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Systemic risk in banking networks without2

Monte Carlo simulation3

James P. Gleeson, T. R. Hurd, Sergey Melnik, and Adam Hackett4

Abstract An analytical approach to calculating the expected size of contagion5

events in models of banking networks is presented. The method is applicable to6

networks with arbitrary degree distributions, permits cascades to be initiated by the7

default of one or more banks, and includes liquidity risk effects. Theoretical results8

are validated by comparison with Monte Carlo simulations, and may be used to9

assess the stability of a given banking network topology.10

1.1 Introduction11

The study of contagion in financial systems is currently very topical. “Contagion”12

refers to the spread of defaults through a system of financial institutions, with each13

successive default causing increasing pressure on the remaining components of the14

system. The term “systemic risk” refers to the contagion-induced threat to the fi-15

nancial system as a whole, due to the default of one (or more) of its component16

institutions, and it has become a familiar term since the failure of Lehman Brothers17

and the rescue of AIG in the autumn of 2008.18
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Interbank (IB) networks constitute financial systems that range in size from19

dozens to thousands of institutions (Boss et al., 2004; Upper and Worms, 2004;20

Wells, 2002). An IB network may be modelled as a (directed) graph; the nodes or21

vertices of the network are individual banks, while the links or edges of the network22

are the loans from one bank to another. Such systems are vulnerable to contagion ef-23

fects, and the importance of studying these complex networks has been highlighted24

by Andrew Haldane, Executive director of Financial Stability at the Bank of Eng-25

land in his speech (Haldane, 2009), in which he posed the following challenge: ‘Can26

network structure be altered to improve network robustness? Answering that ques-27

tion is a mighty task for the current generation of policymakers’.28

The study of complex networks has advanced rapidly in the last decade or so,29

with large-scale empirical datasets becoming readily available for a variety of social,30

technological, and biological networks (see Newman, 2010, 2003; May et al., 2008,31

for reviews). By virtue of their size and complexity, such networks are amenable32

to statistical descriptions of their characteristics. The degree distribution pk of a33

network, for example, gives the probability that a randomly-chosen node of the net-34

work has degree k, i.e., that it is connected by k edges to neighbours in the network.35

While classical random graph models of networks (Erdös and Rényi, 1959) have36

Poisson degree distributions, many empirical networks have been found to possess37

“fat-tailed” or “scale-free” degree distributions, where the probability of finding38

nodes of degree k decays as a power law in k (pk ∝ k−β ) for large k, in contrast to39

the exponential decay with k of the Poisson distribution (Newman, 2003).40

This structural (topological) aspect of real-world networks has important impli-41

cations for dynamical systems which run on the nodes of the network graph, see42

Barrat et al. (2008) for a review. For example, the rate of disease spread on net-43

works depends crucially on whether or not they have fat-tailed degree distributions.44

As a consequence, there is considerable interest in the effect of network structure45

on a range of dynamics. Cascade-type dynamics occur whenever the switching of a46

node into a certain state increases the probability of its neighbours making the same47

switch. Examples include cascading failures in power-grid infrastructure (Motter48

and Lai, 2002), congestion failure in communications networks (Moreno et al.,49

2003), the spread of fads on social networks (Watts, 2002), and bootstrap perco-50

lation problems (Baxter et al., 2010), among others (Lorenz et al., 2009). Building51

on earlier work on the random field Ising model of statistical physics (Dhar et al.,52

1997), the expected size of cascades has recently been determined analytically for53

a range of cascade dynamics and (undirected) network topologies (Gleeson, 2008b;54

Gleeson and Cahalane, 2007). Our goal in thus paper is to extend and develop these55

methods for application to default contagion on (directed) interbank networks.56

Although the importance of network topologies has been recognized for many57

years in the finance and economics literature (e.g., Allen and Gale, 2000), it is only58

with the publication of empirical datasets for large-scale interbank networks (Boss59

et al., 2004; Upper and Worms, 2004; Wells, 2002) that theoretical models have60

moved beyond small networks and simple topologies. In this paper we focus on61

models for contagion on interbank networks exemplified by those of Gai and Ka-62

padia (2010) (“GK” for short) and of Nier et al. (2007) (“NYYA” for short), which63
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have attracted significant recent attention (May and Arinaminpathy, 2010; Haldane64

and May, 2011). We develop an analytical approach to calculating the expected size65

of contagion events in networks of a prescribed topology. The calculation is “semi-66

”analytical because it requires the iteration of a nonlinear map to its fixed point,67

but it nevertheless offers significantly faster calculation than Monte Carlo simu-68

lation. This reduces the computational burden of interbank network simulations,69

hence making network theory more useful for practical applications. Moreover, the70

analytical approach gives insights into the mechanisms of contagion transmission in71

a given network topology, and enables formulas relating critical parameter values to72

be derived.73

Our work extends the seminal paper of May and Arinaminpathy (2010) by mov-74

ing beyond their assumption that every bank in the network is identical (i.e., that75

all banks have the same numbers of debtors and creditors). As shown by May and76

Arinaminpathy, this “mean-field” assumption gives reasonably accurate results for77

Erdös-Rényi random networks, which have independent Poisson distributions for78

in- and out-degrees. This means that each bank in such a network is similar to the79

“average” bank. However, real-world banking networks often have fat-tailed degree80

distributions (Boss et al., 2004), meaning that there is a significant probability of81

finding a bank with in-degree (or out-degree) very different to the mean degree. To82

analyze contagion on such networks we need to move beyond the mean-field as-83

sumption. Moreover, unlike May and Arinaminpathy, our formalism allows us to84

consider how the extent of the contagion is affected by the size of the bank which85

initiates the cascade, and so to inform the question of which banks are ‘too big to86

fail’.87

The remainder of this paper is structured as follows. In Section 1.2 we review the88

models of GK and NYYA. Sections 1.3 and 1.4 develop a general theoretical frame-89

work for analyzing such models, while in Section 1.5 we compare the results of our90

analytical approach with full Monte-Carlo simulations, and discuss conclusions in91

Section 1.6. Three appendices give details of several results that are not crucial to92

the main flow of the paper.93

1.2 Models of contagion in banking networks94

Fig. 1.1 Skeleton structure of the network locality of bank i. Bank i is in the ( j,k) = (3,2) class,
since it has 3 debtors and 2 creditors in the interbank (IB) network.

We consider simplified models of banking networks, as introduced by GK and95

NYYA. As noted in May and Arinaminpathy (2010), such “deliberately oversim-96

plified” mathematical models are caricatures of real banking networks, but may97

nevertheless lead to useful insights. These model networks can be considered as98

generated in two steps. First, a “skeleton” structure of N nodes (representing banks)99
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and directed edges (to represent the interbank positions) is created. This structure100

should be a realization from the ensemble of all possible directed networks which101

are consistent with the joint probability p jk (the probability that a randomly chosen102

node has j in-edges and k out-edges). We choose the following convention for the103

direction of edges: an arrow on an edge representing an interbank position (“loan”104

for short) points from the debtor bank to the creditor bank, see Figure 1.1. This con-105

vention ensures that shocks due to defaults on loans travel in the direction of the106

arrows on the edges. Thus p jk is the probability that a randomly-chosen bank in the107

system has j debtors (or, more strictly, that it has j asset loans, since multiple links108

are possible) and k creditors (strictly speaking, k liability loans).109

In the second step, each node (bank) of the skeleton structure is endowed with a110

balance sheet and the edges between banks are weighted with loan magnitudes. This111

process is performed in such as way as to ensure the banking system so represented112

is fully in equilibrium (i.e., assets exceed liabilities for each bank) in the absence113

of exogenous shocks. Once the banking networks are generated, the cascade dy-114

namics can be implemented to examine the effects of various types of shocks. In115

Monte Carlo implementations, each step of the process (skeleton structure/balance116

sheets/dynamics) is repeated many times to simulate the ensemble of possible sys-117

tems. The most common output from such simulations is the expected fraction of118

defaulted banks in steady-state (i.e., when all cascades have run their course) for the119

prescribed p jk network topology.120

We stress that this two-step procedure is only one of many possible alternatives121

for generating an ensemble of random networks. However, it is easily explained and122

reproducible by other researchers, and proves amenable to analysis. As a “deliber-123

ately oversimplified” model of the true complexities of banking networks, it is not124

suitable for calibration to real network data in its current form, but may nevertheless125

provide a starting point for improving our understanding of the interplay between126

network topology and default contagion cascades.127

1.2.1 Generating model networks128

We first discuss the creation of the skeleton structure for N banks (or nodes) consis-129

tent with a prescribed p jk distribution. It is usually assumed that N is large (indeed130

theoretical results are proven only in the N →∞ limit), but in practice values of N as131

low as 25 have been successfully examined (see Results section). In each realization,132

N pairs of ( j,k) variables are drawn from the p jk distribution. For each pair ( j,k), a133

node is created with j in-edge stubs and k out-edge stubs. Then a randomly-chosen134

out-stub is connected to a randomly-chosen in-stub to create a directed edge of the135

network. This process is continued until all stubs are connected. Note it is possible136

under this process for multiple edges to exist between a given pair of nodes, or for a137

node to be linked to itself, but both these likelihoods become negligibly small (pro-138

portional to 1/N) as N → ∞. Note also that interbank positions are not netted, so139
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directed edges may exist in both directions between any two nodes of the banking140

network.141

The second step of the network generation process, the creation of balance sheets

Fig. 1.2 Schematic balance sheet of banks in the ( j,k) = (3,2) class.

for each bank node, can vary considerably from model to model. In both the GK
and NYYA models, the balance sheet quantities of a node depend on its in-degree
(number of debtors) j and out-degree (number of creditors) k; we collectively refer
to all banks with j debtors and k creditors as the “( j,k)-class”. The total assets a jk
of a ( j,k)-class bank are the sum of its external assets e jk (such as property assets),
and its interbank assets, i.e., the sum of its j loans to other banks, see Fig. 1.2. The
liabilities side of the balance sheet is composed of the interbank liabilities (sum of
the k loans taken from other banks) and customer deposits. The amount by which
the total assets exceed the total liabilities is termed the net worth of the bank, and is
denoted c jk for banks in the ( j,k) class. Within both the GK and NYYA models the
net worth c jk is assumed (in the initial, shock-free, state) to be proportional to the
total assets a jk of the bank:

c jk = γ a jk, (1.1)

where the constant of proportionality γ is termed the “percentage net worth” or142

“capital reserve fraction”. Note that shareholders’ funds and subordinated debt are143

not considered here as useful to the loss absorption capacity; thus only three cat-144

egories (interbank, customer deposits, and capital) appear on the liabilities side of145

the balance sheets.146

An important difference between the GK and NYYA models is in how they as-
sign values to loans, see Fig. 1.3. Recall the number of loans is determined by the

Fig. 1.3 Loan sizes in each of the models for a bank in the ( ji,ki) class. In the GK model, all asset
loans are of size 0.2/ ji; liability loans are determined endogenously (by the random linking of
in-stubs to out-stubs described in Section 1.2.1). In the NYYA model, every loan in the network is
of equal size w.

number of directed edges in the skeleton structure of the first step, but there re-
mains considerable freedom in allocating the weight to each edge. In the GK model
(Fig. 1.3(a)), each bank is assumed to have precisely 20% of its assets as interbank
assets, and all in-edges to a ( j,k)-class node (i.e. all asset loans of a ( j,k) bank) are
assigned equal weight 0.2/ j (in units where the total assets of every bank equals
unity):

a jk = 1, e jk = 0.8 for all ( j,k) classes. (1.2)

This case represents a maximum-diversity lending strategy, where banks give loans147

of equal size to all their debtors (Gai and Kapadia, 2010).148
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GK NYYA
total assets of a ( j,k)-class bank a jk = 1 a jk = ẽ+wmax( j,k)
net worth of a ( j,k)-class bank c jk = γa jk c jk = γa jk

size of asset loans of ( j,k)-class bank 0.2
j w

external assets of ( j,k)-class bank e jk = 0.8 e jk = ẽ+wmax(0,k− j)

Table 1.1 Summary of main balance sheet quantities within the GK and NYYA models (see Gai
and Kapadia (2010) and Nier et al. (2007) for details).

In the model of NYYA, on the other hand, the same weight w is assigned to all
directed edges in the network (Fig. 1.3(b)). A ( j,k)-class node therefore has inter-
bank assets of jw, and interbank liabilities of kw. To ensure all banks are initially
solvent, NYYA describe a process for distributing a pool of external assets over the
banks (see Nier et al. (2007) for details). As a consequence, the resulting total assets
and external assets may respectively be written as

a jk = wmax( j,k)+ ẽ, e jk = a jk − jw for all ( j,k) classes, (1.3)

where ẽ is related to the pool of external assets. The balance sheet quantities and149

their definitions within the two models considered are summarized in Table 1.1.150

1.2.2 Contagion mechanisms151

Having generated the banking system via the network skeleton structure and bal-152

ance sheet allocations, the dynamics of cascading defaults can then be investigated.153

Recall that the banks’ balance sheet have been set up so that the system is initially154

in equilibrium, i.e., total assets for each bank equals its total liabilities plus its net155

worth. The effect of an exogenous shock is simulated, typically by setting to zero156

the external assets of one (or more) banks. The shocked bank(s) may be chosen ran-157

domly from all banks in the simulation, or a specific ( j,k)-class may be targeted—158

the latter case allows us to investigate the impact of the size of the initially shocked159

bank upon the final cascade size (see Results section). The initial exogenous shock160

is intended to model, for example, a sudden decrease in the market value of the ex-161

ternal assets held by the bank. The decrease may lead to a situation where the total162

liabilities of the bank now exceed the total assets: in this case, the bank is deemed163

to be in default As a consequence, the bank will be unable to repay its creditors164

the full values of their loans; the loans from these creditors to the defaulted bank are165

termed “distressed”. The creditors (in network terminology, the out-neighbors of the166

original “seed” bank) experience a shock to their balance sheets at the next timestep167

due to writing-down the value of the distressed loans. If at any time the total of the168

shocks received by a bank (i.e. the total losses to date on its loan portfolio) exceeds169

the net worth of the bank, then its liabilities exceed its assets, and it is deemed to be170

in default. The defaulted bank then passes shocks to its creditors in the system, and171
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so the cascade or contagion may spread through the banking network. Timesteps are172

modelled as being discrete, with possibly many banks defaulting simultaneously in173

each timestep, and with the shocks transmitted to their creditors taking effect in the174

following timestep.175

The mechanism of shock transmission is treated differently by GK and by176

NYYA, and this is an important distinction between the models.177

1.2.2.1 Shock transmission in the GK model178

In the GK model, defaulted banks do not repay any portion of their outstanding in-179

terbank debts because the timescale for any recovery on these defaulted loans is as-180

sumed to exceed the timescale of the contagion spread in the system. Consequently,181

all creditors of a bank which defaulted in timestep n receive, at timestep n + 1, a182

shock of magnitude equal to the total size of their loan to the defaulted bank. If183

multiple banks defaulted at timestep n, then a bank which is a creditor of several184

of these will receive multiple shocks at timestep n + 1. Specifically, if the creditor185

bank is in the ( j,k) class, then it receives a total shock of size 0.2µ/ j, where µ is186

the number of its asset loans which defaulted at timestep n (since each loan is of187

size 0.2/ j, see Table 1.1). This process of shock transmission continues until there188

are no new defaults, at which point the cascade terminates.189

1.2.2.2 Shock transmission in the NYYA model190

The NYYA model allows for the possibility of non-zero recovery on defaulted loans.
Suppose the total shock received by a ( j,k)-class bank from all its defaulted debtors
is of size σ , and this shock is sufficient to make the bank default, i.e., σ > c jk.
The amount σ − c jk by which total liabilities now exceed total assets for the bank
is distributed evenly among the k creditors of the bank, with the proviso that no
creditor can lose more than the size w of its original loan (recall every loan in the
NYYA system is the same size w, see Table 1.1). Thus the shock transmitted to each
creditor of the defaulted bank is

min
(

σ − c jk

k
,w

)
. (1.4)

As in the GK model, shocks transmitted from banks which default at timestep n191

will affect the creditor banks at timestep n+1, and a cascade of banks failures may192

ensue. This cascade mechanism bears some resemblance to the “fictitious default”193

cascade used by Eisenberg and Noe (2001) (“EN” for short) to determine the clear-194

ing payment vector in a system with defaults, see Appendix A. However, the NYYA195

cascades are not identical to the EN cascades. When a bank defaults in the NYYA196

model, it transmits a once-off shock to each of its creditors, but then plays no further197

role in the dynamics of the system. In particular, any shocks received by this bank198

subsequent to its default do not affect its creditors. In contrast, the EN clearing algo-199
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rithm effectively requires defaulted banks to transmit newly-received shocks to their200

creditors. Although the EN algorithm is not the main focus of this paper, we present201

in Section 1.5 (see Figures 1.5(a) and 1.6(a)) numerical results for the fraction of202

defaults in EN cascades. The results are qualitatively similar, though not identical,203

to those obtained using the NYYA contagion dynamics, the difference being most204

notable in cases where a large fraction of the network is in default.205

1.2.3 Liquidity risk206

In both the GK and NYYA dynamics, it is possible to include liquidity risk effects
in a simple fashion. Suppose that at timestep n, a fraction ρn of all banks in the
system have already defaulted. It is plausible that the market value of external assets
(e.g., property) will be adversely affected by the weakened banking system. A bank
needing to liquidate its external assets may, for example, find it difficult to realise
the full value in a “fire sale” scenario. To model the effects of this system-wide
effect, we assume that at timestep n the external assets of a ( j,k)-class bank are
marked-to-market as

e jk exp(−αρ
n) . (1.5)

The liquidity risk parameter α measures the influence of the system contagion upon
asset prices; note when α = 0 the external asset values are constant over time, but
for α > 0 the asset values decrease with increasing contagion levels. This effect is
included in the dynamics of the GK and NYYA models by subtracting the quan-
tity e jk [1− exp(−αρn)] from the net worth c jk of the ( j,k)-class banks. Thus, for
example, banks default in the NYYA model if the incoming shock s is bigger than
c jk−e jk [1− exp(−αρn)] (the fire-sale adjusted net worth), and the shock transmis-
sion equation (1.4) is generalized to

min
(

σ − c jk + e jk [1− exp(−αρn)]
k

,w
)

, (1.6)

for α ≥ 0. A similar modification applies in the GK model. Interestingly, if α is207

sufficiently large, the liquidity risk effect can lead to banks defaulting even if they208

receive no shocks from debtors, because their net worth is obliterated by the fall209

in market value of their external assets. Consequences of this are explored in the210

Results section.211

1.2.4 Monte Carlo simulations212

The steps needed to study the models using Monte Carlo simulation are now clear.213

In each realization a skeleton structure for a network of N nodes with joint in- and214

out-degree distribution p jk is first constructed. Then balance sheets are assigned to215
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each node, consistent with the specific model chosen (see Table 1.1). The cascade216

of defaults initiated by an exogenous shock to one (or more) banks proceeds on a217

timestep-by-timestep basis, following the dynamics of either the zero recovery (GK)218

or non-zero recovery (NYYA) prescription for shock transmission. When no further219

defaults occur, the fraction of defaulted banks (the “cascade size”) is recorded, and220

then another realization may begin. When a sufficiently large number of realiza-221

tions are recorded, the average cascade size (and potentially further statistics, i.e.,222

the variance, of the cascade size) may be calculated in a reproducible (up to statisti-223

cal scatter) manner. Monte Carlo simulations of this type were implemented in GK224

and NYYA; our focus in the remainder of this paper is on analytical approaches to225

predicting the average size of cascades, and so avoiding the need for computation-226

ally expensive numerical simulations.227

1.3 Theory228

In this section we derive analytical equations which allow us to calculate the ex-229

pected fraction of defaults in a banking network with a given topology (defined by230

p jk). Like related approaches for cascades on undirected networks (Gleeson and231

Cahalane, 2007; Gleeson, 2008b), the method is only approximate for finite-sized232

networks because it assumes the N → ∞ limit of infinite system size. However, in233

practice we find it nevertheless gives reasonably accurate results for networks as234

small as N = 25 banks (see Section 1.5).235

1.3.1 Thresholds for default236

We begin by defining the threshold level Mn
jk as the maximum number m of dis-237

tressed loans that can be sustained by a ( j,k)-class bank at timestep n without the238

bank defaulting at timestep n+1. If a ( j,k)-class bank has m defaulted debtors, with239

m > Mn
jk, then it will default in the subsequent timestep, otherwise it will remain sol-240

vent. As we show below, the GK model is easily expressed in terms of thresholds,241

but thresholds can be defined for the NYYA model only under an approximating242

assumption.243

In the GK model a bank in the ( j,k) class has total assets of unity (a jk = 1), net
worth of c jk = γa jk = γ , and each distressed loan carries a shock of 0.2/ j. In the
absence of a liquidity risk (fire sale) factor, the ( j,k) bank would then default if the
sum of the shocks it receives from its m defaulted debtors exceeds its net worth,
i.e., if 0.2m/ j > γ , giving Mn

jk = b5 jc jkc, where b·c is the floor function (returning
the greatest integer less than or equal to its argument). Liquidity risk may also be
included in models of this type by appropriately reducing the effective net worth,
and we can write the threshold levels in their most general form as
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Mn
jk = min

{
j,max

{
b5 jc jk −5 je jk

(
1− e−αρn

)
c,−1

}}
. (1.7)

Here e jk is the value of external assets for ( j,k)-class banks, α is the liquidity risk244

parameter introduced in Section 1.2 and we constrain Mn
jk to be between −1 and j.245

Note that this expression for Mn
jk is constant over time n if α = 0, and is decreasing246

in time if α is positive and ρn is increasing.247

In the NYYA model the size of the write-down shock on a newly-distressed loan248

depends on how large the shock received by the debtor bank was compared to its net249

worth. This means that there will, in general, be a distribution of shocks of various250

sizes in the system, and this distribution will change in time. Denoting the distribu-251

tion of shock sizes by Sn(σ)—so that at timestep n a randomly-chosen distressed252

loan (i.e. an out-edge of a defaulted bank node) carries a shock of size σ with prob-253

ability Sn(σ)—we would require m-fold convolutions of Sn(σ) to correctly describe254

the shock received by a bank with m distressed asset loans (as the sum of m inde-255

pendent draws of shock values from Sn(σ)). It is clearly desirable to find a simple256

parametrization of Sn(σ) to make the model computationally tractable, even at the257

loss of some accuracy. With this in mind, we approximate the true value of the shock258

received by a bank with m distressed loans at timestep n by msn, where sn is the av-259

erage shock on all distressed loans in the system at that timestep. Effectively we260

are replacing the true distribution S(σ) of shock sizes by a delta function distribu-261

tion: Sn(σ) 7→ δ (σ − sn), where sn is the average shock sn =
∫

σSn(σ)dσ ; in other262

words, every distressed loan at timestep n is assumed to have equal recovery value263

w− sn. This approximation turns out to work rather well because in cases where264

many debtors are in default, the total shock received by a creditor is well approxi-265

mated by m times the average shock. However we will also show examples (in the266

Results section) where the approximation of the shock distribution Sn(σ) by a delta267

function leads to less accurate results.268

Using this approximation, the NYYA threshold levels are:

Mn
jk = min

{
j,max

{
b 1

sn

[
c jk − e jk

(
1− e−αρn

)]
c,−1

}}
. (1.8)

The time dependence of the thresholds in this case is due to both liquidity risk269

(α > 0), and to the time-varying nature of the (mean) shock size sn. In Appendix B270

we derive an iteration equation for sn, consistent with the general model (1.12)–271

(1.13) below and based on the approximation of the true shock size distribution by272

a delta function.273

1.3.2 General theory274

We consider ( j,k)-class banks, of which there are approximately N p jk in any given
network realization (for sufficiently large N). Each bank in the ( j,k) class has j
debtors, each of which may be either solvent or in default at a specific time. Given
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that a bank is in the ( j,k) class, we define un
jk(m) as the probability that the bank

(i) is solvent at timestep n and (ii) has m distressed asset loans (due to the default
of the corresponding debtors in earlier cascades). According to its definition, the
sum of un

jk(m) over all m gives the fraction of ( j,k)-class banks which are solvent
at timestep n:

j

∑
m=0

un
jk(m) = 1−ρ

n
jk, (1.9)

where ρn
jk denotes the fraction of ( j,k)-class banks which are in default at timestep275

n. In a slight abuse of mathematical terminology we will refer to un
jk(m) as a “dis-276

tribution”, but note from (1.9) that the sum of un
jk(m) over all m is not unity.277

We consider how the states of the banks change from timestep n to timestep n+1,
and update the un

jk(m) distribution accordingly. The update occurs in two stages:
first a “node update” stage, where the states of the banks are updated, followed by an
“edge update”, where the un

jk(m) distribution is updated to give un+1
jk (m). In the node

update stage, banks in the ( j,k) class default if their number of distressed loans m at
timestep n exceeds their threshold Mn

jk (see Section 1.3.1). Thus the newly defaulting
fraction of ( j,k)-class banks is made up of those who were previously solvent but
now have m values above threshold. These newly defaulted banks increase the total
default fraction of the ( j,k) class by the amount:

ρ
n+1
jk −ρ

n
jk =

j

∑
m=Mn

jk+1
un

jk(m). (1.10)

Each newly defaulted ( j,k)-class bank is a debtor of k other banks in the system
and correspondingly triggers k newly-distressed loans: this is the edge update stage
between timestep n and timestep n+1. The number of newly-distressed loans in the
network due to defaults in the ( j,k) class of banks is approximately N p jkk(ρn+1

jk −
ρn

jk) (since there are N p jk such banks, each newly-defaulted with probability ρ
n+1
jk −

ρn
jk, and each with k creditors). Summing over all classes gives

N ∑
j,k

kp jk

(
ρ

n+1
jk −ρ

n
jk

)
(1.11)

as the number of newly-distressed loans in the system. The total number of loans
which were not distressed at timestep n is similarly calculated as N ∑ j,k kp jk

(
1−ρn

jk

)
.

So the probability that a previously-undistressed loan will be distressed at timestep
n+1 is given by

f n+1 =
∑ j,k kp jk

(
ρ

n+1
jk −ρn

jk

)
∑ j,k kp jk

(
1−ρn

jk

) =
∑ j,k kp jk ∑

j
m=Mn

jk+1 un
jk(m)

∑ j,k kp jk ∑
j
m=0 un

jk(m)
. (1.12)
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Consider a ( j,k)-class bank which remains solvent and has exactly m distressed
asset loans at timestep n + 1. This bank was also solvent at timestep n and had
some number ` ≤ min(m,Mn

jk) of distressed asset loans at timestep n. Amongst
the remaining j− ` asset loans of this bank, exactly m− ` of the loans must have
become newly distressed due to the debtor bank having defaulted in the first stage
of the update: this happens independently to each of the j−` loans with probability
f n+1. If we introduce the convenient notation Bk

i (p) for the binomial probability(
k
i

)
pi(1− p)k−i, the probability that a ( j,k)-class bank remains solvent and has

exactly m distressed asset loans at timestep n+1 can be written as

un+1
jk (m) =

min(m,Mn
jk)

∑
`=0

B j−`
m−`

(
f n+1)un

jk(`). (1.13)

Equations (1.12) and (1.13) together define the updating of the state variables
u jk(m) and f in terms of the u jk(m) distribution at timestep n. Given the initial
condition—for instance, if a randomly-chosen fraction ρ0 of all banks are initially
subject to default-causing shocks, this is u0

jk(m) =
(
1−ρ0

)
B j

m
(
ρ0

)
—it is straight-

forward to iterate the system given by (1.12) and (1.13) forward through the discrete
timesteps until it converges to a steady state. The total fraction of defaulted banks in
the system at timestep n is given by summing (1.9) over all ( j,k) classes:

ρ
n = 1−∑

j,k
p jk

j

∑
m=0

un
jk(m), (1.14)

and the steady-state value of this quantity (as n → ∞) is reported for various cases278

in Section 1.5 below.279

In Section 1.4 we prove that a certain class of models, including GK, admits an
exact reduction of the system described here to just two state variables. In the GK
model, and for the case where a fraction ρ0 of the banks are chosen at random to be
the seed defaults, the fraction of bank defaults ρn and the fraction of edge defaults
gn are given by the recurrence

ρ
n+1 = ρ

0 +
(
1−ρ

0)
∑
j,k

p jk

j

∑
m=Mn

jk+1
B j

m (gn) (1.15)

gn+1 = ρ
0 +

(
1−ρ

0)
∑
j,k

k
z

p jk

j

∑
m=Mn

jk+1
B j

m (gn) , (1.16)

with the initial condition g0 = ρ0.280

For the NYYA model, we use the mean-shock-size approximation discussed in281

Section 1.3.1, so the thresholds Mn
jk are given by equation (1.8). Then the iteration282

equation for sn (see Appendix B), along with equations (1.12) and (1.13), gives us283

a system of equations for un+1
jk (m), f n+1, and sn+1 in terms of the values of these284
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quantities at the previous timstep. Results for both models are compared with Monte285

Carlo simulations in Section 1.5.286

1.4 Simplified theory287

In this section we show that the iteration of the system defined by equations (1.12)288

and (1.13) in order to obtain the expected fraction of defaulted banks (as given289

by equation (1.14)) may be dramatically simplified in certain cases. A sufficient290

condition for this simplified theory to exactly match the full theory of equations291

(1.12) and (1.13) is:292

Condition 1: For every ( j,k) class with p jk > 0, the threshold level Mn
jk is a non-increasing293

function of n.294

This condition holds if the threshold levels for each ( j,k) class are constant, or295

decreasing with time, as in the GK model. For the NYYA model, cases where the296

shock size decreases over time may have thresholds Mn
jk which increase with n, and297

so this model does not satisfy Condition 1.298

1.4.1 Simplified theory for GK299

Focussing now on the GK model, whose thresholds (1.7) satisfy Condition 1, we
claim that at timestep n, the distribution for the number m of distressed loans of
solvent banks is a binomial distribution, at least for m values below the threshold:

un
jk(m) =

(
1−ρ

0
jk

)
B j

m (gn) for m ≤ Mn
jk, (1.17)

and the fraction of distressed edges is

gn = ∑
j,k

k
z

p jkρ
n
jk. (1.18)

Here ρ0
jk is the initially defaulted fraction of ( j,k)-class banks and ρn

jk is the de-300

faulted fraction of ( j,k)-class banks at timestep n. For the case m > Mn
jk, the values301

un
jk(m) are slightly more complicated in form: they are given by the update equation302

(1.13) for level n, with the right-hand side given using (1.17) at the level n−1. As303

we show below, the result (1.17) is sufficient to determine the expected fraction of304

defaulted banks at any timestep n.305

To prove our claim, we use an induction argument, showing that if the sub-
threshold distribution at timestep n is assumed to take the form (1.17), (1.18) then
the distribution at timestep n + 1 (as given by equation (1.13) of the full theory) is
also of the form (1.17), (1.18). Substituting for un

jk(`) in (1.13) using (1.17) yields
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un+1
jk (m) =

(
1−ρ

0
jk

)min
(

m,Mn
jk

)
∑
`=0

B j−`
m−`

(
f n+1)B j

` (gn) . (1.19)

To satisfy (1.17) at timestep n+1 we need only consider values of m between 0 and
Mn+1

jk , and by Condition 1 we have Mn+1
jk ≤ Mn

jk, so that 0 ≤ m ≤ Mn+1
jk ≤ Mn

jk, and

thus the upper limit on the summation in (1.19) is min
(

m,Mn
jk

)
= m. The sum in

(1.19) is therefore a convolution sum of two binomial distributions, which is itself a
binomial distribution:

un+1
jk (m) =

(
1−ρ

0
jk

)
B j

m
(
gn+1) for m ≤ Mn+1

jk , (1.20)

Here gn+1 is given by gn+1 = gn +(1−gn) f n+1. One can now use (1.12) and (1.18)
to verify that

gn+1 = ∑
j,k

k
z

p jkρ
n+1
jk . (1.21)

By assuming the form (1.17), (1.18) at timestep n we have shown the full theory
yields the corresponding result (1.20), (1.21) at timestep n+1. The induction proof
is completed by verifying that the initial condition is given by

u0
jk(m) =

(
1−ρ

0
jk

)
B j

m
(
g0) for m = 0 to j, (1.22)

g0 = ∑
j,k

k
z

p jkρ
0
jk (1.23)

which is of the form (1.17), (1.18).306

Using the binomial distribution for un
jk in (1.9) and (1.10) gives the update equa-

tions for ρn+1 and gn+1 in terms of the parameter gn only:

ρ
n+1 = ∑

j,k
p jkρ

n+1
jk = 1−∑

j,k
p jk

(
1−ρ

0
jk

) Mn
jk

∑
m=0

B j
m (gn)

= 1−∑
j,k

p jk

(
1−ρ

0
jk

)1−
j

∑
m=Mn

jk+1
B j

m (gn)


= ρ

0 +∑
j,k

p jk

(
1−ρ

0
jk

) j

∑
m=Mn

jk+1
B j

m (gn) , (1.24)

and
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gn+1 = ∑
j,k

k
z

p jkρ
n+1
jk = ∑

j,k

k
z

p jk

ρ
0
jk +

(
1−ρ

0
jk

) j

∑
m=Mn

jk+1
B j

m (gn)


= ρ

0 +∑
j,k

k
z

p jk

(
1−ρ

0
jk

) j

∑
m=Mn

jk+1
B j

m (gn) , (1.25)

where ρ0 = ∑ j,k p jkρ0
jk is the overall fraction of initially defaulted banks. In the307

case where a fraction ρ0 of the banks are chosen at random to be the seed defaults308

we have ρ0
jk = ρ0 for all ( j,k) classes, and equations (1.24) and (1.25) reduce to309

equations (1.15) and (1.16).310

The expected size of global cascades in a given GK-model network has es-311

sentially been reduced to solving the single equation (1.16), since ρn+1 can be312

immediately determined by substituting gn into (1.15). Equation (1.16) is of the313

form gn+1 = J (gn), and the function J(·) is non-decreasing on [0,1]. It follows that314

gn+1 ≥ gn for all n, and iteration of the map leads to the solution g∞ of the fixed-point315

equation g∞ = J (g∞). The corresponding steady-state fraction of defaulted banks is316

determined by substituting g∞ for gn in (1.15).317

Equations of this sort, giving the expected size of cascades on directed networks,318

have been previously derived in various contexts (Gleeson, 2008a; Amini et al.,319

2010). In Gleeson (2008a), the main focus is on percolation-type phenomena (see320

also the undirected networks case Gleeson (2008b)), while Amini et al. (2010) con-321

sider more complicated dynamics but take the limit ρ0 → 0. The general case (1.24),322

(1.25) where initial default fractions can be different for each ( j,k) class has not, to323

our knowledge, been considered previously, even in Monte Carlo simulations.324

In the limit ρ0 → 0+, the scalar map gn+1 = J (gn) has a fixed point at gn = 0, but
it is an unstable fixed point if J′(0) > 1, where J′ is the derivative of the function J.
Thus the condition for an infinitesimally small seed fraction to grow to a large-scale
cascade may, using (1.16), be written as

J′(0) = ∑
j,k

jk
z

p jkΘ

[
0.2

j − c jk

]
> 1, (1.26)

where the GK threshold (1.7) for m = 1 and ρ0 = 0 has been used, and Θ is the325

Heaviside step function (Θ(x) = 1 for x > 0; Θ(x) = 0 for x ≤ 0). This “cascade326

condition” has been derived in a rather different fashion by GK; they extend Watts’327

(2002) percolation theory approach from his work on undirected networks to the328

case of directed networks considered here. In Gleeson and Cahalane (2007); Glee-329

son (2008b), the generalization of this result to cases where ρ0 is finite but small330

has been given for cascades on undirected networks. Similar “higher-order cascade331

conditions” may similarly be derived for this directed-network case, but are beyond332

the scope of the present paper.333
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1.4.2 Frequency of contagion events334

The simplified equations (1.15), (1.16), and indeed the more general method of Sec-335

tion 1.3, allow the specification of a fraction ρ0 (or ρ0
jk in the case of targetted ( j,k)336

classes) of initially defaulted bank nodes. This fraction need not be small, and this337

feature allows us to investigate features of systemic risk due to simultaneous fail-338

ure of more than one bank (see Results section). However, most work to date has339

focussed exclusively on the case where a single initially defaulted bank leads to a340

cascade of defaults through the network. Because our theory assumes an infinitely341

large network, some special attention must be paid to the case of a single “seed”342

default in the GK model. As we show in Appendix C, in this model the locality of343

the seed node determines whether, in a given realization, a cascade will reach global344

size, or remain restricted to a small neighborhood of the seed. The distribution of345

cascade sizes observed in single-seed GK simulations is thus typically bimodal:346

only a certain fraction (termed the frequency) of cascades reach a network-spanning347

size, the remainder remain small (typically only a few nodes). The average extent348

(i.e. size) of the global cascades is given by equations (1.15), (1.16), whereas the349

frequency of cascades which escape the neighborhood of the seed may be expressed350

in terms of the size of connected components for a suitable percolation problem, see351

Appendix C and the Results section. The NYYA model does not exhibit this sen-352

sitivity to the details of the neighborhood of the seed node(s), so its distribution of353

cascade sizes is quite narrowly centered on the mean cascade size given by theory;354

the same comment applies to the GK model with multiple seed nodes.355

1.5 Results356

1.5.1 GK model357

Fig. 1.4 Theory and Monte Carlo simulation results for GK model on Erdös-Rényi networks with
N = 104 nodes and mean degree z. The percentage net worth is set to γ = 3.5% for all cases.
Cascades which exceed 0.5% of the network are considered as “global” cascades; the “extent” of
contagion is the average size of these global cascades, while the “frequency” is the fraction of all
cascades that become global cascades. In (b), the effects of non-zero liquidity risk are clearly seen
for lower z values, and cause the appearance of a discontinuous transition which is not present in
the α = 0 case of (a). Monte Carlo numerical results are averages over 5000 realizations.

Figure 1.4(a) compares results of Monte Carlo simulations of the GK model
(symbols) with the results of the simplified theory of equations (1.15) and (1.16).
As in Fig. 1 of the GK paper, we show the extent and frequency (see Appendix C)
of contagion resulting from a single seed default in Erdös-Rényi directed random
graphs with N = 104 nodes. The mean degree z of the network is varied to investigate
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the effects of connectivity levels upon the contagion spread. In such networks the
in- and out-degree of a node (i.e., the number of debtors and creditors of a bank) are
independent, and the joint distribution p jk is a product of Poisson distributions:

p jk =
z j

j!
e−z zk

k!
e−z. (1.27)

The formula for the contagion window derived in Gai and Kapadia (2010) (which is358

the same as our equation (1.26)) predicts that cascades occur for z values between 1359

and 7.477, but our theory also accurately predicts the expected magnitude of these360

events. Moreover, as shown in Fig. 1.4(b), our theory also accurately incorporates361

the effects of the liquidity risk model (1.5), capturing the discontinuous transition in362

cascade size which appears above z = 1 for the case α = 0.1.363

1.5.2 NYYA benchmark case364

Fig. 1.5 Expected steady-state default fraction in Erdös-Rényi random graphs with mean degree
z = 5. Monte Carlo numerical simulation results are averages over 5000 realizations. In the net-
works with N = 25 nodes, cascades are initiated by the default of a single randomly-chosen node;
in the larger networks with N = 250, 10 randomly-chosen nodes are defaulted to begin the cascade;
theory uses ρ0 = 1/25.

Figure 1.5(a) examines the benchmark case of NYYA; note our Monte Carlo365

simulation results match those presented in Chart 1 of Nier et al. (2007). The frac-366

tion of defaults (extent of contagion) is here plotted as a function of the percentage367

net worth parameter γ , as defined in equation (1.1). The network structure is again368

Erdös-Rényi, with p jk given by (1.27), and mean degree z = 5. We also show Monte369

Carlo results for the default fraction resulting from the clearing vector algorithm of370

Eisenberg and Noe (see Appendix A). This algorithm gives results which are qual-371

itatively similar in behavior (though not identical) to those generated by the NYYA372

shock transmission dynamics described in equation (1.6). As in the NYYA paper,373

our Monte Carlo simulations use N = 25 nodes (banks) in each realization, and cas-374

cades are initiated by a single randomly-chosen bank being defaulted by an exoge-375

nous shock. Despite this relatively small value of N, we find very good agreement376

between the theoretical prediction (which assumes the N → ∞ limit) from equations377

(1.12) and (1.13), and the Monte Carlo simulation results. The theory also enables378

us to examine the case where multiple banks are defaulted to begin the cascade. We379

demonstrate this by also showing numerical results for a larger Erdös-Rényi net-380

work of N = 250 nodes, with the same mean degree z = 5. In order to match the381

seed fraction of defaults, cascades in the larger networks are initiated by simultane-382

ously shocking 10 randomly-chosen banks (each shock being calibrated to wipe out383
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the external assets of the bank), so ρ0 = 1/25 = 0.04. The numerical results for this384

case are almost indistinguishable from the N = 25 case, and both cases match very385

well to the theory curve.386

In Figure 1.5(b) we increase the liquidity risk parameter from α = 0 (as in Fig-387

ure 1.5(a)) to α = 0.05 and α = 0.1. For clarity, the results of the Eisenberg-Noe388

dynamics are not shown here, but as in Figure 1.5(a), they are qualitatively sim-389

ilar to the simulation results using the NYYA shock transmission dynamics. The390

theory predicts a discontinuous transition in ρ at γ values between 2% and 3% for391

the α = 0.05 and α = 0.1 cases, but this is not well reproduced in Monte Carlo392

simulations with N = 25 nodes and ρ0 = 1/N (triangles). However, this is due to393

finite-N effects (i.e., due to having a finite-sized network whereas theory assumes394

the N → ∞ limit), as can be seen by the much closer agreement between the theory395

and the N = 250 (with 10 seed defaults) case (filled circles) for α = 0.05.396

A more serious discrepancy between theory and numerics can be seen in the γ397

range 4% to 5%. Here the theory underpredicts the cascade size, and the difference398

is unaffected by increasing the size of the network. Detailed analysis of this case399

reveals that the root of the discrepancy is in fact the simplifying assumption made400

for the shock size distribution Sn(σ) in the NYYA case (see Section 1.3.1). By re-401

placing all shocks with the mean shock size we are underestimating (at timestep402

n > 1) the residual effects of the large shock which propagated from the first de-403

faulted node(s) at timestep n = 1. Indeed, if we modify the Monte Carlo simulations404

to artificially replace all shocks at each timestep by their mean, we find excellent405

agreement between theory and numerics over all γ values. We conclude that the406

simplifying assumption Sn(σ) → δ (σ − sn) of the shock size distribution may lead407

to some errors, and further work on approximating Sn(σ) by analytically tractable408

distributions is desirable. Despite this caveat, overall the theory works very well on409

the Erdös-Rényi random graphs studied by NYYA.410

1.5.3 Networks with fat-tailed degree distributions411

As noted in May and Arinaminpathy (2010), empirical data on banking networks in-
dicates that their in- and out-degree distributions are fat-tailed, and so it is important
that theoretical approaches not be restricted to Erdös-Rényi networks. Accordingly,
for Figure 1.6 we generate a network with joint in- and out-degree distribution given
by

p jk = Cδ jkk−1.7 for k = 5,10,15, . . . ,50. (1.28)

Here C is a normalization constant (so that ∑ j,k p jk = 1), and the exponent 1.7 has
been chosen to be similar to that found for the in-degree distribution in the empirical
data set of Boss et al. (2004). The Kronecker delta δ jk appears in (1.28) to give our
networks very strong correlations between in- and out-degrees: in contrast to the
independent j and k distributions of (1.27), here we set the in- and out-degree of
every node to be equal (i.e., each bank has equal numbers of debtors and creditors).
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We also consider for the first time the effect on the contagion of the size of the
initially defaulting bank. If the single bank to be defaulted by the initial exogenous
shock is chosen randomly from a specific ( j,k) class, denoted ( j′,k′), then the initial
values of ρn

jk are

ρ
0
jk =

{
1

N p j′k′
for ( j,k) = ( j′,k′)

0 for all other ( j,k) classes.
(1.29)

The corresponding initial conditions for u jk(m) are:

u0
jk(m) =

{(
1− 1

N p j′k′

)
B j′

m(g0) for ( j,k) = ( j′,k′)

B j
m(g0) for all other ( j,k) classes,

(1.30)

where

g0 = ∑
j,k

k
z

p jkρ
0
jk =

k′

Nz
(1.31)

is the fraction of loans (edges) in the network which are initially distressed (i.e. have412

their debtor bank in default). We use N = 200 banks and ignore liquidity effects:413

α = 0. All other parameters are as in the benchmark case of NYYA (Nier et al.,414

2007).415

Fig. 1.6 Comparison of theory and Monte Carlo numerical simulations for banking networks with
joint in- and out- degree distribution (1.28), with N = 200 nodes. Cascades are initiated by targeting
a single node of a specific ( j,k) degree class. Monte Carlo simulation results are averages over
5000 realizations. The dashed lines in (b) mark the critical γ values given by (1.33).

Figure 1.6(a) shows the theoretical and numerical results for the case where one416

of the largest banks in the network (i.e., with j′ = k′ = 50) is targeted initially. Note417

that the theory accurately matches to the NYYA Monte Carlo simulation results;418

also note that the Eisenberg-Noe clearing vector case is (at low γ values) somewhat419

further removed from the NYYA dynamics than in previous figures.420

Figure 1.6(b) compares the results of Fig. 1.6(a) to the case where the targeted
bank is from the class with j′ = k′ = 30, i.e., a mid-sized bank in this network. The-
ory and numerics again match well, and over most of the γ range the smaller target
bank leads to smaller cascade sizes. Interestingly however, near γ = 2% is a range
where the smaller target bank actually generates a larger cascade than the bigger
target bank—this phenomenon is clearly visible in both numerical and theoretical
results. To explain it, we consider the threshold levels at timestep n = 0 (and with
α = 0). The initially-targeted bank was subject to an exogenous shock that wiped
out its external assets and each of its out-edges (liability loans) carries a residual
shock (cf. (1.4)) of magnitude
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s0 = min
(

e j′k′ − c j′k′

k′
,w

)
, (1.32)

where ( j′,k′) denotes the class of the targeted bank. If a single such shock is to cause
further defaults, say of a ( j,k)-class node, then the threshold M0

jk must be zero (cf.
equation (1.8)). This requires c jk < s0 (note α = 0 here), or, using (1.1),

γ <
s0

a jk
. (1.33)

The largest critical value s0/a jk for γ occurs for the lowest j = k value (because of421

the dependence of a jk on degree, see Table 1.1) and this γ value for each case is422

marked by the vertical dashed lines in Figure 1.6(b)—note in each case it matches423

the location of the sudden change in the contagion size. Essentially, this is the level424

of γ below which a single shock of magnitude s0 can cause further defaults (more-425

over, our argument indicates that these further defaults will be among the smallest426

banks in the system). The shock magnitude s0 given by (1.32) (see Table 1.1 for427

details of e jk and c jk) is a non-increasing function of k′, and in the crucial γ range428

the value of s0 is less for k′ = 50 than for k′ = 30. This is reflected in the respective429

critical values for γ , and allows the k′ = 30 case to cause larger cascades than the430

k′ = 50 case, at least while these cascades are relatively small.431

1.6 Discussion432

In this paper we have introduced an analytical method for calculating the expected433

size of contagion cascades in the banking network models of Gai and Kapadia434

(2010) and Nier et al. (2007). Our method may be applied to cases with:435

• an arbitrary joint distribution p jk of in- and out-degrees (i.e., numbers of debtors436

and creditors) for banks in the network. This includes fat-tailed distributions; see437

equation (1.28) and Fig. 1.6;438

• arbitrary initial conditions for the cascade, including the targeting of one or more439

banks of a specified size (see Fig. 1.6);440

• liquidity risk effects (see Figs. 1.4 and 1.5).441

In the general case, the theory gives a set of discrete-time update equations (equa-442

tions (1.12), (1.13), and (1.42)) for a vector of unknowns gn, which is composed of443

the state variables f n, un
jk(m), and sn. The update equations may be written in the444

form gn+1 = H(gn) and this vector mapping is iterated to steady-state to find the445

fixed point solution g∞ = H(g∞), hence giving the expected fraction of defaults ρ∞,446

see Figs. 1.5 and 1.6 for examples. Under certain conditions it proves possible to447

simplify the equations to be iterated: as shown in Section 1.4, this reduces the vec-448

tor gn to a scalar gn, with iteration map gn+1 = J (gn). The GK model is of this type,449

and the simplified equations (1.15) and (1.16) were used to generate the theoretical450
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results in Fig. 1.4. In all cases we find very good agreement between Monte Carlo451

simulations and theory, even on relatively small (N = 25) networks.452

We expect it will prove possible to improve and extend these results in several453

ways. As noted in Section 1.5.2, the approximation of the shock size distribution in454

the NYYA model leads to some loss of accuracy, and this merits further attention. It455

is also desirable to develop analytical methods for calculating the frequency of cas-456

cades caused by single seeds in the GK model (see Appendix C). Even in its current457

form, however, the theory presented here is ideally suited to the study of some policy458

questions. For example, suppose the models are modified so that the capital reserve459

fraction γ is not the same for all banks in the system, instead depending on the size460

of the bank (i.e. γ 7→ γ jk). This requires only a slight modification of the existing461

equations. The question is then: how should γ jk depend on the ( j,k) class in order462

to optimally reduce the risk of contagion-induced systemic failure? Other possible463

extensions, such as allowing for the existence of subgroups of banks with different464

levels of interbank assets or with interbank loans/liabilities drawn from a prescribed465

distribution, are required to begin modelling the important non-homogeneities that466

are seen in the real banking system, and these will be the subject of future work.467

For these and similar questions, it is likely that a general cascade condition (or468

“instability criterion”), analogous to equation (1.26) for the GK model, will prove469

very useful. Cascade conditions for dynamics with vector mappings have been de-470

rived for undirected networks (see Gleeson (2008b) and references therein), so we471

believe that similar methods may be applied to the directed networks analyzed here.472

Finally, it is hoped that the methods introduced here will prove extendable be-473

yond the stylized models of Gai and Kapadia (2010) and Nier et al. (2007), and in474

particular that related methods will be applicable to datasets from real-world bank-475

ing networks. Ideally, such datasets would include information on bank sizes, con-476

nections, and the sizes of loans (Bastos et al., 2011). Modelling the distribution of477

loan sizes within a semi-analytical framework will be challenging, but the under-478

standing gained of how network topology affects systemic risk on toy models will479

no doubt prove important to finding the solution.480
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Appendix A: Generalized Eisenberg-Noe clearing vector492

cascades493

This Appendix provides a summary of the financial cascade framework of Eisen-494

berg and Noe (2001), placed in a slightly more general context. Extending their495

work somewhat (Eisenberg and Noe (2001) combine the quantities Yi and Di into496

a single quantity ei = Yi −Di), we identify the following stylized elements of a497

financial system consisting of N “banks” (which may include non-regulated lever-498

aged institutions such as hedge funds). The assets Ai of bank i at a specific time499

consists of external assets Yi (typically a portfolio of loans to external debtors) plus500

internal assets Zi (typically in the form of interbank overnight loans). The liabilities501

of the bank includes external debts Di (largely in the form of bank deposits, but502

also including long term debt) and internal debt Xi. The bank’s equity is defined by503

Ei = Yi +Zi −Di −Xi and is constrained to be non-negative.504

The amounts Y,Z,D,X refer to the notional value, or face value, of the loans, and
are used to determine the relative claims by creditors in the event a debtor defaults.
Internal debt and assets refer to contracts between the N banks in the system. Banks
and institutions that are not part of the system are deemed to be part of the exterior,
and their exposures are included as part of the external debts and assets. Let L̄i j
denote the notional exposure of bank j to bank i, that is to say, the amount i owes j.
Note the constraints that hold for all i

Zi = ∑
j

L̄ ji, Xi = ∑
j

L̄i j, ∑
i

Zi = ∑
i

Xi, L̄ii = 0,

and that the matrix of exposures L̄ is not symmetric.505

A.1 Default cascades506

A healthy bank manages its books to maintain mark-to-market values with suffi-507

cient “economic capital” to provide an “equity buffer” against shocks to its balance508

sheet. This means that the bank maintains its asset-to-equity ratio Ai/ei above a fixed509

threshold Λi (a typical value imposed by regulators might be 12.5).510

Following a bank-specific catastrophic event, such as the discovery of a major511

fraud, or a system wide event, the assets of some banks may suddenly contract512

by more than the equity buffer. Assets are then insufficient to cover the debts, and513

these banks are deemed insolvent. The assets of an insolvent bank must be quickly514

liquidated, and any proceeds go to pay off that bank’s creditors, in order of seniority.515

We now discuss three simple settlement mechanisms for how an insolvent bank i is516

removed from the system.517

• Version A, the original mechanism of Eisenberg and Noe (2001), supposes that
external debt is always senior to internal debt. We define fractions πi j = L̄i j/Xi.
If pi denotes the amount available to pay i’s internal debt, this amount is split
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amongst creditor banks in proportion to πi j, that is bank j receives πi j pi. Given
p = [p1, . . . , pN ], the clearing conditions are pi = 0 if Yi−Di +∑ j π ji p j < 0 and
pi = min(Yi −Di +∑ j π ji p j,Xi) if Yi −Di +∑ j π ji p j ≥ 0. We can write this as

pi = F(A)
i (p) := min(Xi,max(Yi +∑

j
π ji p j −Di,0)), i = 1, . . . ,N (1.34)

• Version B supposes that external and internal debt have equal seniority. We de-
fine fractions π̃i j = L̄i j/(Di + Xi). If p̃i denotes the amount available to pay
i’s total debt, creditor bank j receives π̃ ji p̃i while the external creditors receive
Di p̃i/(Di +Xi). The clearing conditions are:

p̃i = F(B)
i (p̃) := min(Di +Xi,Yi +∑

j
π̃ ji p̃ j), i = 1, . . . ,N.

• Most simply, Version C supposes as in the GK model that the recovery from any
insolvent bank is zero. That means the amount pi available to pay i’s internal debt
is simply

pi = F(C)
i (p) := XiΘ(Yi −Di +∑

j
π ji p j)

where Θ denotes the Heaviside function.518

Under each of these settlement mechanisms, any solution p = (p1, . . . , pN) ∈ RN
+ of519

the clearing conditions is called a “clearing vector”. In the subsequent discussion520

we consider only version A. The existence result extends easily to versions B and C521

by considering fixed points of the monotonic mappings F(B),F(C) : RN
+ → RN

+.522

Proposition 1. Consider a financial system with Y = [Y1, . . . ,YN ],D = [D1, . . . ,DN ]523

and matrix L̄ = (L̄i j)i, j=1...,N . Then the mapping F(A) : RN
+ → RN

+ defined by (1.34)524

has at least one clearing vector or fixed point p∗. If in addition the system is “regu-525

lar” (a natural economic constraint on the system), the clearing vector is unique.526

Proof: Existence is a straightforward application of the Tarski Fixed Point Theorem
to the mapping F acting on the complete lattice

[0, X̄ ] := {x = [x1, . . . ,xN ] ∈ RN
+ : 0 ≤ xi ≤ X̄i, i = 1, . . . ,N}.

One simply verifies the easy monotonicity results that for any vectors 0≤ p≤ p′≤X
one has

0 ≤ F(A)(0)≤ F(A)(p)≤ F(A)(p′)≤ F(A)(X)≤ X

(where a ≤ b for vectors means ai ≤ bi for all i = 1, . . . ,N). For the definition of527

“regular” and the uniqueness result, please see Eisenberg and Noe (2001).528
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A.2 Clearing Algorithm529

Cascades of defaults arise when primary defaults trigger further losses to the remain-530

ing banks. The above proposition proves the existence of a unique “equilibrium”531

clearing vector that characterizes the end result of any such cascade. The following532

algorithm for version A of the settlement mechanism resolves the cascade to the533

fixed point p∗ in at most 2N iterations by constructing an increasing sequence of de-534

faulted banks Ak∪Bk,k = 0,1, . . . . Analogous (but simpler) algorithms are available535

for settlement mechanisms B and C.536

1. Step 0 Determine the primary defaults by writing a disjoint union {1, . . . ,N} =
A0 ∪B0 ∪C0 where

A0 = {i|Yi +Zi −Di < 0}
B0 = {i|Yi +Zi −Di −Xi < 0}\A0

C0 = {1, . . . ,N}\ (A0 ∪B0).

2. Step k, k = 1,2, . . . Solve the |Bk−1| dimensional system of equations:

pi = Yi −Di + ∑
j∈Ck−1

π jiX j + ∑
j∈Bk−1

π ji p j, i ∈ Bk−1

and define result to be pk∗. Define a new decomposition

Ak = Ak−1 ∪{i ∈ Bk−1|pk∗
i ≤ 0}

Bk = (Bk−1 \Ak)∪{i ∈Ck−1|Yi −Di + ∑
j∈Ck−1

π jiX j + ∑
j∈Bk−1

π ji pk∗
j ≤ Xi}

Ck = {1, . . . ,N}\ (Ak ∪Bk)

and correspondingly

pk
i =


0 i ∈ Ak

Yi +∑ j∈Ck π jiX j +∑ j∈Bk π ji pk∗
j −Di i ∈ Bk

Xi i ∈Ck.

(1.35)

If Ak = Ak−1 and Bk = Bk−1, then halt the algorithm and set A∗ = Ak,B∗ =537

Bk,p∗ = pk∗. Otherwise perform step k +1.538

Appendix B: Updating of average shock strength for NYYA539

model540

Assuming a delta function distribution approximating Sn(σ) as in Section 1.3.1,
we need to count the number of loans (edges in the directed network) which link
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defaulted banks to solvent banks. In the notation of Section 1.3.2, the number of
such “d-s” (for “defaulted-to-solvent”) edges in the network at timestep n is

N ∑
j,k

p jk

j

∑
m=0

mun
jk(m), (1.36)

since each solvent bank with m defaulted debtors contributes m d-s edges to the541

total. We assume that all these d-s edges at timestep n carry an equal shock sn.542

Now consider the situation at timestep n+1. Some of the d-s edges from timestep
n are still d-s edges, although others will have become d-d (“defaulted-to-defaulted”)
edges. We count the number of d-s edges which remained as d-s from timestep n to
timestep n+1 as

Aold = N ∑
j,k

p jk

Mn
jk

∑
m=0

mun
jk(m). (1.37)

Note the upper limit of Mn
jk for the sum over m (cf. equation (1.36)); this arises543

because the creditor banks in question remain solvent at timestep n+1.544

The other mechanism generating d-s edges at timestep n+1 is the default of the
debtor end of a timestep-n s-s (solvent-to-solvent) edge. Similar to (1.36), we can
count the number of s-s edges at timestep n as

N ∑
j,k

p jk

j

∑
m=0

( j−m)un
jk(m), (1.38)

since each (solvent) ( j,k)-class bank with m defaulted debtors must also have j−m
solvent debtors. Each of the s-s edges at timestep n becomes an d-s edge at timestep
n + 1 if (i) the debtor bank defaults during the timestep, and (ii) the creditor bank
remains solvent to at least timestep n + 1. Noting that (i) occurs with probability
f n+1 (see equation (1.12) of the main text), and that (ii) requires m≤Mn

jk, we obtain
the number of new d-s edges at timestep n+1 as

Anew = f n+1N ∑
j,k

p jk

Mn
jk

∑
m=0

( j−m)un
jk(m). (1.39)

The total number of d-s edges at timestep n+1 is then Aold +Anew, while the cumu-
lative total of the shock sizes transmitted by these edges is

snAold + s̃Anew, (1.40)

where s̃ is the average shock on each newly-distressed loan (using (1.6) of the main
text):
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s̃ =
∑ j,k kp jk ∑

j
m=Mn

jk+1 un
jk(m)min

(
msn−c jk+e jk[1−exp(−αρn)]

k ,w
)

∑ j,k kp jk ∑
j
m=Mn

jk+1 un
jk(m)

. (1.41)

Thus, under the simplifying assumption on the shock size distribution (Sn(σ) 7→
δ (σ − sn)) , we model the shocks on d-s edges at timestep n+1 to each be of equal
size sn+1, where

sn+1 =
snAold + s̃Anew

Aold +Anew , (1.42)

with Aold, Anew, and s̃ given in terms of un
jk by equations (1.37), (1.39), and (1.41),545

respectively. This gives an update equation for sn in terms of known quantities from546

timestep n.547

Appendix C: Frequency of cascades for single-seed initiation in548

GK model549

In this Appendix we consider the frequency of cascades in the GK model when ini-
tiated by a single seed node. Mathematically, our theory applies to the limiting case
N →∞ of a sequence of networks of size N, with bρ0Nc seed nodes. In Monte Carlo
simulations of real banking networks, the size N of the system is fixed, and the case
of a single seed corresponds to a fraction ρ0 = 1/N of initial defaults. The mecha-
nism of cascade initiation in the infinite-N network may be understood as follows.
As in Watts (2002), we call bank nodes vulnerable if they default due to a single
defaulting loan. When the cascade condition (1.26) is satisfied, a giant connected
cluster of vulnerable nodes exists in the network. The fractional size of this vul-
nerable cluster is denoted Sv, and it may be calculated by solving a site percolation
problem for the directed network (see Meyers, Newman, and Pourbohloul, 2006) in
a similar fashion to the calculation for undirected networks in Watts (2002):

Sv = ∑
jk

p jk
[
1− (1−φ) j]

Θ

[
0.2

j
− c jk

]
, (1.43)

where φ is the non-zero solution of the equation

φ = ∑
jk

k
z

p jk
[
1− (1−φ) j]

Θ

[
0.2

j
− c jk

]
. (1.44)

Here, as in Watts (2002), the Θ term plays the role of a degree-dependent site occu-550

pation probability: sites (nodes) are deemed occupied if they are vulnerable in the551

sense defined above, and this happens if the shock due to a single defaulting loan552

(0.2/ j) exceeds their net worth c jk. In Figure 1.7 we directly calculate the size of553

the largest vulnerable cluster in a single realization of an Erdös-Rényi network with554
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N = 104 nodes and mean degree z (cf. Figure 1.4) and show that it closely matches555

to the analytical result (1.43).556

The extended vulnerable cluster (Watts, 2002), which takes up a fraction Se of557

the network, consists of nodes which are debtors of at least one bank in the vulner-558

able cluster. If a seed node is part of the extended vulnerable cluster, it immediately559

causes the default of its creditor in the vulnerable cluster, which in turn leads to560

default of other nodes in the vulnerable cluster, and so on until the entire vulnera-561

ble cluster is in default. Nodes outside the vulnerable cluster (i.e. banks which can562

withstand the default of a single asset loan) may also be defaulted later on in this563

cascade as the percentage of defaulted banks increases; the result is a global cascade564

of expected size ρ∞, given by equation (1.15). On the other hand, if no seed node is565

part of the extended vulnerable cluster, then no further defaults will occur and the566

cascade immediately terminates. Thus, if only a single seed node is used in each567

realization, we expect cascades of size ρ∞ to occur in a fraction Se of realizations568

(corresponding to cases where the seed node lies in the extended vulnerable cluster),569

and no cascades to occur in the remaining fraction 1−Se of realizations. The size Se570

of the extended vulnerable cluster thus determines the frequency of global cascades571

among the set of single-seed realizations. The size of Se was calculated analytically572

in Gleeson (2008b) for the undirected networks case, but the corresponding deriva-573

tion for directed networks is non-trivial. Instead, we directly calculate the size of574

the largest extended vulnerable cluster in the network, and show in Figure 1.7 that it575

corresponds very closely to the frequency of global cascades in the large ensemble576

of Monte Carlo simulations of Figure 1.4 in the main text.577

Fig. 1.7 Sizes of vulnerable cluster (Sv) and of extended vulnerable cluster (Se) as calculated di-
rectly from (for each value of mean degree z) a single Erdös-Rényi network with N = 104 nodes.
The vulnerable cluster size is compared with the analytical result of equation (1.43), while the
extended vulnerable cluster is shown to closely match the frequency of global cascades in the
single-seed GK model (cf. Figure 1.4).

As argued in Gleeson (2008b), the frequency of cascades increases with the num-
ber bρ0Nc of seed nodes used as

1− (1−Se)
bρ0Nc , (1.45)

which reduces to Se for the single-seed case (ρ0 = 1/N) and to 1 for the case where578

ρ0 remains a finite fraction as N →∞. The frequency of cascades (of size ρ∞) in the579

GK model initiated by a single default is thus Se, whereas if multiple seeds (say, 10580

initial defaults among 1000 banks) are used we find that almost all cascades are of581

size ρ∞.582
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Barrat, A., Vespignani, A., and Barthélemy, M. 2008 Dynamical Processes on Com-588

plex Networks, Cambridge University Press.589

Bastos, E. , Cont, R., and Moussa, A. 2010 The Brazilian banking system: network590

structure and systemic risk analysis, working paper.591

Baxter, G. J. , Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F. 2010 Boot-592

strap percolation on complex networks, Phys. Rev. E, 82, 011103.593

Boss, M., Elsinger, H., Thurner, S. & Summer, M. 2004 Network topology of the594

interbank market. Quantitative Finance 4, 677–684.595

Dhar, D., Shukla, P., and Sethna, J. P. 1997 Zero-temperature hysteresis in the596

random-field Ising model on a Bethe lattice, J. Phys. A: Math. Gen. 30, 5259–597

5267.598

Eisenberg, L. and Noe, T. H. 2001 Systemic risk in financial systems,Management599

Science, 47, (2) 236–249.600

Elsinger, H., Lehar, A. & Summer, M. 2004 Analyzing systemic risk in the European601

banking system: a portfolio approach, Vienna University working paper.602

Elsinger, H., Lehar, A. & Summer, M. 2006 Using market information for banking603

system risk assessment, International Journal of Central Banking, 2, (1) 137–604

165.605
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