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Résumé

Pendant ce stage, nous avons cherché à étudier les crises dues au risque systémique.
Nos économies sont de plus en plus liées de nos jours et ce qui affecte une banque au-
jourd’hui a de fortes chances d’avoir des répercussions sur les autres banques du pays
mais aussi sur celles du monde entier. Ainsi, si une banque subit de lourdes pertes, il
est possible qu’elle cause la chute des banques avec qui elle échangeait des produits.
Ces dernières, si elles tombent, peuvent à leur tour causer la chute de leurs voisines, et
ainsi de suite. Un effet de cascade peut donc se produire et être à l’origine d’une crise
majeure. Tout le monde se souvient que la chute de Lehman brothers avait touché
le monde entier (et pas simplement quelques grosses banques Américaines) et que
beaucoup de banques avaient été sauvées grâce à des renflouements par les différents
États. Une crise mondiale peut donc simplement être causée par la transmission d’un
simple choc à travers un réseau.

Nous avons donc essayé d’étudier pendant ce stage comment un réseau bancaire
pourrait réagir à la chute de l’une ou de plusieurs banques. Nous avons premièrement
adapté des modèles, que nous avons trouvés dans la littérature, à des réseaux qui
nous semblaient plus réalistes. La plupart de ces modèles s’intéressaient en effet à des
réseaux infinis et très spécifiques. Nous avons dû par la suite essayer de comprendre
et de venir a bout des difficultés que nous rencontrions suite à la perte de cette spé-
cificité dans nos réseaux. Enfin nous avons pu mettre en évidence deux indicateurs
présentant des propriétés complémentaires qui nous permettent de savoir si un réseau
financier est stable, c’est à dire si nous risquons une crise majeure ou non.

Summary

During this summer, we have been studying systemic crises in a financial graph.
Our economy has been very linked lately and it is impossible to think of a bank as a
business relatively independent of other banks. On the contrary, we can really think
of the banking business as a network. They are indeed exchanging many assets every
day, lend money and borrow money from each other. Therefore, if one bank fails,
many other might be affected and in some cases go to bankruptcy as well. One knows
how the default of Lehman brothers affected the entire world and one knows that the
economy was saved thanks to the intervention of the governments through bailouts.

Thus, during this summer we decided to study how a banking network would react
to the default of several banks. We have first adapted the existing models to more
realistic banking networks, then we tried to understand and overcome the difficulties
we met considering finite and general graphs instead of ideal situations. Finally we
have derived two indicators to see whether a graph is stable or not, in other words,
whether we risk a huge crisis or not.
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Introduction

I have done my research internship in both the financial laboratory of McMaster
university in Hamilton, Canada and the Fields Institute in Toronto. I have worked
mainly with Pr. Hurd, who is the director of the math finance program at McMaster
university and Pr. Grasselli who is the deputy director of the Fields Institute and a
professor at McMaster university as well. They are both part of the PhiMac group
which is composed of professors, postdoctoral and graduate students working on var-
ious aspects of financial mathematics including for instance credit risk, portfolio risk
management, and what I have been mostly dealing with : systemic risk. In this re-
port, I am going to focus on the work I did on systemic risk, even though it is not the
only thing I have been working on here. I have also dealt with a different approach
on the study of crises under the supervision of Pr Grasselli. We used an empirical
method, free of any macro economical model, to find indicators for the different types
of financial crises. This was a very enlightening experience, however to keep a unity in
this report I will only focus on my work on systemic risk, which accounts for around
two third of the time I spent here. Let me now introduce the general framework of
what I have been doing during these three months.

Systemic risk can be given a lot of definition but the way we looked at it is how
something can spread into the entire financial network and cause trouble to the global
economy. We used to think of crisis as something very unlikely and very strong that
could happen and cause the default of many financial institutions, however, systemic
crises in a systemically important network may rather be like very little shocks that
can occur quite often and that are likely to have very bad consequences on the whole
network. We will therefore try to model how a financial network is going to be af-
fected by the default of one or several banks. Is default going to spread over the whole
network or will only several banks be touched ? This is the sort of questions we are
going to try to answer in this paper.

To achieve this goal, I will in the first chapter introduce the models that have
inspired us during this internship. Pr Hurd has been working with these models for
a few years but we decided at the beginning of this internship to have a different ap-
proach of what had been done by himself, Pr Gleeson, and the authors of the models
we used. We wanted our models to be able to address more realistic networks and
therefore we changed our line of attack.
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In chapter two, I will introduce the mathematical models that Pr Hurd and I have
derived adapting the model we introduced in the first part to fixed graph. We will
therefore be able, given some data and a strong hypothesis, to derive the set of banks
that can be badly touched by default if an initial shock occurs somewhere in the graph.
We will also adapt to our new framework a condition for a large default cascade, that
Pr Hurd and Pr Gleeson derived.

Given that we have done a very strong assumption in chapter two to be able to
derive the math formulas for our new model, we will implement all this, and run
numerical simulations to understand when our results are correct or not. We will
therefore understand a lot more how our model works, and we will be able to set lim-
its to our approach. Nevertheless, we will reach our goal and we will be able to give
a good indicator to find out whether a graph is systemically important or not. Some
might think that we don’t have to imagine sophisticated models to answer this kind
of question. It is obvious that we could quite simply run Monte Carlo simulations,
but actually with the models we are considering in this paper, if we look at medium
size graphs with 300 or 400 nodes, Monte Carlo simulations will take a long time to
run. Our mathematical results enable us to derive good indicators for systemically
important graphs in a reasonable amount of time.

Finally, I would like to stress that I have written this report in a very simple way
so that anybody with a basic mathematical background and knowledge of probability
theory can understand it. Our work doesn’t require very sophisticated mathematical
tools but it uses, I believe, beautiful mathematical arguments, and I really enjoyed
working on it with my supervisors.
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Chapter 1

Description of the problem

1.1 A financial network description

In all this paper, we are going to focus on a simplified model of bank interactions in
the real world. We will thus consider a network whose nodes will be banks and whose
links will be the transactions between two banks. Every bank will also have a buffer,
which represents the amount of cash it can use in case it suffers a loss.

Thus a financial network will be defined this way :

Definition : A financial network (A,Γ,W) on a set of N vertices V is given by :

• the adjacency matrix of the graph (A(i,j))1≤i≤N,1≤j≤N

• the weights of the links (W(i,j))1≤i≤N,1≤j≤N

• a buffer distribution Γ1≤i≤N . This represents the amount of cash a bank has to
cover losses and pay for its liabilities.

Thus, a node i owes a node j an amount of money a if and only if Wi,j = a.

Our goal is to understand how this graph is going to react to an initial perturba-
tion. We want to know for instance whether a large number of the bank considered
in this network are also going to default if an initial bank goes into bankruptcy.

We are therefore going to consider the following sets in all our mathematical study :

• N−i the in-neighbors of a node i, in other words, the nodes that owe money to
i. Also, N+

i will be the creditors of a node i and Ni all the neighbors of i.

• D0 the set of initially defaulted banks

• Dn the set of defaulted banks after n steps that were not in the set of initially
defaulted banks.
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Our aim is to study the set D∞, i.e. all the banks that are eventually going to
default.

Before giving all the results we obtained during this summer, let us first look at
some interesting models developed in the last few years. They are known as the Watts
model, the Gai and Kapadia model (GK) and the Gai, Haldane and Kapadia model
(GHK). These models are the cornerstone of our mathematical results, and we will
therefore have to recall some of the main results of these papers, at least those that
are going to be useful to our study.

1.2 The different systemic models considered in this
paper

All these three models study the propagation of a property through a network. Our
aim is eventually to deal with financial crises, but we can look at financial crises, in a
more simplified way, as a disease spreading over all the financial network. If an initial
bank collapses, then it is going to be unable to pay back its creditors, and so these
creditors will face a loss themselves. If they don’t have enough money to overcome
this situation, they will go into bankruptcy and the same problem is going to affect
their neighbors. This might then spread over all the network. Therefore it makes
sense to look at epidemic or friendship models such as the Watts model.

1.2.1 The Watts model

The Watts model studies the origin of global cascades in a social network. The goal
of this paper is to derive a condition to the existence of a global cascade, even though
it was triggered by a small initial condition. Duncan J. Watts looks thus at random
non-directed graphs, that we could think of as a friendship network.

Every node is therefore linked to its neighbors or friends and he studies the prop-
agation of a property through the network. The property is said to be adopted by a
node if enough of its neighbors have already adopted it. The contagion is therefore
based on a threshold property. Watts shows that we can actually derive the existence
of a global cascade by looking at the size of the largest vulnerable cluster (nodes whose
threshold is small enough so that one of its neighbors alone can have him adopt the
property). He actually brings back this problem of contagion to a mere problem of
percolation.

Hurd and Gleeson, inspired by this model decided to adapt the Watts model to
our finance problem. They decided thus to consider a random financial non directed
graph, whose links, buffers and weights are random. However instead of saying that
a node defaults when a big enough number of its neighbors have, we consider that
a node v defaults after n steps when he satisfies the following insolvency condition
(note that for an non-directed graph, two banks that are linked have the same loans
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to each other):

(1.1)

∑
v′∈N(v)

Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv

This condition is self explanatory, it means that the amount of money owed by
the defaulted in-neighbors of i (i.e. the money that i can’t be given back) is larger
than the amount of cash i has. These neighbors are indeed not able to pay back the
money they borrowed and i suffers a loss larger than its buffer and defaults.

This model is of course very simple because every bank has a loan involving the
same amount of money as its neighbors have borrowed from them. This is of course
not what happens in the real world. This led thus Hurd and Gleeson to study other
models like the GK model.

1.2.2 The GK model

The GK model is very close the Watts model we have just described. The main
difference with the Watts model is that we now ask the links to be directed. Therefore
either a bank borrows from another or it lends money, but never both. In this model,
the solvency condition remains the same as in the Watts model, except that we only
consider the in-neighbors.
Thus a node has defaulted after n steps if and only if :

(1.2)
∑

v′∈N−(v)

Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv

This means that the default cascade is only going downstream, one defaulted out-
neighbor will therefore never immediately affect a node. However, we know that things
don’t always happen this way. We all know that many other parameters can favor
new crises. Stress, for instance, played a huge role in the recent crises. This is what
the GHK model tries to take into account.

1.2.3 The GHK model

In their paper on the determinants of Banking Crises in developing and developed
countries, Demirguç-Kunt and Detragiache explain that a banking crises can occur
because banks have short term liabilities (inter banks loans) and long term or middle
term assets to business and consumers. Thus, when their assets fall, creditors may
become unwilling to extend their daily credits. A bank may therefore be unable to
borrow money and become insolvent. Dropping assets can also put banks in a stress
condition. If they are afraid that they might fall, banks can also have an attitude that
is contrary to the well functioning of the market : liquidity hoarding. They might
want to find as much cash as they can to prevent their balance sheet from going below
zero. If they do so, banks will prevent the market from functioning. A bank doesn’t
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only need to default to slow our economy, stress alone can make the market highly
inefficient. This is the kind of macro-economical reasoning that led the two authors
of the GK model along with Haldane to create a new model which would take stress
into account.

In this new model, a bank can be either normal, stressed or defaulted. We will
therefore have some new notations :

• A stress buffer B1≤i≤n

• M0 the set of initially stressed banks

• Mn the set of stressed banks after n steps that were not initially stressed.

We have also these conditions to describe the state of a bank after n steps :

- Like in the GK model, a bank has defaulted if and only if :

(1.3)
∑

v′∈N−(v)

Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv

- We will also have the following stress condition for a bank v :


∑

v′∈N+(v)

Wvv′1(v′ ∈Mn−1 ∪M0) ≥ Bv

or

v ∈ Dn−1

(1.4)

Thus a bank is stressed if it has defaulted or if enough of its out neighbors are
stressed. This stress condition makes the GHK model very different from the GK
model because we are now looking at two different properties that can strongly affect
the financial network. We now have two different possible types of cascade. Besides,
the Watts model as well as the GK model, has only downstream cascades. Only its
in-neighbors can affect one node, in the GHK model, the default cascade is obviously
going to propagate downstream but the stress cascade is going upstream, and even
downstream in some way since default causes stress.

It is also important to mention that in all these models we consider random buffers,
random weights and random links. It might be strange to put as much randomness in
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these models but we have to realize that unfortunately we might never be able to have
precise information about the amount of money involved in a transaction between two
banks. It is not even sure that someone clearly knows these figures, even inside the
bank, and if by chance someone does, these data might be very confidential. Thus
putting random numbers enables us to find out a lot of systemic information without
making too unrealistic assumption. We just want our figures to be in the right order
of magnitude.

Now that we have introduced the models we’ve used during all this internship, let
us introduce the mathematical results we’ve obtained.
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Chapter 2

Mathematical results

In all the paper we worked on (Watts, Gai and Kapadia, Gleeson and Hurd etc.),
the researchers always chose to work on a random graph. This means that not only
were their weights random, but that their links were also random. They were working
most of the time on infinite random graphs. This is an assumption that is actually
helpful because, as we are going to understand below, infinite random graphs have
some strong properties that simplify a lot what happens in a finite network.

2.1 A new model and new possibilities

At the beginning of the summer, Pr. Hurd and I tried to get a more precise picture of
a real financial network. Infinite random graphs look actually very different from what
we thought a real financial network would look like. For instance, random Poisson
infinite graphs have no loops. This very fact sounded very unlikely for a real financial
graph. This is hard indeed to imagine that Goldmann Sachs is not in business with
Barclays and JP Morgans and that these two banks don’t make any business together.
We therefore felt that we needed to change our approach.

We also contacted many people to ask them if they had more precise data about
the weights of the links and the look of a real financial graph. We used the Poly-
technique network as well as Dr Hurd’s contacts, and we contacted many regulatory
agencies, the World Bank and the ECB. We didn’t get much information about the
weights of the links especially because this information is confidential but we got a
picture of the European financial network that one can see below.
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Figure 2.1: European inter-bank relations
ECB Financial Stability Review

We can see that this graph doesn’t really look like an infinite Poisson random
graph. The graph we can see is very highly clustered and contains many loops.

Thus, our idea was to give up the infinite graph hypothesis and to work on fixed
graph. So, during this summer we decided to work only with random buffers, and
random weights, but we decided that the links should be fixed in our graphs. One
can think that it is only a special case of what was studied before, but it is not, and
the math become different because in the infinite random network, every node plays
the same role, whereas in our model a node has a fixed number of neighbors that is
for instance different from that of another node. Thus, every node has a different
systemic importance, and this changes the way we have to look at the problem.

However this gives our approach a lot of strength since we can work on every
graph, and, if we get a more precise picture of a financial network, we can then choose
a graph much closer to reality than a random Poisson infinite graph.

Let us now introduce our main mathematical results.

2.2 Derivation of the propagation in the different
models

We are now going to derive the nodes that have defaulted after n steps and that were
not initially defaulted, i.e. the set Dn in every model we have described before. Let
us begin with the Watts model.

12



2.2.1 The Watts model

Let’s first begin with a naive approach that is going to make us really understand the
need of another argument that is a beautiful idea and that is the corner stone of the
proofs of all our mathematical results.

Naive Approach

We can feel, thanks to the definition of Dn, that the proof is going to be based on
some inductive properties. Let v be a vertex in our graph.

(2.1)

P(v ∈ Dn) = P(v ∈ Dn|v /∈ D0)P(v /∈ D0)

P(v ∈ Dn) = P(v /∈ D0)P(
∑

v′∈N(v)

Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv|v /∈ D0)

P(v ∈ Dn) = P(v /∈ D0)P(
∑

v′∈N(v)

Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv)

There are two remarks we have to do. First, we have the condition on v not being
an initially defaulted bank, because even if v satisfies the insolvency condition, if it
is initially defaulted, it is not in Dn. Also to write the last line, we have to suppose
that the initially defaulted banks are independent of the weights, the geometry of the
graph etc. Actually this is not a demanding assumption, and let us suppose it is true.

Now we need to derive P(
∑

v′∈N(v)Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv).

Let W̃n−1
v′v be equal to Wv′v1(v′ ∈ Dn−1 ∪D0).

It seems easy to show that W̃n−1
v′v has the same law as P(v′ ∈ Dn−1 ∪D0)Wv′v

+ (1−P(v′ ∈ Dn−1 ∪D0))δ0 where δ0 is a Dirac mass at the point zero. Then we see
that our formula is recursive and that we could easily derive Dn.

Actually, we did something wrong in this approach. We are trying to derive the
probability that a node defaults, and as the model suggests, we look at its defaulted
neighbors at the former step and then we try to find the probability that it satisfies
the insolvency condition. However we don’t take into account that these neighbors
must have defaulted before v defaults and that v cannot contribute to their default.
In this approach we state nowhere that these defaulted neighbors must have gone into
bankruptcy without regard to v.

The WORT condition

In order to make this idea more formal, we are going to derive the probability
that a node defaults without regard to another one, in other words, just as if the
latter didn’t exist at all. Thus, we won’t make any mistake when we write the default
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condition, as we did just above.

Our results

Let us now derive the probability that a node has defaulted after n steps without
regard to one of its neighbors. We are going to see that we have this time an inductive
sequence and that we are going to be able to complete the proof.

Let v and v’ be two nodes that are neighbors, and let us still assume that the
initial defaulted banks set is independent of everything else concerning the graph.

(2.2)
P(v ∈ Dn WORT v’ ) = P(v ∈ Dn WORT v’ |v /∈ D0)P(v /∈ D0 WORT v’ )

P(v ∈ Dn WORT v’ ) = P(v /∈ D0)P(
∑

v′′∈N(v),v′′ 6=v′

Wv′′v1(v′′ ∈ Dn−1 ∪D0 WORT v,v’ )

≥ Γv|v /∈ D0)

And since D0 is independent of everything else concerning the graph, since the
”WORT v” makes ”Dn WORT v” independent of v being an initially defaulted bank
or not, we have :

(2.3)

P(v ∈ Dn WORT v’ ) = P(v /∈ D0)

P(
∑

v′′∈N(v),v′′ 6=v′

Wv′′v1(v′′ ∈ Dn−1 ∪D0 WORT v,v’ ) ≥ Γv)

In order to have an inductive sequence, we have to make another assumption
that we will formalize later in the tree-like assumption section. We want indeed v’
to disappear from 1(v′ ∈ Dn−1 ∪ D0 WORT v,v’ ) > Γv) to have on the left hand
side of the equation the probability that a node has defaulted after n steps without
regard to one node and on the right hand side something involving the probability
that another node has defaulted after n-1 steps without regard to another single node.

So, in order to write :

(2.4)

P(
∑

v′∈N(v),v′′ 6=v′

Wv′v1(v′ ∈ Dn−1 ∪D0 WORT v,v’ ) ≥ Γv)

= P(
∑

v′∈N(v),v′′ 6=v′

Wv′v1(v′ ∈ Dn−1 ∪D0 WORT v ) ≥ Γv)

We have to assume that the node v’ is not linked to any of the neighbors of v.
Otherwise, v’ would have an influence on a neighbor v” of v that we consider just
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above, and the last equation would be wrong.

Given that assumption, we can now properly derive the mapping that takes us
from rank n-1 to rank n.

Let W̃n−1
v′v be again equal to Wv′v1(v′ ∈ Dn−1 ∪D0 WORT v ) :

We can also show easily that :

(2.5)
W̃n−1

v′′v ∼ [P(v′′ ∈ D0) + P(v′′ ∈ Dn−1 WORT v)]Wv′′v

+ [1− P(v′′ ∈ D0) + P(v′′ ∈ Dn−1 WORT v)]δ0.

Let us now use these last equations to derive the probability of default after n
steps. We have :

(2.6) P(v ∈ Dn WORT v’ ) = P(v /∈ D0)P(
∑

v′∈N(v),v′′ 6=v′ W̃
n−1
v′v ) ≥ Γv)

Before we go any further, we have to do a few remarks this equation. First, it is
easy to see that if u and v are two random integer variables, we have :

(2.7)
P(u ≥ v) =

∑
1≤i≤∞

P(u = i)CDF (v)(i)

P(u ≥ v) = 〈pdf(u), CDF (v)〉

Where the brackets mean the scalar product on N. This is going to help us derive
the last term of the right hand-side of our equation.

It is also easy to show that the sum of n independent random variables has the
law of the convolution product of their pdf. Thus we have :

(2.8)

P(v ∈ Dn WORT v’ ) = P(v /∈ D0)〈W̃n−1
v1v ? ...

? W̃n−1
viv ? .... ? W̃n−1

vkvv
, CDF (Γv)〉

vi neighbor of v, vi 6= v′

We have just found the expression of P(v ∈ Dn WORT v’ ), it is an inductive
sequence since we can derive the law of W̃n−1

viv thanks to P(vi ∈ Dn WORT v ).
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Of course, what is interesting for us is P(v ∈ Dn) and not P(v ∈ Dn WORT v’ ),
but it is actually easy to derive the first probability with the second one :

(2.9)
P(v ∈ Dn) = P(v ∈ Dn|v /∈ D0)P(v /∈ D0)

P(v ∈ Dn) = P(v /∈ D0)P(
∑

v′′∈N(v)

Wv′′v1(v′′ ∈ Dn−1 ∪D0 WORT v ) ≥ Γv|v /∈ D0))

and thus :

(2.10)

P(v ∈ Dn) = P(v /∈ D0)〈W̃n−1
v1v ? ...

? W̃n−1
viv ? .... ? W̃n−1

vkvv
, CDF (Γv)〉

vi neighbor of v

We have now found a way to derive the set Dn numerically, i.e. iterating the
formula we have just obtained. It is the only possibility we have to derive it, it indeed
sounds impossible to get a completely analytic function with this type of graph, since
every node plays a different role and since our results depend so much on the geometry
of the graphs (i.e. number of neighbors of node, their number of neighbors again etc.).

Let us now adapt this method to find the set Dn in the GK model and in the
GHK model.

2.2.2 The GK model

The GK model and the Watts model are very similar, except that the GK model has
directed links. In this model, we have now two types of neighbors, the in-neighbors
and the out-neighbors, and only the in-neighbors can propagate the default cascade.
There are now also two possibilities, either the in-neighbors and out-neighbors don’t
intersect, in other words, there are no bi-directed links, or there are. We are going to
derive the set Dn in both cases, assuming again that there are no loops.

First case : no bi-directional links
In the first case, it is really easy and we can just follow the naive approach we did

in the Watts model :

(2.11)

P(v ∈ Dn) = P(v ∈ Dn|v /∈ D0)P(v /∈ D0)

P(v ∈ Dn) = P(v /∈ D0)P(

−∑
v′∈N(v)

Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv|v /∈ D0)

P(v ∈ Dn) = P(v /∈ D0)P(
∑

v′∈N−(v)

Wv′v1(v′ ∈ Dn−1 ∪D0) ≥ Γv)
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The only difference here is that we only consider the in-neighbors of v in the sum.
We don’t have the same problem we met in the Watts model because since there are
no bi-directional links and no loops, the in-neighbors are upstream and cannot have
been affected by bank v. So, the WORT condition is unnecessary here. We can now
follow what we did before in the Watts naive approach and assuming that W̃n−1

v′v is
here Wv′v1(v′ ∈ Dn−1 ∪D0), we have :

(2.12)
W̃n−1

v′v ∼ [P(v′ ∈ D0) + P(v′ ∈ Dn−1)]Wv′v

+ [1− P(v′ ∈ D0) + P(v′ ∈ Dn−1)]δ0

and

(2.13)

P(v ∈ Dn) = P(v /∈ D0)

〈W̃n−1
v1v ? ... ? W̃n−1

viv ? .... ? W̃n−1
vkvv

, CDF (Γv)〉
vi in-neighbor of v

Thus, we have the iterative analytic formula we can use to derive the set Dn nu-
merically. Let us now adapt the proof of the Watts model to the case when we allow
bi-directional links.

second case : possible bi-directional links

If there are bidirectional links, the proof above doesn’t hold. We would have the
same problem as we had with the naive approach in the Watts model. In this case, we
have to use the WORT condition. Therefore just like for the Watts model, we have :

(2.14)

P(v ∈ Dn WORT v’ ) = P(v /∈ D0)〈W̃n−1
v1v ? ... ? W̃n−1

viv ? .... ? W̃n−1
vkvv

, CDF (Γv)〉
vi in-neighbor of v, vi 6= v′

Then it is easy to show that we have exactly the same formula as the one for the
Watts model :

(2.15)
P(v ∈ Dn) = P(v ∈ Dn|v /∈ D0)P(v /∈ D0)

P(v ∈ Dn) = P(v /∈ D0)P(
∑

v′′∈N−(v)

Wv′′v1(v′′ ∈ Dn−1 ∪D0 WORT v ) ≥ Γv|v /∈ D0))

Indeed we can also add the WORT on the right hand-side because if a link is bi-
directional it is the same reasoning as in the Watts model, and if it is not, we consider
the probability of one of v’s in-neighbors to default without regard to v, but since the
link is not bi-directional and that there is no loop, v has no impact on this node’s
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defaulting. Looking at it WORT v or not doesn’t change anything. Thus we have
almost the same formula as in the Watts model :

(2.16)

P(v ∈ Dn) = P(v /∈ D0)〈W̃n−1
v1v ? ...

? W̃n−1
viv ? .... ? W̃n−1

vkvv
, CDF (Γv)〉

vi in-neighbor of v

Let us now derive the math for the GHK model under the same conditions as well
as the initially stressed bank set being independent from everything in the graph.

2.2.3 The GHK model

The GHK model is very different from the two other ones to the extent that we have
both an upstream and a downstream cascade. This makes things a little bit more
complicated but we can still follow the same method as we used before.

We need first to derive the default cascade. It is indeed important to notice that
the default cascade is not affected at all by the stress cascade. However it affects
strongly the stress cascade, so we absolutely need to know the set Dn before we try
to derive the set Mn. It is important to notice that we also need to use the WORT
condition.

Like in the GK model, we have :

(2.17)

P(v ∈ Dn WORT v’ ) = P(v /∈ D0)〈W̃n−1
v1v ? ... ? W̃n−1

viv ? .... ? W̃n−1
vkvv

, CDF (Γv)〉
vi in-neighbor of v, vi 6= v′

We can also derive the real probability of default, i.e. not WORT one neighbor :

(2.18)

P(v ∈ Dn) = P(v /∈ D0)〈W̃n−1
v1v ? ...

? W̃n−1
viv ? .... ? W̃n−1

vkvv
, CDF (Γv)〉

vi in-neighbor of v

Let us now first recall the stress condition and then let us derive the stress cascade
:
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∑

v′∈N+(v)

Wvv′1(v′ ∈Mn−1 ∪M0) ≥ Bv

or

v ∈ Dn

(2.19)

Let v be a node. First we need to make sure that v is not in the set M0 :

(2.20)
P(v ∈Mn WORT v’ ) = P(v ∈Mn WORT v’ |v /∈M0)P(v /∈M0 WORT v’ )

We now have to condition on the fact that v is not in Dn. Indeed, to be in Mn,
either v is in Dn or it satisfies the stress condition.

(2.21)
P(v ∈Mn WORT v’ ) = P(v /∈M0 WORT v’ )

[(1− P(v ∈ Dn|v /∈M0))P(v ∈Mn WORT v’ |v /∈M0, v /∈ Dn) + P(v ∈ Dn|v /∈M0)]

Here we have to notice one very important thing, since the set M0 is chosen inde-
pendently from the graph and also has no influence on the cascade of defaulted banks,
we have :

(2.22) P(v ∈ Dn|v /∈M0) = P(v ∈ Dn)

This holds really because the stress cascade has no influence on default, if it had,
it would be completely wrong, and we would have to find another method to complete
the proof.

Thus we have :

(2.23)
P(v ∈Mn WORT v’ ) = P(v /∈M0)[(1− P(v ∈ Dn)

P(v ∈Mn WORT v’ |v /∈M0, v /∈ Dn) + P(v ∈ Dn)]

Let us now work on the last unknown term :
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(2.24)

P(v ∈Mn WORT v’ |v /∈M0, v /∈ Dn) =

P(
∑

v′′∈N+(v),v′′ 6=v′

Wvv′′1(v′′ ∈Mn−1 ∪M0 WORT v) ≥ Bv|v /∈M0, v /∈ Dn)

Let Ŵn
vv′′ be Wvv′′1(v′′ ∈Mn−1 ∪m0), our condition is thus given by :

(2.25)

P(v ∈Mn WORT v’ |v /∈M0, v /∈ Dn) =

P(
∑

v′′∈N+(v),v′′ 6=v′

Ŵn
vv′′ ≥ Bv|v /∈M0, v /∈ Dn)

Now we have to notice that Ŵn
vv′′ is independent of both v /∈ Dn and v /∈ M0

because of the WORT assumption. However, unlike what we had for the Watts and
GK model, we have here conditioned on v /∈ Dn and, Dn unlike M0, is not an initial
set, and therefore depends on many properties of the graph, like the geometry, the
weights etc. Fortunately we are only looking at nodes that are out-neighbors of v, and
not in-neighbors, and thus they have no impact at all on v being in Dn or not. We
have to notice though that it wouldn’t necessary work if v had neighbors that were
both in and out, if stress could favor default and of course if the usual assumption
that there is no loop was not satisfied.

Thus, we have :

(2.26) P(v ∈Mn WORT v’ |v /∈M0, v /∈ Dn) = P(
∑

v′′∈N+(v),v′′ 6=v′ Ŵ
n
vv′′ ≥ Bv)

and so :

(2.27)

P(v ∈Mn WORT v’ |v /∈M0, v /∈ Dn) = 〈Ŵn−1
vv1

? ... ? Ŵn−1
vvi ? .... ? Ŵn−1

vvkv
, CDF (Bv)〉

vi out-neighbor of v, vi 6= v′

Finally, we get the expression for the stress set Mn WORT v’ and then as usual
we find the correct expression without the WORT condition :

(2.28)

P(v ∈Mn WORT v’ ) = P(v /∈M0)[(1− P(v ∈ Dn))

〈Ŵn−1
vv1 ? ... ? Ŵn−1

vvi ? .... ? Ŵn−1
vvkv

, CDF (Bv)〉+ P(v ∈ Dn)]

vi out-neighbor of v, vi 6= v′
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Since we have already derived P(v ∈ Dn), we have got all the mappings to derive
both the stressed banks and the defaulted banks set numerically.

Now that we have found a way to compute numerically the cascade in the three
models we are working with, let us write formally the condition under which our cal-
culation are exact.
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2.3 The tree-like assumption

In the former sections, we said that we needed some independence so that our math
formula are correct. Actually we wanted that two neighbors of a same node didn’t
interact. Let us be more precise about it.

Let us have the following notations :

• Let S be a set of nodes in the finance Graph.

• Let F(S) be the following σ − algebra
F(S)=σ(Wvv′ ,Γv, for every v, v′ ∈ S, D0 ∩ S, ...). Thus, it is generated by the
balance sheets, the shocks, the degree of a node, and the weight of edges that
are inside the subset.

If for every subset of the graph S and S’ that only intersect in v, F(S) and F(S′)
are independent conditioned on F({v}), then we say that the graph satisfies the tree-
like assumption. This is an assumption that is globally satisfied by the tree graphs
only, for the simple reason that loops make this assumption wrong.

Therefore the tree graphs are the only graphs with which all this method is going
to be totally correct. However, we can expect that it is going to be approximately
true in a lot of graphs though, for instance if the loops are long enough. This is the
kind of issues we are actually going to study in the chapter 3. We are now aware that
our ideas won’t be true in every case, so we are going to need a more precise idea of
when our method is approximately correct or not. This is the whole point of the next
chapter on numerical analysis.

To conclude our mathematical results, let us now derive another cascade condition
that is going to be really interesting to understand how cascades grow in a graph.

2.4 The cascade condition

We are now going to derive a cascade condition using a totally different approach. Our
first approach was very interesting because it enables us to compute the probability
that a node defaults. It is a node by node approach, and given the distribution of
probability of the initially defaulted banks, the distribution of the weights and buffers,
we can derive everything concerning the probability that a node eventually defaults
or not.

In this section we are going to focus on a more global approach : we would like to
know quickly if the graph we have is systemically dangerous, without trying to know
how a given node is going to be affected, and without taking into consideration the
initial defaulted set. We are focusing on a financial graph property, involving only the
buffers and the weights probability distributions.
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Even though this approach gives a lot less information than our former results, it is
actually very interesting to know if a graph is systemically dangerous without regard
to the initial condition. Actually, in the real financial world we might seldom have a
precise idea of which banks are likely to default soon and cause a first initial shock
that could trigger a cascade. Thus, having a more global approach makes sense and
can be very helpful for policy makers as well as banks heads to take some measures
to prevent the whole system from collapsing if there is some risk.

In this paper, the three models we consider are iterative models. We derive the
sets of banks that have defaulted after n steps from those which have already de-
faulted after n-1 steps. We thus have an inductive sequence of vectors representing
the probability of default of each node after n steps. Let ∆n be a vector in RN whose
nth component is the probability of default of node n.

There exists a C1 mapping Φ (that we actually have derived in the last three
subsections for each model) such that :

(2.29) ∆n+1 = Φ(∆n)

The aim of our study is to know whether limn→+∞∆n is close to zero or not. First
zero has to be a fixed point, but it is the case here and it is obviously not enough.
We know that there is an easy way to check condition to know whether an induc-
tive sequence converges to 0 or not. For real sequences, we all know that we only
need to check if the absolute first derivative at zero is strictly larger than one. If it
is, the sequence cannot converge to zero and we can easily prove that by contradic-
tion. If the first derivative is on the contrary strictly smaller than one, we can assert
that there is small interval such that if the sequence ever enters this interval, we are
sure that it is going to converge to zero, but of course we can’t really say anything
since it really depends on the initial conditions, as show the two following graphs
next page. The first derivative at zero is in both case smaller than one, however if the
initial condition moves a little bit, it changes completely the behavior of the sequence :

23



;

Figure 2.2: Behavior of a same iterative se-
quence depending on the initial
condition

The same reasoning can of course be made in a larger dimension, but again we will
only get an indication because it really depends on the initial condition. If the largest
absolute eigenvalue of the first derivative at zero is strictly larger than one, and that
the initial condition is not too bad (We could of course specify the meaning of ”is not
too bad”, but there is actually no use doing that, because as we said before, we treat
the initial condition in this problem as if it was unknown), it is then impossible that
our sequence converges to zero. Thus, there will necessary be a cascade.

Let us derive the cascade condition for the GK model with possible bidirectional
links, we proved in the last section that :

(2.30)
P(v ∈ Dn WORT v’ ) = 〈W̃n−1

v1v ? ... ? W̃n−1
viv ? .... ? W̃n−1

vkvv
, CDF (Γv)〉

vi in-neighbor of v, vi 6= v′

We can use this expression to differentiate the function Φ, differentiating with
regard to P(v′′n WORT v”’).Actually, we don’t need to do that for every node v, v’,
v”, v”’, we only need to do that for vv’ being a link, as well as v”v”’. Thus, if L is a
number of links, our derivative can be described by a matrix in RL2

.
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One can notice we don’t use exactly the vector ∆n, we use the probabilities that
a node defaults without regard to one of its neighbors. The derivative is much easier
to compute with this WORT condition, and actually it is easy to show that the com-
ponents of ∆n are close to one if and only if those ones are close to one, therefore if
there is a cascade without the WORT condition, there is one with it and the other
way round.

Let M be the first derivative in zero matrix that we have just described. If i and
j are two different links of the graph, we can show easily after some lines of calculus
that :

{
Mi,j = P(wi < Γv) if the origin of i is the same node as the end of j

Mi,j = 0 if it is not

(2.31)

We just need now to compute the eigenvalues of this matrix and find out if one
is larger than 1 or smaller than -1. We can also see that this matrix is really simple
and that we don’t need to compute anything to find its coefficients. These coefficients
are only related to the vulnerability of a link and we can find here some interesting
parallel with the paper by Watts. In this paper Watts finds a cascade condition that is
related to the size of the largest vulnerable cluster (nodes that can adopt the property
if only one of its neighbors has already adopted it). Here we are almost looking at the
same kind of thing, the coefficients of this matrix are the probability that the weight
of one neighbor link alone can cause the bank v to default.

Thus we have got a very interesting cascade condition that is only related to the
graph itself. However, we have to be aware that this cascade condition is not really
correct in some extent. We are actually only looking at the first derivative at zero,
and we know that if all the absolute eigenvalues of the matrix are smaller than one,
then there is going to be a small ball centered in zero such that if the initial condition
is inside the ball, then the sequence is going to converge to zero. However, we don’t
know at all the size of this ball, and the initial condition might not be in this small
ball, and the sequence might actually never reach the small ball. Moreover, we must
be aware that if the initial condition is not zero, there is actually no chance that every
bank has a zero probability of default. So the initial condition will actually never
be in the small ball, but there is a big chance that if the first derivative’s absolute
eigenvalues are largely smaller than one at zero, they might all be smaller than one
around zero, and therefore, if our initial condition is not too far from zero (which we
hope is usually true), then it would converge to vector whose norm is close to zero
which would be another fixed point of the mapping.
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We have therefore given an indicator here : if the maximum absolute eigenvalue
is smaller than one, we have a good chance of facing no big problems in the future,
whereas if it is not, we have a large chance to have a default cascade, at least the
financial network is going to be very unstable.

Given all these mathematical results, let us now find out more about all these
models and about all our indicators through numerical analysis. We have to bear in
mind that this subject is a very complicated mathematical area and that we cannot
understand how these network behave without numerical simulations. Since we chose
to be able to address every type of graph, we cannot prove the efficiency of our math-
ematical results in a more formal manner than what we’ve done. Besides, to get these
results we had to make this tree-like assumption, and we know that the only graphs
that satisfy it are the trees. Obviously our financial graphs are going to contain loops,
therefore we have also to be able to know to what extent our results are going to be
affected by the presence of loops.
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Chapter 3

Numerical Analysis

Being able to picture what actually happens during the propagation of default in our
graphs has been really helpful to understand to what extent we can accurately predict
defaults and on which graphs. As Pr Hurd saw the software functioning for the first
time, he was really excited and called it our mathematical microscope. He meant
that we would be able to understand many things through these experiments and he
couldn’t be more right. As we started this project, and after we derived the math,
we had actually no idea whether the tree like assumption was going to be realistic or
not and if we were going to have some very bad results sometimes, some really good
results some other times. After thousands of run, we can say that we understand a
lot better the conditions that make our math realistic or not. Before we get into the
details, let us first give some results about the discrete Fourier transform. This method
has played a very important role in making our codes much faster, and actually fast
enough to do enough simulations and learn a lot of things. After that, we will describe
our codes and finally present our results.

3.1 The discrete Fourier Transform

The discrete Fourier transform we are going to use is a map on CN that is really
similar to the continuous Fourier transform we are used to working with. This kind
of transformation is really useful when we have to deal with convolution. In our
mathematical models, to derive the set Dn from Dn−1, we have to derive probabilities
of that kind :

(3.1) P(v ∈ Dn WORT v’ ) = P(v /∈ D0)P(
∑

v′∈N(v),v′′ 6=v′ W̃
n−1
v′v ) ≥ Γv)

We have shown that this probability is actually just a kind of convolution since
the sum of two independents random variables is the convolution of their probability
densities. We can describe the probability density of a discrete random variable as a
vector with its ist component being the probability that this random variable is equal
to i. Thus, our probability is going to be equal to :
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(3.2)
P(v ∈ Dn) = P(v /∈ D0)〈W̃n−1

v1v ? ... ? W̃n−1
viv ? .... ? W̃n−1

vkvv
, CDF (Γv)〉

vi neighbor of v

We are just going to show that it is an ideal case for using the Discrete Fourier
Transform but let us first define the transform and give some properties.

Let u be a vector in Cn, and let u0, ...,un−1 be its components for a simple reason
of convenience. Then the Discrete Fourier Transform of u is a vector in Cn whose kst

coefficient is equal to :

(3.3) F(u)k =
∑

0≤j≤n−1

une
2ikπ
n

Thus, we get a new vector in Cn and we can find the former vector using the
inverse :

(3.4) F̃(u)k =
1

n

∑
0≤j≤n−1

une
−2ikπ
n

Let us now give a few properties about the Discrete Fourier Transform that are
going to be useful in our programs :

• F̃(F(u)) = u

• The Parseval identity : 〈u, v〉 = 1
n 〈F(u),F(v)〉 = n〈 ˜F(u), ˜F(v)〉

• F(u ? v) ' F(u).F(v) where the dot means the product of the two vectors
components by components.

In the last equality, we wrote that the Discrete Fourier transform of a convolution
product of two vectors was almost equal to the ’product’ of the two Discrete Fourier
Transform of the vectors. The reason for this almost equality is that, for this formula
to be true, we have to use a circular convolution instead of the convolution we are us-
ing. Of course, we cannot do that in our problem because the sum of two independent
random variables’ law is a convolution of their laws and not a circular convolution.
This errors occurs because we are working with vectors in a finite dimension space,
and we will call that error an aliasing error.

Even though we don’t have the choice and we have to make this error, we can
make it very small. Let us model our law distributions with vectors in [0, 1]M , we
obviously can’t take M infinitely large because we are working on computers. How-
ever by taking it large enough, the law is not very different from the real law, we just
forbid too large numbers to take larger values than M. We have to notice that we are
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also doing an error with our convolution. We are indeed looking at the sum of two
or even more random variables and we are trying to derive its law. We are therefore
saying that the sum of all these random variables is also going to be smaller than
M, but it is obviously wrong. We are therefore doing a bigger error than for a single
random variable because this sum is much more likely to be larger than M. Yet, if
we take M very large and only look at random variables with small tail distributions,
the probability that a sum of such random variables is larger than M becomes really
small and we make the aliasing error reasonably small.

Thus, in our programs, we are always going to adjust M. We have to take it large
so that we don’t make a big aliasing error, but small enough so that it doesn’t run for
too long. For example, if we are looking at Poisson random variables with a maximum
parameter of 10 and that at most we sum 10 of them, we are going to choose M equal
to around 200. For a Poisson random variables with coefficient 10, there is less than
2 percent chance that it is larger than 20. Thus for the sum of 10 independent such
random variables, there is going to be a very tiny probability that it is larger than 200.

Now that we have explained the basic properties of the Discrete Fourier transform,
let us apply these results to our problem :

We have to derive :

(3.5)
P(v ∈ Dn) = P(v /∈ D0)〈W̃n−1

v1v ? ... ? W̃n−1
viv ? .... ? W̃n−1

vkvv
, CDF (Γv)〉

vi neighbor of v

Using the results for the convolution, as well as the Parseval identity in the scalar
product just above, we easily show that :

(3.6)

P(v ∈ Dn) = M〈F(W̃n−1
v1v ).F(W̃n−1

v2v ). ... .F(W̃n−1
viv ). ... .F(W̃n−1

vkvv
), F(CDF (Γv))〉

vi neighbor of v

We just have to look at this last equation to see how more efficient we are going
to be. The usual method to derive the convolution of two vectors is equivalent to a
matrix product. Here we are only deriving the Discrete Fourier Transform (Matlab
has a very efficient algorithm for that) and then we do a component by component
product. If we have for instance 20 neighbors for each node in average, it is clear that
this method is going to make our program run much faster.

3.2 Description of our programs

I have spent a huge part of this internship working on Matlab codes. In systemic risk
as well as on random network theory, computers are very important because there are
only a few things that can be proved theoretically and without any approximations.
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Let us in this section briefly describe some of the codes we wrote. One can also find
the main codes in the appendix of this report.

The Main program

Our main program is adapting on Matlab the mathematical results we have proved
just before. We therefore give as inputs the buffer probability distribution, the ad-
jacency matrix of the graph (as a sparse matrix to gain some space), the weight
distribution and the initial probability of default for each node.

Then we can apply the methods we have described above, should it be for the
Watts model, for the GK model or for the GHK model. Thus we can derive the
probability that a given node has defaulted after n steps. To do that, we loop n times
and use our algorithm to find the set of probabilities of defaults of a node WORT
one of its neighbors after n times. When these probabilities don’t change more than
10−9 in two consecutive entries in the loop, we stop the program and find the real
probabilities of default without the WORT.

Also, in our model we have made some assumptions, like the tree-like assumption,
and we want to know how correct our results are. Thus, in parallel to these simu-
lations we have also run Monte Carlo simulations to find the difference between our
model and reality.

The Different types of graphs we considered

We have also worked on different types of graph among which the tree graphs, the
Poisson random graphs and the cluster graphs. Let us explain a little bit more how
we built these graphs and why we chose with them.

We are going to devote a section in the application chapter to explain what we
mean with cluster graphs, so let us focus here only on the two other ones.

The Tree graphs play an important role in our model because they are the ones
for which our mathematical results work best. They satisfy of course the tree-like as-
sumption property and therefore enable us to see how large the other approximation
errors can be. We thought right from the beginning that the tree-like assumption
would be the largest cause of errors, yet we had to be sure of that fact. We there-
fore created a simple program to build tree graphs. We could think of many ways to
build tree graphs but we didn’t want our program to be too biased and create a lot
of unusual tree graphs. Therefore natural recursive methods like, given a tree graph,
attributing a random number of neighbors to every leaf, wouldn’t actually be clever.
At the last iteration, we would have way too many leaves.

Thus we decided to use another recursive method. Given a tree graph with n
nodes, we link the n+1st node randomly to one of the n nodes we already have. Thus
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we get in the end a lot of different tree graphs with many less particularities than
with the former method.

We decided to work also on Poisson random networks because the result proved in
all the paper we worked with (Watts, GK, GHK, Hurd and Gleeson etc.) give results
for infinite Poisson random graphs, which actually respect the tree like assumption.
We wanted to see how accurate our method was with finite Poisson random graphs.
Let us now explain how we built these graphs.

We call a Poisson random non directed graph with parameter λ and with N nodes
a graph whose nodes have a random number of neighbors according to independent
Poisson random numbers with parameter λ.

To build these graphs, we use the following algorithm :

• simulate N random Poisson variables with parameter λ. If the sum of these
variables is odd, we add one to one of these numbers randomly.

• Then we have to think of these number of neighbors for each nodes as stubs
attached to the nodes. Then we just need to randomly match these stubs.
When all the stubs of a node have been matched we take it out of the possible
matching nodes.

Then Pr Hurd and Pr Gleeson imagined a more complicated method to build
the Poisson directed random graphs, with a finite or infinite number of nodes. This
is not a very complicated method, it only adds some constraints so that there are
enough out-stubs to match the in-stubs. However, we won’t explain this method
more clearly because it hasn’t been published yet. We also used another method to
create non-directed random graphs using the method just above. Of course it didn’t
create Poisson random graphs, but it was still very interesting to work with these
graphs for the GK and the GHK model. We just basically used non directed graphs
and suppressed one of the two directions randomly (or not all if we wanted some links
to be bi-directional).

Now that we have described the graphs we mainly used, let us talk about the ways
we are going to present the results in this paper.

How we presented the results

Our main goal is to understand how accurate our mathematical results are. We
therefore have to compare our results with the reality through Monte Carlo simu-
lations. In order to have a good view of what is happening we decided to do two
different types of graphs.

The first one is focusing on a single financial network and we run our program in
parallel to Monte Carlo simulations. In the end, we get two vectors representing the
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probability of default for every node of the graph with both methods. Then, assum-
ing that the Monte Carlo simulation is closest to reality, we give show the different
probability of default for each node sorted on the Monte Carlo results. This approach
gives us easy to read information, but it is focused on a single graph, it cannot there-
fore give us good indications concerning how accurate the tree like assumption is on
different kinds of graphs.

Therefore, we decided to run our program on a large number of different networks
and store every result in a matrix. Then, using all these results, we derive the average
probability of default in the network with the Monte Carlo simulations and with the
analytic methods we have built. Then we show these two numbers for a large number
of different networks on a graph, using different parameters for the buffer distribution,
the weight distribution and the initially defaulted nodes.

3.3 The tree like assumption and reality

Before we go any further, let us give the main results about our models. Our model,
as we are going to see below, works perfectly with tree graphs, and more or less in
the general case. In this section, we will explain why it works less well with general
graphs and eventually show at the end of this chapter that we can nonetheless get a
lot of information about the systemic risk even with general graphs. We will indeed
be able to build indicators in the cascade signal section that can warn us if the fi-
nancial network is very unstable, and this actually the aim of all that study. Let us
insist again on one point : we cannot merely run Monte Carlo simulations all the time
because as soon as we work with 300 nodes graphs, they would take a very long time
to run. It is incomparably faster to derive our indicators.

So let us first focus on the tree graphs, the ideal case, to see if our program runs
well and if our mathematical results make sense. We are also going to see if the aliasing
error is big or if, as we predicted, it gets really small by taking M large enough.

3.3.1 The tree graphs

Let us show some graphs showing the results in the tree graph case. Let us first use
the same graph, and different buffer distributions so that we can have a small, a large
and a medium cascade.
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As we can see on these three graphs, our model works almost perfectly on this tree
graph, should we have a large, a small or a medium cascade. Of course, we cannot
conclude that if it works on this tree graph, it works on every tree graph, but we can
see below that with more than a hundred random tree graphs, the average probability
of default is really close to the one derived with the Monte Carlo. To prove it more
formally, we could do some statistical tests to check that the bias with the Monte
Carlo is equal to zero. Pr Hurd and I imagined a way of testing it with a basic χ2

test but this wouldn’t give us a lot more information, because we are dealing with a
infinite number of graphs, with a lot of parameters that can vary and we cannot do
easily a χ2 test to prove it is going to work with every graph and every parameter.
Thus the best way to show these results is as far as we are concerned to show these
graphs and run a lot of numerical experiments.

This kind of proofs was difficult for me at the beginning because I am used to
very formal proves, but there is no way we can prove our mathematical models are
working or not except through numerical experiments. Actually I felt bitter in some
way that we couldn’t prove things just with a piece of paper, but it turned out to
be really interesting because during a major part of this internship we had to deal
with our intuition only. Neither Pr Hurd nor I knew what was going to happen and
we actually had to imagine a lot of numerical experiments. Sometimes they worked
sometimes they didn’t, but every time we understood more accurately how our model
worked.

Figure 3.4: Analytic results and Monte Carlo
simulations for 120 tree graphs

As we can see on the graph above, the analytic probability of default is very close
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to the Monte Carlo estimated one. We could get closer results by taking a larger num-
ber of simulations (we only used 400 Monte Carlo simulation for each point here). Had
we used 10 000, the two graphs would be perfectly the same, but it would have taken
a lot more time.

We have now shown that it works with tree graphs, let us now see the same kind
of graphs with a finite random Poisson network.

3.3.2 The general case

Unfortunately, as we said before, it is not working that well with general graphs. On
the next page, we can see the results we get for a finite Poisson random graph with
different buffer distribution so that we can have different types of cascades. As these
graphs show us, we can manage to predict very accurately small and large cascades,
but we can’t predict accurately the medium cascades at all. Even though we again
only showed our results on a single graph, we ran a lot of experiments and obtained
always the same results. Besides, we are going to provide in the cascade signal section
a graph with 400 different simulations on different random graphs very consistent to
these results.

Thus we can accurately predict small and large cascades, but not the medium
ones, let us now explain why there is actually no real hope that we can do any better
with these models. In order to do that, we are going to explain the effect of loops in
our model in two following subsections.
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3.3.3 The effect of a single triangle

Let us here focus first on the easiest type of loops : the triangles. We are going to
show how the mere addition of a triangle in a tree graph can completely spoil our
results for a medium cascade. However for a large and a small cascade, the results
will still be very good.

On the following graphs on the next page, we added a single triangle in a tree
graph, always at the same place. In these three pictures, the left graph is always the
same tree graph, and on the right we always have the same triangle added at the same
place.

Thus we can see that the mere addition of a loop can spoil all our results. Yet, the
good news is that it doesn’t spoil them in every case, if we deal with a small or a large
cascade, we are still able to give very precise information. However, when we face a
medium cascade, our model most of the time overestimates the probabilities of default.

When we saw these results for the first time, we understood that we couldn’t hope
to be able to state that our results were accurate in case we had a medium cascade.
However we wanted to understand better why the loops spoil our results that much
in the medium cascade case. We looked at papers dealing with triangles and loops in
such kinds of models. Some of them were encouraging and said that the results could
get better if the length of the loop became larger of if the graph had a larger number
of node and contained a lot of loops. We decided thus to test these ideas and tried to
learn more about the loops.
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3.3.4 More about the loops

When we started our work on the loops we had three main questions in mind that we
are now going to answer in this subsection :

• Our first questions stems from what we learned in the last subsection : why is
the loop spoiling our results that much for medium cascades and not for a small
cascade and a large one ?

• Is it going to get better with a large number of nodes and a highly clustered
graph ?

• If we are forbidding triangles and squares for instance, and if we are only dealing
with long loops, is our model going to give better results ?

Let us first try to answer the last two questions. We must not forget that we are
writing this model for financial networks, and as we saw at the beginning of this report
with the estimated picture of the European financial network, we are not looking at
very huge networks. At most we are going to have around one or two thousand banks,
so we cannot work on networks containing tens of thousands of banks. Running MC
simulations on a very large network takes a very big amount of time so we decided
to to run experiments on around two hundred nodes graphs to see if bigger networks
gave more accurate results than small one. Our results can be seen on the graph
below. The left panel is giving our results for small graphs and on the right we can
see our results for highly clustered graphs with a large number of nodes.

39



Figure 3.11: Monte Carlo simulation and an-
alytic results for graphs with a
small or a large number of nodes

As we can see on the graph just above, there is not much of a difference : we still
predict well the small and large cascade, but the medium cascade are mistaken for
large cascade by our program. It might get better for very large graphs containing
tens of thousands of nodes, but that is not actually the kind of things we are studying
here. Let us now try to answer to the third question.

This question is really interesting : Is the size of the loops correlated with the
error we are doing ? The answer is yes, it sounds obvious that on a network of ten
thousand node, if there is only one loop containing a thousand nodes, you can expect
it to behave like a tree graph. However with our medium-size graphs, the answer
is less easy to give. We decided to run experiments to test this assertion. We thus
decided to take a graph with a suitable buffer for medium cascades. Then we created
a program that took a length and a graph as inputs and that basically erased loops
that had a smaller length than the length input. Thus we could test if by suppressing
triangles, square, pentagons, etc. we would be able to make our results a lot better.
Here are the results we got :
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Figure 3.12: Effect of the removal of small loops in many cases

Figure 3.13: Effect of the removal of small loops in a bad case

We can see on the first figure a medium cascade on a graph, and a medium cascade
as well but this time on a graph with no triangles anymore. The difference between
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the two pictures is clear, on the left hand picture, our prediction is very bad, whereas
on the right hand side it is actually really good. This tends to let us think that taking
small loops out of our graphs would make our prediction way better. Actually this
is not what always happens. We can say that in most cases, it makes things better,
but it is not always enough, and even though we suppressed triangles, squares, and
pentagons on the next picture on the right, we still get a very bad prediction. We
can thus conclude with these experiments that our error is somehow correlated to the
size of the loops, but we cannot however assert that our predictions are correct if we
consider medium cascade graphs with no small loops, for the second picture shows
they are not. What this experiment shows is that it totally depends on the loops, in
other words, where they are in the graphs, which nodes they involve etc. However
there are still some cases where we can actually predict the effect of a loop. Let us
try to answer the first questions and give some more ideas about the effect of these
loops in our models.

It sounds really striking that sometimes these loops spoil completely our results
and some other times they actually don’t. Why don’t they spoil our results when we
have a small cascade or large cascade ? This is a question that has also puzzled us
during this internship. Actually we managed to come up with some answers. After
having done a lot of experiments on small cascades with graphs filled with loops, we
have found out that when we get a small cascade, if we only consider the sub-graph of
nodes with a medium or large probability of default (let us say more than 10 percent),
we actually always get a tree graph. This led us to think that a loop can only affect
the results of a graph when all its nodes have a medium or large probability of default.
If not, the graph is going to behave like a tree graph and the loop won’t have any
effect on our results.

The only explanation that we can come up with (of course it is not a formal proof,
it is more or less a guess from all the experiments we ran) is that the loop must most
of the time ”feed themselves”, i.e. behave as in the following drawings :

Figure 3.14: Supposed behavior in a loop
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One node with a medium probability of default increases first the probability of
default of the second node, then this one increases the third one’s, which increases
the first one’s again, and this until they reach a probability of default close to one,
and then it modifies the probabilities of all their neighbors and the rest of the graph.
Following this idea, there must be a threshold under which the probability remains
small and above which it grows to one or to a much larger value than it is supposed
to. All this process of course is more derived from a guess after we ran a lot of ex-
periments rather than based on a formal proof, but this is actually consistent with all
our former remarks :

• If the loops has one of its nodes that has a small probability of default, then
the process cannot take place and the results are good, that is exactly what we
observe with a small cascade. Also contrary to the experiment we used before,
if we have a tree graph with for example nodes 1, 2 and 3 having a very small
probability of default (less than 5 percent) and if we link these three nodes, the
results given by the Analytic model is still going to be very precise. This is
because the process is too weak to feed itself.

• If all the nodes of the loop have a high probability of default in the MC simula-
tions even if only a medium cascade occurs, then the results are still good. That
is also what we can observe. If again we have a tree graph with for example
nodes 1, 2 and 3 having a high probability of default (more than 0.9) then if
we link these three nodes, the results given by the Analytic model is still going
to be very precise. The three nodes have already a high enough probability of
default and it cannot feed itself much more. It explains also why our result are
still good with a large cascade.

• If we have a medium cascade with three nodes with a medium probability of
default, then it is going to happen and the results are going to be wrong, this is
what the experiment with the tree graph showed us.

So even though we don’t have a proof of that fact, it is a good and intuitive way
of explaining what we can observe through all the experiments we ran. We can truly
say that all these experiments have helped us understanding our models a lot better
and have enabled us to set some limits. We therefore really doubt that these kinds
of models will be able to predict accurately every medium cascade because this loop
effect might always happen. If we wanted to do so, we would have to correct the model
to take these things into account and this sounds very difficult, maybe impossible.

Now that we are aware of these limits, let us still try to learn as much from our
model as we can. We have been showing its limits in the last few paragraphs but
there are also a lot of information we can get from this model. We are indeed able to
create an indicator or a signal for a systemically dangerous network as we are going
to see in the following section, and that was exactly the aim of this study.
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3.4 The cascade signal

Let us now build 2 indicators that enables us to check whether a graph is systemically
important or not. In order to do that, let us have a look at one last graph. It shows
the average probability of default over around 400 hundred random graphs.

Figure 3.15: Our indicators on more than 400 graphs
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We can see that what we have learned in the last few chapters is really consistent
with what we can observe. Our analytic result can very accurately predict the small
and large cascades, and as soon as we get a medium it overestimates it to a large
cascade. However, we can get a clear signal from that :

• If the analytic result gives a small average probability, the financial graph is
safe. We are indeed sure that it is going to fit with the Monte Carlo and we
can even have a look at the analytic probability of default for each nodes to see
which banks are the most dangerous ones.

• If we get a high average probability of default, then we know that the MC
simulation would have given us a large or a medium cascades, so at least 15
percent of the banks in the network are likely to fall. Anyway, the financial
network is in both cases very unstable and policymakers or bank CEOs should
take measure to avoid an economic catastrophe.

On this picture, we can also see in red the cascade signal we derived at the end of
the last chapter. We computed the maximum eigenvalue of the first derivative at zero.
We set the red signal to 0.1 when this largest eigenvalue is smaller than 0.9, 1 if it is
between 0.9 and 1.1, and 2 if it is larger. When the signal is equal to 1, we suppose we
are in the uncertainty zone and we cannot affirm anything (as we said before, the first
derivative might be smaller than one at zero but not around zero and the sequence
could thus never enter the small ball around the fixed point it is supposed to converge
to, or could be larger than one at zero and smaller just around zero). However when
it is equal to 0.1, we expect the cascade to be really small and we expect the system
to converge to a fixed point close to zero, and if the signal equals 2, we expect it not
to converge to a small cascade and then we expect a large or a medium cascade.

We thus have two different indicators that can help us know whether the financial
network we are looking at is systemically important or not. We can see that these
indicators are almost always consistent with one another, but the red one can some-
times give wrong information. For many reasons that we have already mentioned, it
is less precise, and further more when it is equal to one, we cannot give any good
information except that we should be careful. However, to compute this signal we
need a lot less information than for the other one. For instance, we don’t need to
know anything about the initial distribution of default. This information might be
very hard to find and therefore using this indicator makes complete sense. If we have
the initial probability of default, then the other indicator is much more precise, and
can even give us in case of stable network precise information about the banks that
are the most likely to default if one crashes. This piece of information might be really
helpful for policymakers.

We have now reached the goal of this internship since we have build these two
financial indicators for the stability of a network. They can both be very helpful and
they are a lot less time consuming than using mere Monte Carlo simulations. Let us
now try to use them on an interesting example.
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Chapter 4

Application : the cluster
graphs

In this chapter, we are going to use our results to understand how a default cascade
propagates in a particular type of graph and how we can best stop it. In this section
we are going to focus on the ”cluster graphs”. Everything we did during this internship
was strongly influenced by the picture of the Europe financial network we received
at the beginning. We decided to abandon the infinite random networks to focus on
graphs that were much closer to reality.

4.1 Definition

We decided therefore to work also with another kind of graph we called cluster graphs.
When we looked for the first time at the Europe financial graph, we actually thought
the structure of the graph was very particular and interesting. We can easily feel the
presence of the countries behind this financial network. In every country we can find
a certain number of banks having mainly business relations with other banks from
the same country and only a much smaller number of banks having business with the
banks abroad.

Thus we decided to create a graph having that kind of structure :

• Every country is modeled with a finite Poisson random network with the same
parameter.

• Among the banks of a country, some banks are considered to be international
and are authorized to do business with other international banks abroad. We
give their number as an input. All the international banks form actually another
finite Poisson random network with a different parameter given as an input.
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We thus obtain a graph that is looking like the little drawing just below and that
tends to model the European financial network.

Figure 4.1: drawing representing broadly a
cluster graph

4.2 Default cascade in a cluster graph and a policy
to stop them

Like in the other graphs, we have three types of cascades and like before, our model
predicts very well the small and large cascades.

Let us nonetheless have a closer look at what could prevent a cascade from hap-
pening in such a graph. We are going to try to find some policies that would make the
cascade the smallest possible, even in the country where the initial shock is triggered.

A first measure

The first idea we can have, given such a graph, is to force the banks to allocate
a larger part of their balance sheet to the buffers they use in case a bank they have
business with defaults. It is obvious that rising the buffers to a very high value is
going to contain default, but let us try to see on this very particular kind of graph
how big the buffers must be to stop default.

As we can see just below, our indicators obviously assert that there is going to
be no cascade if we take very high buffers. However to have both indicators saying
that the the graph is safe, we have to have a very high buffer. We can see that we
need the buffer to be equal to 3.6, which means that every bank allocates around 25
percent of their balance sheet to their buffer to be sure that they are going to be in
safe financial graph (the figure 25 percent is easily derived from 3.6 thanks to the
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properties of the models and it is not interesting to give the details). This is for sure
a very high number and the financial network would be highly inefficient. Let us now
have a look at another policy that would be actually much more interesting.

Figure 4.2: Indicators for a cascade in a cluster graph for differ-
ent buffers

A cumulative buffer

A second idea we can have is to protect the international banks. Default cannot
spread to the country if default has not touched its international banks first.

We can therefore do two things, either simply make the buffer of the international
banks higher, but it would require them to devote a large part of their balance sheet
to their buffer. Again this would be more efficient than what we have just done before,
but we can actually think of another way of doing it. We can ask the national banks
to contribute to the buffer of the international banks. Thus, they would contribute to
their own protection because if the initial shock happens elsewhere, they cannot go
into bankruptcy unless an international banks of their own country has not fallen. As
we can see in the graph just below this method is very efficient. On the left we have
the cascade if we don’t do anything. Almost every bank defaults. In this graph every
bank has a buffer of 10 percent of its balance sheet. If we simply reduce the buffers of
the national banks to 5 percent and make the one of the international banks bigger
thanks to that money, we are in the situation of the graph on the right. Only a few
banks of a single country go into bankruptcy. No international bank is touched. And
even in the country where the initial default occurred, not every bank, just a half of
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them actually go into bankruptcy. Thus, this policy of protecting the international
banks thanks to every national bank is very efficient for the whole graph. We also
still kept a little buffer for the national banks otherwise every time a default occurs
in the country, every national bank would fail. This could even cause an international
bank to fail because the majority of its business partners have already fallen, and this
would put the whole graph in danger.

Figure 4.3: Effect of our policy on a same cluster graph

Thus our policy makes sense to protect such a graph and it makes sense to protect
the most important banks, even in the real world. However it is just a very simple
model of graph for Europe, and we would need some real data to find a much more
realistic policy. The amount of money exchanged between banks is a data very hard
to find, at least for us, but when we contacted people at the Banque de France and
at the ACP, they told us that they had started gathering this kind of information a
few years ago and that they might be able to have the order of magnitude of these
transactions, but it is still highly confidential. This is a very big limit to all our work
because we would need real data to adjust our models and our graphs. Only then we
would be able to study the efficiency of a policy on the real financial network.
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Conclusion

To conclude this report on my research internship at Mcmaster university and the
Fields Institute, I want to say that It was a very enlightening piece of work for a few
reasons.

First, I had the possibility to really experience academic research for the first time
in my life. This was very different from what I did at Polytechnique. I was used to
math that work perfectly, very formal proofs and very abstract subject. Here I had to
face the unknown, be aware that I couldn’t go very much further with formal proofs
than the math models we derived, and therefore I had to learn to understand the
subject without formal equations. I had to create experiments and test everything I
had in mind. Sometimes it worked, sometimes it didn’t and then I had to come up
with a new experiment to try to explain my point. This was really a different kind of
reasoning than the one I am used and it was therefore very interesting.

It has been also very interesting to address a very concrete problem. I have spent
most of my life trying to understand math to be able to follow other math lectures.
Here it was the other way round. I had to use the math I had been taught, and
besides, not always the one I thought I would use. Before arriving here, I thought
I would use stochastic calculus, Brownian motions etc. but I have never needed any
of these mathematical concepts. However I had to use some network theory I was
taught in mathematics lectures as well as in computer science courses. I also used
some optimization, along with some dynamical system tools etc. One has to be very
open minded and be ready to use tools from a very wide range of subjects to address
their problem.

Finally, it was also very enlightening to work on a topical subject that is threat-
ening our global economy. Not only did this work help me to understand the crises
better, but I had the chance to study some different aspects of crises. This work is
only a part of what I did at the Fields, and I had the chance to work with Pr Grasselli
on more macro-economical views of crises that helped me understand these issues a lot
better. Being at the Fields Institute and at McMaster University, I had also the op-
portunity to meet very skilled people in many disciplines. I had the chance to attend a
conference by Steven Shreve about trading strategies. I also had the pleasure to listen
to a former student of Polytechnique who is now a professor at Stanford University.
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Emmanuel Candès gave fascinating talks about signal acquisition and processing with
very beautiful operation research and statistic tools. I also could attend an amazing
series of seminars around Steve Keen’s macroeconomic models, and all of this helped
me broaden my mind and made my interest for research even larger. Before this in-
ternship at the Fields, I was almost sure I wanted to go and work in a bank after,
now I really envisage continuing on a PhD after my master’s degree next year, and
maybe go to academia after.

51



Acknowledgements

I would like to thank wholeheartedly both Pr. Hurd and Pr. Grasselli for helping
me write this report on systemic risk. I really appreciated their being always ready
to spend a lot of time working with me and to explain me a lot of things about this
very subject and many others. This has been a real pleasure working under their
supervision during all this summer in Canada.

52



Appendix A

Codes

In this chapter, we just give the main codes we used. Of course, we used many other
codes, but the report would be much too heavy if we included them all.

avggg t e r=z ;
[N N1]= s i z e (A) ;
Gamma=ze ro s (N,M) ;
w=ze ro s (N,N,M) ;
ww=9;
f o r i =1:N

tab=neighbor (A, i ) ;
n=length ( tab ) ;
i f (n>0)

% i f ( ismember ( i , banque i n t 1 1 ) )
% Gamma( i , 2 :M) = p o i s s p d f ( 0 :M−2,(1+ c o e f f i n t )∗ phi ∗n) . ’ ;
% e l s e
% Gamma( i , 2 :M) = p o i s s p d f ( 0 :M−2,(1− c o e f f i n t ∗4/ 15)∗ phi ∗n) ;
% end

Gamma( i , 2 :M) = p o i s s p d f ( 0 :M−2, phi ∗n) . ’ ;
f o r j =1:n

neigh=tab ( j ) ;
% w( i , neigh , 2 :M)=p o i s s p d f ( 0 :M−2,ww) . ’ ;

w( i , neigh , 1 0 ) =1;
% w( i , neigh , 2 :M)=binom pdf (5 ,9 ,3 ,M−1) ;

end
end

end

F=cumsum(Gamma. ’ ) . ’ ;
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%% cascade cond i t i on

A S=spar s e (A) ;
[ zr , z r r ]= f i n d (A) ;
B=[ zr , z r r ] ;
[N N1]= s i z e (A) ;
L=length (B( : , 1 ) ) ;

Deriv=ze ro s (L) ;

f o r i =1:L
f o r j =1:L

u1 1=B( i , 1 ) ;
u1 2=B( i , 2 ) ;
v1 1=B( j , 1 ) ;
v1 2=B( j , 2 ) ;
i f ( u1 1==v1 2)

Deriv ( i , j )=F( u1 1 ,10) ;
end

end
end

dd=e i g ( Deriv ) ;
rayon s p e c t r a l=max(dd) ;

%%
rho=ze ro s (N, 1 ) ;
rho (8 ) =1;

% rho=1/N∗ones (N, 1 ) ;

t o l =0.0000000001;
secu11 =10000;
% Let ’ s have two matrix f o r pwort , the curren t one and the former one to
% check f o r the i n f i n i t e norm : pwort1 : the new one and pwort2 : the anc ien t one .

pwort1=ze ro s (N) ;
pwort2=ze ro s (N) ;

%l e t ’ s i n i t i a l i s e w t i l d : the d e n s i t y matrix o f
%w t i l d ( i , j )=w( i , j )∗1( j Mn U Mbar WORT v :2L∗2∗M)

%l e t ’ s i n i t i a l i s e t h i s w t i l d :
wt i ld=ze ro s (N,N,M) ;
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wt i ld ( : , : , 1 ) =1;

d i rach0=ze ro s (M, 1 ) ;
d i rach0 (1 ) =1;
f f t d i r a c h 0=f f t ( d i rach0 ) ;
f f tw=ze ro s (N,N,M) ;
% l e t ’ s f f t w be the f f t o f the we igh t d i s t r i b
f o r i =1:N

f o r j =1:N
f f tw ( i , j , : )=f f t ( reshape (w( i , j , : ) , [M 1 ] ) ) ;

end
end

f o r i =1:N
i f ( rho ( i )==1) % i i s d e f a u l t e d , so the w t i l d ( j , i )=w( j , i )

tab n=neighbor (A, i ) ;
i f ( l ength ( tab n)>0)

f o r j =1: l ength ( tab n)
neigh=tab n( j ) ;
wt i ld ( neigh , i , : )=rho ( i ) ∗ reshape (w( neigh , i , : ) , [ 1 M] ) +(1−rho ( i ) ) ∗

dirach0 ’ ;
end

end
end

end
f f t w t i l d=ze ro s (N,N,M) ;

% l e t ’ s t ake the f f t o f every w t i l d ( i , j , : )
f o r i =1:N

f o r j =1:N
f f t w t i l d ( i , j , : )=f f t ( reshape ( wt i ld ( i , j , : ) , [ 1 M] ) ) ; %f f t

end
end

f f t F=ze ro s (N,M) ;
f f t F=f f t (F ’ ) ’ ;

Norm i n f =1;
whi l e ( (Norm in f>t o l ) && secu11>0)

pwort2=pwort1 ; % i n i t i a l i s a t i o n o f pwort2 , to see the change in the end o f the
loop .

% we are going to update pwort1
%we c o n s i d e r the node i
f o r i =1:N

tab n=neighbor (A, i ) ;
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nb neighb=length ( tab n) ;
i f (nb neighb>0)

f o r j =1:nb neighb
neighb1=tab n( j ) ;
% we are now going to update pwort1 ( i , ne ighb1 )
vect=ones (M, 1 ) ;
%l e t ’ s do the product comp by comp o f the f f t s o f the w t i l d ( aa , i )

w i thout neighb1
f o r z =1:nb neighb

i f ( z˜=j )

neighb2=tab n( z ) ;
vect=vect . ∗ reshape ( f f t w t i l d ( i , neighb2 , : ) , [M 1 ] ) ;

end
end

pwort1 ( i , neighb1 )=1/M∗(1−rho ( i ) ) ∗ f f t F ( i , : ) ∗ vect ;

end
end

end
Norm i n f=max(max( abs ( pwort1−pwort2 ) ) ) ;
%Let ’ s now update f f t w t i l d ( i , ne ighb1 ) wi th the new pwort1
f o r i =1:N

tab n=neighbor (A, i ) ;
nb neighb=length ( tab n) ;
i f (nb neighb>0)

f o r j =1:nb neighb
neighb1=tab n( j ) ;
f f t w t i l d ( i , neighb1 , : ) =(1−rho ( neighb1 )−pwort1 ( neighb1 , i ) ) ∗ f f t d i r a c h 0 +

( rho ( neighb1 )+pwort1 ( neighb1 , i ) ) ∗ reshape ( f f tw ( i , neighb1 , : ) , [M, 1 ] )
;

end
end

end
secu11=secu11 −1;

end

pwort=pwort1 ;

%l e t ’ s d e r i v e p now
p1=ze ro s (N, 1 ) ;

f o r i =1:N
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tab n=neighbor (A, i ) ;
nb neighb=length ( tab n) ;
vect2=ones (M, 1 ) ;
i f (nb neighb==0)

p1 ( i )=rho ( i ) ;
e l s e

f o r j =1:nb neighb
neighb1=tab n( j ) ;
vect2=vect2 . ∗ reshape ( f f t w t i l d ( i , neighb1 , : ) , [M 1 ] ) ;

end
p1 ( i )=rho ( i )+1/M∗(1−rho ( i ) ) ∗ f f t F ( i , : ) ∗ vect2 ;
end

end
p=p1 ;
Norm i n f ;
% end

Listing A.1: Analytic code

%UU e s t l a matrice que l ’ on va u t i l i s e r pour comparer l e s r e s u l t a t s .
s e n s i b i l i t e =0.15;
[N N1]= s i z e (A) ;
D=8;

Gamma=ze ro s (N, 1 ) ;
W=ze ro s (N) ;
av=0;
f o r i =1:N

[ t a b v o i s i n s i , nbvo i s i n s i ]= v o i s i n s (A, i ) ;
i f ( nbvo i s i n s i >0)

Gamma( i )=nbvo i s i n s i ;
f o r j =1: nbvo i s i n s i

j j j=t a b v o i s i n s i ;
W( i , j j j ) =9;
end

end
end

%s o i t C l ’ ensemble des banques e t s i C( i )=1 a l o r s l a banque e s t d j
% d faite

C=ze ro s (N, 1 ) ;
C(D) =1;
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N1=C;
N2=ze ro s (N, 1 ) ;
a=sum(N1) ;
s e c u r i t e =10000;
en t r e e =1000;

whi l e ( a>0 & s e c u r i t e >0 | | entree >0)
N2=ze ro s (N, 1 ) ;
f o r i =1:N

%s i l a banque e s t dans l e s banques t o u c h es l o r s du d e r n i e r tour ds
%l a b o u c l e

i f (N1( i )==1)
[ tab i nn i ]= v o i s i n s (A, i ) ;
f o r j =1:nn i

j j j=tab i ( j ) ;
%t e s t e r s i j e s t t o u c h
i f (C( j j j )==0)

[ t a b v o i s i n s j j j nbvo i s i n s j j j ]= v o i s i n s (A, j j j ) ;
%c a l c u l du po ids des a r r tes r e l i es ) des banques t o u c h es
poids j j j =0;
f o r z =1: nbvo i s i n s j j j

zzz=t a b v o i s i n s j j j ( z ) ;
%s i l e v o i s i n z z z e s t t o u c h on a j o u t e l e po ids de
%l ’ a r r te
i f (C( zzz )==1)

po ids j j j=poids j j j+W( zzz , j j j ) ;
end

end
i f ( po ids j j j >=Gamma( j j j ) )

%s i oui , l ’ a j o u t e r aux banques t o u c h es e t N2
C( j j j ) =1;
N2( j j j ) =1;

end
end

end

end
end
N1=N2 ;
a=sum(N1) ;
s e c u r i t e=s e c u r i t e −1;
en t r e e=entree −1;
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end

r e s=sum(C)
C

Listing A.2: Monte Carlo resolution

func t i on A=t r e e graph (N)

i f (N==2)

B=ze ro s (2 ) ;
B(1 , 2 ) =1;
B(2 , 1 ) =1;
A=B;

e l s e
n=N−1;
B=t r e e graph (n) ;
% c r ons un nombre a l atoire en t re 1 e t n auque l l e noeud se raccorchera
%( rd )
aa=rand (1 , 1 ) ;
rd=c e i l (n∗aa ) ;
% on va donc se raccrocher a rd
vect=ze ro s (n , 1 ) ;
vect ( rd ) =1;
B(N, : )=vect ;
vect2=vect ;
vect2 (N, 1 ) =0;
B( : ,N)=vect2 ’ ;
A=B;

end

Listing A.3: Tree graph

func t i on A=matrix 2(N, z )

% Ecrivons un programme qui s imule une l o i de po i sson de p a r a m tre z :
r s = po i s s rnd ( z , 1 ,N) ;

M=ze ro s (N,N) ;

compteur=0;
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compteur=sum( r s ) ;

%compte l e nombre t o t a l d ’ a r r tes , i l d o i t re pair , s inon on r a j o u t e
une

% a r r te un noeud p r i s au hasard .

i f mod( compteur , 2 )>0
t=c e i l (N∗ rand (1 , 1 ) ) ;
r s (1 , t )=r s (1 , t ) +1;
compteur=compteur+1;

end

u=1;
s e c u r i t e =1000∗z ;

tab =1:1 :N;
l g=N;
ooo=f i n d ( r s==0) ;
l g=lg−l ength ( ooo ) ;
tab ( ooo ) = [ ] ;
whi l e ( compteur>0 & s e c u r i t e >0)

i=c e i l ( l g ∗ rand (1 , 1 ) ) ;
u=tab ( i ) ;
i f ( r s (u)>0)

j=c e i l ( l g ∗ rand (1 , 1 ) ) ;
v=tab ( j ) ;
i f ( r s ( v )>0 & v˜=u & M(u , v )==0)

M(v , u) =1;
M(u , v ) =1;
r s (u)=r s (u)−1;
r s ( v )=r s ( v )−1;
compteur=compteur−2;
i f ( r s (u)==0)

l g=lg −1;
ind=f i n d ( tab==u) ;
tab ( ind ) = [ ] ;

end
i f ( r s ( v )==0)

l g=lg −1;
ind2=f i n d ( tab==v ) ;
tab ( ind2 ) = [ ] ;

end
end

end
s e c u r i t e=s e c u r i t e −1;
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end

% rs peut ne pas re z ro , car s i l e d e r n i e r ou i l e s t nn nul ,
% i l peut y a v o i r rs=2 c e l u i l a e t 0 p a r t t .

A=M;
end

Listing A.4: Poisson graph

%c l u s t e r graph 2

f unc t i on A=c l u s t e r graph 2(nb grappes , nb par grappes , nb banques int , z1 , z2 )

N=nb grappes ∗nb par grappes ;

B=ze ro s (N) ;

f o r i =1:nb grappes
i n d i c e 1 =( i −1)∗nb par grappes +1;
i n d i c e 2 =( i −1)∗nb par grappes+nb par grappes ;
C=matrix 2(nb par grappes , z1 ) ;
B( i n d i c e 1 : ind i ce2 , i n d i c e 1 : i n d i c e 2 )=C;

end

%Let ’ s now c r e a t e the i n t e r n a t i o n a l banks

N2=nb banques i n t ∗nb grappes ;
r s = po i s s rnd ( z2 , 1 ,N) ;
t=ze ro s (1 ,N2) ;

f o r i =1:nb grappes
f o r j =1:nb banques i n t

a=( i −1)∗nb banques i n t+j ;
n=( i −1)∗nb par grappes+j ;
t ( a )=n ;

end
end
compteur=sum( r s ) ;
secu=100∗ z2 ;
l g=N2 ;

whi l e ( compteur>0 & secu>0)
i=c e i l ( l g ∗ rand (1 , 1 ) ) ;
u=t ( i ) ;
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i f ( r s (u)>0)
j=c e i l ( l g ∗ rand (1 , 1 ) ) ;
v=t ( j ) ;
i f ( r s ( v )>0 & v˜=u & B(u , v )==0)

B(u , v ) =1;
B(v , u) =1;
r s (u)=r s (u)−1;
r s ( v )=r s ( v )−1;
compteur=compteur−2;
i f ( r s (u)==0)

l g=lg −1;
ind=f i n d ( t==u) ;
t ( ind ) = [ ] ;

end
i f ( r s ( v )==0)

l g=lg −1;
ind2=f i n d ( t==v ) ;
t ( ind2 ) = [ ] ;

end
end

end
secu=secu −1;

end
A=B;
end

Listing A.5: Cluster graph
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