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1 Introduction

The classic method known variously as the saddlepoint approximation, the method
of steepest descents, the method of stationary phase, or the Laplace method, applies
to contour integrals that can be written in the form

I(s) = /C 1) ¢ (1)

where f, an analytic function, has a real part that goes to minus infinity at both
ends of the contour C. Such integrals arise frequently in applications of the Fourier
transform. The fundamental idea is that the value of the integral when s > 0 is large
should be dominated by contributions from the neighbourhoods of points where the
real part of f has a saddlepoint. Early use was made of the method by Debye to
produce asymptotics of Bessel functions, as reviewed in for example [9]. Daniels
[4] wrote a definitive work on the saddlepoint approximation in statistics. Later,
these ideas evolved into the theory of large deviations, initiated by Varadhan in [8],
which seeks to determine rigorous asymptotics for the probability of rare events. A
textbook description of the saddlepoint approximation can be found in [3].

If we write ( = z + iy, elementary complex analysis implies that the surface over
the (z,y) plane with graph $f has zero mean curvature, so any critical point * (a
point where f/ = 0) will be a saddlepoint of the modulus |e3f()|. The level curves of
Rf and I f form families of orthogonal trajectories: The curves of steepest descent
of Rf are the level curves of &f, and vice versa. Thus the curve of steepest descent
of the function Rf through (* is also a curve on which & f is constant. In other
words, it is a curve of “stationary phase”. On such a curve, the modulus of e5/(©) will
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have a sharp maximum at (*. If the contour C can be deformed to follow the curve
of steepest descent through a unique critical point ¢*, and the modulus of /(%) is
negligible elsewhere, the dominant contribution to the integral for s large can be
computed by a local computation in the neighbourhood of (*. In more complex
applications, several critical points may need to be accounted for. To see how these
ideas work in practice, we first review a statistical application due to Daniels.

2 Daniels’ Application to Statistics

Daniels [4] presented an asymptotic expansion for the probability density function
fn(z) of the mean X,, of n iid copies of a continuous random variable X with
cumulative probability function F'(x) and probability density function f(z) = F'(x).
Assuming that the moment generating function

M(7) =e¥™ = /00 e f(x)dx

o0

is finite for 7 in an open interval (—cy, ¢3) containing the origin, the Fourier inversion
theorem implies that

n a+1i00
fn(w) _ _/ en(\II(T)ffx)dT (2)
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for any real a € (—cy, ¢32).
For each z in the support of f, one can show that the saddlepoint condition

V(r)—z=0

has a unique real solution 7* = 7*(z). The contour for (2) with a = 7* is the tangent
line to the steepest descents curve at 7*. A Taylor expansion of ¥(7) — 7 about 7*

and the substitution w = —iy/nV”(7*)(7 — 7*) implies
: k
iw
U(r)—7e=V(1")—7 l‘—i—Z o (—n\II(Q)(T*))l/2)
k>2

and therefore one can write the integral in the form

(f]:) ~ / )711)2/2
27/ \I/”

1 —in —1/2 ‘If”( *>> 3/2\11(3( ) 3/3|+

o ((qﬂ'( )" 2\1/<4>(7*)w4/4!—(qf"(f*))—?’(qf@<T*))w6/(2!3!2))+...}dw.

Each term in this expansion is a Gaussian integral that can be evaluated in closed
form. The odd terms all vanish, leaving an expansion in powers of n~!
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where the leading term (called “the saddlepoint approximation”) is given by

n 1/2
n(W(r*)—7*x

The function I(z) = sup, 7o —¥(7) = 7"z — ¥ (7*) that appears in this expression
is the Legendre transform of the cumulant generating function ¥, and is known as
the “rate function” or “Cramér function” of the random variable X. The large
deviation principle

lim llogP(Xn >zx)=—I(z), foraz> E[X]

n—oo M,
holds for very general X. Another observation is that the Edgeworth expansion of
statistics comes out in a similar way, but takes 0 instead of 7" as the centre of the
Taylor expansion.

One can show using a lemma due to Watson [9] that (3) is an asymptotic ezpan-
sion, which means roughly that when truncated at any order of n~!, the remainder
is of the same magnitude as the first omitted term. A more precise statement of
the magnitude of the remainder is difficult to establish: the lack of a general error
analysis is an acknowledged deficiency of the saddlepoint method.

3 Applications to Portfolio Credit Risk

The problem of portfolio credit risk measures and the problem of evaluating arbitrage
free pricing of collateralized debt obligations (CDOs)! both boil down to computation
of the probability distribution of the portfolio loss at a set of times.

3.1 Credit Risk Measures

In risk management, the key quantities that determine the economic capital require-
ment for a risky portfolio are the Value at Risk (VaR) and Conditional Value at Risk
(CVar)? for a fixed time horizon T and a fixed confidence level o < 1. We consider
the computation of these risk measures for a large portfolio of credit risky instru-
ments such as corporate loans or credit default swaps. Let (2, F, P) be a probability
space that contains all of the random elements: here P is the physical measure (for
an analogous treatment of CDO pricing it will be the risk—neutral probability mea-
sure). The portfolio is defined by the following basic quantities: M reference obligors
with notional amounts N;,j = 1,2,..., M; the random default time 7; of the jth
credit; the fractional recovery R; after default of the jth obligor, assumed to be
deterministic; and the loss I; = (1 — R;)N;/N caused by default of the jth obligor

1See article **.
2See Section ?77.



as a fraction of the total notional N = > i Nj. In terms of these quantities, the
cumulative portfolio loss up to time ¢ as a fraction of the total notional is given by:

Then the two important credit risk measures are defined as follows.

VaR,r = Ninf{z|P[Lr > z| > a}

E[(NLy — VaRaz)"
CVaR,; = ZA - _YjR M}

3.2 Saddlepoint Approximations for Credit Risk

As is commonly done, we now assume a conditional independence structure for de-
fault times. That is, we assume there exists a d—dimensional random variable Y, the
“condition”, such that the default times 7; are mutually conditionally independent
under the condition Y = y. The marginal distribution of Y, denoted by Py, and
its probability density function py(y),y € RY, are taken to be known. This implies
that conditioned on Y = y, the fractional loss L(¢) is a sum of independent (but not
identical) Bernoulli random variables. For fixed values ¢, y of the time and condition
Y, we note that L := L(t)]y—, ~ >; 1;X; where X; ~ Bern(p;(t,y)), p; = Prob(r; <
t]Y = y). We suppose that the conditional default probabilities p; = p;(t,y) are
known.
The following functions are associated to the random variable L:

1. The probability distribution function (PDF) p(z) := F&V(x) (in our simple
example, it is a sum of delta functions supported on the interval [0, 1]);

2. The cumulative distribution function (CDF) FO)(z) = E[I(L < z));

3. The higher conditional moment functions F™ (z) = (m!) " E[((x—L)*)™],m =
1,2,...;

4. The cumulant generating function (CGF)
) M
U(u) = log(E[e"]) = Y [1 - p; + p;e"].

J=1

When we need to make explicit the dependence on ¢,y we write F™ (x|t, y), U (ult,y).
The unconditional versions of these functions are given by

F™(alt) = E[F™(alt,Y)] = / FO (aft, y)py (dy), m = —1,0,...
Rd

U(ult) = log(E[ew(”’Y)]=/IRdnlog([l—pj(t,y)+pj(t,y)6“lj]py(dy)-

4



According to these definitions, for all m = 0,1, ... we have the integration formula

F () = /0 ’ Fm=1(2)dz. (4)

We see that VaR and CVaR are obtained directly from E[F( (z|T)] with m =
0, 1: Anticipating that the Y integrals will be done numerically, the credit problem
thus boils down to finding an efficient method to compute E[F™)(z|T,y)] for a
large but finite set of values (z,y). A number of different strategies can be used to
compute the conditional distribution accurately when M is large:

1. In the fully homogeneous case when p; = p, [; = [, the distribution is binomial;

2. When [; = [ but p; are variable (the homogeneous notional case), the dis-
tribution can be computed highly efficiently by a recursive algorithm due to
1, 6].

3. When both [}, p; are variable, [7, 5, 2, 10] all noted that a saddlepoint treatment
of the distribution functions offers superior performance over naive Edgeworth
expansions.

We now consider the fully nonhomogeneous case and begin by using the Laplace
inversion theorem to write

1 a+1i00
p(x) = FY(2) = / eV gy

27 —100

Since p is a sum of delta functions, this formula must be understood in the distri-
butional sense, and holds for any real . When a < 0,

1 a+100 1 — e 72 1 a+100
FO(z) = —/ VO = e (5)
2m J, T 2m

—100 a—100

In the last step in this argument, one term is zero because ¥ is analytic and
decays rapidly as 7 — —oo. Similarly, for m = 1,2, ... one can show that
1 a-+100
F(m)<£€) — (_1>m+12_/ Tfmfle‘ll(‘r)ffxdT (6)
T Ja—ico

provided oo < 0. It will also be useful to consider the functions

1 a+ic0
G(m) (.CE) — (_1)m+1%/ T—m—le‘ll(ﬂ')—‘rxd,]_ (7)

defined when a > 0. One can show by evaluating the residue at 7 = 0 that

FO@z) = ¢O@) -1 (8)
FO(z) = GW(z) - E[L] +x (9)
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with similar formulas relating ™ and G for m = 2,3, . ...

Since the conditional portfolio loss is a sum of similar, but not identical, inde-
pendent random variables, we can follow the argument of Daniels to produce an
expansion for the functions F(™. Some extra features are involved: the cumulant
generating function is not N times something, but rather a sum of N (easily com-
puted) terms; we must deal with the factor 77™~!; we must deal with the fact that
critical points of the exponent in these integrals may be on the positive or negative
real axis and there is a pole at 7 = 0. To treat the most general case, we move the
factor 7~™! into the exponent and consider the saddlepoint condition

U(r) = (m+1)/1—z=0. (10)

Proposition 5.1 from [10] shows that a choice of two real saddlepoints solving this
equation is typically available:

Proposition 3.1. Suppose that p;, l; > 0 for all j. Then

1. There is a solution T*, unique if it exists, of V(1) —x = 0 if and only if
0<x<)l. IfE[L] >x>0then 7 >0 and if E[L] <z < >;l; then
T < 0.

2. For each m > 0 there is exactly one solution 7, of (10) on (—00,0) if z <
>_;l; and no solution on (—00,0) if x > . 1;. Moreover, when x < }_.l; the
sequence {7, }m>o is monotonically decreasing in m.

3. For each m > 0 there is exactly one solution 7,7 of (10) on (0,00) if x > 0 and
no solution on (0,00) if © < 0. Moreover, when x > 0 the sequence {75 },n>0
18 monotonically increasing in m.

At this point the methods of [2] and [10] differ. We consider first the method of
[10] for computing F'™ m = 0,1. They apply the argument of Daniels directly, but

A

with the following strategy for choosing the saddlepoint. Whenever x < E[L], 7, is
chosen as the centre of the Taylor expansion for the integral in (6). Whenever z >

~

E[L], instead 7} is chosen as the centre of the Taylor expansion for the integral in (7),

~

and either (8) or (9) is used. Thus for example, when x > E[L] the approximation
form=11is

FO®@) ~ g — BIL] + ————— |1+

eTlJ’z-l-\I!(TlJr) \11(4)<7—1+) B 5(\11(3)(7_1+>>2
T | SR AR

In [2], the m = —1 solution 7*, suggested by large deviation theory, is chosen
as the centre of the Taylor expansion, even for m # —1. The factor 7™ ! is
then included with the other non-exponentiated terms, leading to an asymptotic
expansion with terms of the form

/ e 2 (w + wo) Tt dw, wy = 7 /1/ U (7%)
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These integrals can be evaluated in closed form, but are somewhat complicated, and
more terms are needed for a given order of accuracy.

Numerical implementation of the saddlepoint method for portfolio credit prob-
lems thus boils down to efficient computation of the appropriate solutions of the
saddlepoint condition (10). This is a relatively straightforward application of one-
dimensional Newton-Raphson iteration, but must be done for a large number of val-
ues of (x,t,y). [10] report that for typical parameter values and up to 2!° obligors,
saddlepoints were usually found in under 10 iterations, which suggests a saddlepoint
expansion will run no more than about 10 times slower than the Edgeworth expan-
sion with the same number of terms. However, both [10] and [2] observe that for
the same computational effort the saddlepoint approximation is often far superior.
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