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W A Te consider default by firms that are part of a single clearing mechanism. The obliga- 
tions of all firms within the system are determined simultaneously in a fashion con- 

sistent with the priority of debt claims and the limited liability of equity. We first show, via 
a fixed-point argument, that there always exists a "clearing payment vector" that clears the 
obligations of the members of the clearing system; under mild regularity conditions, this 
clearing vector is unique. Next, we develop an algorithm that both clears the financial system 
in a computationally efficient fashion and provides information on the systemic risk faced 
by the individual system firms. Finally, we produce qualitative comparative statics for finan- 
cial systems. These comparative statics imply that, in contrast to single-firm results, even 
unsystematic, nondissipative shocks to the system will lower the total value of the system 
and may lower the value of the equity of some of the individual system firms. 
(Credit Risk; Default; Clearing Systems) 

1. Introduction 
One of the most pervasive aspects of the contem- 
porary financial environment is the rich network of 
interconnections among firms. Although financial lia- 
bilities owed by one firm to another are usually mod- 
eled as unidirectional obligations dependent only on 
the financial health of the issuing firm, in reality, the 
liability structure of corporate obligations is invariably 
much more intricate. The value of most firms is depen- 
dent on the payoffs they receive from their claims on 
other firms. The value of these claims depends, in 
turn, on the financial health of yet other firms in the 
system. Moreover, linkages between firms can be cycli- 
cal. A default by Firm A on its obligations to Firm B 
may lead B to default on its obligations to C. A default 
by C may, in turn, have a feedback effect on A. This 
example illustrates a general feature of financial sys- 
tem architectures, which we term cyclical interdepen- 
dence. In this paper, we consider the problem of finding 
a clearing mechanism in cases in which this sort of 
cyclical interdependence is present. 

All markets have some kind of clearing mecha- 
nism. Perhaps clearing mechanisms of interbank pay- 

ments and for listed exchanges have received the most 
attention. In the United States, for example, CHIPS 
and Fedwire are the main banking clearing mech- 
anisms; in Germany, the Abrechnung and the EAF 
(Elektronische Ai rechnung mit Filetransfer) performs 
this function. Regarding clearing mechanisms, one of 
the attractions of trading on a listed options exchange, 
the CBOE, for example, is that the Options Clear- 
ing Corporation is the counterparty to every trade. 
Hence, credit considerations do not prohibit lower- 
credit traders from participating in these markets. 
These payment systems are forced to confront large 
defaults on a regular basis. Examples of such defaults 
include the failure of I.D. Herstatt in 1974 and the Bank 
of New York overnight shortfall of $22.6 billion in 
1985. Systemwide meltdowns also occur. For example, 
consider the collapse of the Tokyo real estate market, 
the bankruptcy and public bailout of American S&Ls 
to the cost of about $500 billion, the Venezuelan bank 
crisis of 1994, and the Long Term Capital bailout 
associated with the Russia's sovereign debt default. 
One of the most interesting failures of a tightly inter- 
connected clearing system was the 1982 collapse of 
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the al-Manakh stock market in Kuwait. The clearing 
system, consisting of approximately 29,000 postdated 
checks written by traders, collapsed after a 45% drop 
in market values. The nominal gross liabilities of the 
participants in the market to each other at the time of 
the collapse was more than four times Kuwait's gross 
domestic product (Elimam et al. 1997). 

Surprisingly, despite the obvious importance of the 
"architecture of financial linkages" for determining 
the return-generating process for financial assets, little 
has been written on cyclical financial interconnections. 
The effects of bilateral clearing of offsetting nominal 
obligations has been thoroughly analyzed in Duffie 
and Huang (1996). Rochet and Tirole (1996) analyzed 
the incentive and monitoring impact of an interbank 
loan. From a more empirical perspective, Angelini 
et al. (1996) develop an empirical model of intercor- 
porate defaults. In this model, the probability that a 
default by one firm triggers another firm's default is 
exogenously specified without modeling intercorpo- 
rate cash flows. Eliam et al. (1997) report the actual 
procedure used to clear intercorporate debts after the 
Kuwaiti shock market crash. However, to our knowl- 
edge, this paper is the first to analyze, in a general 
fashion, the properties of intercorporate cash flows in 
financial systems featuring cyclical interdependence 
and endogenously determined clearing vectors. 

This lack of attention to cyclical interdependence 
is even more surprising given the extensive litera- 
ture modeling default in a simple unidirectional and 
bilateral context. In fact, the whole literature on term 
structure of interest rates ignores the considerations 
mentioned above. While modeling the valuation of a 
firm's debt as independent from that of other firms 
simplifies debt and equity models, this assumption 
becomes questionable in portfolio management, cor- 
porate bond trading, and the analysis of counterparty 
credit risk. A desideratum for addressing these issues 
is the development of a simple, tractable model for 
computing clearing vectors for interlinked financial 
systems. The aim of this paper is to provide such a 
model. 

We develop a fairly general model of a clearing 
system. The model satisfies the standard conditions 
imposed by bankruptcy law, that is, clearing vectors- 
which represent the vector of payments from nodes 

in the financial system to other nodes-satisfy the 
conditions of proportional repayments of liabilities in 
default, limited liability of equity, and absolute pri- 
ority of debt over equity. We shall show, via a fixed- 
point argument, that clearing vectors always exist. 
Moreover, under mild regularity conditions, there is 
a unique clearing vector. This clearing vector can be 
computed through a "fictitious sequential default" 
algorithm. Moreover, the algorithm corresponds to a 
process of dynamic adjustment in which the set of 
defaulting firms at the start of each round is fixed by 
the adjustments of the system in the previous round. 
In each new round, an attempt is made to clear the 
system assuming that only nodes that defaulted in the 
last round default. If, in fact, no new defaults occur, 
the algorithm terminates. Otherwise, the new wave of 
defaults is recorded and the process is iterated again. 
This algorithm, as well as quickly yielding the clearing 
vector, produces a natural measure of systemic risk- 
the exposure of a given node in the system to defaults 
by other firms. This measure of systemic risk is based 
on how many "waves" of defaults are required to 
induce a given firm in the system to fail. 

After analyzing the clearing vector, we perform 
comparative statics on the clearing payment vector, 
determining the nature of its dependence on the vector 
of operating cash flows as well as on the architecture of 
financial liabilities linking the various members of the 
system. More specifically, we show that the clearing 
payment vector is a multidimensional concave func- 
tion of operating cash flows and the level of nominal 
payments, and that the value of equity is not generally 
convex in operating cash flows. These results imply 
that the total value of firms in the system is concave 
in operating cash flows. Standard results on stochastic 
dominance imply that the expectation of concave func- 
tion or a random variable is lowered by increases in 
risk. Thus, our results imply, assuming standard risk- 
neutral valuation, that increased volatility, by lower- 
ing the value of interfirm payments, will lower the 
total value (debt plus equity) of nodes in the system. 
This result obtains even though there are no costs to 
insolvency in our model in the sense that total equity 
value is conserved. For this reason, our results sug- 
gest that using changes in total asset values to measure 
the effect of an economic shock on a group of tightly 
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interconnected companies (e.g., Japanese banks) can 
be highly misleading. 

The paper is organized as follows. In ?2, we present 
the model and develop the basic machinery, including 
existence-uniqueness results. In ?3, we present the two 
characterizations of the clearing vectors and exam- 
ine their consequences. In ?4, we derive comparative 
statics of the clearing system. Section 5 concludes the 
paper and considers some extensions. 

2. Framework and Basic Results 
2.1. Preliminaries 
The subsequent analysis utilizes a number of stan- 
dard definitions from matrix algebra and basic lat- 
tice theory. The definitions are standard. To reduce 
confusion and make referencing easier, we collect 
these definitions together in this section. Let 9'1" rep- 
resent n-dimensional Euclidean vector space. Let JN = 
(1, 2, ... , n}. For any two vectors, x, y E 91", define the 
lattice operations 

XAY := (min[xl,yl], min[X2,Y2] ... min [x, I yi, DI 

x v y (max[x1, Yi], max[x2, Y2]... max[x,,, yD]), 

x+ :=(max[xl, 0], max[x2, 0] ... max[x,,, 0]). 

Let 1 represent an n-dimensional vector, all of whose 
components equal 1, i.e., 1 = (1, ... , 1). Similarly, let 0 
represent an n-dimensional vector, all of whose com- 
ponents equal 0. Let 11 11 denote the ?1-norm on .91". 
That is, for each x E gin let 

1i 

llxll :=E xil. 
i=l 

Let I III be the operator matrix Norm associated with 
; that is, for each n x n matrix, define 

IllMill -SupI1Mx11. 
|| 11|<1 

An important definition for our future analysis is of 
a nonexpansive map. A map T: 9? -+ 90i is (e1)- 
nonexpansive if, Vx E 9V, 

11 T(x)-T(y) 11 < lx-y 11. 

Whenever an ordering of elements of 9)V is specified in 
the sequel, the ordering refers to the pointwise order- 
ing induced by the lattice operations, i.e., 

x< y xi Yi for all i E.N. 

2.2. Economic Framework 
Consider an economy populated by n nodes. Each of 
these nodes is to be thought of as a distinct economic 
entity, or financial node, participating in the clearing 
network. Each such entity may have nominal liabilities 
to other entities in the system. These nominal liabilities 
represent the promised payments due to other nodes 
in the system. We represent this structure of liabili- 
ties with the n x n nominal liabilities matrix L, where Lii 
represents the nominal liability of node i to node j. 
As the notion of nominal claims seems to imply, we 
assume that all nominal claims are nonnegative and 
that no node has a nominal claim against itself. To 
reflect this economic interpretation, we specify that the 
nominal liabilities matrix is nonnegative and that all 
of the diagonal elements of the matrix equal 0; that is, 
we assume that Vi, j EJ\f, Li0 > O and that Vi, Lij = 0. Let 
ei > 0 be the exogenous operating cashflow received by 
node i. This operating cash flow is the cash infusion 
to the node from sources outside the financial system. 
A financial system is thus a pair (L, e) consisting of a 
nominal obligations matrix L and an operating cash 
flow vector e, satisfying the conditions given above. 

Note that the condition that operating cash flow is 
nonnegative is not really restrictive. It might appear 
that operating cash flows could be negative because 
of operating costs. However, operating costs are not 
negative cash infusions; rather, operating costs are the 
sum of all liabilities of the firm to outside factors of 
production: workers, suppliers, and so forth. A firfm 
that has costs in excess of its revenues does not have a 
negative cash balance; rather, it has positive operating 
cash inflows and liabilities to workers and suppliers 
that exceed those positive operating cash flows. Those 
operating costs could be captured by appending to the 
financial system a "sink node," labeled, say, node 0. 
We could assume that this sink node has no operating 
cash flow of its own, i.e., eo = 0, nor obligations to other 
nodes, i.e., Loj = 0, Vj; the "operating cost" of node i, 
in this framework, would be the liabilities of node i to 
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the sink node 0, i.e., Lio. Because nothing in our setup 
precludes a node with the characteristics of the sink 
node, the assumption of nonnegative operating cash 
flows is made without a loss of generality. 

Let pi represent the total dollar payment by node i to 
the other nodes in the system. Let p = (PlI P2, ... , Pt) 
represent the vector of total payments made by the 
nodes. Let Pi represent total nominal obligation of i to 
all other nodes, that is, 

Pi =Lij.(1 
j=l 

Let p = (IP P2, . P. , ,l) represent the associated vec- 
tor, which we term the total obligation vector. This vec- 
tor represents the payment level required for complete 
satisfaction of all contractual liabilities by all nodes. 
Let 

iL if > ?( 
1 

_ _ Pi (2 

' 0 otherwise(2 

and let II represent the corresponding matrix, which 
we term the relative liabilities matrix. This matrix cap- 
tures the nominal liability of one node to another in 
the system as a proportion of the debtor node's total 
liabilities. We assume that all debt claims have equal 
priority. This equality of priority implies that the pay- 
ment made by node i to node j is given by piHii. This 
implies that the total payments received by i are equal 
to En I H[pj. Further, all payments are made to some 
node in the system, and, therefore, 

1l 

Vi, Hij = 1, 
j=l 

or, in matrix notation, 

Ill=l, 

an equality we will use later in the analysis. 
The total cash flow to the owners of the equity of 

node i equals the sum of the payments received by 
other nodes plus the operating cash flow. This implies 
that the total cash flow to node i equals 

E1iTpj + ei. 
j=1 

The value of the equity of node i is given by total cash 
flows less payments to creditors. In other words, the 
value of node i's equity is 

ZH7iTpj + ei -pi. 
j=l 

Note also that, by using (1) and (2), the financial sys- 
tem (L, e), where L is a nominal payments matrix and 
e is a vector of operating incomes, can be equivalently 
described by the corresponding triple (HI, p, e), where 
11 is a relative liabilities matrix, p is a payment vector, 
and e is an operating cash flow vector. We will flesh 
out this description of a financial system in the subse- 
quent analysis. 

Intuitively, a clearing payment vector for the finan- 
cial system should represent a specification of the 
payments made by each of the nodes in the financial 
system that is consistent with the legal rules allocating 
value among nodes and among holders of debt and 
equity. Three criteria that must be satisfied are (a) lim- 
ited liability, which requires that the total payments 
made by a node must never exceed the cash flow avail- 
able to the node; (b) the priority of debt claims, which 
requires that stockholders in the node receive no value 
until the node is able to completely pay off all of its 
outstanding liabilities; and (c) proportionality, which 
requires that if default occurs, all claimant nodes are 
paid by the defaulting node in proportion to the size 
of their nominal claim on firm assets. These desiderata 
motivate the following definition. 

DEFINITION 1. A clearing payment vector for the 
financial system (II, p, e) is a vector p* E [0, p] that sat- 
isfies the following conditions: 

a. Limited Liability. Vi E N, 

p* < E3I-Tp* + e. 
j=l 

b. Absolute Priority. Vi E N, either obligations are 
paid in full, that is, p* =i, or all value is paid to cred- 
itors, that is, 

= 117pe.I P= I-ITp* + ei. l 
j=l 

Under this definition, some firms will be forced to 
pay out all of their value to creditors. This fact raises 
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the question of why firms facing certain default pro- 
vide their cash flows to the clearing system, know- 
ing that all cash they contribute will be paid out to 
other firms. We have in mind a situation in which 
ex ante there was uncertainty as to the realized cash 
flows of the firm. To raise funds for operations, firms 
borrowed from other firms in the network. Ex ante, 
firms expected to have positive equity balances in 
some states of nature. Ex post, uncertainty is resolved, 
and claims are cleared. It is this ex post clearing, cor- 
responding to one of many realizations of the uncer- 
tainty faced ex ante, that we model in this paper. 
Ex post, some firms find themselves with zero equity 
balances, paying out all value to other firms in the sys- 
tem. Of course, ex post, firm owners would prefer not 
to make these payments. However, this is irrelevant 
because we assume a perfect claim-enforcement tech- 
nology under which all ex ante commitments must be 
honored. The assumptions we make regarding con- 
tracting technology are entirely standard in the finance 
literature and adopted in countless articles. However, 
because bilateral clearing with a perfectly efficient con- 
tracting technology is a trivial problem, the extant lit- 
erature places little emphasis on these assumptions. 
One central point of this paper is that the clearing 
problem is not trivial in a multilateral network with 
cyclical liabilities. 

2.3. Existence of Clearing Payment Vectors 
In the previous section we defined a clearing vector 
using the standard rules of value division between 
debtors and creditors: absolute priority, proportion- 
ality, and limited liability. In a context in which one 
firm is indebted to another firm, these rules always 
clearly specify a unique division of value between the 
debtor and creditor firms. Are these standard rules of 
value division sufficient to produce a unique division 
of value in a multifirm environment with cyclical obli- 
gations? Will there exist cases in which no division of 
value is consistent with these rules, or cases in which 
more than one division of value is consistent? We will 
show that a division of value consistent with standard 
rules of value division always exists. Moreover, under 
mild regularity conditions that ensure that all parties 
of the system actually have some value to distribute, 
only one pattern of payments is consistent with the 

standard rules of value division. In other words, we 
will show that clearing vectors exist and are unique. 

To establish the existence of a clearing vector, we 
will require a fixed-point characterization of clearing 
vectors. To establish this fixed-point characterization, 
first note that limited liability and absolute priority 
imply that p* E [0, p] is a clearing payment vector if 
and only if the following condition holds: Vi E N, 

P* = min [e. + EnTiP* i 

The first term in the minimum expression on the right- 
hand side of the above expression represents "what 
the node has," the total inflows to i. The second 
term in the minimum expression is "what the node 
owes," the total obligations of node i other nodes in 
the system. A clearing vector is a vector in which 
every node pays the minimum of what it has and 
what it owes. From the above discussion, we see that 
the clearing vector is a fixed point, p*, of the map, 
(F(.;F[, p, e): [0, p] -- [0, p], defined by 

4?(p; FJ J, e) _(JTp+e) AP 

An economic interpretation of 1d is that PD(p) repre- 
sents the total funds that will be applied to satisfy 
debt obligations, assuming that nodes receive inflows 
specified by p from their debt claims on other nodes. 
We now show, through a fixed-point argument using 
the (F map, that every financial system has a clearing 
vector. 

THEOREM 1. Corresponding to every financial system 
(II -, e) 

a. There exists a greatest and least clearing payment vec- 
tor, p+ and p-. 

b. Under all clearing vectors, the value of the equity at 
each node of thefinancial system is the same, that is, if p' 
and p" are any tzvo clearing vectors, 

(FLT (p) + e - )+ T (T(P) + e - p)+. 

PROOF. To prove Theorem 1, we need to first char- 
acterize some basic properties of the (F map. We note 
that (F is positive, increasing, concave, and nonexpan- 
sive. The assertions of positivity, monotonicity, and 
concavity follow because (F is the composition of the 
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positive, increasing, affine map q -- FTq + e, and the 
positive, increasing, concave map q -> q A p. To show 
that the map is nonexpansive, first note that, for any 
three vectors x, y, and z, IIXAZ-YAZ 1 < 11x-y1. This 
result implies that 11 @(p)-1(p = ) (JlFp + e) A p- 
(lTp' + e) A P < JJ Tp - lTp' 11. Next note that the col- 
umn sums of HT all equal 1. This implies, from basic 
matrix algebra, that I I I T I I I I = 1. Thus, I7l Tp_7L TpI 11 < 
I p - p' 1, establishing nonexpansiveness. 

Let FIX(@) represent the set of fixed points of (D. 
Because (D is increasing, (D(O) > 0 and 4(p() < p, the 
Tarski fixed-point theorem (see, e.g., Zeidler 1986, 
Theorem ll.E) implies that FIX(@) is nonempty and, 
moreover, possesses a greatest and least element. Thus 
(a) is established. 

To prove (b), let p' be any clearing vector. We will 
show that the value of equity is the same under p' and 
p+. This is sufficient to establish (b). To show that the 
value of equity is the same under p' and p+, first note 
that HT is an increasing map, as is the map x - x+. 
Thus, we must have, because p+ > p', that 

(HT(p+) + e - -)+ > (rT (pt) + e - p)+ . 

Thus, if 

(FIT(p+) + e - #)+ (LT(p') + e -), 

then we would have that 

(HJT(p+) + e -p)+ > (HT(p') + e -p)+. (3) 

Because p+ and p- are both clearing vectors, it also 
must be the case that 

(HIT(p+) +e -p)+ = HT(p+) +e-p+, (4) 

(FIT(p') +e- -)+ = HT(p') + e - p'. (5) 

Expressions (3), (4), and (5) imply that 

HJT(p+) +e-p+ > HT(p1) + e (6) 

Now, note that LIl = 1. This implies that 

1. (T(p+) - p+) = 1. (T(p') _ p') =0. 

Thus, 

1. (HTTp + e - p+) 1. (rT (,) +\ e -\ p' 7 

However, (6) implies that 

1. (FT(p+) +e-p+) > (T(pI) + e - p'). (8) 

The contradiction between expressions (6) and (7) 
establishes (b). O 

2.4. Uniqueness of Clearing Vectors 
As we have seen, the existence of a clearing vector 
follows from a simple fixed-point argument. Estab- 
lishing uniqueness for a large range of financial sys- 
tems requires more work. We need to rule out cases 
where the same allocation of equity value can be 
supported by numerous specifications of payments 
between nodes. Cases exist in which clearing vectors 
are not unique. See Appendix 2 for an example. In this 
section we shall show that, to rule out such cases, we 
need only impose conditions that ensure that all parts 
of the system have some tangible economic value, in 
the form of operating cash flow, to distribute. To make 
these conditions precise, we require some definitions. 
The first key definition is that of a "surplus set." 

DEFTNITION 2. A set S c N is a stirplus set if no node 
in the set has any obligations to any node outside the 
set and the set has positive operating cash flows, that 
is, if V(i,j) ESxSc,Hij==0and EiEs ei > 0. 

Intuitively, a surplus set is a closed reservior of 
value in the financial system. Because the financial 
system is conservative, neither creating nor destroy- 
ing value, the value in a surplus set must be allocated 
somewhere. Because the surplus set is closed, value 
must flow to some node in the surplus set itself. This 
observation is formalized in the next lemma. 

LEMMA 1. If p* is a clearinig vector, then it is not possi- 
blefor all nodes in a sturpluts set to have zero equity value. 

PROOF. Suppose S is a surplus set. Let Pi represent 
the sum of all of the payments received by a node i E S 
from nodes in SC. By the definition of a surplus set, 
nodes in S make no payments to nodes in SC. Thus, if 
all nodes in S have zero equity value, it must be the 
case that 

Pi= T p?j + ei + Pi Vi E S. (9) 
jES 
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Summing the equations specified in (9) over i E S thus 
yields 

Epi = EL rIpj + (Pi + ei). (0 ~~~~ iii(10) 
ies jes ies ies 

Using the fact that S is a surplus set, we also have that 

EHiT = 1. (11) 
ieS 

Expressions (10) and (11) imply that 

0 = E(P+ + ei), 
ieS 

contradicting our assumption that Eies ei > 0. D 
The second key to establishing uniqueness is a 

"financial structure graph," which describes in a qual- 
itative fashion the links between the nodes in a finan- 
cial system. 

DEFINITION 3. The financial structure graph asso- 
ciated with the financial structure (FL, -, e) is the 
directed graph whose vertices are the nodes of the 
financial system N, and whose edges are defined by 
i > je 'Hij > . 11 

The direct liabilities of each node in the system 
are to the nodes to which the agent has contractual 
obligations. However, these direct links by no means 
exhaust the set of all nodes that are affected by a 
node's default. Defaults cascade through the system. 
The default of a single node reduces the inflows to its 
creditors, perhaps triggering the default of one of these 
creditors, and even, perhaps, defaults further down- 
stream. How far downstream can the risk of a given 
node in the system travel? An upper bound on propa- 
gation is provided by the concept of the risk orbit of a 
node in the system. The risk orbit of a node is the set of 
all nodes that are connected to the given node through 
some directed path, however circuitous, through the 
system. 

DEFINITION 4. For each node i E N, define the 
risk orbit of node i, denoted by o(i), as follows: 
o(i) = {j E N>: there exists a directed path from i to j1.11 

It would appear that, because they abstract from 
the magnitude of exposures, concepts such as strong 
connectedness and risk orbits are incapable of provid- 
ing any useful characterization of clearing payment 
vectors for the system. This is not correct. In fact, a 

very simple property of risk orbits forms the basis for 
our proof of the uniqueness of the clearing payment 
vector. 

LEMMA 2. Suppose that p* is a clearing vector for 
(FL, p, e). Let o(i) be a risk orbit that satisfies Ejeo(i) ej > 0. 
Then, under p*, at least one node of i has positive equity 
value, that is, 

3j E o(i), such that -. < (JJTp* + e)j. 

PROOF. First note that o(i) is a surplus set. To see 
this, note that if some node, say i', in o(i) owed some- 
thing to a node j E o(i)C, then, by appending to the 
directed path from i to i' the edge i' -- j, one could 
construct a directed path from i to j, contradicting the 
assumption that j is not in o(i). Lemma 1 shows that 
every surplus set contains a node with positive equity 
value. D 

The previous lemmas form the basis for a demon- 
stration of the uniqueness of a clearing payment vec- 
tor under a mild additional restriction that we term 
regularity. 

DEFINITION 5. A financial system is regular if every 
risk orbit, o(i), is a surplus set. 

Note that, in our model, real economic value is 
produced from operating income and this value is 
conserved by the clearing system. Bankrupt nodes 
have their value transferred to solvent creditor nodes. 
Moreover, our clearing system is closed; no value 
leaves the system. Regularity rules out cases where 
part of the network lacks any economic value, in the 
form of operating cash flows, to distribute. Thus, in 
essence, regularity boils down to the existence of some 
value somewhere in the system that can reach all 
points in the system. A simple sufficient condition 
for regularity is that all nodes have positive operat- 
ing cash flows, another simple condition for regular- 
ity is that all nodes in the financial structure graph are 
strongly interconnected and some node has positive 
equity value. The next theorem shows that regularity 
is sufficient to ensure the existence of a unique clear- 
ing vector. 

THEOREM 2. If thefinancial system is regular, the great- 
est and least clearing vectors are the same, i.e., p+ = p-, 
implying that the clearing vector is unique. 

PROOF. See Appendix 1. 
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3. Characterizing Clearing Vectors 
3.1. Sequence of Defaults 
In this section we show that the clearing vector can be 
viewed as the product of a simulated or "fictitious" 
default process. This process both permits the con- 
struction of a simple algorithm for identifying clearing 
vectors and produces a natural metric for measuring 
a node's systemic risk exposure. We call this simple 
algorithm thefictitious default algorithm. The essence of 
the algorithm is simple. First, determine each node's 
payout, assuming that all other nodes satisfy their 
obligations. If, under the assumption that all nodes 
pay fully, it is, in fact, the case that all obligations are 
satisfied, then terminate the algorithm. If some nodes 
default even when all other nodes pay, try to solve the 
system again, assuming that only these "first-order" 
defaults occur. If only first-order defaults occur under 
the new clearing vector, then terminate the algorithm. 
If second-order defaults occur, then try to clear again 
assuming only second-order defaults occur, and so on. 
It is clear that since there are only n nodes, this process 
must terminate after n iterations. The point at which 
a node defaults under the algorithm is a measure of 
the node's exposure to the systemic risks faced by the 
clearing system. 

We assume henceforth that the financial system has 
a unique clearing vector. As shown by Theorem 2, reg- 
ularity is a sufficient condition for the clearing vec- 
tor to be unique. In this section, we characterize this 
clearing vector. First we develop an algorithm of find- 
ing the clearing vectors. Describing the algorithm in 
detail and proving that it is effective requires that 
we develop some new concepts. Let S be the set of 
supersolutions of the fixed-point operator FD; that is, 
S = {p E [0, p]: 4>(p) < p1. The supersolutions are the 
set of proposed payment vectors under which pay- 
ments received exceed payments required given the 
rules of limited liability and absolute priority. Thus, 
supersolutions are payment vectors under which some 
node is paying other nodes more than its total inflow. 
Note that, for any such supersolution, because total 
equity value is positive, it must be the case that not all 
nodes are paying more than their inflow, i.e., it is not 
possible that 4>(p) < p. For each p E S, let the default 
set under p, which we denote by D(p), be the set of 

nodes i, such that D(p)i < Pj. By the earlier observa- 
tion, D(p) cannot contain all nodes. Let A(p) represent 
the n x n diagonal matrix defined as follows: 

A(p)= J1 i=jandiED(p) 
O otherwise 

A(p)ij is a diagonal matrix whose values equal 1 along 
the diagonal in those rows representing nodes not in 
default under p, and equal to 0 otherwise. Thus, when 
multiplied by other matrices or vectors, the A matrix 
converts the entries corresponding to the nondefault- 
ing node to 0. The complementary matrix I - A(p') 
converts entries corresponding to defaulting nodes 
to 0. For fixed p' E S, define the map p -> FFP,(p) as 
follows: 

FF(p) )-A(p') (IT (A(p')p + (I - A(p')jP)) + e) (FIX) 

? (I -A(p'))(). 

This map, FFp1 (p), simply returns, for all nodes not 
defaulting under p', the required payment p, and, for 
all other nodes, returns the node's value assuming 
that nondefaulting nodes under p' pay in full and 
defaulting nodes under p' pay p. By our earlier result, 
Lemma 1, the default set is not a surplus set. Thus, 
A(p)L( has a row sum that is less than 1, and no row 
sum exceeds 1; this, in turn, implies that FFp has a 
unique fixed point by standard input-output matrix 
results (Karlin 1959, Theorem 8.3.2). Call this fixed 
point f (p'). Note that only when p' is a supersolution 
can we be assured that f(p') is well defined. Next, 
define inductively the following sequence of payment 
vectors: 

p? =j; pi =f(pi-l) (FDS) 

We call this sequence of vectors the fictitious default 
sequence, and we call the process of producing these 
vectors thefictitious default algorithm. 

LEMMA 3. The fictitious default algorithm stated in 
(FDS) produces a well-defined sequence of vectors, pi. This 
sequence decreases to the clearing vector in at most n iter- 
ations of the algorithm. 

PROOF. First, we show by induction that the ficti- 
tious default sequence is well defined and decreasing. 
To show this, we must show that for all pi, pi is a 
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supersolution to (F for all j and that the sequence (pJ) 
decreases. We establish this result by induction. When 
j = 0, these assertions are obvious. Next, suppose the 
assertions are true for pk. Note that the definition of 
the A matrix implies that A(pk)pk + (I - A(pk))j - pk. 

Because pk is a supersolution to (F, it must be the 
case that for all defaulting nodes i, (flpk + e)i < Pk 

This implies, combined with the definition of A, that 
(T (pk) = FFP k (pk). By the induction hypothesis, pk is a 
supersolution to (D. Therefore, pk is a supersolution to 
FF k. This fact implies that pk+l, the fixed point of FF kk, 
is less than or equal to pk. Because pk+l < pk, the set 
of nodes at which default occurs must be no smaller 
under pk than under pk+l. Now, if the set of nodes is the 
same, then (D (pk+l) = FFPk (pk), which implies, because 
by definition pk+l is a fixed point of FF pk(pk), that pk+l 

is a fixed point of (D, and thus trivially a supersolution. 
If the set of defaulting nodes is larger under pk+l, then 
some nodes that paid their obligations in full under 
pk default under pk+l, and the rest of the nodes either 
default under both payment vectors or under neither. 
Thus, for those nodes such that default occurs under 
pk+l but not pk, 4(pk+l)i < pk+l. For all other nodes, the 
fixed-point construction implies that 4)(pk+l), = Pk+1 
Thus, we have that p' is a supersolution to (F and that 
(pl) is a weakly decreasing sequence. 

As shown in the previous paragraph, if the set of 
defaulting nodes is the same under both pi+1 and pi, 
then (i) pi is a fixed point of (D, and (ii) the sequence 
will remain constant after pi+'. If pi fails to be a fixed 
point of the map (F, then a node that did not default 
under pi defaults under pi+'. In this case, the number 
of defaulting nodes, specified in the next A matrix, will 
increase in the next iteration. Because there are only n 
nodes and at most n -1 can default in any supersolu- 
tion, it must be the case that the payment vector pro- 
duced by the algorithm ceases to change after at most 
n iterations. Because the sequence is constant only at 
fixed points, the clearing vector is attained in at most n 
iterations. [1 

In addition to being computationally efficient, the 
algorithm has an economic interpretation: The step in 
the algorithm at which a node is added to the default- 
ing set can be used as a measure of the node's financial 
health. Nodes that default under the first trial solu- 
tion are fundamentally insolvent because they cannot 

survive even with no systemic risk exposure. Nodes 
that fail in the next wave are quite fragile in that they 
fail whenever fundamentally insolvent nodes fail. The 
third-order failures are triggered by the failure of frag- 
ile, but not fundamentally unsound nodes, and so on. 
Thus, nodes are partitioned by the algorithm into sol- 
vent nodes and 1, 2... , n - ith order failures. 

3.2. Programming Characterization 
Next we will show that clearing payment vectors 
can be identified by solving almost any programming 
problem that places weight on maximizing payments 
by all nodes in the system subject to the limited lia- 
bility condition. Formally stated, we associate with 
each financial system (FL, p, e), and each function 
f: [0, p i] -J, the programming problem 

P(Fl -, e, f) Max f (p) 
st. p<JfITp+e 

The link between this programming problem and 
clearing payment vectors for the financial system is 
provided by the following lemma. 

LEMMA 4. If f is strictly increasing, then any solution 
to P(FL, P, e, f) is a clearing vectorfor thefinancial system. 

PROOF. If p* solves P(Hl, p-, e, f), the fact that p* is a 
feasible solution to P(Hl, p, e, f) ensures that p* satis- 
fies the limited liability condition for a clearing pay- 
ment vector. If absolute priority were not satisfied, say 
at node i, then it would be the case that pi* p- and 

(Tp* +e-p*)i > 0. 

Consider the vector pe, which is equal to p* in all com- 
ponents except i, and which, for i, is given by p* + E, 
where E is chosen sufficiently small to ensure that lim- 
ited liability remains satisfied. Because 

(nTp, 
? e - p-)j- (ITp* + e -p)j = EFlij > 0, 

Pe is feasible. Because Pe is at least equal to p* in all its 
components and greater than p* in one of its compo- 
nents, and because f is strictly increasing, it must be 
the case that f(p*) < f(PE), contradicting the supposi- 
tion that p* is a solution to P(FI, p, e, f). 1 

Because clearing vectors are determined entirely by 
the limited liability and absolute priority conditions, it 
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follows that these two conditions always produce pay- 
off vectors that maximize the total extraction of pay- 
ments from the nodes in the financial system. Because 
the clearing vector is unique in any regular financial 
system, the result also implies that in regular finan- 
cial systems, all decision makers who prefer more to 
less will agree that the clearing vector maximizes their 
objectives. Thus, for example, whether one attempts to 
maximize cents on the dollar paid or total payments, 
or payments weighted by a biased weighting scheme 
that favors some nodes over others, the end result 
will be the same-the selection of the clearing vector. 
The above result shows also that, for a regular finan- 
cial system, solving the programming problem given 
by P(II, p, e,f ) for a suitably chosen function f, say 
a linear function with positive weighting constants, 
is a way of computing the clearing vector. In fact, 
this is exactly the approach the monetary authorities 
in Kuwait took to clearing the financial net after the 
crash of the al-Manakh market. Given tlhe n - 1-step 
convergence of the fictitious default algorithm dis- 
cussed above, however, this programming approach 
may not be an efficient way of computing clearing vec- 
tors, given that only one variable will be introduced 
into the basic solution on each pivot. Algorithms that 
exploit the economics of the problem, such as the ficti- 
tious default algorithm developed above, allow for the 
simultaneous introduction of many defaulting nodes 
in a single step. 

4. The Comparative Statics of the 
Clearing System 

The first question we will address is how this clearing 
payment vector changes with changes in the exoge- 
nous parameters of the model. We first consider the 
relationship between this clearing payment vector and 
the operating cash flows received by the system e, 
while holding the nominal liability matrix L (or equiv- 
alently II and p) constant. The basic characterization 
of this relationship is provided below. 

LEMMA5. The clearing payment vector is a con- 
cave, increasing ftunction of operating cash flow vec- 
tor and the level of nominal liabilities. In other words, 

the function e -- FIX(.((; H, i, e)), and the func- 
tion p FIX(I(.; H, 1, e)) are concave, increasing, and 
nonexpansive. 

PROOF. For the purposes of this proof, define 
the function F: [O,p-] x 9" :-- [O,p-] by F(p,e) 
F(p, e; H, j). The clearing payment vector is given 
by the function f: St+ - [0, p], defined by f(e)= 
FIX(F(., e)). A theorem from Milgrom and Roberts 
(1994) shows that the fact that F is increasing in e 
(established in the proof of Theorem 1) implies that f 
is increasing. To see that f is concave and nonexpan- 
sive, define a sequence of functions, (f,,(e)), =, induc- 
tively as follows: 

f,1(e) = F(f,-1(e), e), fo(e) 0. 

For each fixed e E 9i++, f, (e) is just the nth iteration 
of the map p -- 1(p; HI, p, e) function starting at the 
initial payment vector 0. Thus, standard results on the 
convergence of iterates of monotone increasing oper- 
ators show that f, (e) t f(e), for all e. Using the fact 
that F is nondecreasing, jointly concave in p and e, 
and nonexpansive, induction shows that, for all n, f,1 
is concave and nonexpansive. Thus, f is the point- 
wise limit of nonexpansive concave functions, and 
thus concave and nonexpansive. The above argument 
establishes the claim of the lemma for the function 
e - FIX(D(.; H, p, e)). The proof of the claim for pJ 
FIXQF(.; H, p, e)) and HI - FIX(QI(.; H, p, e)) is identi- 
cal and thus will be omitted. O 

Note that in the standard single-period/single-firm 
financial model, the payment to debtholders equals 
min[-, e], where e is the firm's operating earnings 
and - is the level of the firm's nominal liabilities. 
Thus, the payment received by debtholders is a con- 
cave, increasing, nonexpansive function of the firm's 
operating cash flow and the level of nominal lia- 
bilities. Lemma 5 shows that these qualitative fea- 
tures of the debt payments in single-firm settings are 
inherited by the debt payment vectors of multinode 
clearing systems. This result has a number of direct 
implications. For example, suppose we allowed for 
stochastic operating cash flows. In this case, concav- 
ity of the payment stream in operating cash flows 
implies that increases in the riskiness of operating cash 

MANAGEMENT SCIENCE/Vol. 47, No. 2, February 2001 245 



EISENBERG AND NOE 
Systemic Risk in Financial Systems 

flows, in the sense of second-order stochastic domi- 
nance (Huang and Litzenberger 1988, Chap. 2), would 
reduce the expected payments on each debt claim. In 
other words, for all nodes i, E[Pj] would fall with an 
increase in the risk of the operating cash flow vector, 
e. If we, in addition, imposed the standard assump- 
tions for contingent claim pricing, e.g., that the finan- 
cial markets are statically or dynamically complete, 
then the initial value of each node of the financial sys- 
tem would be given by its discounted expected value 
under the market pricing or "risk-neutral" probability 
measure (e.g., Duffie 1988, Chap. 22). Thus, our con- 
cavity result would imply, in this setting, that increases 
in risk under the pricing measure would lower the 
value of each traded debt claim. 

The results for equity valuation are more interesting. 
The application of option pricing in the single-firm 
setting, as often taught in first-year finance courses, 
shows that equity may be priced as a call option on 
the value of the firm with the strike and maturity date 
equal, respectively, to the face value of 0-coupon debt 
and its maturity date. For the single firm, an increase 
in riskiness as represented by the volatility of the value 
of the firm (debt plus equity) not only decreases the 
value of debt, but also increases the value of equity. 
However, such risk shifts will not lead unambiguously 
to increased equity values for the nodes in a multi- 
firm system. In a multifirm system, all debt claims are 
owned by stockholders at some nodes of the system. 
This implies that increases in risk across the system 
have two effects. First, they raise the value of equity 
by lowering the value of the debt payments made to 
other nodes. Second, the increased risk also lowers the 
value of paymentsfrom other nodes. Thus, the effect of 
risk increases on individual node equity is ambiguous. 
Because the total equity value of the system equals 
total operating cash flows, an increase in the volatil- 
ity holding the mean constant has no effect on over- 
all equity value. However, the lowered value of debt 
tends to reduce the value of the equity of those firms 
that are net creditors, and increase the value of the 
equity of net debtors. 

Next, note that all of our results can also be inter- 
preted in terms of node value. To understand this, 
note that the terminal-date equity in a financial sys- 
tem is FITp* + e-p*, and that the debt is p*(e), where 

p* is the clearing vector for the financial system. Thus, 
the total terminal value of any node in the system is 
the value of debt plus the value of equity, or FITp* + e. 
Total value of all nodes in the economy is thus just 
1. (FITp* + e) = 1 (p* + e), the sum of the value of equity 
and the value of all payments on liabilities under the 
equilibrium clearing vector. 

Using this fact we can obtain another consequence 
of Lemma 5 that relates to the effect of cash flow 
volatility on the aggregate value of nodes in the finan- 
cial system. Since, in an arbitrage-free economy, the 
value of a node is just the discounted expectation of 
its terminal value under the market-pricing measure, 
and because the function mapping cash flows to node 
value, e -- FITp* (e) + e, is concave, increases in volatil- 
ity, under the market-pricing measure, adversely affect 
firm value. 

COROLLARY. Increases in the volatility (under the 
market-pricing measure) of operating cashflows lowers the 
initial value of all nodes in the system. 

Thus, node value (debt plus equity) is reduced 
by economic volatility, even though, in our analy- 
sis, there are no dissipative consequences of financial 
distress even when markets are perfect and friction- 
less. Volatility reduces the size of payments between 
nodes, and this reduces the market value of nodes. 
Because, clearly, in the frictionless market setup spec- 
ified above, volatility has no adverse overall welfare 
consequences, this result should be interpreted as a 
caution against interpreting the reduction in corporate 
value caused by risk as reflecting either market imper- 
fections or irrational asset pricing. 

Next, we show that, in some sense, convex combi- 
nations of financial systems can never have default 
or payment rates inferior to the worse of the two or 
superior to the better of the two. To permit a precise 
formulation of this idea, let p*(II, p, e) be the clearing 
payment vector associated with an arbitrary financial 
system (II, p-, e); that is, p*(FI, p, e) -FIX[1(.; p, e)]. 
A A-convex combination of the financial systems 
(II', p', e') and (II", p", e") is the financial system 
("IA, PA/ eA), defined by 

([A, PA, eA) = A(LI, p, e') + (1-A)(LI, p, e"), 
A E [0,1]. 
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LEMMA 6. Suppose that the financial system 
(-IA, PA eA) is a A-convex combination of the financial 
systems (Li', p', e') and (LI", p", e"), then the equilibrium 
clearing payment vectors of the financial systeils, p*, sat- 
isfy the following inequalities: 

p*( p, el) A p* (,- Ip, e") ' P*(HA PAA) 

< p*( JI1, p', el) v p*(H7 pA, eA). 

PROOF. Note that, for all i E N, the function A - 
A(p; IA, PA, eA)i is linear, and therefore monotone. 

Thus we have that 

41(p; ', p', el) A 41(p; ", p, e") ' 1)(P; A PA eA) 

< ()(p; I', p', e') v '1(p; IT",p, e"). 

Let 

H-(p) 4)(p; 171', p, e') A 41(p; LI", Ip, e"); 

H+(p) _ 4(p; [I', p', e') v 4I(p; LI", p', e'). 

Note that H- and H+ are monotone increasing maps 
defined on [0, p] with fixed points in this order inter- 
val. If p+ is a fixed point of H+ and p- is a fixed point 
of H-, then the above inequality implies that 

p <p *(IAeA) <P?- 

Because p* (II', p', e') v p* (LI", p"', e") is a supersolution 
to H+, i.e., 

p+ < P*(JI e') vp* (I",i"e"), 

similarly, because p*(II', p', e') Ap* (II", p"', e") is a sub- 
solution to H-, 

p- > p*(f, p', e') Ap*(LI", p3", e"). 

The inequalities follow. CL 
Lemma 6 is a fairly weak result. However, a stronger 

characterization, such as a concavity result for finan- 
cial systems (e.g., a result showing that convex com- 
binations of systems yield higher payment rates than 
convex combinations of the payment vector of the 
two systems being combined), cannot be obtained. In 
fact, it is easy to construct counterexamples to this 
stronger characterization.' The failure of concavity 
occurs because the map (II, p) -> 41(p; II, p, e) is not 
concave, although it is concave in each of the variables, 
II and p, separately. 

1 A numerical counterexample is available on request. 

5. Possible Extensions and 
Concluding Remarks 

In this paper, we provide conditions for the existence 
and uniqueness of a clearing vector for a complex 
financial system, analyze the properties of the clearing 
vector, and provide comparative statics describing the 
relationship between the clearing vector and under- 
lying parameters of the financial system. This work 
represents a contribution to our understanding of the 
modeling of complex financial systems featuring cycli- 
cal obligations between the parties. However, it is only 
a first step in the development of a research program 
in this area. In fact, one of the virtues of our analysis 
is that it can be extended in many directions. Exten- 
sions fall into three broad categories: (i) utilizing the 
current model for valuation and risk analysis, (ii) deal- 
ing with more complex legal/institutional structures, 
and (iii) incorporating dynamics. 

The simplest extension of the present analysis is 
to use the formulae developed in the paper to value 
financial claims and assess default probabilities for 
financial systems. Given a structure of liabilities, the 
value of the debt and equity claims for a fixed level 
of operating cash flows at the terminal date is deter- 
mined by our model. If we assume operating cash 
flows follow a standard stochastic process between the 
initial date and the clearing date, then this stochastic 
process, combined with the terminal boundary condi- 
tions imposed by our model and standard risk-neutral 
valuation technology, can generate prices for the debt 
and equity of the nodes in the system (e.g., Duffie 
1988). In addition, probabilities of default and default 
correlation can be computed easily. In addition, the 
distribution of cash flows to each of the nodes also 
can be computed and inverted to yield value-at-risk 
estimates. 

Extending our results to allow for more complex 
legal and institutional structures is almost as trans- 
parent. For example, the nodes in the system could 
be allowed to hold intercorporate equity claims as 
well as intercorporate debt claims. In this case, inflows 
would be augmented by equity as well as debt inflows. 
Because equity claims are linear, this extension would 
not complicate our analysis significantly. Multiple 
priority classes could be accommodated by our frame- 
work. To accommodate multiple priority classes, we 
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would utilize a sequential clearing procedure in which 
first a clearing vector for senior claims is found, then 
the residual value is treated as the operating cash 
flows of the system when clearing of the next highest 
priority claim, and so on. Another important exten- 
sion would be to allow for violations of absolute pri- 
ority, a significant factor in corporate bankruptcies, 
although not in some of the financial system clearing 
systems addressed earlier. The key assumptions that 
drive most of our results are that creditor claims are 
continuous and increasing in the value of the node. If 
violations of absolute priority are the product of effi- 
cient multilateral bargaining, as assumed in much of 
the literature (e.g., Brown 1989), then creditor claims 
are likely to have this property. In systems where there 
are substantial fixed costs of financial distress, conti- 
nuity is lost and, for this reason, one would expect 
to obtain more opaque results: for example, the lack 
of a unique clearing vector even when mild regular- 
ity conditions, such as those used in this paper, are 
imposed. 

The most difficult direction of extension would be 
to allow for more than one clearing date, and thus 
incorporate true dynamics. In principle the extension 
is straightforward and would proceed as follows. First, 
allow for intercorporate equity and assume that nodes 
that default at a given date become wholly owned 
by their creditors from that date forward. Next, allow 
all nodes to borrow from a node outside the sys- 
tem that itself is not subject to default risk. The out- 
side node, or "central bank," would provide funds 
at a market-clearing rate. Thus, nodes would only 
default when, at the clearing vector, the value of future 
inflows is less than the value of liabilities. Using this 
motif and backward induction, one could recursively 
solve for clearing vectors. Uncertainty could be intro- 
duced into this framework by recursively comput- 
ing the expected value of future inflows to deter- 
mine the current economic value of the node and 
thus solve the default problem for successively ear- 
lier periods. Of course, this sort of extension of our 
analysis, through the "curse of dynamic program- 
ming," would greatly increase the complexity of the 
analysis. 
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Appendix 1 
PROOF OF THEOREM 2. By Theorem 1, a greatest and least clear- 

ing vector exists. By definition, the greatest clearing vector, p+, is 
at least weakly greater than the smallest clearing vector, p, i.e., 

+> P . (A1.1) 

Suppose to obtain a contradiction that the greatest and least clear- 
ing vectors are unequal, i.e., 

P+ 7O P-. (A1.2) 

Let E+(EB-) represent the value of equity under clearing vector 
p+ (p-). Note that, by Theorem 1, the value of equity at all nodes 
is the same under all clearing vectors, i.e., 

Vj, Ej+ = Ej-. (A1.3) 

A straightforward consequence of (A1.3) is that the set of zero 
equity value nodes under p+ equals the set of positive equity value 
nodes under p-. Thus, without ambiguity we can apply the terms 
"zero equity value" and "positive equity value" to nodes without 
specifying the clearing vector. 

By absolute priority, it must be the case that, for all nodes j 
that have positive equity value, pj+ = py- = j. Thus, if (A1.1) and 
(A1.2) hold, it must be the case that there exists a zero equity value 
node, i, such that 

P ' (A1.4) 

Regularity means that the risk orbit of every node contains some 
node with a positive income. By the hypotheses of regularity and 
Lemma 3, the risk orbit of i must thus contain a positive equity 
value node. Thus, for some I E {1, . .. , n-l), there exists a path 

i = i0 - i1 -> - -> il-1 -> il III,l (A1.5) 

where all nodes in the path are zero equity value nodes except for 
the last node, node ;n, and node in has positive equity value. 

First we claim, by mathematical induction, that p+ -p- > 0 for 
nodes io .k ... i1-1. The assertion is true by (A1.4) for k = 0. Now 
suppose the assertion is true at k - 1. Because the nodes io ...i1 
are zero equity value nodes, their payments equal their inflows. 
Thus for node 1k, k > - 1, it must be the case that 

+ 
= E11iikPi + ek and Pi = L 'kPJ + ek 

i=1 j=j 
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Thus, 

Pi+ - Pik = ELni'k (PJ+ -P7) (A1.6) 
j=1 

By the induction hypotheses p, -i > 0. Because, 1k-1 ik, 

1ik-1 ik > 0. Thus, 

rlik1 lik (Pj -P ) > ?' (A1.7) 

Expressions (A1.1), (A1.6), and (A1.7) show that p, -pj > 0. This 
result establishes the conclusion of the induction argument. This 
argument implies, in particular, that the last zero equity value node 
in the path, i11, satisfies the conclusion of the argument, that is, 

P, 
- 

Pi 1' (Al.8) 

Next, we show that (A1.8) implies that E+ > E,,. By the definition 
of equity value, 

E,+-E,, = L n1(pj+ -p) - (p+ -p,). (A1.9) 
j=j 

Because m is a positive equity value node, absolute priority implies 
that p+ = p,= p,; thus, 

In = pill III;~~~~~~~~~~~~~l 
E,+ -E,= E- 1-j,, (pj+-pj-). (A1.10) 

j=1 

Because, il1 -m , Hi1,_.l > 0. Thus, 

Ii,_ ,, P--P- (A1. 11) 

Because, (A1.1), (A1.10), and (Al11) hold, it must be the case that 
E,+> E,. This assertion contradicts (A1.2), and this contradiction 
shows that the clearing vector must be unique. O 

Appendix 2 Example of Nonuniqueness of the 
Clearing Vector in an Irregular Financial System 
Some intuition for the importance of regularity for the uniqueness 
result is provided by the following example. Suppose the system 
contains two nodes, 1 and 2, both without any operating cash 
flows. Moreover, each node has nominal liabilities of 1.00 to the 

other node. In our notation we have that e = (0, O)T', = (1, 1), and 

[1 ?] 

This system is not a regular financial system, because the single 
risk orbit of the system 11, 21 is not a surplus set. In this example, 
any vector of the form Pt = t(1, 1), t E [0, 1] is a clearing vector 
for the system. In contrast, if we modify the example by giving 
one cent to the first node by setting e' = (0.01, 0), we see that the 
unique clearing vector is given by p* = (1.00, 1.00). The payment 
vectors Pt, t < 1, do not satisfy the absolute priority condition under 
given e' because they leave Node 1 with an equity balance of 
0.01 despite the fact that Node 1 has not completely satisfied its 
nominal obligation to Node 2. 
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