N→∞ Pois(z), this is also called the
Poisson graph model.

Both the above constructions have obvious directed graph analogues: henceforth
we use the notation G(N,M) and G(N, p) to denote the directed graph models. In
the directed Gilbert G(N, p) model, each possible directed edge selection is an in-
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dependent Bernoulli trial, and thus the adjacency matrix M(g) is extremely easy to
simulate in Matlab:

M=( rand (N,N) < p ) ;
diag (M) = 0 ;

Another undirected graph construction of interest is the random r−regular model
with r≥ 3, that draws uniformly from the set of r-regular graphs on N nodes, that is,
graphs for which each node has degree exactly r. This model is a particular case of
a general class called “undirected configuration graphs” which takes as data an ar-
bitrary degree distribution P = {Pk}; similarly “directed configuration graphs” take
as data an arbitrary bi-degree distribution P = {Pjk}. When P ∼ Pois(z)×Pois(z),
we have an example of the configuration graph, that turns out to be asymptotic for
large N to both the directed Erdös-Renyi and Gilbert models.

The well known directed configuration multigraph model introduced by Bollobas
[13] with general degree distribution P = {Pjk} j,k=0,1,... and size N is constructed by
the following random algorithm:

1. Draw a sequence of N node-degree pairs ( j1,k1), . . . ,( jN ,kN) independently
from P, and accept the draw if and only if it is feasible, i.e. ∑n∈[N]( jn− kn) = 0.
Label the nth node with kn out-stubs (picture this as a half-edge with an out-
arrow) and jn in-stubs.

2. While there remain available unpaired stubs, select (according to any rule,
whether random or deterministic) any unpaired out-stub and pair it with an in-
stub selected uniformly amongst unpaired in-stubs. Each resulting pair of stubs
is a directed edge of the multigraph.

The algorithm leads to objects with self-loops and multiple edges, which are
usually called multigraphs rather than graphs. Only multigraphs that are free of self-
loops and multiple edges, a condition called “simple”, are considered to be graphs.
For the most part, we do not care over much about the distinction, because we will
find that the density of self-loops and multiple edges goes to zero as N→∞. In fact,
Janson [46] has proved in the undirected case that the probability for a multigraph to
be simple is bounded away from zero for well-behaved sequences (gN)N>0 of size
N graphs with given P.

Exact simulation of the adjacency matrix in the configuration model with general
P is problematic because the feasibility condition met in the first step occurs only
with asymptotic frequency ∼ σ√

2πN
, which is vanishingly small for large graphs.

For this reason, practical Monte Carlo implementations use some type of rewiring
or clipping to adjust each infeasible draw of node-degree pairs. We shall return to
address this issue in detail in Section 3.5.

Because of the uniformity of the matching in step 2 of the construction, the edge-
type distribution of the resultant random graph is

Qk j =
jkP+

k P−j
z2 = Q+

k Q−j (3.4)
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which we call the independent edge condition. For many reasons, financial and oth-
erwise, we are interested in the more general situation when (3.4) is not true, called
assortativity. It turns out that we have something new to say about how to construct
assortative configuration graphs, which we will postpone until Section 3.5.

We will find that this extended class of assortative configuration graphs encom-
passes all reasonable type distributions (P,Q) and that it has special properties that
make it suitable for exact analytical results. However, given that (P,Q) is freely
specifiable, the model offers no explanation or justification for any particular choice
of type distribution, nor any understanding of the dynamical formation of the net-
work. On the other hand, real world networks such as the internet, world wide web
and some would say financial networks, are often observed to have degree distri-
butions consistent with Pareto (power law) tails, which means they are dominated
by highly connected “hubs”. As first proposed by Barabasi and Albert [9], networks
with such a structure arise from a natural preferential attachment (PA) property of
their growth dynamics. Under the analogy with the sandpile model, while configu-
ration graphs might be adequate to describe a critical network with fat-tailed type
distribution, PA models give a hint how it managed to get into this state. The next
class of random graph models shows how natural rules for growing networks lead
to Pareto degree distributions.

3.3 Preferential Attachment and Detachment

In 1999, Barabási and Albert [9] introduced the first in a wide class of models of
network growth, now known as preferential attachment models (PA), that have the
property that their degree distributions have power law tails, and are thus (at least
approximately) scale free. The important feature of this model class is that it pro-
vides an explanation of power law tails and hub-dominated networks through the
plausible hypothesis that naturally occurring networks grow in size by adding nodes
and edges that connect preferentially to nodes of high connectivity.

3.3.1 Preferential Attachment Models

We describe here a class of scale-free directed graphs first considered in [15] who
compute the Pareto exponents for the marginal degree distributions, with more de-
tails due to Hadrien de March and Simon Leguil. The PA network growth pro-
cess starts at time t0 with an initial graph Gt0 containing t0 edges, and evolves
step by step according to three types of moves so that at step t, the current graph
G(t) = (N (t),E (t)) contains t edges and a random number N(t) of nodes. These
three move types follow preferential attachment rules:

1. α-move: With probability α , a new node v is created along with an edge pointing
from v to an existing node w.
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2. β -move: With probability β , a directed edge is added between two existing nodes
v and w.

3. γ-move: With probability γ , a new node v is created along with an edge going
from an existing node w to v.

In each of these moves, existing nodes are preferentially chosen. Letting jṽ and kṽ
denote the in-degree and out-degree of a potential node ṽ, then for two constants ζ−

and ζ+:

1. The potential node ṽ of an α or β move will be selected as the existing in-node
w with probability

P(w = ṽ) =
jṽ +ζ−

∑v∈N ( jv +ζ−)
=

jṽ +ζ−

t +ζ−N(t)
.

2. The potential node ṽ of a γ or β move will be selected as the existing out-node v
with probability

P(v = ṽ) =
kṽ +ζ+

∑v∈N (kv +ζ+)
=

kṽ +ζ+

t +ζ+N(t)
.

The four independent parameters α , β , ζ− and ζ+ will be chosen subject to some
particular conditions:

• α + γ = 1−β , controls the growth of the network and the mean degree z, since
at time t, E[N(t)] = N(t0)+(α + γ)(t− t0) and for times t→ ∞

E
[

t
N(t)

]
P−→ z :=

1
α + γ

. (3.5)

• As [15] first showed, for given α , β , γ = 1−α −β , the parameters ζ− and ζ+

determine the Pareto exponents of the marginal in- and out-degree distributions
as well as the in-degree (out-degree) distribution conditioned on k (respectively
j).

The next Proposition and Corollary proved by Hadrien de March and Simon
Leguil1 extend the original results of [15] by using a general technique based on the
Wormald Theorem [73]. For each value of n, {G(n)(t)}∞

t=n,G
(n)(t)= (N (n)(t),E (n)(t))

will be a directed random graph sequence constructed by the preferential attachment
rules starting from an initial random graph G(n)(t0) set at t0 = n. For each t ≥ n

X+
k (t) := ∑

v∈N (t)
1(k(v) = k) , (3.6)

X−j (t) := ∑
v∈N (t)

1( j(v) = j) , (3.7)

X jk(t) := ∑
v∈N (t)

1(k(v) = k, j(v) = j) , (3.8)

1 Private communication
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denote the random number of nodes with out-degree k, in-degree j and bi-degree jk
in G(t) respectively.

Let {P0, jk} j,k≥0 be a node type distribution such that ∑ j,k P0, jk = 1 and ∑ j,k kP0, jk =

∑ j,k jP0, jk = (α + γ)−1. The initial random graph sequence G(n)(t0) is selected to
have the following asymptotics as n→ ∞:

|N (n)(n)|
n

P
= α + γ ,

|E (n)(n)|
n

P
= 1 ,

X (n)
jk (n)

n
P
= P0, jk . (3.9)

For example, this random graph sequence can be taken to be a configuration graph
sequence.

The implication of the Wormald Theorem when applied to this random graph
construction is that for large n the stochastic processes {X+

k (t),X−j (t),X jk(t)}
are determined by certain systems of ordinary differential equations (ODEs). We
first focus on the collection {X+

k (t),D+(t)}k≥0, D+(t) = ∑k(k+ ζ+)X+
k (t). Some

thought about the PA rules leads one to deduce that it must satisfy Markovian con-
ditional expectation formulas:

E
[
X+

k (t +1)−X+
k (t)|G(0), . . . ,G(t)

]
= fk(X+(t)/t,D+(t)/t) (3.10)

E
[
D+(t +1)−D+(t)|G(0), . . . ,G(t)

]
= F(X+(t)/t,D+(t)/t) . (3.11)

Here the functions fk,F are given by

fk(z,d) = (β + γ)
1(k ≥ 1)Ak−1z+k−1−Akz+k

d
+α1(k = 1)+ γ1(k = 0),

F(z,d) = 1+(α + γ)ζ+ (3.12)

with the constants A+
k = k + ζ+. The relevant system for determining the large n

asymptotics of this stochastic system is the infinite dimensional collection of func-
tions (z+k (s),d

+(s)),k ≥ 0 defined for s≥ 1 that satisfy the ODEs:

ż+k = fk(z+,d+) , z+k (1) = P+
0,k

ḋ+ = F(z+,d+) , d+(1) = 1+(α + γ)ζ+ . (3.13)

It turns out that this triangular system of ODEs has an explicit solution:

z+k (s) = P+
k s+

k

∑
k′=0

dk,k′ s−c+A+
k′ (3.14)

where the collection dk,k′ are constants that depend on the initial conditions P+
0,k.

The constants P+
k however, are independent of the initial conditions and satisfy the

recursion formula:
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P+
k =

A+
k−1P+

k−1 +1(k = 1)α/c+

A+
k +1/c+

, k ≥ 1

P+
0 =

γ

A+
0 +1/c+

. (3.15)

Invoking the Wormald Theorem, taking care to truncate the finite n systems to
the variables k ∈ [K(n)] for a suitable sequence K(n) = O(n), leads to the desired
result.

Proposition 1. For any C > 1, the following asymptotic formula holds with high
probability uniformly for n≤ t ≤Cn:

X+
k (t)
n

P
= z+k (t/n)+o(1) (3.16)

where the functions z+k (s) are defined for s≥ 1 by the ODEs (3.13). The asymptotic
marginal out-degree distribution (Pk)k≥0 is given in terms of the Gamma function
Γ (x) :=

∫
∞

0 e−ttx−1dt by the formula

P+
k :=

Γ (k+ζ+)Γ (2+ζ++1/c+)
Γ (k+1+ζ++1/c+)Γ (1+ζ+)

P+
1 , k > 1 (3.17)

P+
0 =

γ

A+
0 +1/c+

, P+
1 =

A+
0 P0 +α/c+

A+
1 +1/c+

. (3.18)

The constants P+
0 ,P+

1 normalize the probabilities and c+ = β+γ

1+(α+γ)ζ+ .

Using Stirling’s formula, Γ (x+ 1) ∼
x→∞

ex logx−x+1/2
√

2π , one finds that P+
k ∼

C+k−1−1/c+ as k→ ∞ where C+ := Γ (2+ζ++1/c+)
Γ (1+ζ+)

P+
1 . That is, the out-degree distri-

bution has a Pareto tail of exponent 1+1/c+ > 2, as first shown by [15].
The extension of this result to the remaining processes {X−j (t),X jk(t)} is given

by

Corollary 3. For any C > 1, the following asymptotic formulas hold with high prob-
ability uniformly for n≤ t ≤Cn:

X−j (t)

n
P
= z−j (t/n)+o(1) , (3.19)

X jk(t)
n

P
= z jk(t/n)+o(1) , (3.20)

where the functions (z−j (s),z jk(s)) j,k≥0 satisfy a similar system of ODEs to (3.13).
The asymptotic degree distributions are given by the formulas
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P−j (t) =
Γ ( j+ζ−)Γ (2+ζ−+1/c−)

Γ ( j+1+ζ−+1/c−)Γ (1+ζ−)
P−1 , j > 1 (3.21)

P−0 =
α

A−0 +1/c−
, P−1 =

A−0 P−0 + γ/c−

A−1 +1/c−
(3.22)

with A−j = j+ζ− and

Pj,k =
Γ ( j+ζ−)Γ (k+ζ+)

j!k!Γ (1+ζ−)Γ (1+ζ+)

(
αζ
−k
∫ 1

0
tc−ζ−+c+(1+ζ+)(1− tc−) j(1− tc+)k−1 dt

+γζ
+ j
∫ 1

0
tc−(1+ζ−)+c+ζ+

(1− tc−) j−1(1− tc+)k dt
)

(3.23)

Here, c+ = β+γ

1+(α+γ)ζ+ , c− = β+α

1+(α+γ)ζ− .

It is probably more helpful to note that formula (3.23) for Pj,k is the unique
solution of the following recursion:

(1+ c−( j+ζ
−)+ c+(k+ζ

+))Pj,k = c−( j−1+ζ
−)Pj−1,k1( j > 0) (3.24)

+c+(k−1+ζ
+)Pj,k−11(k > 0)+α1( j = 0,k = 1)+ γ1( j = 1,k = 0) .

In particular, formula (3.24) enables us to independently verify the statement of [15]
that, for fixed k ≥ 1,

Pj,k ∼
j→∞

Ck j−1−1/c−−c+/c−(ζ++1(γζ+=0))

and for fixed j ≥ 1

Pj,k ∼
k→∞

D jk−1−1/c+−c−/c+(ζ−+1(γζ−=0)),

where Ck, D j, j,k > 0 are positive constants.
An important aspect of PA models is that networks up to a million or more nodes

can be simulated efficiently following techniques developed in [74]. The above
asymptotic formulas, and many more general ones, can be easily checked in such
simulation experiments.

A consequence of taking power law tails P+
k ∼ k−τ seriously in networks is that

we must address the essentially unbounded nature of node and edge degrees, and in
particular the fact that higher moments of the P and Q will be infinite:

E[kµ
v ] = ∑

k
kµ P+

k

{
= ∞ , µ ≥ τ−1
< ∞ , µ < τ−1 (3.25)

E[kµ

` ] = ∑
k

kµ Q+
k

{
= ∞ , µ ≥ τ−2
< ∞ , µ < τ−2 . (3.26)
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Since τ < 3 is commonly observed to arise in PA models of real networks, we must
face the fact that even the first moments of Q are sometimes infinite. The paper [52]
discusses some of the implications in measuring assortativity in such models.

While this class of PA growth models has certain attractive features, the rules do
not in any way reflect how a real financial network evolves. We would like to capture
the fact that banks make and break counterparty connections far more frequently
than new banks are created. In fact, we should better imagine that the number of
banks remains roughly constant (except perhaps during financial crises) while the
number (and strength) of interbank links fluctuates relatively rapidly. A class of
simple models of this type obtained by replacing the α and γ moves just discussed
with a fourth type of move that deletes an edge. In the simplest specification, we set
α = γ = 0 and introduce two parameters ξ−,ξ+ and the move:

4. δ -move: With probability δ = 1−β , a random existing edge ` of type k`, j` is
selected with probability proportional to ξ−k`+ξ+ j`+1 and deleted.

Since now nodes are never created or destroyed, N(t) =N(t0). However, the number
of edges E(t) is a random walk with mean E(t0) + (β − δ )(t − t0) and variance
4βδ (t− t0). If we select β = δ = 0.5, we can predict that the network should evolve
into a steady state random graph.

While such preferential attachment and detachment moves apparently lead to
interesting classes of skeleton graphs that match well the stylized facts of observed
financial networks, for example those identified in [10], their deeper properties have
not yet been developed in full. For this reason we move on to some two further
classes of potential skeletons whose properties are easier to understand.

3.4 Inhomogeneous Random Graphs

Another class of random graphs that are of potential interest in modelling large
scale financial networks is generalization of the Erdös-Renyi random graph known
as inhomogeneous random graphs (IRG) or generalized random graphs (GRG).
This class originates in papers [24] and [18] and has been studied in generality in
[16]. Although we are most interested in directed graphs, for simplicity, we present
here the discussion for undirected graphs. For a much more detailed treatment of
the properties of this class, please see the textbook [71].

While the ER graph (or rather the Gilbert graph) selects each potential edge (v,w)
independently with a fixed probability p = z/(N− 1), we now select conditionally
independently, with probabilities pvw = pwv that depend on the random “type” of the
nodes v and w. We suppose that the collection (uv)v∈[N] of node types are identical
independent non-negative random variables with cumulative distribution function
F : R+ → [0,1]. Then, conditioned on the node types uv,uw the edge probabilities
are defined to be

pvw =
κ(uv,uw)

1+κ(uv,uw)
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where κ : R+×R+→ R+ is symmetric and nondecreasing in both arguments. An
important example is when κ(u,u′) = uu′ which leads to a variant of the Chung-Lu
model [24]. Another simple example is when uv ∈ {0,1} with P[uv = 0] = p, which
we can think of giving a network with two types of banks. Then κ is a two-by-two
symmetric matrix with non-negative entries

κ =

(
κ00 κ01
κ01 κ11

)
.

When κ00 = κ11 = 0, then this specification gives a bipartite Erdös-Renyi graph.
One big advantage of the GRG model is that it is almost as easy to simulate as

the Gilbert model. In fact, to generate the adjacency matrix M of a graph with N
nodes, one can follow these steps:

1. Simulate the iid random variables uv, v ∈ [N] from the distribution F ;
2. Compute the upper-triangular N by N matrix A with the v,w entry given by

κ(uv,uw)
1+κ(uv,uw)

;
3. Generate an upper-triangular matrix B with each entry iid uniform on [0,1];
4. Let the ones of the adjacency matrix M be put where B≤ A .

Conditioned on the values of u, the independent Bernoulli variables Xvw =
1((v,w) ∈ g),1≤ v < w≤ N have values xvw ∈ {0,1} with probabilities

P[Xvw = xvw,1≤ v < w≤ N|(uv),v ∈ [N]] = ∏
1≤v<w≤N

κ(uv,uw)
xvw

1+κ(uv,uw)
.

Since the total probability is 1, we have the identity

∑
x

∏
1≤v<w≤N

κ(uv,uw)
xvw = ∏

1≤v<w≤N
(1+κ(uv,uw)) (3.27)

where the sum is over all possible configurations x = (xvw),xvw ∈ {0,1}. The degree
of node v is dv(x) = ∑w<v xvw +∑w>v xvw where we define xvw = xwv for w < v. As
a first step to investigate the nature of the underlying node degrees, it is useful to
compute the conditional joint probability generating function

Ψ ((tv),v ∈ [N] |(uv),v ∈ [N]]) := E[ ∏
v∈[N]

(tv)dv(X)|(uv),v ∈ [N]] . (3.28)

To put this function into a more amenable form, we use:

Lemma 2. For any vector x = (xvw)1≤v<w≤N ∈ {0,1}N(N−1)/2,

N

∏
v=1

(tv)dv(x) = ∏
1≤v<w≤N

(tvtw)xvw .

This and (3.27) allow us to express Ψ as:
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E

[
∏

v∈[N]

(tv)dv(X)
∣∣∣(uv),v ∈ [N]

]
= E

[
∏

1≤v<w≤N
(tvtw)Xvw

∣∣∣(uv),v ∈ [N]

]

=
∑x ∏1≤v<w≤N (tvtwκ(uv,uw))

xvw

∏1≤v<w≤N(1+κ(uv,uw))

= ∏
1≤v<w≤N

1+ tvtwκ(uv,uw)

1+κ(uv,uw)
. (3.29)

Proof of Lemma: Since for each v∈ [N], dv(x) =∑w<v xvw+∑w>v xwv where xvw =
xwv, we have

N

∏
v=1

(tv)dv(x) = ∏
v

[
∏

1≤w<v
txvw
v × ∏

v<w≤N
txvw
v

]

=

[
∏

1≤w<v≤N
txvw
v

]
×

[
∏

1≤v<w≤N
txvw
v

]

=

[
∏

1≤v<w≤N
txvw
w

]
×

[
∏

1≤v<w≤N
txvw
v

]
= ∏

1≤v<w≤N
(tvtw)xvw .

ut
To obtain an interesting asymptotic behaviour of the model as N → ∞, it turns

out to be natural to assume that the probability function κ := κ(N) scales with N:

κ
(N)(u,u′) = (N−1)−1

κ(u,u′) (3.30)

and that each u has a fixed cumulative distribution function F : R+→ [0,1]. We also
suppose that for some α > 0

||κ||1+α,F :=
∫
R2
+

|κ(u,u′)|1+α dF(u)dF(u′)< ∞ . (3.31)

Under these AminC, the following theorem provides us with a full description of
the asymptotic joint degree distribution of any finite random collection of nodes:

Theorem 4. In the GRG, assume that the scaling (3.30) and bound (3.31) hold for
some α > 0. Then, as N→ ∞,

1. The univariate generating function is given by

Ψ
(N)(t1) = E[e(t1−1)G−1(U)] (1+o(1))

where U is F distributed, and

G−1(u) =
∫

∞

0
κ(u,u′)dF(u′) . (3.32)
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This implies that the degree d1 converges in distribution to a mixture of Pois-
son random variables with random parameter λ having the mixing cumulative
distribution function F(G(λ )).

2. For any fixed integer M > 1, the joint degrees dv,v∈ [M] converge in distribution
to an independent collection of identical random variables.

Part (1) tells us that the degree of a randomly selected node converges in distri-
bution as N → ∞ to a random variable whose probability distribution is given by
(Pk)k≥0 where

Pk =
∫
R+

e−λ λ k

k!
dF(G(λ ))

The mean node-degree is z =
∫
R+

λ dF(G(λ )). Part (2) then ensures the asymptotic
independence of any finite collection of degrees.

We can see from the theorem that the model parametrization by an arbitrary pair
(κ,F) contains redundant information. By defining

κ̃(v,v′) = κ(G(v),G(v′)), F̃(v) = F(G(v)) (3.33)

one finds that the pair (κ̃, F̃) leads to the same model:

Ψ
(N)(t1) = E[e(t1−1)V ] (1+o(1))

where V is F̃ distributed, and

v =
∫

∞

0
κ̃(v,v′)dF̃(v′) . (3.34)

Without loss of generality therefore, one can take a pair (κ,F) such that (3.32) holds
with G the identity mapping, under which condition the Poisson mixing distribution
turns out to be F .

A rule of thumb says that a mixed Poisson distribution with an unbounded dis-
tribution of the mixing variable inherits the tail distribution of the mixing variable.
Thus, if F has a Pareto tail of order τ − 1 for some τ > 2, Theorem 4 applies with
α < τ − 2, and leads to a fat-tailed degree distribution with the same order. Note
further that many potential integer degree distributions are not Poisson mixtures, for
example any distribution with finite support.

Sketch Proof of Theorem: Part (1). For fixed N we compute Ψ by an intermediate
conditioning on the random variables uv and use (3.28) to write

Ψ((tv),v ∈ [N]) = E

[
∏

1≤v<w≤N

1+ tvtwκ(N)(uv,uw)

1+κ(N)(uv,uw)

]
.

Now putting tv = 1 for v > 1 leads to a lot of cancellation of numerator and denom-
inator factors, leading to
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Ψ(t1) = E(N)

[
∏

2≤v≤N

1+ t1κ(N)(u1,uv)

1+κ(N)(u1,uv)

]
= E

[
(ψ(N)(t1,u1))

N−1
]

(3.35)

where

ψ
(N)(t,u) =

∫
R+

1+ tκ(N)(u,u′)
1+κ(N)(u,u′)

dF(u′) .

This function can be written

ψ
(N)(t,u) =

∫
R+

1+ t(N−1)−1κ(u,u′)
1+(N−1)−1κ(u,u′)

dF(u′) .

Now, for any α > 0 and every x≥ 0, there is C(α) such that

1+ tx
1+ x

= 1+(t−1)x+R(x)

where the remainder is bounded |R(x)| ≤ |t−1|C(α)x1+α . Using this bound and the
definition of G−1 we find

ψ
(N)(t,u) =

∫
R+

(
1+(t−1)(N−1)−1

κ(u,u′)
)

dF(u′)+ R̃

= 1+(t−1)(N−1)−1G−1(u)+ R̃ .

By the bound (3.31) on κ , the remainder R̃ is bounded by (N − 1)−1−α times a
function with bounded L1+α -norm. Now, by a standard limiting argument, as N→
∞, [

1+(t−1)(N−1)−1G−1(u)+ R̃
]N−1

= e(t−1)G−1(u)(1+O(n−α))

which leads to the desired result.
The proof of part (2) is similar, and left as an exercise. ut

We can go further and investigate the shifted bivariate distribution of edge de-
grees (k`− 1,k′`− 1) by computing the expectation e = E(N)[td1−1

1 td2−1
2 |(1,2) ∈ g]

under the parametrization with G equal to the identity mapping. Following exactly
the same steps as above, we find the expression

e =
(
P(N)[(1,2) ∈ g]

)−1

× E(N)

[
κ(N)(u1,u2)

1+κ(N)(u1,u2)
∏
v≥3

(
1+ t1κ(N)(u1,uv)

1+κ(N)(u1,uv)

)(
1+ t2κ(N)(u2,uv)

1+κ(N)(u2,uv)

)]
.

The same logic that leads to Theorem 4 leads to

e = (E[κ(u1,u2)])
−1 E

[
κ(u1,u2)e(t1−1)u1 e(t2−1)u2

]
(1+o(1))) . (3.36)
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In the Chung-Lu class of models where κ(u1,u2) = u1u2, (3.36) implies that
asymptotically, the edge degree distribution is the independent case

Qkk′ =
kk′PkPk′

z2 .

In general there is correlation between the edge degrees, i.e. the graph is assortative,
where the edge-type distribution Q equals a bivariate mixture of independent Pois-
son random variables, shifted up by the vector (1,1). To verify this statement one
needs to check that Q defined by

Qkk′ =
∫

∞

0

∫
∞

0
Pois(v,k−1) Pois(v′,k′−1) dG(v,v′), ∀k,k′ ≥ 1 (3.37)

with
dG(v,v′) := z−1

κ(v,v′) dF(v)dF(v′) (3.38)

is consistent with
e = ∑

kk′
tk−1
1 tk′−1

2 Qkk′ .

As a useful variation of the IRG framework, one can introduce a more abstract
node type space A with probability distribution d f . and a mapping u : A → R+. If
we define the probability of a type a and type b node to wire together to be

κ(u(a),u(b))
1+κ(u(a),u(b))

where κ and d f are consistent:

u(a) =
∫

A
κ(u(a),u(b)) d f (b), ∀a ∈A

then u(a) will be the average degree of a type a node. The next example illustrates
this kind of network construction.

Example 1. (Three Bank Types) Consider a financial network with small, medium
and large banks whose network fractions are f = ( fa)a=1,2,3 = [0.80,0.15,0.05] and
whose conditional average degrees are u = (ua)a=1,2,3 = [2,31/3,51/2]. The mean
degree is z = f · u = 4.35. One connectivity kernel that satisfies the consistency
condition ∑

3
b=1 κab fb = z−1ua is:

κ
(1) =


0 1

15
1
5

1
15

1
5

2
5

1
5

2
5

7
10

 .

It is easy to verify that this choice leads to the consistent negatively assortative pair
of degree distributions
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Q(1)
kk′ = z−1

3

∑
a,b=1

κ
(1)
ab Pois(ua,k−1) Pois(ub,k′−1) fa fb (3.39)

Pk =
3

∑
a=1

Pois(ua,k) fa . (3.40)

The independent edge type distribution Q(2) arises by taking κ
(2)
ab = z−1 ua ub. To

simulate a random network with N banks that has such large N asymptotics, one
draws N bank types a1, . . . ,aN from the f distribution. Then for each pair of banks
v < w ∈ [N] one creates an undirected edge between them independently with prob-
ability κav,aw

N−1+κav,aw
.

To summarize, the undirected IRG construction parametrized by pairs (κ,F)
that satisfy (3.32) with G equal to the identity, defines a rich class that generalizes
the Erdös-Renyi graph, is straightforward to simulate on a computer, and retains
a tractable large N asymptotic structure. Both the asymptotic node type and edge
type distributions can be fully characterized as mixtures of Poisson random vari-
ables. The natural question is what the IRG class has to do with the configuration
graph model. It has been proven in [18] that the subclass of Chung-Lu models is
asymptotic to a subclass of non-assortative simple configuration graphs. In general,
it seems that the IRG models forms a class that overlaps substantially with the so-
called assortative configuration model that will be developed in the next section. In
any case, the directed version of the IRG class outlined in this section is a promising
foundation for modelling financial networks, and certainly much of the technology
we develop later on in this book for configuration graphs is extendible to the IRG
class. However, we now return to the configuration graph model and consider how
one can modify the construction of Section 3.2 to account for assortativity.

3.5 Assortative Configuration Graphs

It has been often observed in financial networks (and as it happens, also the world
wide web) that they are highly disassortative, or as we prefer, negatively assortative
(see for example [68] and [10]). This refers to the property that any bank’s coun-
terparties (i.e. their graph neighbours) have a tendency to be banks of an opposite
character. For example, it is observed that small banks tend to lend preferentially to
large banks rather than other small banks. On the other hand, social networks are
commonly observed to have positive assortativity. Structural characteristics such as
degree distribution and assortativity are felt by some (see [54]) to be highly relevant
to the propagation of contagion in networks but the nature of such relationships is
far from clear.

The aim of this section is to put a firm theoretical foundation under the class
of configuration graphs with arbitrary node degree distribution P and edge degree
distribution Q taken to satisfy Assumption 4 of Section 3.1. The class of config-
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uration graphs with general Q has not been well studied previously, and we will
generalize some of the classic large N asymptotic results known to be true for the
nonassortative configuration graph construction described in Section 3.2. At the end
of the section, we will also provide justification of a new approximate Monte Carlo
simulation algorithm for assortative configuration graphs.

3.5.1 Finite Assortative Configuration Graphs

The “exact” assortative configuration multigraph of size N parametrized by the
node-edge degree distribution pair (P,Q) is constructed by the following random
algorithm:

1. Draw a sequence of N node-degree pairs X = (( j1,k1), . . . ,( jN ,kN)) indepen-
dently from P, and accept the draw if and only if it is feasible, i.e. ∑n∈[N] jn =
∑n∈[N] kn, and this defines the number of edges E that will result. Label the nth
node with kn out-stubs (picture this as a half-edge with an out-arrow) and jn
in-stubs. Define the partial sums u−j = ∑n 1( jn = j),u+k = ∑n 1(kn = k),u jk =

∑n 1( jn = j,kn = k) and the number of out- and in-stubs e+k = ku+k ,e
−
j = ju−j .

2. Conditioned on X , the result of Step 1, choose an arbitrary ordering `− and `+

of the E in-stubs and E out-stubs. For each permutation σ ∈ S[E] of the set [E],
select the matching sequence or wiring W of “edges” ` = (`− = `,`+ = σ(`)),
labelled by ` ∈ [E], with probability weighted by the factor

∏
`∈[E]

Qkσ(`) j` . (3.41)

Define the number of type (k, j) edges to be ek j = ∑`∈[E] 1(k` = k, j` = j).
Intuitively, since step 1 leads to a product probability measure subject to a single

linear constraint that is true in expectation, it should lead to node degree indepen-
dence for large N. This intuition can be verified using the Fourier transform of the
P measure:

ΦP(a,b) := ∑
j,k

Pjkei(a j+bk), (a,b) ∈ [0,2π]2 (3.42)

which under Assumption 4 is a twice differentiable periodic function. For any finite
M, as N→ ∞, it can be shown that

E[ ∏
n∈[M]

ei(an jn+bnkn)| ∑
n∈[N]

( jn− kn) = 0]→ ∏
n∈[M]

ΦP(an,bn) (3.43)

which implies that the first M pairs ( jn,kn)n∈[M] converge in distribution to the cor-
rect product measure. It is also true that the empirical node type distributions con-
verge in probability to their means:

N−1u−j
P−→ P−j , N−1u+k

P−→ P+
k , N−1u jk

P−→ Pjk . (3.44)
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Similar logic suggests that since the matching weights in step 2 define a product
probability measure conditional on a set of linear constraints that are true in expec-
tation, it should lead to edge degree independence in the large N limit. We define

ΦQ(a,b) := ∑
k, j

Qk jei(a j+bk), (a,b) ∈ [0,2π]2 (3.45)

which under Assumption 4 is a once differentiable periodic function. For any fi-
nite L, convergence in distribution of the degrees of the first L edges of the wiring
sequence to the target distribution follows from

E[ ∏
`∈[L]

ei(a` j`+b`k`)]→ ∏
`∈[L]

ΦQ(a`,b`) (3.46)

Eventually we will also need convergence in probability of the empirical density of
type (k, j) edges: for every (k, j),

N−1E P−→ z, E−1ek j
P−→ Qk j, E−1e−j

P−→ Q−j , E−1e+k
P−→ Q+

k . (3.47)

It appears that Assumption 4 is sufficient for both (3.46), (3.47) to be true in general,
but the detailed proof of this fact is not yet available.

The next Proposition says that the probability of any wiring sequence W = (` ∈
[E]) in step 2 depends only on the set of quantities (ek j) where for each k, j, ek j :=
|{` ∈ [E]|` ∈ Ek j}|. In other words, the random collection e = (ek j), subject to the
constraints

e−j = ∑
k

ek j, e+k = ∑
j

ek j , (3.48)

is a sufficient statistic for the probability of a labelled multigraph W conditioned on
X .

Proposition 2. In the assortative configuration graph construction for finite N with
probabilities P,Q, the probability of any wiring sequence W = (`∈ [E]) conditioned
on the X = ( ji,ki), i ∈ [N], is:

P[W |X ] = C−1
∏
k j
(Qk j)

ek j , (3.49)

C = C(e−,e+) = ∑
e

∏
k j

(Qk j)
ek j

ek j!
∏

j

(
e−j !
)
∏

k

(
e+k !
)
, (3.50)

where the sum in (3.50) is over collections e= (ek j) satisfying the constraints (3.48).
Moreover the number of wirings W consistent with a collection e = (ek j) is given by

|{W : e(W ) = e}|=

(
∏ j e−j !

)(
∏k e+k !

)
∏k j ek j!

. (3.51)
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Proof of Proposition: The denominator of (3.49) is C = ∑σ∈S(E) ∏l∈[E] Qkσ(`) j` ,
from which we verify (3.50) by induction on E. Assuming (3.50) is true for E−1,
we can verify the inductive step for E:

C = ∑
k̃

∑
σ∈S(E)

1(kσ(E) = k̃) ∏
l∈[E]

Qkσ(`) j`

= ∑
k̃

e+
k̃

Qk̃ jE ∑
σ ′∈S(E−1)

∏
l∈[E−1]

Qk
σ ′(`) j`

= ∑
k̃

e+
k̃

Qk̃ jE ∑
e′

∏
k j

(Qk j)
e′k j

e′k j!
∏

j

(
e
′−
j !
)

∏
k

(
e
′+
k !
)
.

Here, e′k j = ek j−1(k = k̃, j = jE), e
′−
j = e−j −1( j = jE), e

′+
k = e+k −1(k = k̃). After

noting cancellations that occur in the last formula, and re-indexing the collection e′

one finds

C = ∑
k̃

∑
e′

ek̃ jE

e−jE
∏
k j

(Qk j)
ek j

ek j!
∏

j

(
e−j !
)

∏
k

(
e+k !
)

= ∑
e

(
∑
k̃

ek̃ jE

e−jE

)
∏
k j

(Qk j)
ek j

ek j!
∏

j

(
e−j !
)

∏
k

(
e+k !
)

= ∑
e

∏
k j

(Qk j)
ek j

ek j!
∏

j

(
e−j !
)

∏
k

(
e+k !
)

which is the desired result. Finally, (3.51) follows easily from (3.50). ut

Now we use similar logic to prove further natural properties of the construction.
A basic property of the ACG construction is the permutation symmetry in both in-
and out-stubs. As one easily checks, it allows the denominator C in (3.49) to be
written in various ways:

C = ∑
k̃

e+
k̃

Qk̃ jE ∑
σ ′∈S(E−1)

∏
l∈[E−1]

Qk
σ ′(`) j` (3.52)

= ∑
j̃

e−j̃ Qk(E) j̃ ∑
σ ′∈S(E−1)

∏
l∈[E−1]

Qk`, jσ̃ ′(`) (3.53)

= E−1
∑
k̃, j̃

e+
k̃

e−j̃ Qk̃ j̃ ∑
σ ′∈S(E−1)

∏
l∈[E−1]

Qk
σ ′(`) j` (3.54)

. (3.55)

In the sums over σ ′, one needs to reorder (arbitrarily) the remaining in or out-stubs.
These identities can also be invoked at any subsequent step of the wiring process,
allowing one to select at each step arbitrarily from either the available in- or out-
stubs.

Proposition 3. In the assortative configuration graph construction for finite N with
probabilities P,Q that satisfy Assumption 4:
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1. The probability p of the last edge of any wiring sequence W = (` ∈ [E]) having
type k̃, j̃, conditioned on the X = ( ji,ki), i ∈ [N] is

p = E[ek̃ j̃|X ]/E ;

2. For each k̃, j̃ in the support of Q,

E[ek̃ j̃|X ]/E = Qk̃ j̃(1+o(1))

with high probability as N→ ∞.

Proof of Proposition: To prove these results, we need to symmetrize the wiring
over both the in- and out-stub sequences. For part (1), following a similar notation
and logic to the previous proof,

p =
1

C(e−,e+)E! ∑
σ ,σ̃∈S(E)

1(kσ(E) = k̃, jσ̃(E) = j̃) ∏
l∈[E]

Qkσ(`) jσ̃(`)

=
1

C(e−,e+)E!
e+

k̃
e−j̃ Qk̃ j̃ ∑

σ ′,σ̃ ′∈S(E−1)
∏

l∈[E−1]
Qk

σ ′(`) j
σ̃ ′(`)

=
(E−1)!

C(e−,e+)E!
e+

k̃
e−j̃ Qk̃ j̃ ∑

e′
∏
k j

(Qk j)
e′k j

e′k j!
∏

j

(
e
′−
j !
)

∏
k

(
e
′+
k !
)

=
1

C(e−,e+)E ∑
e

ek̃ j̃ ∏
k j

(Qk j)
ek j

ek j!
∏

j

(
e−j !
)

∏
k

(
e+k !
)
.

For part (2), as long as Q−j̃ 6= 0, using (3.44) shows it is equivalent to prove

p′ =
1
E
E[ek̃ j̃Q

−
j̃ −Qk̃ j̃e

−
j̃ |X ] = o(1)

for each k̃, j̃. Using part (1), this equals

p′ =
1

cE! ∑
k̃′

∑
σ ,σ̃∈S(E)

× [1(kσ(E) = k̃, jσ̃(E) = j̃)Qk̃′, j̃−1(kσ(E) = k̃′, jσ̃(E) = j̃)Qk̃, j̃)] ∏
l∈[E]

Qkσ(`) jσ̃(`)

=
1

cE! ∑
k̃′

Qk̃′, j̃Qk̃, j̃e
−
j̃

×

[
e+

k̃ ∑
σ ′,σ̃ ′∈S(E−1)

∏
l∈[E−1]

Qk
σ ′(`) j

σ̃ ′(`)
− e+

k̃′ ∑
σ ′,σ̃ ′∈S(E−1)

∏
l∈[E−1]

Qk
σ ′(`) j

σ̃ ′(`)

]
.

In this last expression, it is critical to understand that despite the identical notation
(which has become quite cumbersome) the collection of out-stubs is different in the
two terms: the difference amounts to exactly one substitution of a k̃-stub with a k̃′-
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stub. The next step is to note that by Assumption 4, e+
k̃
= EQ+

k̃
(1+ o(1)), which

implies

p′ = o(1)+
E

cE! ∑
k̃′

Qk̃′, j̃Qk̃, j̃e
−
j̃

× ∑
j̃′

[
Qk̃ j̃′ ∑

σ ′,σ̃ ′∈S(E−1)
∏

l∈[E−1]
Qk

σ ′(`) j
σ̃ ′(`)
−Qk̃′ j̃′ ∑

σ ′,σ̃ ′∈S(E−1)
∏

l∈[E−1]
Qk

σ ′(`) j
σ̃ ′(`)

]
.

Now, because of the structure of the imposed symmetrization of remaining E − 1
out-stubs in the two terms, we can observe an exact cancellation of all terms, which
finishes the proof. ut

The reasoning underlying these two propositions tells us that wiring probabili-
ties are independent of ordering, and the actual wiring order can be chosen flexibly.
Moreover, we have made sufficient assumptions that imply that the large N asymp-
totics of the empirical node and edge degree distributions agree with the target (P,Q)
distributions. In the next section, we will use these facts to compute detailed proba-
bilities of more complex configurations.

3.5.2 Asymptotic Configuration Probabilities

It will turn out that the most important objects we need to understand to derive a
rigorous treatment of cascade mappings on random financial networks are random
connected subgraphs of the skeleton, labelled by their degree types. We shall call
such objects configurations, and the goal of this section is to determine their asymp-
totic probability distributions as N→ ∞.

Let us first consider what it means in the (P,Q) configuration model with size N
to draw a random pair of vertices v1,v2 that happen to have a link, i.e. v2 ∈N −

v1
.

Following the ACG algorithm, first we construct the feasible bidegree sequence X =
( ji,ki), i∈ [N]. To be clear, we label these corresponding nodes by vi = i. Then, con-
ditioned on X , we construct a random Q-wiring sequence W =

(
`= (v+` ,v

−
` )
)
`∈[E]

with E = ∑i ki = ∑i ji edges. By an abuse of notation, we label their edge degrees
by k` = kv+`

, j` = jv−` .
To compute the joint probability p = P[vi ∈N ji,ki , i = 1,2|v2 ∈N −

v1
,X ], we first

condition on the bidegree sequence X for any finite N. The event in question is
that the first link in the wiring sequence W attaches to nodes of the required de-
grees ( j1,k1),( j2,k2). The fraction j1u j1k1/e−j1 of available j1-stubs and a fraction
k2u j2k2/e+k2

available k2-stubs have the correct property. Now, by Proposition 3, the
conditional probability for the configuration is therefore

p = j1u j1k1k2u j2k2

E[ek2 j1 |X ]

Ee+k2
e−j1

(3.56)
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which has a limit as N→ ∞:

p→
j1k2Pj1k1Pj2k2Qk2 j1

z2Q+
k2

Q−j1
. (3.57)

By summing over k1,k2, j2, one gets the important formula

P[ jv1 = j1
∣∣v2 ∈N −

v1
] = ∑

k2

Qk2 j1 = Q−j1 . (3.58)

Warning! Note the meaning of this last equation: the in-degree distribution of v,
conditioned on v being in-connected to another node, is not equal to the marginal
in-degree distribution P−j as one might naively expect, but rather Q−j . Failure to
appreciate this distinction is a major confusion in configuration graph computations.

One can also compute the correct asymptotic expression for p, informally, by
successive conditioning:

p = P[vi ∈N jiki , i = 1,2
∣∣v2 ∈N −

v1
] (3.59)

= P[v1 ∈N j1k1

∣∣v2 ∈N −
v1
∩N j2k2 ] P[v2 ∈N j2k2

∣∣v2 ∈N −
v1
] (3.60)

= Pk1| j1Q j1|k2Pj2|k2Q+
k2
=

Pj1k1Pj2k2Qk2 j1

P+
k2

P−j1
(3.61)

where we introduce conditional degree probabilities Pk| j = Pjk/P−j etc.
One subtlety in this argument is that occasionally in the above matching algo-

rithm, the first edge forms a self-loop, i.e. v1 = v2. We can compute the probability
of this event, jointly with fixing the degree of v1, as follows:

p̃ := E[v1 = v2,v1 ∈N jk|v2 ∈N −
v1
|X ] =

(
jku jk

e−j e+k

)
E[ek j|X ]

E
.

As N→ ∞ this goes to zero, however N p̃ approaches a finite value:

N p̃ P−→
jkPjkQk j

z2Q+
k Q−j

(3.62)

which says that the relative fraction of edges being self loops is the asymptotically
small ∑ jk

jkPjkQk j

Nz2Q+
k Q−j

. In fact, one can go further with this type of analysis, and prove

an asymptotic result that the total number of self loops in the multigraph converges
in probability to a Poisson random variable with finite parameter

λ = ∑
jk

jkPjkQk j

z2Q+
k Q−j

. (3.63)

The probability of a general configuration g, that is, a finite connected subgraph
with L = |E (g)| edges labelled by degree types, is best understood as a growth
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process that adds one edge at a time. There are two alternatives: processes that start
from a random edge or processes that start with a random node. For our purposes,
it is most useful to consider a growth process that starts conditionally on an initial
node, or root, v ∈N jk to which edges are added one at a time.

A tree configuration g will arise if the `th new edge always attaches a new node
w` to an existing node v`: ` is an in-edge if it points into v`, that is if ` ∈ E −v , or an
out-edge if it points out of v`. For a tree g rooted at v, the direction of each edge is
unambiguous. If ever ` connects two existing nodes, then the resultant configuration
will have a new cycle and is no longer a tree, and the direction of some edges will
be ambiguous.

Consider the probability of the configuration with one edge obtained by attaching
a node w1 ∈N j1k1 pointing to the root v, within a configuration graph (N ,E ) of
size |N | = N. We follow the usual logic and apply the ACG wiring step, step 2,
with E = ∑k e+k = ∑ j e−j edges, conditioned on the finite node type sequence X . The
event W (1) that the first k-stub is one of the k1u j1k1 available k-stubs from a type
( j1k1) node has conditional probability

P[W (1)|X ] :=C−1
∑

σ∈S(E)
1(W (1)) ∏

`∈[E]
Qk(σ(`) j(`) (3.64)

. Using Proposition 3, the result can be expressed as

k1u j1k1

e+k1

E[ek1 j/e−j |X ]

which has the limit
P[W (1)|X ]

P−→ Pj1|k1Qk1| j . (3.65)

On the other hand, when one creates a new out-edge by attaching a new node w1
pointing from the root v, one applies the identity (3.53), leading to the reversed
formula

P[W (1)|X ] =
j1u j1k1

e−j1
E[ek j1/e+k |X ]]

P−→ Pk1| j1Q j1|k . (3.66)

When one realizes that one can choose to use either (3.52) or (3.53) at each step,
each new wire can be chosen to match any specific available in- (or out-) stub to
a random available out- (or in-) stub. Thus it is intuitive that a new node w of type
( j′,k′) attaching to an existing node v of type ( j,k) will always bring in an additional
factor which is either Pj′|k′Qk′| j for an in-edge or Pk′| j′Q j′|k for an in-edge. Some
further thought also suggests that adding a wire between existing nodes will always
lead to a factor of 0 in the N→ ∞ limit. Therefore, the main takeaway result for the
ACG model, which gives the asymptotic probability of general tree configurations
together with the fact that configuration with cycles vanish in probability in the limit,
should be intuitively clear.

In the previous section, we remarked that while it appears that Assumption 4 for
the ACG construction is sufficient for both large N limits (3.46), (3.47) to be true
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in general, a detailed proof of this fact is not yet available. To be on the safe side in
what follows we strengthen Assumption 4 to the following:

Assumption 5. The pair (P,Q) satisfies Assumption 4, and in addition (3.46), (3.47)
hold as limits as N→ ∞.

Theorem 5. Consider the ACG sequence with (P,Q) that satisfies Assumption 5. For
any fixed finite configuration g rooted to v ∈N jk, with M added nodes and L ≥M
edges, labelled by the node bidegree sequence ( jm,km)m∈[M], the joint probability
p = P[wm ∈ N jmkm ,m ∈ [M],g|v ∈ N jk,X ] conditioned on X converges with high
probability as N→ ∞:

p P−→ ∏
m∈[M], out-edge

Pkm| jmQ jm|km′ ∏
m∈[M], in-edge

Pjm|kmQkm| jm′ , if g is a tree

(3.67)
p = O(NM−L), if g has cycles . (3.68)

For trees, the `th edge has m = `, and m′ ∈ {0}∪ [`−1] numbers the node to which
w` attaches, with m′ = 0 meaning the root v.

Proof of Theorem: The tree configuration g with its ordered sequence of edges
completely determines the sequence of edge types. Based on this information, define
the sequences u jk(`),e+k (`),e

−
j (`), ` ∈ [L] that count the number of available nodes

and stubs at step `. Similarly, a given collection e jk := e jk(0) leads to a sequence
ek j(`). Based on this information, the following identity for the conditional proba-
bility of the event W (L) that the L-edge tree g occurs can be verified by induction
on L for each fixed N and node type sequence X :

P[W (L)|v ∈N jk,X ] = C−1
∏
` out

j`u j`k`(`) ∏
` in

k`u j`k`(`)

×∑
e

∏
j′k′

Q
ek′ j′
k′ j′

ek′ j′(L)!
∏

j′
e−j′ (L)! ∏

k′
e+k′ (L)! (3.69)

This formula can be rewritten as

P[W (L)|v ∈N jk,X ] = ∏
` out

j`u j`k`(`) ∏
` in

k`u j`k`(`) ∏
j′

e−j′ (L)!

e−j′ !
∏
k′

e+k′ (L)!
e+k′ !

×E[∏
j′k′

ek′ j′ !
ek′ j′(L)!

|v ∈N jk,X ] . (3.70)

Now one can apply the large N limits (3.44) and (3.47) to verify the following facts:
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E[E−L
∏
j′k′

ek′ j′ !
ek′ j′(L)!

|v ∈N jk,X ]
P−→ ∏

`, out
Qk`′ j` ∏

`, in
Qk` j`′ (3.71)

E2L
∏

j′

e−j′ (L)!

e−j′ !
∏
k′

e+k′ (L)!
e+k′ !

P−→ ∏
`, out

1
Q+

k`′
Q−j`

∏
`, in

1
Q+

k`
Q−j`′

(3.72)

E−L
∏
` out

j`u j`k`(`) ∏
` in

k`u j`k`(`)
P−→ ∏

`, out

j`Pj`k`
z ∏

`, in

k`Pj`k`
z

(3.73)

Applying these limits to the factors in (3.70) yields (3.67).
To prove (3.68) for configurations with cycles, first consider the edge that creates

the first cycle for which it is straightforward to demonstrate that the probability
is O(N−1). Similarly, each additional edge that creates a new cycle introduces an
additional O(N−1) factor. ut

Remark 5. 1. Formula (3.68) shows clearly what is meant by saying that configura-
tion graphs are locally tree-like as N→∞. It means the number of occurrences of
any fixed finite size graph g with cycles embedded within a configuration graph
of size N remains bounded with high probability as N→ ∞.

2. Even more interesting is that (3.67) shows that large configuration graphs exhibit
a strict type of conditional independence. Selection of any root node v of the
tree graph g splits it into two (possibly empty) trees g1,g2 with node bidegrees
( jm,km),m∈ [M1] and ( jm,km),m∈ [M1+M2]\ [M1] where M = M1+M2. When
we condition on the bidegree of v, (3.67) shows that the remaining degrees form
independent families:

P[wm ∈N jmkm ,m ∈ [M],g
∣∣X ,v ∈N jk] = P[wm ∈N jmkm ,m ∈ [M1],g1

∣∣X ,v ∈N jk]

×P[wm ∈N jmkm ,m ∈ [M1 +M2]\ [M1],g2
∣∣X ,v ∈N jk] . (3.74)

We call this deep property of the general configuration graph the locally tree-like
independence property (LTI property). It provides the key to unravelling cascade
dynamics in large configuration graphs.

3.5.3 Approximate ACG Simulation

As we observed in Section 3.2, the first step of the configuration graph construction
draws a sequence ( ji,ki)i∈[N] of node types that is iid with the correct distribution P,
but is only feasible, ∑i(ki− ji) = 0, with small probability. Step 2 of the exact ACG
algorithm in Section 3.5.1 is even less feasible in practice. Practical simulation al-
gorithms address the first problem by “clipping” the drawn node bidegree sequence
when the discrepancy D = DN := ∑i(ki− ji) is not too large, meaning it is adjusted
by a small amount to make it feasible, without making a large change in the joint
distribution. The following clipping method generalizes the method introduced by
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[23] who verify that the effect of clipping vanishes with high probability as N→∞.
The problem of Step 2 is overcome by an approximate sequential wiring algorithm.

The approximate assortative configuration simulation algorithm for multigraphs
of size N, parametrized by the node-edge degree distribution pair (P,Q) that satisfy
Assumption 5, involves choosing a suitable threshold T = T (N) and modifying the
steps identified in Section 3.5.1:

1. Draw a sequence of N node-degree pairs X = (( j1,k1), . . . ,( jN ,kN)) indepen-
dently from P, and accept the draw if and only if 0 < |D| ≤ T (N). When the se-
quence ( ji,ki)i∈[N] is accepted, the sequence is adjusted by adding a few stubs, ei-
ther in- or out- as needed. First draw a random subset σ ⊂N of size |D|with uni-
form probability

( N
|D|
)−1

, and then define the feasible sequence X̃ = ( j̃i, k̃i)i∈[N]

by adjusting the degree types for i ∈ σ as follows:

j̃i = ji +ξ
−
i ; ξ

−
i = 1(i ∈ σ ,D > 0) (3.75)

k̃i = ki +ξ
+
i ; ξ

+
i = 1(i ∈ σ ,D < 0) . (3.76)

2. Conditioned on X̃ , the result of Step 1, randomly wire together available in and
out stubs sequentially, with suitable weights, to produce the sequence of edges
W . At each `= 1,2, . . . ,E, match from available in-stubs and out-stubs weighted
according to their degrees j,k by

C−1(`)
Qk j

Q+
k Q−j

. (3.77)

In terms of the bivariate random process (e−j (`),e
+
k (`)) with initial values (e−j (1),e

+
k (1))=

(e−j ,e
+
k ) that at each ` counts the number of available degree j in-stubs and de-

gree k out-stubs, the ` dependent normalization factor C(`) is given by:

C(`) = ∑
jk

e−j (`)e
+
k (`)

Qk j

Q+
k Q−j

. (3.78)

The main results now guarantee important convergence properties that show that
for large N the clipping and sequential wiring defects get vanishingly small. The first
theorem, as proved by Chen and Olvera-Cravioto [23], addresses the clipping step
and shows that: (1) the acceptance probability goes to 1; (2) for any fixed finite M,
the joint distribution of the random degrees ( j̃i, k̃i)i∈[M] converges in distribution to
the target of M i.i.d. bivariate P-distributed random variables ( ĵi, k̂i)i∈[M] as N→ ∞;
and (3) the empirical node bidegree probabilities converge (in probability) to the
target probabilities Pjk.

Theorem 6. Fix δ ∈ (0,1/2), and for each N let the threshold be T (N) = N1/2+δ .
Then:

1. The acceptance probability P[DN ]→ 1 as N→ ∞;
2. For any fixed finite M, Λ , and bounded function f : (Z+×Z+)

M → [−Λ ,Λ ]
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)
]−E[ f

(
( ĵi, k̂i)i=1,...,M

)
]
∣∣→ 0 ; (3.79)

3. The following limits in probability hold:

1
N

ũ jk
P−→ Pjk,

1
N

ũ+k
P−→ P+

k ,
1
N

ũ−j
P−→ P−j . (3.80)

The main theorem for Step 2 was proved first by F. Pourbabaee [64] and states
that the empirical distribution of edges in the sequence are with high probability
clustered near the values of Q, and moreover, that for any fixed L, the joint degree
distribution of the first L edges of the matching sequence converges (in distribution)
to an independent sequence of identical Q distributed random variables.

Theorem 7. In the approximate assortative configuration graph construction with
probabilities P,Q, the following convergence properties hold as N→ ∞.

1. The fraction of type (k, j) edges in the matching sequence (kl , j`)`∈[E] concen-
trates with high probability around the nominal edge distribution Qk j:

ek j

E
= Qk j +o(1). (3.81)

2. For any fixed finite number L, the first L edges ` ∈ [L] have degree sequence
(kl , j`)`∈[L] that converges in distribution to (k̂l , ĵ`)`∈[L], an independent sequence
of identical Q distributed random variables.

Taken together, these two theorems show that when the approximate version of
Steps 1 and 2 are combined, the simulation algorithm generates finite assortative
configuration graphs, consistent with the target distributions P,Q asymptotically for
N large enough.

3.6 Measures of Network Topology

The term network topology is commonly used to refer to a wide variety of character-
istics observed in the random graphs underlying large scale networks, both synthetic
and in the real world. Measures of network topology typically amount to a summary
statistic that tells us something important about the way nodes connect or about the
relative importance of different node and edge types.

3.6.1 Connectivity

Overall connectivity of the network can be measured by the fraction of the number
of actual directed links to the number of potential links. Thus, in a finite network
with N nodes and E directed edges, the connectivity is given by C = E

N(N−1) . Since



80 3 Random Graph Models

our networks are typically sparse enough that C→ 0 for large N, we often focus
instead on the mean degree z = E/N.

3.6.2 Measures from the Degree Distributions

In addition to measuring moments of the degree distribution Pjk, such as the mean
(in- and out-) degree z = ∑ j,k jPjk = ∑ j,k kPjk, network practitioners also focus on
the tail properties. Tail exponents are defined by large graph limits:

α
± =− limsup

j→∞

logP±j
log j

.

Finite tail exponents are indicators of what are called Pareto tails, and signal the
existence of non-negligible numbers of hubs, or highly connected nodes that can be
significant focal points for systemic risk. Log-log plots capture the characteristic tail
exponents as the negative of the slope of the best fit line, above a certain cutoff level.
Clauset et al [26] provides the definitive statistical inference method for determining
Pareto tail exponents for random samples from a distribution with power law tail.

3.6.3 Centrality Measures

Centrality measures require the full adjacency matrix M(g), and aim to decide the
relative importance of nodes. At their heart they rest on the fact that the kth power of
the adjacency matrix provides the number of (directed) k-step paths between nodes.
Different centrality measures typically formalize the idea that important nodes are
those that have important neighbours, by summing over these paths with different
weights. For directed graphs where we need to distinguish forward paths from back-
ward paths, centrality measures come in several versions.

1. Degree centrality: For undirected graphs, this is simply the degree of the node.
For directed graphs, one refers to the in-degree and out-degree centralities.

2. Eigenvalue centrality: By the Perron-Frobenius theorem for non-negative matri-
ces, there exists a non-negative right-eigenvector of M, and this eigenvector is
associated with the maximal eigenvalue λ (which is necessarily positive). If M
is irreducible, or equivalently if the directed graph g is strongly connected, then
there is a unique right-eigenvector, call it x+ = [x+1 , . . . ,x

+
N ], normalized so that

∑i x+i = 1. The component for node i is positive, x+i > 0, and is called its forward
eigenvalue centrality measure. Conversely, the backward eigenvalue centrality
measures x−i derive from the maximal left-eigenvector of M. Both measures can
be easily computed by power iteration using the formulas:
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x+i = λ
−1

∑
j

Mi jx+j ; x−i = λ
−1

∑
j

M jix−i .

In more generality, one can apply the same measure to a weighted adjacency
matrix, where the link weights are arbitrary non-negative values.

3. Katz centrality: This is a parametric family of measures that generalizes both
degree and eigenvalue centrality by penalizing long paths with an attenuation
factor. For any α ∈ (0,λ−1), we define the forward and backward Katz-centrality
indices by

xα,+
i =

∞

∑
k=1

∑
j

α
k(Mk)i j ; xα,−

i =
∞

∑
k=1

∑
j

α
k(Mk) ji .

We can see that xα,+
i = ∑ j αMi j(x

α,+
j + 1) from which it can be shown that the

eigenvalue centrality x+i is proportional to the limit of xα,+
i as α approaches λ−1

from below.
4. Betweenness centrality: This measure differs from the others in considering only

shortest paths between nodes. For two nodes v 6= v′, we define σvv′ to be the
number of shortest directed paths from v to v′; for any third node w 6= v,v′, σvv′(w)
is the number of shortest directed paths from v to v′ that go through w. Then the
betweenness centrality of node w is defined by the formula

bw = ∑
v,v′ 6=w

σvv′(w)
σvv′

.

3.6.4 Clustering Coefficients

Clustering in social networks refers to the propensity of the friends of our friends to
be our friends. In a general setting it means the likelihood that a connected triple of
nodes forms a triangle. It is usually measured by the clustering coefficient, the ratio
of the number of triangles to connected triples,

C(g) =
3× (number of triangles)

( number of connected triples)
,

where the factor of 3, corresponding to the number of connected triples in a triangle,
ensures that C ∈ [0,1].

In directed networks, an even more basic node of clustering is reflexivity, that
refers to the fraction of the number of node pairs that have a reflexive pair of edges
(i.e. an edge pointing in both directions) to the total number of directed edges. For
triples of nodes, accounting for the direction of edges means there are two different
kinds of triangles in directed graphs, and three different connected triples. One can
use the results of Section 3.5.2 to compute asymptotic values for all these ratios in
the ACG model.



82 3 Random Graph Models

3.6.5 Connectivity and Connected Components

Contagion can only propagate across connected components in a network, and thus
the sizes of connected subgraphs of a network are additional measures of its sus-
ceptibility to large scale contagion. A strongly connected component (SCC) of a
network is a subgraph each of whose nodes are connected to any other node by a
path of downstream edges, and which is maximal in the sense that it is not properly
contained in a larger SCC. For any SCC, one defines its in-component to be the
maximal subgraph of nodes that are downstream connected to the SCC. Similarly,
its out-component is the maximal subgraph of nodes that are upstream-connected to
the SCC. A weakly connected component (WCC) of a network is a maximal sub-
graph each of whose nodes are connected to any other nodes by a path consisting
of undirected edges. A WCC may contain a multitude of side branches that are not
downstream or upstream connected to the SCC: pieces called tendrils and tubes
form subgraphs that are not connected to the SCC but are either upstream connected
to the in-component or downstream connected to the out-component, or both. In
undirected graphs, there is no distinction between strong and weak connectivity,
and thus any WCC is an SCC.

In random graph models, the probability distribution of sizes of connected com-
ponents is a topic of interest. When we consider infinite random graphs, a critical
question is whether there is strongly connected component that is infinite or even a
positive fraction of the entire network. When this happens in a random graph model,
the infinite SCC is typically unique, and we call it the giant strongly connected com-
ponent (GSCC). Its associated giant in- and out-components are called G-IN and G-
OUT, and GWCC denotes the giant weakly connected component. Clearly we have
the inclusions:

GSCC = G-IN∩G-OUT⊂ G-IN∪G-OUT⊂ GWCC

The complement of the GWCC falls into a disjoint collection of finite sized weakly-
connected pieces. Figure 3.2 shows a schematic “bow-tie” rendering of the various
connected components of a typical directed network, in this instance the World Wide
Web as it appeared in 1999.

It has been found that the existence of a giant connected component in a large
network is the single most relevant and important distinguishing characteristic that
determines its susceptibility to domino-like cascades. The next chapter develops
this intuitive observation into a theory called percolation on random graphs, and
explores its relation to cascade modelling.
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Fig. 3.2 The connected components of the World Wide Web in 1999. (Source: [19].)





Chapter 4
Percolation and Cascades

Abstract The right kind of connectivity turns out to be both necessary and sufficient
for large scale cascades to propagate in a network. After outlining percolation theory
on random graphs, we develop an idea known as “bootstrap percolation” that proves
to be the precise concept needed for unravelling and understanding the growth of
simple network cascades. These principles are illustrated by the famous Watts model
of information cascades.

Keywords: Graph connectivity, branching process, bond and site percolation, boot-
strap percolation, vulnerable edge, vulnerable cluster, Watts’ cascade model, with-
out regarding property, local tree-like independence.

Before we consider fundamental questions of cascading shocks on random net-
works, we can answer simpler questions about whether or not the network is highly
connected. Obviously cascades cannot propagate if the network isn’t sufficiently
connected, but what is far from obvious is that the right kind of connectivity is also
a sufficient condition for the possibility of large scale cascading to occur. Fortu-
nately, there is a rich and beautiful theory on the connectivity of networks known as
percolation, and as it will turn out, this idea of percolation actually permeates our
problems of cascades. In the first section of this chapter, we touch on the highlights
of percolation theory on random configuration graphs the theory of which we have
carefully developed in the previous chapter. In this setting, exact formulas can be
obtained, whose proofs, which we will sketch, give detailed insight into the nature
of percolation.

On a given undirected graph G = (N ,E ), we can consider its connected compo-
nents, called “clusters” , and order them in decreasing size from largest to smallest.
If the graph is infinite, then the largest cluster, which we denote by C , has the possi-
bility to itself be infinite, or somewhat more strongly, to consist of a positive fraction
of the whole graph. When this occurs, we say the graph has a giant cluster or gi-
ant component. Percolation theory begins by considering a finite size random graph
model, and aims to show that there will be a large cluster exceeding a certain size
with high probability whenever there exists a giant cluster in the infinite graph limit.

85
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The strongest results on percolation on random graphs apply to the family of
configuration graphs, because when a configuration graph is large enough and the
density of edges is not too great, it has the “locally treelike” property that with high
probability the graph has few short cycles or closed loops. The “locally treelike”
property provides a key to obtaining exact analytical formulas for percolation. Our
intuition about percolation on configuration graphs stems because when we start
from a random node, and consider growing its connected component one neighbour-
hood at a time, the process looks like a growing tree or pure branching process, of
the type known as a Galton-Watson process. The potential for this graph component
to become large is measured by the potential for the associated GW process to be
unbounded. This relation to Galton-Watson processes can be established rigorously
in the asymptotic regime as the number of nodes goes to infinity. Therefore before
considering percolation, we review the essential properties of branching processes.

4.1 Branching Processes

A Galton-Watson process, the simplest class of branching process, describes a pop-
ulation evolving in time, starting with a single individual in the 0th generation. In
the nth (non-overlapping) generation, let there be Zn individuals. Each individual i
of the nth generation, n ≥ 0, is assumed to produce a random number Xn,i of chil-
dren or offspring, each drawn independently from an identical distribution X on the
non-negative integers.

The central question to answer about a GW process is whether the population
will ultimately survive or go extinct. The answer is best expressed in terms of the
generating function of the X distribution:

g(s) := EsX = ∑
k≥0

Pk sk, Pk = P[X = k] .

We also need the generating functions Hn(s) :=EsZn for n≥ 0, and the fundamental
dynamic identity:

Zn =
Zn−1

∑
i=1

Xi,n . (4.1)

Using iterated conditioning, one computes

Hn(s) = EsZn = E

[
E

[
Zn−1

∏
i=1

sXn,i
∣∣∣Zn−1

]]
= E

[
Zn−1

∏
i=1

E
[
sXn,i
∣∣∣Zn−1

]]
(4.2)

= E
[
(g(s))Zn−1

]
= Hn−1(g(s)) (4.3)

where the third equality follows from the mutual conditional independence property
of the two index collection Xn,i. This composition identity, when iterated, leads to
the essential formula:
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Hn = g◦g · · · ◦g︸ ︷︷ ︸
n factors

= g◦Hn−1 . (4.4)

The extinction probability is η := P[ ∃ n : Zn = 0] and for each n, define ηn =
P[Zn = 0] = Hn(0). Since {Zn−1 = 0} ⊂ {Zn = 0}, the sequence ηn is increasing,
and converges to η . Since ηn = Hn(0),

ηn = g(Hn−1(0)) = g(ηn−1) .

Now like any generating function, g satisfies the properties g≥ 0,g′ ≥ 0,g′′ ≥ 0
and has g(1) = 1. It is thus continuous, increasing and convex on [0,1]. Recall also
that g′(1) = EX and g′′(1) = EX(X − 1), one or both of which may be infinite.
Therefore, by continuity,

η = lim
n→∞

ηn = lim
n→∞

g(ηn−1) = g
(

lim
n→∞

ηn−1

)
= g(η) ,

that is, η ∈ [0,1] is a fixed point of g. By the convexity of g, there can be at most
2 fixed points. By induction, one can easily verify that if ψ is any fixed point of g,
then ηn ≤ ψ for all n, and hence η ≤ ψ: Note that η0 = P0 ≤ ψ , and if ηn−1 ≤ ψ

then ηn = g(ηn−1) ≤ g(ψ) = ψ . Thus η is the smallest fixed point of g on [0,1].
This analysis leads to the following conclusions:

Theorem 8. The extinction probability η ∈ [0,1] is the smallest fixed point of g.

1. If EX > 1, then η < 1, which says that with positive probability 1−η the popu-
lation will survive forever.

2. If EX ≤ 1, then apart from a trivial exception, η = 1 and the population becomes
extinct almost surely. The single trivial exception is if EX = 1 and g

′′
(1) = 0,

which implies P[X = 1] = 1 and that the population remains 1 for all time.

Case (1), when survival is possible, is called the supercritical case. The case of
almost sure extinction subdivides: case EX < 1 is called subcritical, and the case
EX = 1 and g

′′
(1)> 0 is called critical.

From our comments about the relation between percolation and GW processes,
it should not be a surprise that in the next section we will find that the possibility of
a giant cluster boils down to conditions similar to those given in this theorem.

4.2 Percolation on Configuration Graphs

The paper of Janson [46] considers percolation on undirected configuration (multi)graphs
for each finite N based on a general degree sequence d = (dv)

N
v=1 with an even

number of stubs ∑v dv = 2E (note that usually we neglect to show explicit N de-
pendence). In what follows, we consider asymptotics of the sequence of degree se-
quences as N → ∞ and use a number of further conventions: w.h.p. means “with
probability tending to 1 as N → ∞”; P−→ means “convergence in probability as
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N → ∞”; the symbols oP and OP are used in the standard way. The finite ran-
dom configuration multigraph model is denoted by G∗(N,d) and G(N,d) denotes
G∗(N,d) under the condition that the multigraph is simple, that is that the multi-
graph is in fact a graph.

Assumption 6. The sequence of undirected multigraphs G∗(N,d) is well-behaved
in the sense that there exists a probability distribution (Pk)k=0,1,... over nonnegative
integers such that:

• The empirical degree density converges in distribution:

N−1
∑
v

1(dv = k) P−→ Pk .

• The mean degree is finite and positive: N−1
∑v ∑k k1(dv = k) P−→ z where z :=

∑
∞
k=1 kPk < ∞.

For undirected random graphs, the independent edge probability distribution is
Qkk′ = (1+δkk′)QkQk′ where Qk =

kPk
z has a nice interpretation as the “size-biased”

distribution of dv: if we select an arbitrary edge `=(v,w), Qk denotes the probability
that either of the nodes attached to ` has k−1 remaining edges. In other words,

Qk = P[kw = k|w ∈Nv] . (4.5)

This fact is relevant to understanding the growth of successive neighbourhoods of
a randomly selected node. The degree of v, or the number of neighbours of v, has
PMF P. However, neglecting the possibility of cycles, we can see that each neigh-
bour of v has k new neighbours with probability P∗k := Qk+1. Therefore, the growth
of neighbourhoods of a random node v, that is the growth of the cluster containing v,
approximately follows a GW process whose zeroth generation has offspring proba-
bility governed by P while for each successive generation, the offspring distribution
is given by P∗.

If we let g(x)=∑k Pkxk be the generating function of P then g∗(x)= g′(x)/z is the
generating function of P∗. Now, from Theorem 8 for GW processes, the extinction
probability ξ ∗ of any node other than the root node is determined by the condition
ξ = g∗(ξ ). If there is a fixed point ξ ∗ < 1 then the GW process is supercritical
and non-extinction occurs with positive probability 1−ξ ∗, otherwise ξ ∗ = 1 is the
unique fixed point and extinction occurs almost surely. The key insight is that the
same condition determines whether the random graph is supercritical or not. The
following is a refinement of the main theorem of [59] due to [47], which asserts
the precise conditions under which the random graph has a giant cluster (i.e. it is
supercritical).

Theorem 9. Consider the random multigraph sequence G∗(N,d) satisfying As-
sumption 6. Let g(x) be its generating function and let C be the largest cluster.
Then the empirical probabilities of a random node or edge being in C are governed
by the following asymptotic properties:
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1. If ∑k k(k−2) Pk > 0, then there is a unique ξ ∈ (0,1) such that g∗(ξ ) = ξ and

P[v ∈ C ]
P−→ 1−g(ξ )> 0 , (4.6)

P[v ∈ C ∩Nk]
P−→ Pk(1−ξ

k), for every k ≥ 0 , (4.7)

P[` ∈ C ]
P−→ (1−ξ

2)> 0 . (4.8)

2. If ∑k k(k−2) Pk ≤ 0, then unless P2 = 1, P[v ∈ C ]
P−→ 0 and P[` ∈ C ]

P−→ 0.

3. In the trivial special case when P2 = 1, then ∑k k(k−2) Pk = 0 and P[v∈C ]
P−→ 1

and P[` ∈ C ]
P−→ 1.

This theorem can be phrased in w.h.p. terms: for example, in part one means that
with high probability each G∗(N,d) has a giant cluster if ∑k k(k− 2) Pk > 0. The
result can be understood in an intuitive way based on the asymptotic locally tree-
like property of large configuration graphs expressed in equation (3.74) that says
the outgoing edges of any node connect to random subgraphs that can be treated as
independent. We next introduce a useful definition that will enable us to interpret ξ

as a probability of a specific event.

Definition 8. Suppose a node property P is local, meaning the condition w ∈P
is determined by certain conditions on nearest neighbours v ∈Nw. Then, for any
directed edge (v,w), we say that w satisfies the local property P without regarding
v, and write “w ∈P WOR v”, if the property is determined by these conditions on
all nearest neighbours v′ ∈Nw excluding v.

This can be illustrated in our problem because connectedness is a local node
property. Thus, for any directed edge (v,w),

{w ∈ C c WOR v}= {(Nw \ v)∩C = /0}

whereas
{w ∈ C c}= {Nw∩C = /0} .

Now we can analyse the probability a = P[v ∈ C c] in terms of WOR probabili-
ties. If v has degree k, then v ∈ C c is a local property equivalent to w ∈ C c WOR v
for each of the k neighbours w ∈Nv. Moreover, by the LT property, these k events
form a mutually independent collection. Thus, if we define

ξ = P[w ∈ C c WOR v|w ∈Nv] (4.9)

then
P[v ∈ C c] = ∑

k
Pkξ

k := g(ξ ) . (4.10)

We can verify that ξ = g∗(ξ ) by very similar logic. If w has degree k and w ∈Nv
then w ∈ C c WOR v is equivalent to w′ ∈ C c WOR w for each of the remaining
k−1 neighbours w′ ∈Nw \ v, and we find
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ξ = ∑
k

ξ
k−1 P[w ∈Nk|w ∈Nv] = ∑

k
ξ

k−1Qk = g∗(ξ ) . (4.11)

Since g∗ is itself the generating function of the P∗ distribution, the discussion lead-
ing to Theorem 8 applies here, and we find the three cases for percolation, super-
critical, critical and subcritical, correspond to the cases g∗

′
(1) > 1, g∗

′
(1) = 1, and

g∗
′
(1)< 1. We also have

P[v ∈ C c,v ∈Nk] = P[v ∈ C c|kv = k]Pk = Pkξ
k

which verifies (4.7). Finally, for ` = (v,w), one can easily see that ` ∈ C c means
both w ∈ C c WOR v and v ∈ C c WOR w. (4.8) follows since these two events are
independent and have probability ξ . We see that the fixed point ξ of the equation
g∗(ξ ) = ξ can be interpreted as a “without regarding” probability.

Janson [46] has proven that a configuration multigraph is simple and hence a
graph with positive probability. It follows that the above multigraph result that holds
with high probability (w.h.p.) also holds w.h.p. for graphs.

4.3 Site Percolation

Site percolation on a random graph amounts to asking about the connected clusters
of subgraphs created by the deletion of random nodes and their edges, and it has
been found that the previous theorem extends beautifully to this more general set-
ting. If we delete nodes v (and their incident edges) of a configuration multigraph
independently with probabilities 1−δk determined by their degree k, it can be shown
that the resultant subgraph is also a configuration multigraph with a new degree dis-
tribution P′. The following theorem due to [45] gives the rigorous statement:

Theorem 10. Consider site percolation with deletion probabilities 1− δk ∈ [0,1],
on the random configuration multigraph sequence G∗(N,d) satisfying Assumption
6. Then the subgraph has a giant cluster C with high probability if and only if

∑
k

k(k−1) δk Pk > z := ∑
k

k Pk . (4.12)

1. If (4.12) holds then there is a unique ξ ∈ (0,1) such that

∑
k

k δk Pk(1−ξ
k−1) = z(1−ξ ) (4.13)

and then
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P[v ∈ C ]
P−→ ∑

k≥1
δk Pk(1−ξ

k)> 0 , (4.14)

P[` ∈ C ]
P−→ 2

z

[
(1−ξ ) ∑

k
k δk Pk−

1
2
(1−ξ )2

∑
k

k Pk

]
. (4.15)

2. If (4.12) does not hold, P[v ∈ C ]
P−→ 0 and P[` ∈ C ]

P−→ 0.

Why is this apparently special result relevant to our problem of financial cas-
cades? The detailed answer will be revealed shortly, but in the meantime, we can
explain that the key to understanding a cascade in a financial network is to focus
on banks (or more generally, edges) that are “vulnerable” in the sense that they de-
fault if only one debtor bank defaults, and to delete all other banks (or edges). The
resultant network of vulnerable banks has a giant in-cluster G− INV if and only if
the analogue of (4.12) for directed graphs holds. In this case, if any bank owing
money to a bank in this giant vulnerable in-cluster were to default, then all of the
giant strongly connected vulnerable cluster GSCCV , and thereafter the giant vul-
nerable out-cluster G−OUTV , must inevitably eventually default. The result will
be a global cascade. The size of the global cascade will clearly be at least as big
as G−OUTV . However, it may be much larger since in general some banks that
are not vulnerable to a single debtor’s default are vulnerable to two or more debtor
defaults. Although such secondary defaults may seem unlikely in a locally-tree-like
network (since they are impossible on a tree), they are likely to happen in a large LTI
network if G−OUTV is itself a large fraction of the network. This fact illustrates
why we use the term “locally tree-like”: Even if there are few short cycles in a large
LTI network, there are many large cycles that connect the network on a large scale,
and allow secondary defaults to occur starting from a single seed default.

To understand this better, we now follow the idea that each bank has a threshold
number of defaulted neighbours that when exceeded implies its own default, which
is reminiscent of a concept that goes by the name of bootstrap percolation.

4.4 Bootstrap Percolation

We have just seen that the theory of site percolation can give an indication of the
conditions under which a global cascade can occur in any regular lattice or random
network. When any node adjacent to the giant vulnerable in-cluster, then the entire
giant strongly connected vulnerable cluster will be triggered. However, the resultant
global cascade may be much larger in extent than this, because of the possibility that
less vulnerable nodes may eventually succumb if they are susceptible when more
than one neighbour is triggered. Bootstrap percolation considers the general prob-
lem of dynamical cascades on random networks where each susceptible (or inactive)
node has a threshold r and will succumb or become activated when the number of its
succumbed (activated) neighbours exceeds r. Furthermore it is assumed that nodes
stay activated once becoming activated.
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In general, given a set of nodes v ∈ N (which may be a graph or a regular
lattice) and a threshold function r : v ∈N → {0,1, . . .}, then bootstrap percolation
is defined by setting A0 = {v ∈N |r(v) = 0} and for t ≥ 1,

At = {v ∈N | r(v) ≤ |Nv∩At−1|} .

One can say that the threshold model percolates if the closure A = ∪t≥0At grows
linearly with N as |N | → ∞.

The name bootstrap percolation was introduced in a paper [22] in a statistical
physics context to denote this type of dynamic percolation theory, and the subject
has had a rich development since then. The recent paper [8] focusses on a version
of bootstrap percolation on the random regular graph, and contains results and ref-
erences that are quite relevant to financial cascades.

Our investigations will now follow a similar type of process as we next con-
sider the simplest cascade model, that is essentially bootstrap percolation on the
undirected Poisson random graph. The Watts Cascade Model introduced in [72] has
been the inspiration for much subsequent work on financial cascades, and provides
a prototype for the analytical techniques we shall develop in the remainder of the
book.

4.5 Watt’s 2002 Model of Global Cascades

This classic paper [72] at the heart of network science considers an undirected ran-
dom graph that models a social network, with nodes representing people linked to
their friends. Each individual is assigned a random threshold and is deemed to adopt
a specific new technology as soon as the number of their adopting friends exceeds
this threshold. The model addresses the question “how can one understand how so-
cial contacts influence people to adopt a new technology, such as an iPhone or An-
droid phone?”. The mathematical analysis of the model focuses on the transmission
of “adoption” shocks over the friendship links of the network that represent how
someone who adopts influences their social contacts to adopt. It determines condi-
tions under which these shocks accumulate and create a large scale adoption cas-
cade, wherein the product eventually gains a large share of the market. This simple
cascade model will serve as a template for studying financial cascades such as the
propagation of defaults and liquidity shocks. Much of the systemic risk modelling
that follows in the remainder of this book will be based on the ideas underlying
this basic construction, and so we provide here a complete description of the basic
Watts’ model.
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4.5.1 The Framework

The framework of the Watts model will serve as a template for more complicated
financial cascade models that will follow. It consists of two layers: the skeleton graph
of individuals linked to their friends, and an assignment of random values to people
that represents the threshold number of friends having adopted the technology that
will trigger that person to adopt. Amongst these nodes are the early adopters or
seed nodes whose thresholds are zero. We don’t need a third layer for exposures
since friendship links are all trivially set to have weights equal to 1. More precisely,

1. The skeleton graph is the random undirected Gilbert graph model G(N, p)
of Section 3.2 with edge probability p and mean degree z = (N − 1)p. Here
N ∈ {1,2, . . .} denotes the finite number of people and we introduce the node-
degree distribution P= (Pk)k=0,1,... with Binomial probabilities Pk = P[v∈Nk] =

Bin(N−1, p,k).1 Recall that Bin(N−1,z/(N−1)) D−→ Pois(z) as N→ ∞.
2. The thresholds are random integer variables ∆̄v ≥ 0 meaning v will adopt when at

least ∆̄v of her friends have adopted. Conditioned on the skeleton, the collection
∆̄v is assumed to be independent, and distributed depending on the degree kv, that
is,

P[∆̄v = x|v ∈Nk] = dk(x), k,x≥ 0

for discrete probability distributions dk(·) parametrized by k. Let the cumulative
probability distributions be given by

Dk(x) := P[∆̄v ≤ x|v ∈Nk] =
x

∑
y=0

dk(y), k,x≥ 0 .

3. For each n = 0,1, . . . , we let Dn denote the set of nodes that have adopted after
n steps of the adoption cascade. These sets are defined inductively by D0 = {v ∈
N : ∆̄v = 0} and

Dn = {v ∈N : ∆̄v ≤ |Nv∩Dn−1|} (4.16)

for n≥ 1. Their conditional probabilities are defined to be

p(n)k := P[v ∈Dn|v ∈Nk] . (4.17)

A randomly selected degree k node will be an early adopter or seed with prob-
ability p(0)k := dk(0). Also, observe that the sequence {Dn}n≥0 is increasing and
converges to D∞, the set of nodes that eventually adopt.

In [72], the benchmark threshold specification was dk(x) = ρ1(x = 0) + (1−
ρ)1(x = d0.18ke) which means early adopters are selected independently with uni-
form probability p(0)k = ρ and the remaining nodes adopt when at least a fraction
φ = 0.18 of their friends have adopted.

1 For any 0≤ k≤ N and p ∈ [0,1], the Binomial probability Bin(N, p,k) =
(N

k

)
pk(1− p)N−k is the

probability of exactly k successes in N independent Bernoulli trials each with success probability
p.
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The main results about the Watts model derive from a property based on the
without regarding concept introduced in Definition 8 in Section 4.2. This property
implies that a source of feedback that can be expected in general cascade models
is not present in the Watts model. Let Dn

v be the indicator function for the node
set Dn, and D̃n

v,w be the indicator for the set of directed edges (v,w) such that v ∈
Dn WOR w. That is, with initial conditions D−1

v = 0, it holds that for n≥ 0:

Dn
v = 1(v ∈Dn) = 1

(
∆̄v ≤ ∑

w′∈Nv

Dn−1
w′

)
(4.18)

D̃n
v,w = 1

(
∆̄v ≤ ∑

w′∈Nv

Dn−1
w′ 1(w′ 6= w)

)
. (4.19)

The next theorem shows that as intuitive as (4.19) seems to be for defining the con-
dition v ∈Dn WOR w, it is in fact natural to replace it by a self-consistent definition
that is not quite equivalent: Let D−1

v,w = 0 and for n≥ 0:

Dn
v,w = 1(v ∈Dn WOR w) = 1

(
∆̄v ≤ ∑

w′∈Nv

Dn−1
w′,v 1(w′ 6= w)

)
. (4.20)

Proposition 4. [The WOR property of the Watts model] Let the Watts model be spec-
ified by (N ,E ,{∆̄v}) and the sequences {Dn

v , D̃
n
v,w,D

n
v,w}n=−1,0,1,... defined by the

recursive equations (4.18), (4.19), (4.20) with the initial conditions D−1
v ,D−1

v,w, D̃
−1
v,w =

0. Then for all n≥ 0 and (v,w) ∈ E

Dn
v = 1

(
∆̄v ≤ ∑

w′∈Nv

Dn−1
w′,v

)
(4.21)

= 1

(
∆̄v ≤ ∑

w′∈Nv

D̃n−1
w′,v

)
. (4.22)

In general, Dn
v,w ≤ D̃n

v,w, with strict inequality only occurring if Dn−1
w = 1.

The last part of the theorem says that adoption shocks Dn
v,w and D̃n

v,w transmitted
to w can only differ when their impact is inconsequential because w has already
adopted.

Proof: To prove (4.21) we introduce additional variables D̃n
v defined recursively for

n≥−1 by D̃−1
v = 0 and

D̃n
v = 1

(
∆̄v ≤ ∑

w′∈Nv

Dn−1
w′,v

)
. (4.23)

We show by induction on n that
D̃n

v = Dn
v (4.24)
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for all n,v. The proof is based on the monotonicity in n of these recursive mappings,
that is Dn−1

v ≤ Dn
v etcetera. First, note that (4.24) is true for n = −1,0. Then note

that by monotonicity D̃n
v ≤ Dn

v for all n,v.
Now assume there is a minimal n≥ 1 and v such that 0 = D̃n

v < Dn
v = 1. Parsing

the defining conditions leads to the implication that ∑w∈Nv Dn−1
w,v < ∑w∈Nv Dn−1

w .
Since n is minimal, this in turn implies Dn−1

w,v < Dn−1
w = D̃n−1

w for some w ∈ Nv.
Thus Dn−2

v,w = 1. This means Dn−2
v ≥ Dn−2

v,w = 1 while D̃n−2
v ≤ D̃n

v = 0. But by the
minimality of n, we must have that Dn−2

v = D̃n−2
v , which is a contradiction. We

conclude the non-existence of a minimal n ≥ 2 and v such that 0 = D̃n
v < Dn

v = 1.
Thus (4.21) follows.

Since Dn
v,w ≤ D̃n

v,w ≤ D̃n
v = Dn

v it must be the case that

Dn
v = D̃n

v = 1

(
∆̄v ≤ ∑

w′∈Nv

Dn−1
w′,v

)

≤ 1

(
∆̄v ≤ ∑

w′∈Nv

D̃n−1
w′,v

)
≤ 1

(
∆̄v ≤ ∑

w′∈Nv

Dn−1
w′

)
= Dn

v

which proves (4.22). Finally, to prove the last part of the theorem, suppose Dn
v,w =

0, D̃n
v,w = 1. In this case D̃n

v = Dn
v ≥ D̃n

v,w = 1 as well. Hence it must be that Dn−1
w,v = 1

and thus Dn−1
w = 1. ut

4.5.2 The Main Result

To state the core result in the Watts model, we reintroduce the conditional without
regarding probability:

p̂(n)k := P[w ∈Dn WOR v|w ∈Nk ∩Nv] (4.25)

and make use of (4.20) and (4.21) to derive a pair of inductive formulas for the
collection of probabilities {p(n)k := P[v ∈Dn|v ∈Nk]} and (p̂(n)k ) for n≥ 1 in terms

of the WOR-probabilities (p̂(n−1)
k ), with the initial conditions p̂(0)k := dk(0). These

two formulas are valid only asymptotically in the limit as the network size N goes to
infinity, while keeping the probability data (Pk,dk(0)) fixed. There are also implied
finite moment conditions on these distributions. We state the result, and then give a
heuristic proof that will provide a guide to further results.

Theorem 11. Consider the Watts model in the limit as N → ∞, with fixed mean
degree z > 0 and with adoption threshold distribution functions dk(·),Dk(·) for k ≥
0. The initial adoption probabilities are p(0)k = p̂(0)k = dk(0). Then:

1. The collections (p(n)k ) and (p̂(n)k ) for n≥ 1 are given by the recursion formulas
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p(n)k = Gk(p̂(n−1)) :=
k

∑
x=0

Dk(x) Bin(k, π̂(n−1),x) (4.26)

p̂(n)k = Ĝk(p̂(n−1)) :=
k−1

∑
x=0

Dk(x) Bin(k−1, π̂(n−1),x) (4.27)

where π̂(n−1) = P[w ∈ Dn−1 WOR v|w ∈ ∩Nv] is the unconditional probability
of w adopting at step n−1 WOR v for any link (w,v).

2. The probability π̂(n) is given by a scalar mapping π̂(n) = G(π̂(n−1)) where

G(π) = ∑
k

k−1

∑
x=0

kPk

z
Dk(x) Bin(k−1,π,x) . (4.28)

The mapping G : [0,1]→ [0,1] is continuous, monotonically increasing and has
G(0) = π̂(0). Therefore the sequence π̂(n) converges to the least fixed point π∗ ∈
[0,1] with π∗ = G(π∗).

Sketch Proof: The proof of the theorem is based on two properties of the model.
The first is the LT property of the skeleton as long as N is sufficiently large, and
the second is the conditional independence of the thresholds ∆̄ , conditioned on the
skeleton. Therefore, adoption shocks coming into a node v are always asymptot-
ically independent as N → ∞, and this collection of shocks is independent of the
threshold ∆̄v.

By the original definition of the set Dn,

p(n)k = P
[
∆̄w ≤ ∑

w′∈Nw

1(w′ ∈Dn−1)|w ∈Nk

]
(4.29)

One might try to argue that conditioned on w ∈Nk, the events {w′ ∈ Dn−1} over
nodes w′ ∈Nw are mutually independent in the limit N→ ∞ because of the locally
tree-like property that becomes exact as N→ ∞, and independent of ∆̄v because of
the further independence assumption. But this is erroneous: because the links are
bi-directional, each {w′ ∈Dn−1} is in fact dependent on {w ∈Dn−2} and hence on
∆̄w. However, by (4.20) each {w′ ∈ Dn−1 WOR w} is conditionally independent of
the state of ∆̄w. Using (4.21), (4.29) can be rewritten

p(n)k = P
[
∆̄w ≤ ∑

w′∈Nw

1(w′ ∈Dn−1 WOR w)|w ∈Nk

]
(4.30)

where the terms in the sum are k independent Bernoulli random variables. Further-
more, because of the independent edge condition, namely Qk′|k = Qk′ , the Bernoulli
probabilities are independent of the value kw, and thus are each π̂(n−1). This leads to
equation (4.26). Similarly, using (4.20) we can compute that for random links (v,w)
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p̂(n)k := P[w ∈Dn WOR v|w ∈Nv∩Nk]

= P
[
∆̄w ≤ ∑

w′∈Nw\v
1(w′ ∈Dn−1 WOR w)|w ∈Nv∩Nk

]
.

where now there are k− 1 independent Bern(π̂(n−1)) random variables in the sum,
leading to (4.27). This verifies part (1) of the theorem.

For part (2), we note that

π̂
(n) = ∑

k
P[w ∈Dn WOR v|w ∈Nv∩Nk] P[kw = k|w ∈Nv] (4.31)

Since P[kw = k|w ∈Nv] = Qk =
kPk
z from (4.5), we see that

π̂
(n) = ∑

k
P[w ∈Dn WOR v|w ∈Nv∩Nk] Qk (4.32)

which leads to (4.32). Finally, the argument why limn→∞ π̂(n) = π∗ is the small-
est fixed point of G is precisely the same as the argument given for the extinction
probability η for percolation in Section 4.2. ut

Reviewing for a moment Section 4.4, we can see that the main theorem of the
Watts model and its proof are a template for what we can expect in variations of
bootstrap percolation dynamics.

4.5.3 The Cascade Condition

In this version of the Watts model, we notice that two initial seed probability dis-
tributions (p(0)k ) giving the same scalar value π̂(0) lead to the same sequence (p(n)k )
for n≥ 1. So we can consider equally weighted schemes where initial seeds are uni-
formly random with p(0)k = π̂(0). Then, essentially, the cascade is the iterated scalar
mapping G that converges to the fixed point π∗, and the probability that a degree k
node eventually defaults is

p(∞)
k = Gk(π

∗)

Let us consider initial seed probabilities p(0)k = π̂(0) = ε and small ε > 0. We
can write Dk(x) = ε +(1− ε)D̃k(x) where D̃k(x) = P[∆̄v ≤ x|v ∈Nk, ∆̄v 6= 0] is the
threshold CDF conditioned on not being an early adopter and consider the fixed
point of G(·;ε, D̃) as a function of ε for fixed D̃. The most important question to
ask is whether the fixed point π∗(ε) is of order ε or of order 1 as ε → 0. In other
words, what is the “cascade condition” that determines if an infinitesimally small
seed fraction will grow to a large-scale cascade? It turns out this depends on the
derivative ∂G(0;ε, D̃)/∂x at ε = 0, which is easy to calculate:
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∂G(0;0, D̃)

∂π
=∑

k

k−1

∑
x=0

kPk

z
D̃k(x)

(
k−1

x

)
[1(x= 1)−(k−1)1(x= 0)]=∑

k

k(k−1) Pk dk(1)
z

(4.33)

Proposition 5. Consider the standard Watts model.

1. If the cascade condition ∂G(0;0, D̃)/∂π > 1 is true, then there is ε̄ > 0 such
that |π∗(ε)| > ε̄ for all ε > 0. That is, under this condition, an initial seed with
a positive fraction of nodes will almost surely trigger a cascade fraction larger
than ε̄ .

2. If ∂G(0;0, D̃)/∂π < 1 then there is ε̄ > 0 and C such that for all 0 < ε < ε̄ ,
|π∗(ε)| ≤ Cε . That is, this network will almost surely not exhibit large scale
cascades for any initial seed with fractional size less than ε̄ .

We can interpret this condition by comparing (4.33) to the main result Proposi-
tion 10 for site percolation. We see that the above cascade condition is identical to
the site percolation condition of (4.12), if we look at the connectivity of the sub-
graph obtained by deleting all sites except those with ∆̄ ≤ 1. This connection to site
percolation becomes even clearer in the next subsection.

4.5.4 The Frequency of Global Cascades

A necessary condition for a single seed node to trigger a very large cascade is that
some of its neighbours are vulnerable in the sense that they are susceptible to adopt
given that only one of their neighbours adopts. If there are few cycles in the graph,
then any potential large scale cascade must first grow through vulnerable nodes, and
only when the cascade is sufficiently developed will less vulnerable nodes begin to
adopt.

Since we consider the model with a single seed, and we are working formally in
an infinite network, we suppose dk(0) = 0 for all k. Then the above picture is for-
malized by considering the set of vulnerable nodes V ⊂N defined by the condition
∆̄v ≤ 1, which as we recall has probability dk(1) if kv = k. We consider whether or
not V has a giant cluster CV . Supposing the cluster CV is giant, then the condition
v∈C c

V means either v /∈ V or v∈ V and all neighbours w∈Nv are not in C without
regarding v. Let ξ = P[w ∈ C c

V WOR v|w ∈Nv]. Then, following the intuitive logic
outlined in Section 4,

P[v ∈ C c
V ] = ∑

k
Pk

[
(1−dk(1))+dk(1)ξ k

]
. (4.34)

Moreover, following the same logic,

ξ := P[w ∈ C c
V WOR v|w ∈Nv] = ∑

k
Qk

[
(1−dk(1))+dk(1)ξ k−1

]
:= f (ξ ) .

(4.35)
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Now the function f maps [0,1] to itself, is increasing and convex, and has f (0)> 0
and f (1) = 1. As illustrated by Figure 4.1, for (4.35) to have a non-trivial fixed point
ξ < 1, it is necessary and sufficient that f ′(1)> 1, that is,

∑
k

k(k−1)Pkdk(1)> z

which we recognize as the cascade condition from the previous subsection. When
∑k k(k− 1)Pkdk(1) ≤ z, the argument can be reversed and one finds that there can
be no giant vulnerable cluster.

0 0.5 1
0

0.5

1

ξ

f(ξ
)

Fig. 4.1 Two possible fixed point configurations are illustrated. The supercritical case is found
for the green curve showing the function f (ξ ) = e−3(ξ−1)/2, which has a non-trivial fixed point
ξ < 1. The blue curve showing f (ξ ) = e−2(ξ−1)/3 has only the trivial fixed point at ξ = 1, and
corresponds to a sub-critical random graph.

For a global cascade to arise from a single seed, it is necessary and sufficient for
the random seed to have at least one neighbour in the giant vulnerable cluster CV ,
which occurs with frequency

f = ∑
k

Pk (1−ξ
k) . (4.36)

In this case, a cascade of at least the size of CV will result. However, since the CV
is a positive fraction of the entire network, a positive fraction of adoptions by less
vulnerable nodes is possible, and therefore the extent of the global cascade may be
substantially larger than CV .

4.6 Numerical Experiments on the Watts Model

We illustrate the Watts Cascade model by reproducing some of the numerics of the
original specification:
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• The skeleton is an undirected G(N, p) (Gilbert) random graph with N = 10000
and edge probability p = z/(N − 1), chosen with the mean node degree z ∈
[0,10]� N so that the graph is sparse.

• The threshold random variables ∆̄v are proportional to the node degree kv, with
an initial seed of adopters chosen uniformly with probability p(0)� 1. That is,
for the default value φ? = 0.18,

∆̄v = φ?kv1(v /∈D0), P[v ∈D0] = p(0)

• Link weights are equal to one: Ω̄wv = 1.

Since N = 10000 is large, and the G(N, p) model is a configuration graph, we
expect Theorem 11 to yield the probability of eventual default p(∞)

k = Gk(π
∗) with

only small finite size error effects. To make a fair comparison between the finite
network computed by Monte Carlo simulation and the infinite network computed
analytically, it is important to understand how to generate the initial seed. In the
infinite network, any positive initial seed probability generates an infinite set of
early adopters. When the density of adopters p(0) is small, each seed generates a
“mini-cascade” far from the others, and a large scale cascade will be generated if at
least one seed succeeds in generating a large cascade. This will happen almost surely
if each single seed has a positive probability of generating a large cascade, that is
when the cascade condition of Theorem 5 is true. Moreover, in this case percolation
theory suggests that the fractional size of the large scale cascade, that is, the expected
default probability, will exceed the fractional size of the giant vulnerable cluster
CV (recall that on undirected networks, the various giant clusters coincide: CV =
G− INV = GSCCV = G−OUTV ). On the other hand, the probability of a “mini-
cascade” growing to a global cascade is zero when there is no giant vulnerable
cluster: This defines the non-cascading region of parameter space, where almost
surely no global cascade will arise. A quantitative verification of these predictions
will follow from the cascade mapping of Theorem 11.

In a Monte Carlo realization of the finite network, we can assert that a single
random adoption seed will grow to a large fraction of the network, i.e. it triggers
a global cascade, only if it lands on or beside a giant vulnerable cluster CV . This
will happen with probability f given by (4.36). On the other hand, taking an in-
termediate seed fraction, say 100/10000, will generate 100 roughly independent
“mini-cascades”, each of which has a probability f of becoming a large scale cas-
cade taking up a significant fraction of the network. Suppose the probability f of
hitting CV is not too small. Then the probability of a large scale cascade will be
about 1− (1− f )100, which will be close to one if f & 0.01.
Experiment 1: We generated Nsim = 50 realizations of the network, each with
50 randomly generated seed nodes and compared the results to the analytic formula
for the eventual adoption probability p(∞) = ∑k Pk p(∞)

k from Theorem 11 with initial
seed probability π(0) = 0.005. Figure 4.2(a) shows the results.

In addition to the close agreement between the Monte Carlo and analytical re-
sults, we observe in this graph the well known “contagion window” for z in the
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approximate range [1,7]. The upper and lower thresholds correspond to the values
of the mean degree for which the connected vulnerable out-component CV becomes
“giant”, that is a finite fraction of the whole network. The contagion window deter-
mined by the analytical formula becomes exact as π(0)→ 0. The transition near the
upper threshold shown in the Monte Carlo result corresponds to the region where
the default frequency f � 0.01 and thus in most realizations none of the initial seeds
hits CV . CV is small in this parameter region because only links pointing to nodes
with degree 5 or less are vulnerable.
Experiment 2: To make the correct comparison between the cascade frequency
f computed analytically by (4.36), and the Monte Carlo simulations, we should
generate only a single seed in our Monte Carlo simulations, and count the number
of simulations that lead to a cascade that can be considered “large” or “global”. In
a 10000 node network, we consider that a cascade of more than 50 adoptions is a
global cascade. Figure 4.2(b) shows the frequency at which single seeds trigger a
global cascade of at least 50 nodes in the finite network, and the infinite network
frequency given by (4.36).
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Fig. 4.2 These two graphs show (a) the mean fractional cascade size, and (b), the fractional ex-
tended vulnerable cluster size, in the benchmark Watts model with φ? = 0.18, as a function of
mean degree z, as computed using the large N analytics of Theorem 11 (blue curve) and by Monte
Carlo simulation (red crosses). In Figure (a), the Monte Carlo computation involved Nsim = 50
realizations of the N = 10000 node graph, each with an initial seed generated by selecting nodes
independently with probability 0.5%. In Figure (b), the simulation involved Nsim = 2500 realiza-
tions of the N = 10000 node graph and a single random initial seed node.

Taken together, the two figures 4.2 verify the vulnerable percolation picture that
global cascades can arise whenever CV is a significant fraction of the entire network
(say any positive fraction if N = ∞, or 0.5% if N = 10000). When this happens, a
single isolated seed that happens to have at least one neighbour in CV will trigger all
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of CV and more, a possibility that happens with probability f given by the frequency
formula (4.36).

4.7 Extensions of the Watts Model

The basic construction and main results of the previous section has been worked
out in many different guises. We outline here some of the main lines that have been
developed.

1. General degree distributions: The Poisson random graph model fails to cap-
ture most of the structural features observed in real world social networks. In
particular, it has a thin tailed degree distribution that is incompatible with the
type of fat-tails and power laws observed in real world networks. It turns out to
be completely straightforward to analyze the Watts model on general configura-
tion graphs, obtaining the same result as given by Theorem 11, for an arbitrary
degree distribution Pk.

2. Mixtures of directed and undirected edges: In [12], percolation results are
proved in random networks with both directed and undirected edges and arbitrary
two-point correlations. Analysis of the Watts model in this network seems to be
a straightforward next step.

3. Assortative graphs: In Section 3.2, we observed that the usual configura-
tion structure can be generalized to allow for general assortativity, that is, non-
independent edge-type distributions Qk j. This generalization is important be-
cause observed financial networks are typically disassortative, and this fact is
expected to strongly influence a network’s resilience to default. It was demon-
strated in [43] that for the Gai-Kapadia 2010 default cascade model on assorta-
tive directed configuration graphs, similar arguments lead to a characterization
of the limiting default probabilities in terms of the fixed points of a vector valued
cascade mapping G : RZ+ → RZ+ .

4. Random edge weights: The Watts model allows only equal link weights,
whereas in reality, we might expect the strength of friendship links to be stochas-
tic. We might also expect that the statistical properties of friendship strength
will be intimately related to the degree of connectivity of social contacts, i.e to
the edge-type. As first shown in [44], even capturing the adoption cascade with
purely deterministic dependence between link-strength and edge-degree in the
Watts model turns out to require an analysis of random link weights. In this more
general setting, that paper finds that limiting adoption probabilities are charac-
terized in terms of the fixed points of another vector-valued cascade mapping
G : RZ+ → RZ+ .

In the next chapter, we will explore such extensions, not in the Watts model but in
the context of systemic risk, by studying variations of the Gai-Kapadia default cas-
cade model. First however, we pay a bit more attention to the mathematical structure
at its core that leads to such elegant large graph asymptotic results.
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4.8 Dependence in Random Financial Networks

A random financial network, as defined in Section 2.6, consists of a skeleton graph,
decorated by additional random structures, namely balance sheets for each node and
exposures for each directed link. Up to this point however, we haven’t really consid-
ered how these high-dimensional collections of random variables might be provided
with multivariate distributions that reflect financial reality about the nature of banks
and their balance sheets, as well as the often high uncertainty in our observations
and knowledge of the system at an arbitrary moment in time. Let us consider what
reasonable constraints should be made on the possible dependence relating different
balance sheet entries and exposures.

The first reasonable hypothesis is that banks control their balance sheets while
subject to constraints imposed by the financial regulator. Important constraints are
usually expressed in the form of capital ratios, such as the minimum core tier one
capital or “capital adequacy ratio” (CAR), the liquidity coverage ratio (LCR) and
net stable funding ratio (NSFR). However, banks are monitored only intermittently
by the regulators, and therefore constraints are not strictly binding. Banks have non-
negligible probabilities of being non-compliant at a random moment in time. Indeed,
a financial crisis, almost by definition, typically occurs at a moment when one or
more banks have been hit by shocks that have made them non-compliant.

A second reasonable hypothesis is that individual banks control their balance
sheets independently of any knowledge of the precise balance sheets of other banks
in the system. Similarly, interbank exposure sizes are the result of a bargaining game
between two counterparties whose outcome depends only on their connectivity and
balance sheets. Notice the intrinsic conceptual difficulty in imagining the results of
the myriad of overlapping games being played within the network: to move for-
ward will require overarching assumptions that capture some salient features of the
observed interbank exposure sizes. Furthermore, each interbank link leads to some
dependence between the interbank components of balance sheets of counterparty
banks, through the consistency relations (2.34).

Pushing harder, we might make a third hypothesis that banks’ balance sheets
(or at least some components) can depend on the “type” of the bank, but when
conditioned on the type of bank, can be treated as independent of other banks. In
the simplest RFN settings where we equate bank type to node-degree, imagining that
bank size (measured by total assets) is strongly correlated with bank connectivity,
implies that balance sheet dependency arises only through the skeleton graph.

As a final consideration, we recognize that real financial network data is often
highly aggregated across counterparties and the problem is to specify bank specific
random variables consistent with these observations. Treating such aggregated mea-
surements as constraints leads to system-wide dependences amongst banks’ balance
sheets that are impractical to model. Instead, we will usually adopt the strategy to
enforce such aggregate observations in expectation, providing linear constraints on
the means of the more basic (and independent) bank-specific random variables. This
type of inconsistency is reduced by the law of large numbers effect that usually as-
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sures that such aggregated random variables become equal to their means in the
large network limit.

We are about to commit to making a conceptual leap that will tame balance sheet
and exposure dependence by tying it directly to the dependence built into the skele-
ton. Before doing so, one should imagine the alternative in a large, partly measured
financial network. Such an object is extremely complex. Even the marginal distri-
butions of essential quantities necessarily have high uncertainty. Specifying depen-
dence in such a setting is orders of complexity beyond specifying marginals. It is
the difference between specifying univariate functions and specifying functions on
a space approaching infinite dimension. Our aim in this book is to be reasonable:
we will make a strong assumption about dependence that allows both Monte Carlo
and analytical experiments to run side by side, and will then use these computa-
tional tools to explore the consequences of this assumption. We do not claim that
our dependence assumptions rest on fundamental economic principles.

We consider a RFN adapted to a given cascade mechanism, parametrized by the
quadruple (N ,E , ∆̄ ,Ω̄). The key to taming dependence is to allow the skeleton
(N ,E ) to determine the overall dependence in the network. Conceptually, we first
draw a random skeleton, finite or infinite. Then, conditioned on the realization of
the skeleton, we draw remaining random variables independently. Moreover, the
dependence of these random variables on the skeleton will be local. That is, the
marginal distributions of node variables (buffers) depend only on the type of the
node itself and not on its neighbourhood. Similarly, the marginal distribution of
each edge variable (exposure) depends only on the type of the edge.

It is helpful to express this definition in terms of general probability theory as
developed for example in Chapters One and Two in Volume Two of the popular
book on stochastic calculus by Shreve [67]. We express the probability framework
in terms of the triple (Ω ′,F ,P), where Ω ′ is the sample space, P is the probability
measure, and F is the information set, or sigma-algebra. F can be reduced to a
union of sub-sigma-algebras

F = G ∨F∆ ∨FΩ .

where: G denotes the information contained in the skeleton N ,E ; F∆ denotes
the information of the collection of buffers ∆̄v; FΩ denotes the information of the
collection of exposures Ω̄`. Then the dependence of ∆̄v only on the type of the node
v can be expressed in terms of expectations conditioned on knowing all information
apart from the information of ∆̄v itself (which is measured by the sigma algebra
σ(∆̄v) it generates): it holds that for any bounded Borel function f and a randomly
selected node v ∈N , there is a bounded Borel function g : Z2

+→ R such that

E[ f (∆̄v)|F \σ(∆̄v)] = g( jv,kv) .

This implies in particular that the conditional CDF of ∆̄v is a function that depends
only on its degree: for all x≥ 0, there are Borel functions D jk such that

E[∆̄v ≤ x|F \σ(∆̄v),v ∈N jk] = D jk(x) . (4.37)
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In exactly the same way, for exposures it holds that there are Borel functions Wk j
such that

E[Ω̄` ≤ x|F \σ(Ω̄`), ` ∈ Ek j] =Wk j(x) . (4.38)

While the dynamics of cascades is determined by the specification of the reduced
RFN, questions of interpretation, and in particular, the impact of the cascade on the
financial system and the larger economy require also specifying the remaining bal-
ance sheet random variables. Of course, the interbank assets and liabilities Zv,Xv
are determined endogenously by the exposures Ω̄ , and the buffer variables ∆̄ typ-
ically amount to additional linear constraints on external balance sheet entries. In
absence of more detailed information than this, it makes sense to model all remain-
ing random variables as linear combinations of a minimal collection of additional
independent random variables.

Finally, we should reassure ourselves that the proposal to build RFNs this way is
common in the literature on random financial networks. For example, Nier et al in
[62], start with a random directed Poisson graph with 25 nodes, and conditioned on
the model for the skeleton, followed by specifying random variables for buffers and
exposures that depend on node and edge types, but are otherwise independent.

4.8.1 The LTI Property

In the subsequent sections of the book, our analysis will focus on random skeletons
of configuration type, which in the large N limit have the locally tree-like property.
In the configuration graph setting, our dependence hypothesis becomes the follow-
ing definition.

Definition 9. A random financial network (RFN) (N ,E , ∆̄ ,Ω̄) is said to have the
locally tree-like independence (LTI) property when it satisfies the following condi-
tions:

1. The skeleton graph is an infinite (directed, indirected or mixed) configuration
graph (N ,E ), with arbitrary node and edge type distributions {P,Q}. In this
general setting, each node v is assigned its type τv, that is jk or k in the case
of directed and undirected graphs and more general for mixed graphs. Similarly,
each edge ` is assigned its type τ`, which may be k j or kk′ or more general. Here,
the indices j,k,k′ run over the collection of possible integer degrees.

2. Conditioned on the realization of the skeleton graph (N ,E ), the buffer random
variables ∆̄v, v ∈N and exposure random variables Ω̄`, ` ∈ E form a mutually
independent collection. Moreover, the buffer distribution of ∆̄v depends only on
the type τv of v and the exposure distribution of Ω̄` depends only on the type τ`

of `.
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4.8.2 Ramifications of the LTI Property

As we shall see in the remainder of this book, the LTI property is designed to en-
able a cascade analysis in complex RFNs that follows the computational template
laid out in our simple version of the Watts cascade model. This works essentially
because under LTI, the shocks transmitted through different edges entering a node
never have a chance to become dependent. The mathematical advantages that stem
from LTI will become clear as we proceed to other models. To reiterate a second
point, an essentially arbitrary dependence structure over the balance sheet random
variables ∆̄v,Ω̄` is dramatically reduced under LTI to the dependence encoded into
the skeleton graph. Thus LTI reins in the amount of information needed to com-
pletely specify an RFN model. If one feels a given dependence structure induced by
the skeleton is overly restrictive, yet wish to retain the LTI property, one can explore
the further option to add complexity to the RFN at the skeleton level, for example,
by extending the concept of node and edge types.

The question to ask of our proposed conceptual framework is thus pragmatic:
why or when can we hope that computations based on the LTI assumption will have
some predictive power when transferred to a real world network model where the
assumption is apparently far from true. Pushing further, is it possible to weaken the
LTI assumption, and to extend its exact consequences to a broader setting? Some
measure of optimism that LTI computations are predictive even when the skeleton
graph has high clustering or is otherwise far from locally-treelike can be gained by
extensive investigations of the question in the random network literature. For ex-
ample, [55] make a strong case for the “unreasonable effectiveness” of tree-based
theory for networks with clustering, and give some guidelines to predict the circum-
stances under which tree-based theory can provide useful approximations.



Chapter 5
Zero Recovery Default Cascades

Abstract This chapter realizes the central aim of the book, which is to understand
a simple class of cascades on financial networks as a generalization of percolation
theory. The main theorems assume random financial networks with locally tree-
like independence and characterize zero-recovery default cascade equilibria as fixed
points of certain cascade mappings. The proofs of the main results follow a new and
distinctive template presented here for the first time, that has the important virtue
that its logic extends to LTI financial networks of arbitrary complexity. Numerical
computations, both large network analytics and finite Monte Carlo simulations, ver-
ify that essential characteristics such as cascade extent and cascade frequency can
be derived from the properties of the cascade fixed points.

Keywords: Directed configuration graph, random buffers, random edge weights,
cascade mapping theorem, numerical implementation.

In Chapter 3 we have understood something about possible models for the skele-
ton of a financial network, and in Chapter 4 we showed how two concepts, bootstrap
percolation and site percolation, reveal the nature of the cascades observed in the
Watts model. It is time to return our attention to financial networks and to investi-
gate how well the various systemic cascade mechanisms described in Chapter 2 can
be adapted to the setting of random financial networks, using the Watts model as a
template. For clarity in this chapter, we confine the discussion to simple default cas-
cades, under the condition of zero recovery as assumed by [38]: banks recover none
of their assets loaned to a defaulted bank. Of course, the common mathematical fea-
tures of the different financial cascade mechanisms identified earlier in Chapter 2
mean the narrow formulation presented in this chapter will extend to a rich diversity
of cascade phenomena.

At a theoretical level, perhaps the most important new contribution of this chapter
is the proof of Theorem 12 which provides the explicit large N asymptotic limit of
the cascade mapping for the extended GK default cascade model. This proof is
different in spirit, detail and scope from the well-known proof given in a similar
setting by Amini, Cont and Minca [5].

107
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We begin again with a network of N banks whose schematic balance sheets, as
shown in Table 2.1, consist of the collection of book values (Ȳ, Z̄, D̄, X̄,Ω̄) with
interbank exposures Ω̄` = Ω̄wv (which we recall denotes the amount w owes v) that
are consistent with the interbank assets and liabilities

Z̄v = ∑
w

Ω̄wv, X̄v = ∑
w

Ω̄vw .

The initial capital buffer of bank v is defined by ∆̄v = Ȳv + Z̄v− D̄v− X̄v. At the
onset of our schematic financial crisis, certain banks are found to be initially insol-
vent, defined by the condition ∆̄v ≤ 0. By the law of limited liability, insolvency
is assumed to trigger immediate default. Under an assumption about the loss given
default, losses will be transmitted to both external creditors, and, importantly for
systemic risk, to creditor banks. This implies the possibility of a default cascade
crisis.

We may suppose that counterparty relations, i.e. links, are expensive to maintain,
and so in a large network, the matrix of counterparties is sparse. These relationships
are also changing in time, and not easily observable, and can therefore considered to
be random: the skeleton graph is a large, sparse, directed random graph (N ,E ). The
balance sheets likewise change rapidly, are not well observed, and can be thought
of as random variables. Under such conditions, we have argued that it is appropriate
to adopt the notion of random financial network (RFN) with the locally tree-like
independent (LTI) assumption of Section 4.8.1 as the underlying dependence hy-
pothesis.

In the present chapter we focus our attention on the simplest of default mecha-
nisms, namely the zero recovery mechanism of Gai and Kapadia [38], governed by
the cascade equation (2.12) we derived in Chapter 2 :

∆
(n)
v = ∆̄v−∑

w
Ω̄wv(1− h̃(∆ (n−1)

w )) = ∆̄v−∑
w

Ω̄wv1(∆ (n−1)
w ≤ 0)) (5.1)

with initial values ∆
(0)
v = ∆̄v. As we observed earlier, these equations, and there-

fore the entire cascade dynamics, depend only on the skeleton graph (N ,E ) and
the reduced balance sheet variables ∆̄ ,Ω̄ . Our central aim is to apply this cascade
mechanism to a RFN that satisfies the LTI hypothesis, and to determine the large
scale properties of the behaviour that results.

5.1 The Gai-Kapadia Model

The specification of the Gai-Kapadia model we first present generalizes the default
cascade introduced by [38] in several respects, but retains a restrictive condition
on exposures Ω̄ that will be removed later in the chapter. It also satisfies the LTI
property of Section 4.8.1.
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Assumption 7. 1. As in the description of the model in Section 2.3, banks have
limited liability and receive a zero recovery1 of interbank liabilities from any
defaulted debtor bank.

2. The skeleton graph is a directed assortative configuration random graph with
consistent probability matrices (Pjk,Qk j) that satisfy Assumption 5 with mean
degree z.

3. Conditionally on the skeleton, banks’ capital buffers ∆̄v are a collection of inde-
pendent non-negative random variables whose cumulative probability distribu-
tions depend on the node type ( jv,kv) and are given by

P[∆̄v ≤ x|v ∈N jk] := D jk(x), x≥ 0 . (5.2)

4. Interbank exposures Ω̄wv are deterministic constants that are equal across the
debtors w ∈ N −

v of each bank v, and depend on the degree type ( jv,kv) of v.
This implies Ω̄wv = Ω̄ jk when v ∈ N jk where Ω̄ jk = Z̄ jk/ j for a collection of
interbank asset parameters Z̄ jk

2 .
5. The remaining balance sheet quantities are freely specified.

Apart from the restrictive condition on exposures Ω̄ , this seems to be a natural
setting for the model. The GK cascade mechanism has a symmetry that allows the
rescaling of every bank and its exposures, while leaving the sequence of defaults
unchanged. As one checks easily, if λv,v∈N is any collection of positive numbers,
specifications ∆̄v,Ω̄wv and λv∆̄v,λvΩ̄wv lead to identical cascades. Therefore, our
restriction on exposures is equivalent to saying that they can simultaneously be set
to 1 under this symmetry, by taking λv = λ jk = j/Z̄ jk for each v∈N jk. For example,
taking λ jk = 5 j changes the benchmark exposures chosen by Gai and Kapadia in
their paper to constant exposures Ω̄ = 1.

5.1.1 Shocks and the Solvency Condition

Like the early adopters that initiate Watts’ adoption cascades, our schematic finan-
cial crises are triggered by a set D0 of initially defaulted banks. Perhaps they default
as the result of a collective shock to the system, leaving the remaining banks with
depleted capital buffers. Or perhaps, one bank defaults for idiosyncratic reasons. All
such cases can be modelled by supposing these initially defaulted banks have ∆̄v = 0
while the remaining banks have positive buffers. The set of initially defaulted banks
D0 = {v : ∆̄v = 0} thus has conditional probability

p(0)jk := P[v ∈D0|v ∈N jk] = D jk(0) . (5.3)

1 It is a trivial matter to extend the model slightly to allow for a constant fractional recovery with
R < 1.
2 Temporarily, we allow Ω̄wv to depend only on the node type of v rather than the edge type of wv.
In the next section we will revert to the usual convention.
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If we define D−1
v = 0 for all v, then the indicator functions for the set Dn of

defaulted banks at step n≥ 0 are defined recursively by the formula

Dn
v := 1(v ∈Dn) = 1

(
∆̄v ≤ ∑

w′∈Nv

Ω̄w′vDn−1
w′

)
. (5.4)

Note that the directed graph condition means that Ω̄w′v 6= 0 only if w′ ∈N −
v , which

implies the sum in (5.4) is actually over N −
v .

We now present a formal derivation of a recursive formula for the conditional
default probabilities p(n)jk := P[v ∈ Dn|v ∈N jk] after n ≥ 0 cascade steps. Consider
first (5.4) for bank v at the n = 1 step, conditioned on the locally tree-like skele-
ton (N ,E ). By the LTI property, when v ∈ N jk, the debtor nodes wi ∈ N −

v , i ∈
{1, . . . , j} := [ j] are distinct and {∆̄v,D0

wi
} are independent random variables. There-

fore,

P[v ∈D1|N ,E ,v ∈N jk] = P

[
∆̄v ≤ Ω̄ jk · ∑

i∈[ j]
D0

wi

∣∣∣N ,E ,v ∈N jk

]
(5.5)

=
j

∑
m=0

P
[
∆̄v ≤ Ω̄ jkm

∣∣∣v ∈N jk

]
P

[
∑

i∈[ j]
D0

wi
= m

∣∣∣N ,E ,v ∈N jk

]

where we sum over all possible values m for the number of defaulted neighbours.
Knowing the skeleton determines the node types ( ji,ki) of each wi, and so summing
over σ , denoting the possible size m subsets of the index set [ j], leads to

P

[
∑

i∈[ j]
D0

wi
= m

∣∣∣N ,E ,v ∈N jk

]

= ∑
σ⊂[ j],|σ |=m

(
∏
i∈σ

p(0)jiki

) (
∏
i/∈σ

(1− p(0)jiki
)

)
. (5.6)

Now, to take the expectation over the skeleton (N ,E ) we refer back to the details
of the assortative configuration graph construction of Section 3.5.1, in particular
Theorem 5, which we apply to the tree graph g which consists of v joined to its
debtor nodes wi, i ∈ [ j]. Using a conditional version of (3.67) for this tree graph
leads to the asymptotic large N formula

E

[(
∏
i∈σ

p(0)jiki

) (
∏
i/∈σ

(1− p(0)jiki
)

)∣∣∣v ∈N jk

]

= ∑
j1,k1

· · · ∑
j j ,k j

∏
i∈σ

p(0)jiki ∏
i/∈σ

(1− p(0)jiki
) ∏

i∈[ j]

(
kiPjikiQki j

zQ+
ki

Q−j

)
.

By introducing
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π̃
(0)
j := ∑

j′,k′
p(0)j′k′

(
k′Pj′k′Qk′ j

zQ+
k′Q
−
j

)
= ∑

j′,k′
p(0)j′k′Pj′|k′Qk′| j

where Pj′|k′ := Pj′k′/P+
k′ and Qk′| j = Qk′ j/Q−j , this expectation can be written

(π̃
(0)
j )m (1− π̃

(0)
j ) j−m . (5.7)

Finally, we put (5.6), (5.6), (5.7) together with the cumulative distribution function
for ∆̄v to obtain the formula for the n = 1 conditional default probability:

p(1)jk = P[v ∈D1|v ∈N jk] =
j

∑
m=0

D jk(mΩ̄ jk) Bin( j, π̃(0)
jk ,m) (5.8)

where Ω̄ jk = Z̄ jk/ j, Bin(·, ·, ·) denotes a binomial probability just as in (4.28), and

π̃
(0)
jk = P[w ∈D0|w ∈N −

v ,v ∈N jk] = ∑
j′,k′

p(0)j′k′Pj′|k′Qk′| j . (5.9)

Note that π̃
(0)
jk = π̃

(0)
j is independent of k.

The extension of this argument to all n≥ 1 rests on the special relation between
the GK mechanism and the LTI dependence structure of the model. We observe
that conditioned on (N ,E ), the event v ∈ D1 depends on ∆̄v, ∆̄wi , i ∈ [ jv] where
the wi ∈N −

v are nodes “up-stream” from v. We see that this upstream dependence
extends to all n when (N ,E ) is a tree graph, and will be asymptotically true as
N → ∞ on configuration graphs. Thus, under the LTI assumption, by induction on
n, the event v ∈ Dn depends on the events wi ∈ Dn−1 for wi ∈N −

v , i ∈ [ jv] which
are conditionally independent and have identical default probabilities

π̃
(n−1)
j := P[w ∈Dn−1|w ∈N −

v , v ∈N jk] (5.10)

that do not depend on k. For reasons that will become clear in the next section, it is
natural to reexpress (5.10) in terms of a further collection of conditional probabili-
ties:

π̃
(n−1)
j = ∑

k′
π
(n−1)
k′ Qk′| j (5.11)

π
(n−1)
k′ := P[w ∈Dn−1|kw = k′] = ∑

j′
p(n−1)

j′k′ Pj′|k′ . (5.12)

Moreover, the conditional default probabilities p(n)jk = P[v ∈ Dn|v ∈ N jk] will be
given by a formula just like (5.8). This completes the formal justification for cascade
mapping formulas for the basic GK model:



112 5 Zero Recovery Default Cascades

Proposition 6. [Gai-Kapadia Cascade] Consider the LTI sequence of GK finan-
cial networks (N,P,Q, ∆̄ ,Ω̄) satisfying Assumption 7. Let p(0)jk = D jk(0) and π

(0)
k′ =

P[w ∈D0|kw = k′]. Then the following formulas hold in the limit as N→ ∞:

1. π̃
(0)
j = P[w ∈D0|w ∈N −

v , v ∈N jk] = ∑k′ π
(0)
k′ Qk′| j, which is independent of k.

2. For any n= 1,2, . . . , the quantities π̃
(n−1)
j , p(n)jk ,π

(n)
k satisfy the recursive formulas

π̃
(n−1)
j = ∑

k′
π
(n−1)
k Qk′| j , (5.13)

p(n)jk =
j

∑
m=0

D jk(mΩ̄ jk) Bin( j, π̃(n−1)
j ,m) , (5.14)

π
(n)
k = ∑

j′
p(n)j′k Pj′|k (5.15)

3. The new probabilities π(n) = (π
(n)
k ) are a vector valued function G(π(n−1)) which

is explicit in terms of the specification (N,P,Q, ∆̄ ,Ω̄).
4. The cascade mapping G maps [0,1]Z+ onto itself, and is monotonic, i.e. G(a)≤

G(b) whenever a≤ b, under the partial ordering relation defined by a≤ b if and
only if ak ≤ bk for all k. Since π(0) = G(0), the sequence π(n) converges to the
least fixed point π∗ ∈ [0,1]Z+ , that is

π
∗ = G(π∗) . (5.16)

Remark 6. When the skeleton is non-assortative, meaning Qk′| j =Q+
k′ is independent

of j, then each π̃
(n)
j = π̃(n) is independent of j. Under this condition, the cascade

mapping can be reduced to a scalar function G̃ : π̃ ∈ [0,1]→ [0,1] and our theorem
is subsumed in the scalar cascade mapping of Theorem 3.6 in [5].

As compelling as Proposition 6 is, its power is weakened by the restrictive as-
sumption on the form of the interbank exposures. Let us therefore repair this defi-
ciency in the next section, before exploring the broader implications of our cascade
mapping theorem.

5.2 The GK Model with Random Link Weights

The primary motivation for allowing the link weights to become random variables
is to correct the asymmetry in the way interbank exposures are specified in the pre-
vious section. According to Assumption 7.4, “interbank exposures are deterministic
constants that are equal across the debtors of each bank”, which means essentially
that the creditor bank is choosing to lend equally to its counterparties. One can easily
argue the opposite case that the debtor bank might be the counterparty that chooses
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to borrow equally. And that the reality is likely closer to a compromise, wherein
exposure sizes depend on attributes of both the borrower and the lender.

A look at the argument leading to Proposition 6 will convince one that if the
exposures Ω̄` for ` ∈ E −v depend deterministically on k` rather than j`, then they
will be effectively random variables when conditioned on the degree j` = jv. And
the main Proposition 6 cannot handle this fact. As we will now find, dealing with the
simple variation where the Ω̄` depend deterministically on k` rather than j` is just as
difficult as to deal with the more general case where the exposures Ω̄` are arbitrary
random variables depending on both k`, j`. It is in this more general specification
that we find what is arguably the most natural setting for LTI default models with
zero recovery.

Thus, in this section we analyze the final version of the model assumptions,
namely Assumption 7 with 7.4 replaced by 8.4

Assumption 8. 4. Each interbank exposure Ω̄` depends randomly on its edge type
(k`, j`). Conditionally on the skeleton, they form a collection of independent non-
negative random variables, independent as well from the default buffers ∆̄v. Their
cumulative distribution functions (CDFs) and probability distribution functions
(PDFs) are given for x≥ 0 and any k, j by

Wk j(x) = P[Ω̄` ≤ x|` ∈ Ek j],

wk j(x) = dWk j(x)/dx . (5.17)

Note that these generalized assumptions, particularly the assumed independence
are still consistent with the basic LTI structure identified in Section 4.8. But now
that exposures Ω̄` are random variables, we must reconsider the previous analysis
of the default cascade.

First we reconsider (5.5) which now takes the form

P[v ∈D1|N ,E ,v ∈N jk] = P

[
∆̄v ≤ ∑

i∈[ j]
Ω̄`iD

0
wi

∣∣∣N ,E ,v ∈N jk

]

where `i = (wiv) for each i. Now, under this condition, Ω̄`i ,D
0
wi
, i∈ [ j] is a collection

of independent random variables, and we can calculate that

P[Ω̄`iD
0
wi
≤ x|N ,E , `i ∈ E −v ,v ∈N jk] = W̃ (0)

j (x)

is independent of k and given by

W̃ (0)
j (x) = ∑

k′
Qk′| j

(
(1−π

(0)
k′ )1(x≥ 0)+π

(0)
k′ Wk′ j(x)

)
. (5.18)

As before, π
(0)
k′ = ∑ j′ p

(0)
j′k′ Pj′|k′ . By the LTI property, this conditional independence

of edge weights Ω̄`i and indicators Dn−1
wi

continues for higher n, and we find that
(5.18) extends to
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W̃ (n−1)
j (x) = ∑

k′
Qk′| j

(
(1−π

(n−1)
k′ )1(x≥ 0)+π

(n−1)
k′ Wk′ j(x)

)
(5.19)

for all n ≥ 1. For this, we need to make the inductive verification using the LTI
property that for n ≥ 0 the collection of defaulted node events wi ∈ Dn−1 is mu-
tually independent, and independent of all buffer and exposure random variables
downstream to wi. Then it follows that, conditioned on (N ,E ) and v ∈ N jk, the
collection of random variables 1(wi ∈Dn−1),Ω̄`i and ∆̄v are mutually independent.

Bringing these pieces together, we find that for v ∈N jk, the conditional default
event v ∈Dn = {∆̄v ≤ ∑i∈[ j] Ω̄`iD

n−1
wi
} has the form

X ≤ Z, Z :=
j

∑
i=1

Yi

where X ,Y1, . . . ,Yj are independent non-negative random variables. Moreover, their
CDFs are FX (x) = D jk(x) and FY (x) = W̃ n−1

j (x) with Yi ∼Y , respectively. The prob-
ability in question is thus

P[X ≤ Z] =
∫

∞

0

∫
∞

0
1(x≤ z) fX (x) fZ(z)dxdz =

∫
R

FX (z) fZ(z)dz = 〈FX , fZ〉 (5.20)

where 〈 f ,g〉 :=
∫
R f̄ (x)g(x)dx is the usual (Hermitian) inner product over R. To

determine the PDF fZ(z) = F ′Z(z) of Z, let us stop for a moment to review the con-
volution of probability density functions. The sum of independent random variables
Z = ∑

j
i=1 Yi with known PDFs fi(x) has a PDF fZ(x) given by convolution:

fZ(x) = [ f1 ~ f2 ~ · · ·~ f j](x)

where the convolution product of functions is defined by

[ f ~g](x) =
∫
R

f (x− y)g(y)dy (5.21)

In the present context, this means fZ is a convolution power, fZ = ( fY )~ j with

fY (x) = w̃(n−1)
j (x) =

dW̃ (n−1)
j (x)

dx
= ∑

k′
Qk′| j

(
(1−π

(n−1)
k′ )δ0(x)+π

(n−1)
k′ wk′ j(x)

)
.

(5.22)
Note that here we need to represent the point masses at Yi = 0 and other potential
point masses using delta functions δa(x).

We can now put together what is perhaps the main result of this book, which is
the generalization of Proposition 6 to account for random link weights. Given its
importance to the overall theory of financial cascades, we will also provide in the
subsequent section a rigorous justification for the formal N = ∞ arguments we have
been contented with until now.
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Theorem 12. [Gai-Kapadia Cascade, RLW version] Consider the LTI sequence of
GK financial networks (N,P,Q, ∆̄ ,Ω̄) satisfying Assumption 8 with random link
weights. Let p(0)jk = D jk(0) and π

(0)
k = P[w ∈ D0|kw = k] be initial default proba-

bilities. Then the following formulas hold as N→ ∞:

1. For any n = 1,2, . . . , the quantities p(n)jk ,π
(n)
k satisfy the recursive formulas

p(n)jk = 〈D jk,(w̃
(n−1)
j )~ j〉 , (5.23)

π
(n)
k = ∑

j′
p(n)j′k Pj′|k (5.24)

where the PDFs w̃(n−1)
j (x) are given by (5.22).

2. The new probabilities π(n) are a vector valued function G(π(n−1)) which is ex-
plicit in terms of the specification (N,P,Q, ∆̄ ,Ω̄).

3. The cascade mapping G maps [0,1]Z+ onto itself, and is monotonic. Since π(0) =
G(0), the sequence π(n) converges to the least fixed point π∗ ∈ [0,1]Z+ , that is

π
∗ = G(π∗) . (5.25)

Now that we have a final form of our main Theorem for the GK model, without
unnatural and unnecessary restrictions, we can proceed to draw some interesting
conclusions.

Remark 7. 1. We observe that the main conclusion of Proposition 6, namely the
existence of a vector-valued monotonic cascade mapping G : [0,1]Z+ → [0,1]Z+

remains true with general random link weights.
2. The vector-valued fixed point equation seems to be the natural feature of this type

of model. In order to get a scalar fixed point condition such as the one obtained
in [5], we need to assume both non-assortatitivity, i.e. Qk j = Q+

k Q−j , and that the
probability distributions of Ω̄wv depend on the degree type of v but not w.

3. The numerical computation of this cascade mapping now makes intensive use
of equation 5.23, which involves repeated high-dimensional integrations. Fortu-
nately, as we shall see, we can make use of Fourier Transform methods to make
this type of computation extremely efficient.

5.3 Proof of Theorem 12

The aim is now to fill the gap in the heuristic proof, based on exact LTI proper-
ties that hold only formally for N = ∞, that leads to the statement of Theorem 12.
Amini, Cont and Minca, in [5], have proved a similar theorem in a somewhat nar-
rower setting by a beautiful and lengthy argument that extends random graph meth-
ods developed by [59] and many others. However, it seems difficult to extend their
method and ideas to more general settings. The method we now present provides an
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alternative approach with a completely different logic that is applicable to a broad
range of LTI model specifications. To keep the argument as transparent as possible,
we focus on computing the probability of events v ∈Dn: By extension however, the
same argument applies to more refined events such as v ∈Dn∩Nk j.

The aim is to show

lim
N→∞

1
N
EN

[
∑

v∈N
1(v ∈Dn)

]
= p(n) := ∑

jk
p(n)jk Pjk (5.26)

where p(n)jk is given by (5.23). The strategy is as follows. First, regularize the infinite
sums occurring in the problem by cutting all edge weights on high degree edges,
effectively truncating the node and edge degrees to be less than a finite K. Second,
compute EN,K [1(v ∈ Dn)|N ,E ], which is an expectation of a function of the col-
lection of independent random variables (∆̄ ,Ω̄ K) conditional on the skeleton N ,E .
Thirdly, compute the expectation over skeletons N ,E as a sum over configurations
of the type analyzed in detail in Section 3.5.2. The limit N→∞ can then be taken for
fixed K, leading to a truncated version of (5.26). Finally, the limit K→ ∞ exists by
monotonicity, and inspection reveals that the limit satisfies the recursive properties
consistent with the statement of the theorem.

For each K < ∞, the degree truncation cuts off all edges that have a k or j degree
greater than K:

Ω
K
` = Ω`1(k` ≤ K, j` ≤ K) . (5.27)

Note that for each K, the truncated model simply modifies the edge weight distribu-
tions so it satisfies the hypotheses of the Theorem and possesses the requisite N = ∞

properties. For any positive integers n,K,N, the regularized default probabilities at
cascade step n are defined to be

p(n,K,N) := EN,K

[
1
N ∑

v∈N
1(v ∈Dn)

]
. (5.28)

Now consider one term EN,K [1(v∈Dn)|(N ,E )] conditional on a fixed (P,Q) skele-
ton graph (N ,E ) of size |N |=N. By the local nature of the cascade dynamics, the
event 1(v ∈ Dn) clearly depends only on the random variables (∆̄ ,Ω̄) restricted to
the n-th order in-neighbourhood g := N n,−

v : this is a collection of conditionally in-
dependent random variables whose distributions are determined by the degree types
of the nodes of g. Such a connected subgraph g, labelled by degrees, is an exam-
ple of a configuration that was the object of study in Section 3.5.2. Performing the
conditional expectation then leads to an N-independent quantity X(g,n,K) that is a
functional only of the labels on g and n,K.

Next, the unconditional expectation will be

EN,K [1(v ∈Dn)] = EN,K

[
1
N ∑

v∈N
1(v ∈Dn)

]
= ∑

g
P(g,K,N)X(g,n,K) (5.29)



5.3 Proof of Theorem 12 117

where the sum is over all possible n-th order in-neighbourhoods g, labelled by
degrees, and P(g,K,N) denotes the probability of this labelled g. For K,n fi-
nite, this is a finite sum since degree truncation renders finite both the sum over
possible topologies of g as well as the sums over possible degrees. Finally, As-
sumption 8 includes the relevant conditions on the collection (Pjk,Qk j) so that
Theorem 5 controls the limit N → ∞ of P(g,K,N) for n,K fixed. It implies that
limN→∞ P(g,K,N) = P(g,K,∞) is finite if g is a tree and zero if g has any cycles at
all. Therefore,

lim
N→∞

p(n,K,N) = ∑
g tree

P(g,K,∞)X(n,g,K) := p(n,K,∞) (5.30)

where the sum is restricted to tree graphs g, labelled by their bounded degrees.
It is trivial to verify two assertions about the collection of N = ∞ probabilities

p(n,K,∞): they are jointly monotonically increasing in both K and n and they are
bounded by 1. Therefore p(n,∞,∞) = limK→∞ p(n,K,∞) exists and is a monotone se-
quence in n. Next recall the consequence of Theorem 5 that configuration probabil-
ities for tree graphs with N = ∞ encode the locally tree-like (LT) property that is at
the core of formal verification of the recursive cascade dynamics. This implies that
the collection of probabilities p(n,K,∞), when combined with the collection of more
refined probabilities p(n,K,∞)

jk that can be analyzed in the same way, is a realization of
a system of quantities that are functionally related by the recursion relations speci-
fied by our Theorem. To reiterate, because the conditions of the theorem apply to the
cascade model with truncated edge weights Ω̄ K , all terms in the finite sum over trees
in (5.30) have the LT property that provides the formal justification of the recursive
cascade mapping (5.23),(5.24).

From these observations, one concludes that the Theorem is true for the set of
probabilities p(n,K,∞) for K finite. By boundedness and monotonicity, it is also true
of the limiting collection p(n,∞,∞). ut

Remark 8. 1. The structure of this proof is indeed not sensitive to the specific nature
of the cascade dynamics and random financial network, but is highly dependent
on the LTI property. Therefore, we have confidence that large N asymptotics will
continue to hold for a wide range of more complex network models as long as
they have a generalized LTI property. Note also that this strategy clearly works
to yield rigorous proofs for the Watts model of Section 4.5.2 and the basic GK
model.

2. Under the conditions on the collection (Pjk,Qk j), these results can be extended
to show convergence of the empirical probability of default: by the use of the
Markov Inequality, one can show that with high probability

lim
N→∞

1
N ∑

v∈N
1(v ∈Dn) = p(n) . (5.31)
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5.4 Measures of Cascade Impact

In cascade modelling, it is always important to have a number of economic measures
of the impact of such hypothetical crises. In this section, we explore some simple
statistical measures that can be computed analytically using the cascade mapping
theorem. The first global measure of cascade impact is of course the unconditional
probability of eventual default, computed by

p∗ := P[v ∈D∞] = ∑
jk

Pjk p(∞)
jk . (5.32)

Also of interest are two variants of default probability that condition on a bank being
either a debtor or creditor of another bank. That is, if w ∈N −

v ,

p∗− = P[w ∈D∞|w ∈N −
v ] = ∑

jk
Pj|k Q+

k p(∞)
jk (5.33)

p∗+ = P[v ∈D∞|w ∈N −
v ] = ∑

jk
Pk| j Q−j p(∞)

jk . (5.34)

Recall from Section 2.3 that the zero-recovery assumption implies there is a large
cost to the system at the time any bank defaults, and we are certainly interested in
computing measures of this impact. The first measure was defined by (2.13):

Cascade impact: CI = N−1
∑
v

X̄v 1(v ∈D∞) .

The expected cascade impact per bank can easily be computed in terms of the
fixed point π∗ and the eventual default probabilities p∗ = F(π∗):

E[CI] = ∑
jk

PjkE

 ∑
`∈E+

v

Ω̄` 1(v ∈D∞)
∣∣∣v ∈N jk

 .

In an LTI model, the collection Ω̄`, ` ∈ E +
v and 1(v ∈D∞) is mutually independent

conditioned on v ∈N jk , and for large N we have the asymptotic formula

E[CI] = ∑
jk

kPjk p(∞)
jk ∑

j′
Q j′|kEΩ̄k j′ (5.35)

where EΩ̄k j := E[Ω̄`|` ∈ Ek j] =
∫
R+ x dWk j(x).

By comparing cascade impact to the average buffer size E[∆̄v] =∑ jk Pjk
∫
R+ x dD jk(x)

we also get a measure of the average eventual buffer size:

E[∆ (∞)
v ] = N−1E

∑
v

∆̄v− ∑
w∈N −

v

Ω̄wv1(w ∈D∞)

= E[∆̄v−CI] . (5.36)
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A slightly different measure of the cascade impact is the average shortfall of
banks’ buffers compared to the default shocks impacting them:

Average Shortfall: AS = N−1
∑
v

 ∑
w∈N −

v

Ω̄wv1(w ∈D∞)− ∆̄v

+

.

The expected average shortfall also has a nice formula which we can compute using
a formula related to (5.20): for two independent random variables X ,Z,

E[(Z−X)+] =
∫
R2
(z−x)+ fX (x) fZ(z) dxdz=

∫
R

F̃X (z) fZ(z) dz= 〈F̃X , fZ〉 (5.37)

where F̃X (z) =
∫ z
−∞

(z− x) fX (x)dx is the integrated CDF of X . Thus we find the
expected average shortfall is

EAS = ∑
jk

Pjk 〈D̃ jk,(w̃
(∞)
j )~ j〉 (5.38)

where D̃′jk(x) = D jk(x) and w̃(∞)
j is the limit of (5.22) .

Default Correlation: We are also interested in default correlation and more refined
measures of joint default such as CoVaR introduced by [3]. The most basic network
measure of dependence is the joint probability of eventual default for counterparty
pairs (w,v):

p(∞)
joint := P[w ∈D∞,v ∈D∞|w ∈N −

v ] .

Equivalently, one can compute the default probabilities of a bank conditioned on
default of one of its counterparties:

P[v ∈D∞|w ∈D∞,w ∈N −
v ] =

p(∞)
joint

p∗−
, P[w ∈D∞|v ∈D∞,w ∈N −

v ] =
p(∞)

joint

p∗+
(5.39)

where the denominators are the two natural conditional marginal default probabil-
ities from (5.33),(5.34). The easiest way to compute such quantities is first to dis-
aggregate the joint probability of nondefault over the types of w and v. We then
have

P[w /∈D∞,v /∈D∞|w ∈N −
v ∩N j′k′ , v ∈N jk]

= P

∆w ≤ ∑
w′∈N −

w

Ωw′wD∞

w′ ,∆v ≤ ∑
w′∈N −

v

Ωw′vD∞

w′1(w
′ 6= w)

∣∣∣w ∈N −
v ∩N j′k′ , v ∈N jk


=
(

1−〈D j′k′ ,(w̃
(∞)
j′ )~ j′〉

)(
1−〈D jk,(w̃

(∞)
j )~ j−1〉

)
.

Note that the convolution power in the second factor is reduced by 1 since it is
known that one counterparty of v has definitely not defaulted. Therefore, the uncon-
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ditional joint probability of non-default is

P[w /∈D∞,v /∈D∞|v ∈N +
w ]

= ∑
j′k′, jk

Pj′|k′Qk′ jPk| j

(
1−〈D j′k′ ,(w̃

(∞)
j′ )~ j′〉

)(
1−〈D jk,(w̃

(∞)
j ) j−1〉

)
= ∑

jk
Pk| j (1− π̃

∗
j )
(

1−〈D jk,(w̃
(∞)
j )~ j−1〉

)
where π̃∗j = ∑k′ π

∗
k′Qk′ j. Since the marginal probabilities of default are p∗− and p∗+

one can see that

p(∞)
joint = P[w /∈D∞,v /∈D∞|v ∈N +

w ]+ p∗−+ p∗+−1 . (5.40)

5.5 The Cascade Condition

Just as in Section 4.5.3 we derived a cascade condition that characterizes the growth
of small cascades in the Watts model, we now consider the possibilities for cascades
on the Gai-Kapadia RFN that start with small initial default probabilities. That is,
we let D jk(0) = p(0)jk := ε jk ≥ 0 and suppose these are uniformly bounded by a small
positive number ε̄ > 0:

|ε| := max
jk
|ε jk| ≤ ε̄ .

Then the default buffer CDF (5.41) becomes

D jk(x) = ε jk +(1− ε jk)D̃ jk(x), x≥ 0 (5.41)

with D̃ interpreted as the CDF of ∆̄v conditioned on v not initially defaulted.
As we have remarked already, a very low density of initially defaulted banks

means they are likely to be far apart in the network and the only probable way for a
large cascade to develop is that there should be a positive probability for any single
bank to trigger an increasing sequence of defaults, without regard to other initially
defaulted banks. In Section 4.5.3 we found for the Watts model that this statement
can be related to the existence of a giant connected “vulnerable” cluster.

We again write G(π) = G(π;ε) to highlight the dependence on the parameters ε

and suppress the dependence on D̃. Now the sequence π(n) starting from the initial
values π(0) = G(0;ε) must converge to the least fixed point π∗(ε). The question
now is: is π∗(ε) of order ε or of order 1 as ε→ 0? In other words, is there a cascade
condition that determines if an infinitesimally small initial “seed” fraction will grow
to a large-scale cascade? In view of the vector valued nature of our present problem,
it turns out that the answer depends on the spectral radius of the derivative matrix
∇G with ∇Gk,k′ = ∂Gk/∂πk′ evaluated at π = 0;ε = 0. Recall that the spectral
radius of ∇G, defined by ||∇G|| := maxa:|a|=1 |∇G · a|, is the largest eigenvalue of
∇G in absolute value.
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In our framework, the derivative ∇G is easy to calculate:

∇Gk,k′ = ∑
j

j
(
〈D̃ jk,wk′ j〉− D̃ jk(0)

)
Qk′| j Pj|k . (5.42)

Note each component of ∇G is non-negative: To enable an elementary proof of the
following result, we assume each component is strictly positive and the degrees are
bounded.

Proposition 7. (Cascade Condition) Suppose the extended GK financial network
(N = ∞,P,Q, ∆̄ ,Ω̄) is such that ∇G defined by (5.42) is a component-wise positive
finite dimensional matrix.

1. If ||∇G||> 1 , then there is ε̄ > 0 such that for all ε with 0 < |ε|< ε̄ , |π∗(ε)|> ε̄ .
That is, in this network, any uniform seed with a positive fraction will trigger a
cascade with default fraction bigger than ε̄ almost surely.

2. If ||∇G|| < 1, then there is ε̄ > 0 and C such that for all ε with 0 < |ε| < ε̄ ,
|π∗(ε)| ≤ Cε . That is, this network will almost surely not exhibit large scale
cascades for any infinitesimal seed.

Proof: Part 1: We write ∇G = M0 where Mε = ∂G/∂π|π=0,ε . By continuous de-
pendence in ε , there are values ε̄1 > 0 and λ > 1 such that the matrix Mε is positive
and has spectral radius ||Mε || ≥ λ for all ε with 0≤ ε jk < ε̄1. Let us fix any such ε .

By the Perron-Frobenius Theorem for positive matrices, there is a unique nor-
malized eigenvector v such that Mε · v = |Mε |v: it has all positive entries and nor-
malization |v|= 1. Taylor’s Theorem with a second order remainder implies that for
ε̄1 small enough there is C′ > 0 such that

G(a;ε) = G(0;ε)+Mε ·a+R(a), |R(a)| ≤C′|a|2

for all a ∈ [0,1]Z+ with |a| ≤ ε̄1 (note we drop the · notation in the following).
Now we show that the sequence a(1) = G(0;ε),a(n+1) = G(a(n);ε) leaves the set

|a| ≤ ε̄ provided ε̄ is chosen small enough (independently of ε). For this, since ε̄1 >
0 there is β1 > 0 and a non-negative vector y1 such that a(1) = β1v+ y1. Assuming
inductively that a(n) = βnv+yn for some βn > 0 and a non-negative vector yn and that
|a(n)| ≤ ε̄1, the monotonic property of G combined with Taylor’s Theorem implies

a(n+1) = G(a(n);ε)≥ G(βnv;ε)

= G(0;ε)+βnMε · v+R(βnv)

≥ β1v+ y1 +
1
2
(1+λ )βnv+

(
1
2
(λ −1)βnv+R(βnv)

)
Let βn+1 = β1 +

1
2 (1+λ )βn and note that yn+1 = a(n+1)−βn+1v≥ 0 provided ε̄ ≤

min(ε̄1,
1

2C′ (λ −1)min j v j). Since the sequence βn increases without bound, we can
iterate the inductive argument only a finite number of steps before |a(n+1)|> ε̄ .

Part 2: By continuous dependence in both a and ε , there are now values ε̄ > 0 and
λ = 1

2 (1+ ||∇G||) < 1 such that the matrix Ma;ε = ∂G/∂a|a;ε has spectral radius
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||Ma;ε || ≤ λ for all 0 ≤ ε < ε̄ and |a| ≤ ε̄ . Fix any such ε . Now we note that for
vectors a,b with |a|, |b| ≤ ε̄ we can use Taylor’s Theorem again to write

G(a;ε)−G(b;ε) = Mε · (a−b)+R(a,b)

where the remainder has bound C′′|a−b|2 for some C′′ > 0. Then provided
|a(n+1)|, |a(n)| ≤ ε̄ and ε̄ ≤ 1−||∇G||

4C′′

|a(n+1)−a(n)| = |G(a(n);ε)−G(a(n−1);ε)|

≤ 1
2
(λ +1)|a(n)−a(n−1)|+

(
1
2
(λ −1)|a(n)−a(n−1)|+ |R(a(n),a(n−1))|

)
≤ 1

2
(λ +1)|a(n)−a(n−1)|

for all n≥ 1. Since |G(0;ε)| ≤C′ε for some C′ > 0, we can iterate this inequality to
show |a(∞)| ≤Cε with C = 4C′

1−||∇G|| . ut

We can understand the cascade condition more clearly by introducing the notion
of vulnerable edge which means a directed edge `= (wv) whose weight Ω̄` exceeds
the default buffer of its downstream node v = N +

` . For the following argument,
we suppose the network has only solvent banks, i.e. D jk(0) = 0 for all j,k. An
edge `= (wv) is thus vulnerable if and only if ∆̄v ≤ Ω̄`. The matrix element ∇Gkk′

has a simple explanation that gives more intuition about the nature of the cascade
condition: it is the expected number of vulnerable edges ` with k` = k′ that enter a
node v with kv = k. Then for small values of π , one has a linear approximation for
the change in π in a single cascade step:

π
m+1
k −π

m
k = ∑

k′
Gk,k′ (π

m
k′ −π

m−1
k′ )+O(|π|2) . (5.43)

The condition for a global cascade starting from an infinitesimal seed is that the
matrix ∇G must have an expanding direction, i.e. an eigenvalue with magnitude
bigger than 1.

It turns out that the cascade condition is indeed a strong measure of systemic
risk in simulated networks. One can check that in the setting of independent edge
probabilities Qk j =Q+

k Q−j and deterministic edge weights Ω̄wv = Ω̄ jk when v∈N jk,
the spectral radius becomes

||∇G||= ∑
jk

jk
z

PjkP[∆̄ j′k ≤ Ω̄ j′k] ,

a result that has been derived in a rather different fashion in [38] and [5]. [38] also
extends the [72] percolation theory approach from undirected networks to the case
of directed nonassortative networks and we will see in the next section that the
percolation approach to the cascade condition also extends to our general setting of
directed assortative networks with random edge weights.
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5.5.1 Frequency and Size of Global Cascades

We learned in Section 4.5.3 that the possibility of a large scale cascade in the Watts
model depends on the connectivity of the directed subnetwork of vulnerable edges
and nodes, a problem related to “site percolation”. The previous section addressed
the potential for a small seed to grow into a global GK cascade, and now we wish
to understand how the frequency of global cascades in large random networks is
related to the so-called extended in-component associated to the giant vulnerable
cluster. In the present context, a vulnerable cluster has the meaning of a connected
subgraph of the network consisting of vulnerable directed edges, where a vulnerable
directed edge is an edge whose weight is sufficient to exceed the default buffer of
its downstream node. We define:

• EV ⊂ E , the set of vulnerable directed edges;
• Es, the largest strongly connected set of vulnerable edges (the giant vulnerable

cluster of EV );
• Ei and Eo, the in-component and out-component of the giant vulnerable cluster,

i.e. the set of vulnerable edges that are connected to or from Es by a directed path
of vulnerable edges;

• 1−bk := P[` ∈ Ei|k` = k], a conditional probability of an edge being in Ei;
• ak, jk′ = P[∆̄v ≤ Ω̄wv|` ∈ E −v ,k` = k,v ∈N jk′ ], the conditional probability of an

edge being vulnerable.

Now note that ` = (w,v) ∈ E c
i (i.e. the complement of Ei) means either ∆̄v > Ω̄wv

or ∆̄v ≤ Ω̄wv and all the kv “downstream” directed edges `′ ∈ E +
v are in the set E c

i .
Thus, invoking the LTI, one determines that for all k ∈ Z+

bk = ∑
j

Q j|k ∑
k′

Pk′| j

(
1−ak, jk′ +ak, jk′b

k′
k′

)
:= Hk(b) (5.44)

where ak, jk′ = 〈D̃ jk′ ,wk j〉. In other words, the vector b= (bk) satisfies the fixed point
equation b = H(b) where

Hk(b) = ∑
jk′

Q j|k Pk′| j

(
1−〈D̃ jk′ ,wk j〉+ 〈D̃ jk′ ,wk j〉bk′

k′

)
, k ∈ Z+ . (5.45)

The equation b = H(b) has a trivial fixed point e = (1,1, . . .). In case e =
(1,1, . . .) is a stable fixed point, we expect that the set Ei will have probability zero.
We now verify that the cascade condition ||∇G||> 1 of Proposition 7 is equivalent to
the condition that e is an unstable fixed point, in which case there will be a nontrivial
fixed point 0 ≤ b∞ < e that corresponds to the set Ei having positive probability. A
sufficient condition for e to be an unstable fixed point is that ||∇H|| > 1 where the
derivative ∇Hkk′ = (∂Hk/∂bk′)|b=e is given by

∇Hkk′ = ∑
j

k′Q j|kPk′| j〈D̃ jk′ ,wk j〉 . (5.46)
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One can verify directly that

∇H = Λ
−1 · (∇G)′ ·Λ

for the diagonal matrix Λkk′ = δkk′kQ+
k and from this it follows that the spectrum,

and hence the spectral radii and spectral norms, of ∇H and ∇G are equal. Hence
||∇H||> 1 if and only if ||∇G||> 1.

As long as the cascade condition ||∇H|| > 1 is satisfied, a global cascade will
arise from a random single seed v if it triggers at least one edge (v,v′) ∈ Ei. The
cascade frequency f is at least as large as the probability that this occurs, and is
therefore bounded from below:

f ≥∑
k
(1−bk

k)P
+
k . (5.47)

Given that the single seed triggers an edge in the giant in-cluster Ei, how large
will the resultant global cascade be? Well, certainly, the cascade will grow to the
strongly-connected giant cluster Es, and continue to include all of the extended out-
component Eo of the giant cluster. From this point, higher order defaults become
likely, so the cascade may grow much further. But, without restriction, we can say
that when the cascade condition holds, whenever the giant vulnerable cluster is trig-
gered, the resultant cascade will include all of Eo. To compute the fractional size of
this set, it is convenient to introduce the conditional probability

ck = P[v /∈ Eo|kv = k] (5.48)

where the event v /∈ Eo is defined to mean that it has no in-edges ` that are in Eo. For
this calculation, we recognize that the event `= (w,v) /∈ Eo means either w /∈ E0 or
w ∈ E0 and Ω̄wv < ∆̄v. The events `= (w,v) /∈ Eo for all w ∈N −

v are mutually inde-
pendent only when conditioned on the state of v and ∆̄v, and conditioning carefully
leads to the fixed point equation for the vector of probabilities c = (ck):

ck = ∑
j

Pj|k

∫
dD̃ jk(x)

[
∑
k′

Qk′| j
(
Wk′ j(x)+(1−Wk′ j(x))ck′

)] j
. (5.49)

Again, the cascade condition ||∇G||> 1 is sufficient for the trivial fixed point c = e
to be unstable, meaning the size of the vulnerable out-component Eo is a positive
fraction of the network, computable by the formula

P[v ∈ Eo] = 1−∑
jk

Pjk

∫
dD̃ jk(x)

[
∑
k′

Qk′| j
(
Wk′ j(x)+(1−Wk′ j(x))ck′

)] j
(5.50)

This is a lower bound on the size of the default cascade that results when the initial
seed triggers a global cascade. It is interesting that the form of the expectation in
(5.49) involves the point-wise power of the W distribution rather the convolution
power that appears in (5.23).



5.6 Testing and Using the Cascade Mapping 125

5.6 Testing and Using the Cascade Mapping

The cascade mapping framework, both mathematical and conceptual, was developed
for a larger purpose, namely to help understand the nature of real cascades in real
world networks. So, how well does it work after all this effort?

While we have considered in this chapter only the simplest cascade mecha-
nism, namely the zero-recovery default cascade of Gai-Kapadia, we have placed
this mechanism on RFNs that have a rich complexity. Determining what our cascade
mapping has to say about actual cascades is still a question of experimental compu-
tation. Since we have made a number of uncontrolled approximations, the analytical
method should be validated by comparing with the results of Monte Carlo simula-
tion experiments under a broad range of model specifications. Before continuing, it
is helpful to consider the types of questions we wish to address.

Robustness of the formalism: The LTI formalism on RFNs, and the resultant cas-
cade mapping results, rest on bold assumptions that somehow need to be checked.
First, we can gain from the experience of others who have studied the Locally Tree-
like ansatz for a great number of models on random networks. As a general rule,
when benchmarked against Monte Carlo simulation experiments, the analytical for-
mulas have been found to work effectively under a broad range of conditions. This
is hard, slow work that must continue to push back the modelling frontiers as new
models are introduced.

The framework developed in this chapter extends the original Gai-Kapadia paper
in many respects. We have extended the skeleton construction to allow configuration
graphs with general node and edge degree distributions. We have allowed buffers
and exposures to be random with arbitrary marginal distributions. We have new
formulas for the cascade condition and the economic impact of the cascade. The
corresponding Monte Carlo validation experiments have not yet been completed,
and will take considerably more time and effort.

Usefulness of the formalism: While a systematic Monte Carlo survey to validate
the LTI analytic framework is pending, that will hopefully build confidence in the
reliability of the framework, it is worthwhile to press forward using the analytical
framework as a freestanding tool. Without the need for Monte Carlo, there are many
purely analytical experiments on simple networks that are easy and instructive to im-
plement on a computer. The scope of our default cascade formalism now includes
flexibility in new dimensions never before explored. The skeletons are now assorta-
tive. Our balance sheets and exposures are now stochastic, and their variances are
key parameters that represent our uncertainty in the network. These new features
have unknown implications on the cascades that can result in simple models.

Learning about real cascades: As network data for financial systems grows and
becomes available, network models will grow in complexity to incorporate new,
more realistic features. Moreover, the problem of calibrating network models to
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data will become increasingly challenging. Our framework has been designed to
scale up in complexity to adapt to such needs.

Economic and financial implications: Analytic models can provide insight into
purely economic problems. One important example is capital adequacy: Regulators
want to know how a fixed amount of regulatory capital can be spread optimally
across different banks to reduce systemic risk. The answer to such a question can be
used to decide how much excess capital should be held by systemically important
financial institutions (SIFIs). The behaviour of bankers is complex: they use evolv-
ing strategies and game theory continuously in time to navigate their firm through
tortuous waters. Analytic models can used by policy makers, regulators and market
participants to test such strategies under stressful scenarios.

5.7 Default Cascades with Asymmetric Shocks

It turns out that the Watts model of Chapter 4 can be unified with the Gai-Kapadia
zero recovery mechanism of the present chapter to give an economically natural
default cascade model on a undirected network with bivariate link exposures that
represent the unnetted positive exposures between counterparties.

The links in the Gai-Kapadia model are directed, and represent an idealized
debtor-creditor relationship that is usually described in terms of unsecured over-
night lending. The reality of banking is that counterparty relations are arbitrarily
complex, and certainly cannot be boiled down to a single value at a moment in time.
Counterparty banks will likely have overnight lending relations, will likely share a
portfolio of interest rate and FX swap exposures, will owe each other certificates
of deposit and the like, will trade repos, and so on. Determining the value of such
exposures at any moment is exceedingly complicated: banks exert major efforts to
compute their exposures to other banks at all times, following regulatory guidelines
on counterparty credit risk. If at some moment one bank were to default, these ex-
posures will often have opposite signs, and it is the positive part of the unnetted
exposure that will impact the counterparty. To reduce counterparty risk, banks enter
into master netting agreements (MNAs) with all of their important counterparties.
This standardized agreement aims to specify exactly how the positive and negative
exposures in the portfolio of different contracts between them can be offset in the
event one bank defaults. An ideal fully netted position would leave only a single
exposure in one direction at any time. It follows that the pervasiveness of MNAs
in the interbank network provides a partial justification for taking edges to point in
only one direction and for neglecting reflexive edges (those with links of both direc-
tions), as we have done in the Gai-Kapadia model. However, despite the existence
of MNAs, allowing counterparty exposures to be unnetted or partially netted, and
therefore bi-directional, is clearly a very natural modeling generalization.

In this section, we introduce a default cascade model that combines features of
the Watts and Gai-Kapadia models while allowing edges to take on a more nuanced
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meaning. It views the financial system as a network of banks connected by undi-
rected edges, with edges are placed where there are deemed to be strong counter-
party relations. For example, these edges should certainly include all pairs of banks
that share a master netting agreement. It is known that building and maintaining
counterparty relations is expensive for banks, particularly when the relationship is
governed by the MNA. Thus it is reasonable to expect the network to be sparse, and
that the existence of edges may be slowly varying while the exposures they carry
might change quickly.

Given an edge ` = (w,v) between two banks v and w, the exposure Ω̄` carried
by the edge will now be assumed to be multi-dimensional to represent the aggre-
gated exposures across different types of securities. In the simplest variant we now
consider, the multidimensional vector Ω̄` can be reduced to a pair of non-negative
exposures (Ω̄w,v,Ω̄v,w). We interpret Ω̄w,v as the loss to v given the default of w.
The model is then akin to the Watts model, but with asymmetric shocks that may
be transmitted in either direction across edges. If min(Ω̄w,v,Ω̄v,w) = 0 (i.e. only one
direction is ever non-zero), this new setting reduces to a slightly non-standard spec-
ification of the Gai-Kapadia model.

With an aim to develop large N asymptotics, we now provide an LTI-compatible
RFN specification for this model:

Assumption 9. 1. Banks have limited liability and receive zero recovery of inter-
bank liabilities from any defaulted bank.

2. The skeleton consists of a random graph (N ,E ) on N banks which is an undi-
rected assortative configuration model with node and edge type distributions
(Pk,Qkk′) with mean degree z = ∑k k Pk and satisfying the consistency condi-
tions:

Qkk′ = Qk′k, ∑
k≤k′

Qkk′ = 1

Qk := kPk/z =
1
2 ∑

k′ 6=k
Qk′k +Qkk

Qk′|k := (1+δkk′)
Qkk′

2Qk
. (5.51)

3. Conditionally on the skeleton, the default buffers ∆̄v are a collection of inde-
pendent non-negative random variables whose distributions depend only on the
degree kv:

P[∆̄v ≤ x|v ∈Nk] := Dk(x), k,x≥ 0

for cumulative probability distributions Dk(·) parametrized by k.
4. For each undirected link `= (w,v) ∈ E , the exposure is a bivariate random vari-

able (Ω̄w,v,Ω̄v,w) on R2
+. Conditioned on the skeleton, the collection of edge ex-

posures is independent with a bivariate distribution function that depends only
on the bi-degree (kw,kv)

P[Ω̄w,v ≤ x,Ω̄v,w ≤ y|w∈Nk∩Nv,v∈Nk′ ] :=Wkk′(x,y) =Wk′k(y,x), x,y≥ 0 .
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The conditional marginals are

Wkk′(x) :=Wkk′(x,∞) =Wk′k(∞,x) .

5. The remaining balance sheet quantities are freely specified.

Since Ω̄v,w represents the shock that will be transmitted from v to w at the mo-
ment v defaults, and ∆̄w ≥ 0 represents the threshold for the default of w, the set
of defaulted banksDn and its indicator Dn

v = 1(v ∈ Dn) after n steps of the cascade
again follows a recursion for all n≥ 0 and v ∈N :

Dn
v = 1

(
∆̄v ≤ ∑

w∈Nv

Ω̄w,vDn−1
w

)
(5.52)

starting with D−1
v = 0. Like the Watts model, we can show that this model has the

WOR threshold property. First we define WOR default events for directed edges
(v,w) by the recursion

Dn
v,w := 1(v ∈Dn WOR w) = 1

(
∆̄v ≤ ∑

w′∈Nv

Ω̄w′,vDn−1
w′,v 1(w′ 6= w)

)
(5.53)

starting with D−1
v,w = 0 for all directed edges. Then, one finds that the default cascade

has the WOR form because for all n≥ 0

Dn
v = D̃n

v (5.54)

where

D̃(n)
v := 1

(
∆̄v ≤ ∑

w∈Nv

Ω̄w,vDn−1
w,v

)
. (5.55)

The following proposition is analogous to Theorem 12 and can be justified by simi-
lar arguments:

Proposition 8. Consider the LTI sequence of Watts-GK financial networks (N,P,Q, ∆̄ ,Ω̄)

satisfying Assumptions 9. Let p̂(0)k := P[w ∈D0 WOR v|w ∈Nv∩Nk] = Dk(0) de-
note initial WOR default probabilities. Then the following formulas hold in the limit
as N→ ∞:

1. For any n= 1,2, . . . , the quantities p̂(n)k =P[w∈Dn WOR v|w∈Nv∩Nk] satisfy
the recursive formulas

p̂(n)k = 〈Dk,(w̃
(n−1)
k )~k−1〉 , (5.56)

and the full default probabilities p(n)k = P[w ∈Dn|w ∈Nk] are given by

p(n)k = 〈Dk,(w̃
(n−1)
k )~k〉 . (5.57)
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Here the marginal exposure PDFs w̃(n−1)
k (x) are given by

w̃(n−1)
k (x) = ∑

k′
Qk′|k

(
(1− p̂(n−1)

k′ )δ0(x)+ p̂(n−1)
k W ′+k′k(x)

)
(5.58)

with Qk′|k defined by (5.51).

2. The new probabilities p̂(n) = (p̂(n)k ) are given recursively by p̂(n) = G(p̂(n−1))
for a vector valued function which is explicit in terms of the specification
(N,P,Q, ∆̄ ,Ω̄). The cascade mapping G maps [0,1]Z+ onto itself, and is mono-
tonic. Since p̂(0) = G(0), the sequence p̂(n) converges to the least fixed point
p̂∗ ∈ [0,1]Z+ , that is

p̂∗ = G(p̂∗) . (5.59)

Note that a consequence of the WOR property is that the asymptotic cascade
mapping depends only on the collection of marginal distributions W+

kk′(x), and not
the full bivariate distribution for Ω̄wv,Ω̄vw. In other words, without affecting the
cascade probabilities, Ω̄wv,Ω̄vw can be taken to be conditionally independent, so
that

Wkk′(x,y) =W+
kk′(x)W

+
k′k(y)

for an arbitrary collection W+
kk′(x) of univariate CDFs. Alternatively, we may assume

Ω̄wv = Ω̄vw for all (w,v) ∈ E . Then the theorem reduces to the cascade mapping
theorem proved in [44] for the Watts model on an assortative skeleton with random
edge weight CDFs

P[Ω̄w,v ≤ x|w ∈Nk,v ∈Nk′ ] =Wkk′(x), x≥ 0 .

It is interesting that the more realistic meaning attached to exposures is consistent
with a skeleton that is undirected instead of directed. One nice modeling feature is
therefore that the node-degree kv can be unambiguously correlated with the size of
v’s balance sheet. In contrast, by focussing on the directionality of edges, the Gai-
Kapadia model on RFNs is forced to live on a directed skeleton, whose bi-degrees
( jv,kv) need to be specified, creating an additional complexity that now seems of
less importance.

We have seen already in the Watts and Gai-Kapadia models that the cascade
mapping function G determines essential features beyond the eventual default prob-
abilities p̂∗. We will not be surprised that it is the spectral norm of ∇Gkk′ =
∂pk′Gk|p=0;ε=0 that determines whether the model admits global cascades or not.
Or that estimates of the frequency and size of global cascades can be computed
using percolation ideas. We leave such exercises to the interested reader.
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5.8 Cascade Computations

While the version of the Gai-Kapadia cascade mapping given in Proposition 6 is
straightforward to implement on a computer, the structure of the convolution power
in (5.23) and similar equations at the heart of the generalized cascade mapping of
Theorem 12 is problematic from the point of view of numerical approximations.
Numerical evaluation of the implied integrals leads to truncation errors and dis-
cretization errors, both of which will be difficult to handle in our setting. In this
section, we analyze the case where the random variables {∆̄v,Ω̄`} all take values in
the finite discrete set

M = {0,δx, . . . ,(M−1)δx} (5.60)

with a large value M and a common grid spacing δx. We can think of this as spec-
ifying both the truncation and discretization of non-negative continuous random
variables. In such a situation, the convolutions in (5.23) can be performed exactly
and efficiently by use of the discrete Fast Fourier Transform (FFT), whose detailed
properties are summarized in Appendix A.2. For the moment, let us take δx = 1 for
simplicity.

Let X ,Y be two independent random variables with probability mass functions
(PMF) pX , pY taking values on the non-negative integers Z+ := {0,1,2, . . .}. Then
the random variable X +Y also takes values on this set and has the probability mass
function (PMF) pX+Y = pX ~ pY where the convolution of two functions f ,g is
defined to be

( f ~g)(n) =
n

∑
m=0

f (m)g(n−m), n ∈ Z+ . (5.61)

Note that pX+Y will not necessarily have support on the finite set M if pX , pY have
support on M , a fact that can lead to so-called aliasing problems.

We now consider a probability given as in (5.23)

P = P[X ≤
j

∑
i=1

Yi]

for independent random variables X ,Y1,Y2, . . . ,Yj where each Yi is distributed with
PMF gi(m) and X has PMF f (m). We suppose that f has support on M while
each gi has support on {0,1, . . . ,bM − 1/ jc}. We also define the CDF F(n) =
∑

n
m=0 f (m)=P(X ≤ n) for n∈M . Then these M-vectors have M-dimensional FFTs

f̂ =F ( f ), ĝi =F (gi), F̂ =F (F). Using the FFT identities (A.1) to (A.4), we are
led to a means to compute P for any j involving matrix operations and the FFT:

P[X ≤
j

∑
i=1

Yi] = ∑
m∈M

(g1 ~ · · ·~g j)(m)
m

∑
n=0

f (n) = ∑
m∈M

(g1 ~ · · ·~g j)(m)F(m)

= 〈F,g1 ~ · · ·~g j〉=
1
M
〈F̂ , ̂(g1 ~ · · ·~g j)〉=

1
M
(F̂)′ · (ĝ1 · ∗ . . . · ∗ĝ j) . (5.62)
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Here in the final expression, A′ denotes the conjugate transpose of a matrix A, · de-
notes matrix multiplication between a size [1,M] matrix and a size [M,1] matrix, and
·∗ denotes component-wise (“Hadamard”) multiplication of vectors and matrices.

Remark 9. There is no aliasing problem and the identity (5.62) is true if g1~ · · ·~g j
has support on M . We formalise this requirement as the Aliasing Assumption.

To summarize, as long as no aliasing errors arise, we can compute equation (5.23)
efficiently using the FFT identity (5.62). Having realized this fact, it becomes suf-
ficient to store as initial data only the Fourier transformed probability data for the
random variables ∆̄v,Ω̄`, that is

D̂ jk := F (D jk) ∈ CM, ŵk j := F (wk j) ∈ CM, j,k ∈ Z+ . (5.63)

Then the node update step becomes

p jk =
1
M

〈
D̂ jk, (̂w̃ j)

~ j
〉

(5.64)

where
(̂w̃ j) = ∑

k′
[1−πk′ +πk′ŵk′ j] Qk′| j .

Remark 10. The overall computation time for any numerical implementation of the
cascade formulas in Theorem 12 will be dominated by computing convolutions such
as those in (5.23). In particular, one can check that negligible total time will be
taken in precomputing FFTs (each of which take of the order of M log2 M additions
and multiplications). One can compare the efficiency of our recommended FFT ap-
proach to the direct approach by considering a single evaluation of the convolution:
to compute f ~ g using (5.61) for M-vectors f ,g requires M2 additions and multi-
plications, whereas to compute f̂ ·∗ĝ requires only M multiplications. All else being
equal, we can expect a speedup by a factor of O(M) when the FFT method is used
instead of the direct method. Since in our implementations we often have M & 210,
this is a huge improvement. This speedup factor is too optimistic in practice when
one takes care of the aliasing problem by taking a large, conservative value for M.

5.9 Numerical Experiments

The formalism developed in this chapter already raises a great variety of questions
and unanswered issues concerning the GK model, which is of course the simplest of
all default cascade models. Most such questions can only be studied with computer
experiments. In this section, we report briefly on some of the simplest experiments
that test the usefulness and validity of the LTI analytics developed so far in this
chapter.
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5.9.1 Experiment 1: Benchmark Gai-Kapadia Model

We choose as our benchmark the model specification given in the paper of [38], and
develop variations on the theme of Gai and Kapadia that explore certain interesting
dimensions away from this benchmark. Here is their original model specification:

1. The skeleton graph comprises N = 1000 banks (which we change to N = 10000)
taken from the Poisson random directed graph model with mean in and out degree
z, and thus P = Bin(N,z/(N−1))×Bin(N,z/(N−1)) and Q = Q+Q−.

2. Capital buffers and assets are identical across banks, with ∆̄v = 4% and Z̄v =
20%.

3. Exposures are equal across the debtors of each bank, and so Ω̄wv =
20
jv

.
4. The number of Monte Carlo simulations performed was Nsim = 1000.

It is also interesting to use the invariance property of the cascade mapping
to rescale exposures Ω̄wv and buffers ∆̄v by jv/20, leading to (i) ∆̄v = jv/5; (ii)
Z̄v = jv; (iii) Ω̄wv = 1. This rescaled specification is very similar to the benchmark
parametrization used in the Watts model.

Figure 5.1(a) shows the dependence of the mean cascade size as a function of the
mean degree z computed both analytically using Proposition 6 and by Monte Carlo
simulation. The analytical results were obtained with seed probabilities dk(0) =
10−3 for all k and for the Monte Carlo simulation we took the initial seed to be 1%
of the network (100 banks).

Figure 5.1(b) shows how the analytical formula (5.47) for the frequency of global
cascades compares to the frequency of global Monte Carlo cascades that started
from a single random seed, where in the Monte Carlo simulations, a global cascade
was deemed to be one that exceeds 50 banks (0.5% of the network).

Comparison of these figures with the Watts model experiments in Chapter 4 ex-
hibits striking similarities. Clearly this GK model specification is very similar to the
benchmark Watts 2002 model implemented in [72]. In fact, in both models, nodes
with in-degree j are vulnerable if and only if j ≤ 5. Apart from differences stem-
ming from the directed nature of the GK model, the cascade results shown in Figure
5.1 are almost identical to those found in Chapter 4. When z is smaller than 2 or
3, almost all nodes are vulnerable, and thus the contagion condition is essentially
the condition for the giant cluster to exist, which suggests a phase transition at the
value z = 1. On the other hand, when z is larger than about 7, most nodes are not
vulnerable, and there is no giant vulnerable cluster. As z increases into this range it
becomes harder for a single seed default to trigger a cascade. Occasionally, however
a seed may have a large degree, opening the possibility for finite size effects causing
higher order defaults that can lead to a large scale cascade. Although infrequent,
usually such cascades appear to trigger almost 100% of the network to default.
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Fig. 5.1 These two graphs show (a) the mean fractional cascade size, and (b), the fractional ex-
tended vulnerable cluster size (analytic) and global cascade frequency (Monte Carlo), in the bench-
mark Gai-Kapadia model as a function of mean degree z, as computed using the large N analytics
of Theorem 11 (blue curve) and by Monte Carlo simulation (red crosses). In Figure (a), the Monte
Carlo computation involved Nsim = 50 realizations of the N = 10000 node graph, each with an
initial seed generated by selecting nodes independently with probability 0.5%. In Figure (b), the
simulation involved Nsim = 2500 realizations of the N = 10000 node graph and a single random
initial seed node.

5.9.2 Experiment 2: Assortative Networks

For various reasons, configuration graphs with general edge assortativity parametrized
by the Q matrix have been little studied in network science. On the other hand, nu-
merous statistical studies of financial networks in the real world, notably [68], [10]
and [27], have pointed out their strongly negative assortativity and speculated that
this property is likely to strongly influence the strength of cascades that the network
will exhibit. In this experiment, we explore the GK model close to the benchmark
specification but with different parametrizations of the edge type matrix Q. Address-
ing this question provides us with a good starting point to test a number of points.
How effective is the simulation algorithm for assortative configuration graphs given
in Section 3.5? Does edge assortativity have a strong effect on the possibility of
cascades?

We twist the benchmark GK model described above by replacing the independent
edge probability matrix Qk j =Q+

k Q−j by an interpolated matrix that exhibits positive
or negative assortativity

Q(α)k j =

{
αQ+

k j +(1−α)Q+
k Q−j α ≥ 0

|α|Q−k j +(1−|α|)Q+
k Q−j α < 0
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Here Q+
k j = δk jQ+

k has 100% correlation and is the maximally assortative matrix
with the prescribed marginals. On the other hand, the maximally negative assortative
matrix turns out to be given by

Q−k j = P
[
U ∈ (bk−1,bk],1−U ∈ (b j−1,b j]

]
where U is uniform [0,1] and bk = ∑k′≤k Q+

k′ for k = 0,1, . . . ,Kmax.
With some surprise we noticed that with Pjk given as in Experiment 1, the mean

cascade size had no variation with α! After a moment’s thought, however, we realize
that because this model has an independent bivariate distribution of node degrees,
any possible dependence on α is wiped out. We need some dependence between in
and out node degrees to allow for the cascade to depend on assortativity. Figure 5.2
shows the dependence of the mean cascade size on the parameter α for four values
of z, when we replace the independent matrix P by the fully correlated matrix

Pjk = P+
k δ jk .

As we hoped, we see a strong nonmonotone dependence of cascade frequency on the
assortativity parametrized by α , with a maximum effect for a positive assortativity
value α ∼ 0.4.

Throughout this experiment, we need to pay attention to discrepancies between
the Monte Carlo results and the analytics. While for the most part the match is quite
good, surprisingly it breaks down completely for z = 7.5 and negative assortativ-
ity where the Monte Carlo results are particularly erratic. One important “rule of
thumb” that can partly account for such anomalies is that they seem likely to occur
in the neighbourhood of discontinuous phase transitions, in this case the one near
z ∼ 7. It seems likely we will see even larger discrepancies when the finite Monte
Carlo samples are taken from a less heterogeneous model.

This experiment also shows that Monte Carlo simulation can become quite chal-
lenging as the random graph model becomes more complex, and provides motiva-
tion to explore widely using large N analytics which are relatively straightforward
to implement.

5.9.3 Experiment 3: Random Buffers and Link Weights

What is the effect of uncertainty in the network? In reality, even with excellent
databases we might never expect to know actual exposures and buffers with any
precision. We can model this uncertainty by taking these to be random variables
and testing how the variance parameters affect the resultant cascade sizes and fre-
quencies. Furthermore, we can check whether the analytic approximations get much
worse or not.

To test the impact of this idea, we can introduce collections of log normally
distributed buffer and exposure random variables with four additional parameters
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Fig. 5.2 These two graphs show (a) the mean cascade size, and (b) the fractional extended vul-
nerable cluster size (analytic) and global cascade frequency (Monte Carlo), in the GK model, as
a function of positive and negative assortativity when P is maximally correlated. The analytical
results are shown by the solid curves, with four values of z: 1.5 (red), 3.5 (blue), 5.5 (green),
7.5 (black). In Figure (a), the Monte Carlo computation involved Nsim = 50 realizations of the
N = 10000 node graph, each with an initial seed generated by selecting nodes independently with
probability 0.5%. In Figure (b), the analytical formula for the extended giant vulnerable cluster is
compared to the result of an Nsim×Nfreq Monte Carlo simulation of global cascades consisting of
Nsim = 25 realizations of the N = 10000 node graph, and for each graph realization Nfreq = 2000
random initial seed nodes.

σ∆ ,σΩ ≥ 0 and ρ∆ ,ρΩ ∈ (−1,1). That is,

∆v =
jv
5

exp[σ∆ (ρ∆ Z∆ +
√

1−ρ2
∆

Xv)+σ
2
∆/2] (5.65)

Ω` = exp[σΩ (ρΩ ZΩ +
√

1−ρ2
Ω

Yvw)+σ
2
Ω/2] (5.66)

with a collection {Z∆ ,Xv,ZΩ ,Y`}, v ∈N , ` ∈ E of independent standard normals.
Note that the benchmark Gai-Kapadia model of Experiment 1 arises by taking σ∆ =
σΩ = 0, and for all parameters, the new specification agrees with the benchmark in
expectation. The case of σΩ = 0 and varying σ∆ ,ρ∆ has been studied extensively
elsewhere and so is of lesser interest. Also, by the rescaling property, the cascade
mapping when ρΩ 6= 0 can be transformed into the case ρΩ = 0. However, the
case of random exposures has not been studied previously, and therefore we take
σ∆ = 0,ρΩ = 0 and focus on the dependence of the default cascade on the shape
parameter σΩ .

In our implementation of equations (5.23) and (5.24) of Theorem 12 we truncated
and discretized the log normal exposure random variables by placing their values on
a grid of M = 212 points with spacing δx = 0.1. Then we applied the FFT algorithm
for computing the cascade equilibrium of Theorem 12. Prior to plotting our results
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we confirmed that they were insensitive to this approximation by comparing to the
results when the grid was coarsened to M = 210 and δx = 0.2 (results not shown).

Figure 5.3 plots the dependence of the mean cascade size and cascade frequency
as a function of the shape parameter of the exposure distribution, σΩ , for four values
of the Poisson mean degree z: 1.5 (red), 3.5 (blue), 5.5 (green), 7.5 (black).
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Fig. 5.3 These two graphs show (a) the mean cascade size, and (b) the fractional extended vul-
nerable cluster size (analytic) and global cascade frequency (Monte Carlo), in the GK model, as a
function of σΩ for σ∆ = 0 The analytical results are shown by the solid curves, with four values
of z: 1.5 (red), 3.5 (blue), 5.5 (green), 7.5 (black). In Figure (a), the Monte Carlo computation
involved Nsim = 10 realizations of the N = 10000 node graph, each with an initial seed generated
by selecting nodes independently with probability 0.5%. In Figure (b), the analytical formula for
the extended giant vulnerable cluster is compared to the result of Monte Carlo simulation of global
cascades consisting of Nsim = 10 realizations of the N = 10000 node graph, and for each graph
realization averaging ove Nfreq = 1000 random initial seed nodes.

Again, we see a general agreement between the Monte Carlo and analytical re-
sults, but with some significant departures z = 1.5. Further exploration shows that
the lower phase transition at z = 1 is pushed to higher values of z as σΩ grows: it
appears that the anomalous behaviour we observed is connected with this fact.

These three experiments illustrate only a very limited set of possible analytical
experiments on the simplest of all default cascade models. Already we observe that
while the analytical formulas agree with the Monte Carlo simulation results for
the most part, there are always circumstances that undermine the accuracy of the
agreement. It is important to try to develop “rules of thumb” that supply the intuition
of the circumstances when the agreement is not acceptable.



Chapter 6
Future Directions for Cascade Models

Abstract The prospects are considered for extending the mathematical framework
of cascade mechanisms on locally tree-like random financial networks to address
problems of real financial importance.

Keywords: Random financial networks, local tree-like independence, cascade
mechanism, balance sheet models, bank behaviour.

This book has set out to show that systemic risk and contagion in financial net-
works have a rich underlying mathematical structure: contagion shocks spread out in
a way that can be understood in terms of percolation theory. Along the way, we have
explored a variety of combinations of the three acronyms, a RFN (random financial
network) with the LTI property (locally tree-like independence) on which we place a
CM (cascade mechanism), to create contagion models of insolvency, illiquidity and
fire sales. Towards the end of the book, we developed analytical methods in the con-
text of default contagion, but which extend to other types of contagion as well. These
models exhibit key stylized features of market contagion that economists have iden-
tified in financial crises from the past. In some circumstances, these ingredients fit
together in a natural way that retains mathematical properties of percolation analysis
as it has been developed in probability theory, leading to explicit cascade mappings
and a host of associated concepts.

The concept of RFN, or random financial network, was introduced as a gen-
eral stochastic setting appropriate either for hypothetical banking systems, or for
simplifying the description of real-life banking systems that are sufficiently large
and homogeneous. It was taken to comprise a skeleton of nodes representing banks
connected by edges representing counterparty links, together with a stochastic spec-
ification of bank balance sheets and interbank exposures. Typical cascade models
on RFNs can be computed using Monte Carlo simulation. What we have shown
is that these models sometimes also admit an explicit analytical formulation from
which we can understand much more. Ultimately, RFNs can be created with ever
more complex combinations of random skeletons, balance sheets and cascade mech-
anisms.
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LTI combines an assumption about the stochastic properties of the underlying
skeleton related to sparsity of the edges together with an assumption about the mul-
tivariate dependence of balance sheet random variables. Roughly, it means that the
dependence structure of the entire network is coded into the random skeleton: the
multivariate distributions of remaining balance random variables are built with in-
dependence conditionally on the skeleton. Since there are a variety of approaches
to modelling skeletons available in the random graph literature, such a framework
provides a useful compromise between tractability, parsimony and flexibility.

A number of cascade mechanisms have been proposed in the literature, notably
the model of Eisenberg and Noe [32]. Typically they amount to assumptions or be-
havioural rules that determine how banks adjust their balance sheets in response to
the evolution of the financial crisis. We have reviewed in Chapter 2 different CMs
describing a variety of effects such as liquidity shocks, bank defaults, and forced as-
set sales. The key observation was that these CMs tend to have a common threshold
structure. Noticing this commonality is helpful in developing intuition about how
different cascades will behave. Of course, such CMs provide only a caricature of
the complex decision making of banks and must certainly develop in sophistication
in future research, perhaps by following the theory of global games developed for
example in [61].

What then are the advantages of having systemic risk models with such ingre-
dients in which crises can be viewed as cascade mappings that lead to fixed points
that describe new network equilibria? Typically, this structure leads to a number of
advantageous features. Analytics in such models can often be easier to program and
faster to compute than Monte Carlo simulations, facilitating exploration of sensitiv-
ities to key structural parameters. Sometimes simple specifications of such models
can be directly understood by comparison with previously studied models. As well
we have seen that certain systemic risk measures are computable directly from the
fixed point.

Simple static cascade models are often criticized because they exclude important
institutional elements, most notably central clearing parties (CCP), central banks
and regulators. However, principles of model building in science suggest that it is
important to understand the behaviour of uncontrolled isolated systems before try-
ing to understand how to control them. Cascade mappings provide a level of un-
derstanding about the uncontrolled network that will guide the actions of regulators
and governments. For a concrete example, it is now fully recognized in Basel III that
systemically important financial institutions (SIFIs) must be subjected to regulatory
capital surcharges. How such punitive measures are implemented should be defensi-
ble by economic and scientific principles. With a reliable cascade model, one can in
principle provide such a rationale by finding the optimal distribution of regulatory
capital amounts across the network, subject to a fixed aggregated budget.

The three elements, RFNs with an LTI specification upon which a CM is pro-
posed, are intended to be a template for further explorations of systemic risk in ever
more complex settings. So what are some of the most promising avenues to follow?

First, RFNs can be far from as simple as those investigated here. Nodes might
take on richer characteristics: in our language, the type of the node will no longer
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mean the node degree, but may come to include information about the geographical
location, the style of banking undertaken, the size of the institution and so on. For
this, skeletons modelled by inhomogeneous random graphs generalizing the con-
struction of Section 3.4 will be useful. Similarly, the network itself will expand to
include insurance firms, hedge funds, mutual funds, pension funds, asset classes
and even corporates. See [17] for an agent-based model of such an extended net-
work. Describing community structure is an active topic of network science that
will directly impact systemic risk research. Similarly, the meaning of edges will be-
come more nuanced, and depend in subtle ways on the types of the adjoined banks.
Skeletons will evolve into hypergraphs to account for important classes of tri-party
contracts such as credit default swaps, repos and asset return swaps.

The balance sheets of banks in this book all have a simple stylistic structure.
[40] has shown how more complex debt seniority structures can be included in the
cascade picture. Similar ideas applied to the asset side will allow rich structures
that account for features of different asset classes such as credit rating, maturity and
liquidity properties.

The structure of interbank contracts described here is similarly stylistic: for the
most part, these have been described as short term unsecured lending. In reality,
such contracts are complex, and have structure and magnitude that are the result of
bilateral strategic games played continuously between pairs of counterparty banks
who seek to control risk and maximize returns.

This book has focussed on systemic risk, that is to say, the risk of large scale or
even catastrophic disruptions of the financial markets. But good models of the finan-
cial system must account for the behaviour of markets in normal times as well. This
is already recognized in macroprudential models used by central banks that link to-
gether modules describing parts of the economy, such as the RAMSI model used by
the Bank of England and the MFRAF model used by the Bank of Canada. One im-
portant module in such economic models is always the financial network submodel
that should behave realistically in normal times, and should generate endogenously
an adequate spectrum of crisis scenarios.

Systemic risk modelling has advanced enormously on a range of fronts since
the great financial crisis of 2007-08. It is my hope that this book will be viewed
as a timely contribution to the field that provides researchers with two different
things: first, a flexible set of mathematical techniques for analyzing cascades in
general categories of networks, and second, a scientific modelling framework of the
financial economy that can scale up to account for all the important dimensions of a
type of risk that has the potential to critically impact the entire global economy.





Appendix A
Background Material

A.1 Special Notation

Matrix and Vector Notation: For vectors x = [xv]v=1,...,N ,y = [yv]v=1,...,N ∈ RN

define relations

x≤ y means ∀ v, xv ≤ yv,

x < y means x≤ y, ∃ v : xv < yv,

min(x,y) = [min(xv,yv)]v=1,...,N

max(x,y) = [max(xv,yv)]v=1,...,N

(x)+ = max(x,0),
(x)− = max(−x,0) .

Whenever x ≤ y we can define the hyperinterval [x,y] = {z : x ≤ z ≤ y}. Column
N-vectors are often treated as [1,N] matrices, X ·Y denotes the matrix product, and
X ′ denotes the Hermitian (complex conjugate) transpose.

Function Notation: For functions f ,g, f ◦g denotes composition and f ~g denotes
convolution.

Graph Notation: For a complete description of the graphical notation used in this
book, please see Section 3.1.

Set Notation and Indicators: For any set A⊂Ω in the sample space Ω , Ac :=Ω \A
is its complement. For elements x ∈Ω and Boolean propositions P:

Indicator 1(P) =

{
1 if P is true
0 if P is false

Indicator function 1A(x) means 1(x ∈ A) .
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A.2 The Discrete Fourier Transform

We consider the space CM of C-valued functions on M = {0,1, . . . ,M− 1}. The
discrete Fourier transform, or fast Fourier transform (FFT), is the linear mapping
F : a = [a0, . . . ,aM−1] ∈ CM → â = F (a) ∈ CM defined by

âk = ∑
l∈M

ζklal ,k ∈M .

where the coefficient matrix Z = (ζkl) has entries ζkl = e−2πikl/M .
It is easy to prove that its inverse, the inverse FFT (IFFT), is given by the map

a→ ã = G (a) where

ãk =
1
M ∑

l∈M
ζ̄klal ,k ∈M .

If we let ā denote the complex conjugate of a, we can define the Hermitian inner
product 〈a,b〉 := ∑m∈M āmbm . We also define the convolution product of two vec-
tors:

(a~b)(n) = ∑
m∈M

a(m) b(n−m modulo M), n ∈M .

Now we note the following easy-to-prove identities which hold for all a,b ∈CM:

1. Inverse mappings:
a = G (F (a)) = F (G (a)) ; (A.1)

2. Conjugation:

G (a) =
1
M

F (ā) ; (A.2)

3. Parseval Identity:

〈a,b〉= M〈ã, b̃〉= 1
M
〈â, b̂〉 ; (A.3)

4. Convolution Identities:

ã · ∗b̃ = (̃a~b) ; â · ∗b̂ = (̂a~b) (A.4)

where ·∗ denotes the component-wise product.

The primary application of the FFT in this book is its use in accelerating the
computation of convolutions of probability mass functions supported on the set CM.
If the support of the sum of two M -valued random variables X ,Y is itself in M , that
is, if supp(X +Y ) = {n|∃m ∈ supp(X)s.t. n−m ∈ supp(Y )} ∈M , then pX+Y , the
PMF of X +Y , is given by pX ~ pY . On the other hand, if there are m∈ supp(X),n∈
supp(Y ) such that m+ n ≥M, then pX+Y − pX ~ pY is not zero. Such a difference
is called an “aliasing error”, and implies that pX+Y 6= G (F (pX )F (pY )). In any
application, we must take care to keep all such aliasing errors sufficiently small by
choosing M sufficiently large but finite.
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[16] Béla Bollobás, Svante Janson, and Oliver Riordan. The phase transition in in-
homogeneous random graphs. Random Struct. Algorithms, 31(1):3–122, Au-
gust 2007.

[17] Richard Bookstaber. Using agent-based models for analyzing threats to finan-
cial stability. Working Paper Series 3, Office of Financial Research, December
2012.

[18] Tom Britton, Maria Deijfen, and Anders Martin-Löf. Generating simple ran-
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