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Abstract. Recent statistical analysis of a number of financial databases is summa-
rized. Increasing agreement is found that logarithmic equity returns show a certain
type of asymptotic behaviour of the largest events, namely that the probability density
functions have power law tails with an exponent α ≈ 3.0. This behaviour does not vary
much over different stock exchanges or over time, despite large variations in trading
environments. The present paper proposes a class of multivariate distributions which
generalizes the observed qualities of univariate time series. A new consequence of the
proposed class is the “spectral measure” which completely characterizes the multivari-
ate dependences of the extreme tails of the distribution. This measure on the unit
sphere in M–dimensions, in principle completely general, can be determined empiri-
cally by looking at extreme events. If it can be observed and determined, it will prove
to be of importance for scenario generation in portfolio risk management.

I INTRODUCTION

Much research over the past forty years has examined statistical properties of
stock returns with an aim to find models which improve over the Brownian motion
models which began with Bachelier’s work in the early 1900s. Bachelier’s theory
of speculation, adapted to logarithmic returns, assumes that successive increments
of the logarithmic returns X(t, δt) = log[S(t + δt)/S(t)] of a time series of prices
S(t) are (a) random, (b) statistically independent, (c) identically distributed, and
(d) Gaussian with zero mean. Bachelier himself pointed to assumption (d) as the
weakest conceptual link, and subsequent researchers have noted that by replacing
Gaussians with more general distributions the remaining three assumptions stand
up relatively well. Amongst the models which have gained some popularity in
the literature are stable–Lévy processes [11], [13], truncated stable–Lévy processes
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[3], fractional Brownian motion [12], hyperbolic distributions [7], [8] and Bessel
distributions [10], [9].

Of the shortcomings of geometric Brownian motion, the most egregious is the fat
tail problem: everyone agrees empirical time series for financial returns are always
leptokurtic, i.e. they have tails which are thicker than those of any Gaussian.
Amongst the fat–tailers who regard this fact as very important we can identify two
camps: the “exponential tailers” and the “power law tailers” who see a probability
density function which is asymptotically proportional to a negative power of the
event size.

The theoretical justification for power law tails rests on the experience of physi-
cists, geologists and others who study the mathematics of complex systems which
consist of an enormous number of units connected by finite range interactions. For
example, highly turbulent fluids are described qualitatively by a cascade of en-
ergy from large distance scales through to a short distance dissipative scale. The
spectrum of excitations exhibits “Kolmogorov scaling” which is a clear power law.
The concept of “self–organized criticality” has been proposed as an explanation for
the ubiquity of power laws in such complex non-equilibrium systems [1]. A key
consequence of this concept is the “universality” of the exponents of the power
laws in question, i.e. their invariance under continuous changes in the microscopic
interaction law.

An equity market can certainly be viewed as a large system of traders in interac-
tion with each other and the external economy. Thus it is natural to imagine that
prices, being a measure of the state of the system, might exhibit self–organized
criticality and consequently the type of universal power law seen in some physical
systems. Of course, finance is not physics, and any tidy picture from physics will
be severely muddied by problems of changing market conditions (stemming for ex-
ample from evolving technology), irrationality and other psychological factors, the
wide variation in trading styles, etc. Nevertheless, if self–organized criticality is
applicable in finance it leads naturally to an optimistic prediction, consequences of
which we will explore in this paper:

Scaling Prediction: The log returns within equity markets should exhibit power
law tails with a universal exponent α. This exponent will the same in different
sectors within a given stock market, and will be the same in different stock markets
around the world.

In section 2 we review some recent work on the statistics of financial time series.
The evidence does appear to offer some support to the validity of the scaling pre-
diction: the log returns of a great number of different equities and equity indices,
over time intervals from one minute to several days, show power law tails all with
exponents α ≈ 3.0. Furthermore, there is some evidence for universal behaviour
beyond that asserted in the scaling prediction: the probability density functions for
returns over time intervals in the range from five minutes to several days change
only by an overall scale, having the same universal shape.

The present review takes this empirical evidence seriously, and explores the con-



sequences of the scaling prediction. The main difficulty in considering non-Gaussian
distributions is that the dependence structure is not easily characterized in a unique
way. In the Gaussian case, the correlation matrix determines the multivariate dis-
tribution once the marginals are known. Moreover, despite the fact that deter-
mining the full correlation structure exactly from market data is often difficult,
the Gaussian distribution is simple enough that determining a few of its principal
components is often sufficient for risk management purposes, and these can easily
be obtained from market data.

We will characterize a general class of multivariate distributions consistent with
the scaling prediction for its marginals, and derive their associated asymptotic
dependence structure (“tail dependence”). This tail dependence will turn out to be
entirely determined by a measure on a high-dimensional sphere, and we will obtain
estimates for the impact of this measure on the conditional correlations in the tails
of the marginals. In a precise sense, this “spectral measure” is the natural analog
for Lévy distributions of the Gaussian correlation matrix. The results presented
here are proven in the working paper [2]. The issue of the determination of the
dependence structure from historical data will be addressed in future work.

II REVIEW OF EMPIRICAL STUDIES

Here we briefly summarize some empirical studies done over the past forty years
which have been important for researchers studying the distributions of price log-
returns X(t, δt). For an extended and readable discussion, see [5].

Benoit Mandelbrot [11] was an early pioneer in studying the returns of cotton
price fluctuations, and proposed nearly forty years ago that the distribution of log
returns X(t, δt) can be modelled by a stable Lévy distribution. More precisely,
he proposed that the probability that X(t, δt) is bigger than x is asymptotically
Cx−α as x → ∞, where α ≈ 1.7. His proposal was based on two elements: first,
that the distribution of price returns is decidedly non-Gaussian, and second, that
the functional form of these distributions doesn’t depend on the increment size δt.
Models based on this stable (α < 2) Lévy hypothesis have the difficulty that their
distributions do not have a finite second moment, but stability guarantees that there
is a well-developed theory generalizing many features of Gaussian distributions [13].

But we now know this picture is too simplistic, since as δt grows large, the
distributions converge to a Gaussian [3]. Two papers, [6] examine the stock price
log-returns of individual companies and the log-returns of the S&P 500 index. They
present evidence that this crossover to Gaussian behavior occurs for δt ≈ 4 days
in the case of the S&P 500 index, and for δt ≈ 16 days in the case of individual
stocks. They emphasize however, that for δt less than these crossover points, the
distributions are essentially independent of δt.

This brings us to the second departure from Mandlebrot’s hypothesis. While the
return distributions are power laws as he suggested, the work just cited shows that
for a great range of x values (from 3 to 50 standard deviations in the case of the



S&P 500, and from 2 to 80 standard deviations in the case of individual companies),
the exponent α is approximately 3, not 1.7. This is true for any of the 1000 stocks
chosen, as well as the Hang-Seng and NIKKEI indices, and does not depend on the
size of δt (below the crossover mentioned above). Dacorogna et al [4] have found
α >∼ 3 power laws in foreign exchange markets as well. These findings suggest that
return distributions for financial fluctuations should not be modelled with Lévy
stable laws, but with more general Lévy distributions characterized by α > 2. Our
main goal in this paper is to extend this idea to the multivariate setting, where
we assume that there is a fixed α ≈ 3 so that in every direction, the cumulative
density function has power law decay with exponent α.

III MODELLING ASSUMPTIONS

In the remainder of this paper we focus on a collection of M different equity
prices. We let St = {Skt }k=1,...,M be the vector stock price process where Skt is the
price of the kth equity at time t > 0. We focus on the sequence of returns sampled
at N discrete times tj = jδt, j = 0, 1, . . . , N , where δt > 0 is a fixed time interval.
We define the vector of (log) returns from tj−1 to tj to be Xj = {Xk

j }k=1,...,M

with Xk
j = log(Sktj/S

k
tj−1

). In general, and in the remainder of the paper, we
are concerned with determining a set of mathematically natural conditions on the
process Xt which are compatible with the observed regularities in the data.

Remark: We defer to a subsequent paper the question of how the distribution of
the returns vary with the value of δt. In the present paper, δt should be taken to
be a value intermediate between 1 minute and 4 days.

We list a set of modelling assumptions which will characterize a certain class of
multivariate distributions. We state these assumptions as applicable directly to the
time series of returns: more realistically, one should think of these assumptions as
applicable to the set of underlying risk factors in the model. Observed time series
would then be modelled as a process driven by these factors. Nonetheless, when
applied directly to observed time series our modelling assumptions do a surprisingly
reasonable job.

H1 The random variables Xj are independent and identically distributed. We call

the underlying M–dimensional distribution X, thus Xj
d
= X for all j. X has

finite covariance and is infinitely divisible.

We assume finite covariance since this does seem to be true in observed time
series. Infinite divisibility is a consequence of thinking of X as the increment
Xδt of an underlying continuous time process Xt. From this condition the Lévy–
Khintchine theorem implies the following representation for the log–characteristic
function ΨX(u) = − log(E[ei(u,X)]) of X:

ΨX(u) = −i(u,m) + (u,Qu)/2 +
∫

RM
[ei(u,a) − 1− i(u, a)χ|a|<1(a)]dµ(a) (1)



Here u,m ∈ RM , Q is a positive semi-definite quadratic form on RM , the Lévy–
Khintchine (LK) measure µ is a positive measure on RM which satisfies a certain
integrability condition, and for any set A ⊂ RM , χA denotes the indicator function
for that set.

The LK–measure has an interpretation which we find very useful in guiding
our work. A Poisson process with jump size a ∈ RM and rate λ > 0 has log–
characteristic function λ[ei(u,a) − 1]. Roughly, the last term of (1) is interpreted as
a (continuous) compounding of Poisson jump processes in which jumps of size in
the set [a, a+ da] occur at the rate dµ(a).

The second assumption restricts the form of the log–characteristic function to be
that of a “purely discontinuous” process:

H2 We assume Q = 0.

The final assumption embodies and abstracts the observation that observed eq-
uities as well as numerous stock indices seem to have power law tails with the same
exponent.

H3 There is a constant α > 0 such that every generalized (univariate) marginal
Y = ξTX, ξ ∈ RM of the RM–valued random variable X has a probability
density function ρY with power law asymptotics:

ρY (y) ∼ g±(ξ)|y|−1−α as y → ±∞

for some constants g±(ξ) ≥ 0. We say that X has universal exponent α.

IV A CLASS OF MULTIVARIATE DISTRIBUTIONS

In this section we discuss a general family which satisfies H1-H3.

Definitions: Given α > 2, we say an M–dimensional random variable is of class
α if its log–characteristic function has the form (1) with Q = 0 and such that the
Lévy-Khintchine measure dµX(a) is asymptotically in separated form:

dµX(a) ∼ r−1−α dr dΓ(â), r →∞ (2)

where r = |a| and â = a/r. The “spectral measure” Γ is a general (positive,
finite) measure on the unit sphere S ∈ RM . Let HM,α denote the family of all
M–dimensional class α random variables, and let Hα = ∪M>0HM,α.

The main structural result concerning the family Hα is that it is closed under
linear transformations.

Theorem 1 Let X ∈ HM,α, and let B : RM → Rk be a non–zero linear transfor-
mation. Then B(X) ∈ Hk,α.

Theorem 1 implies that H3 is true for X ∈ HM,α. To see this, we need the
following univariate result:



Proposition 2 Suppose the univariate X has LK measure µ which satisfies

µ(a) ∼ g±|a|−1−α as a→ ±∞ (3)

Then the probability density function of X has the same asymptotics as µ.

A direct asymptotic calculation now shows that class α distributions satisfy H3:

Corollary 3 Let X ∈ HM,α. Then for any ξ ∈ RM , the generalized marginal of X
in the direction of ξ, Y = (ξ,X), has power law asymptotics with exponent α and
constants

g±(ξ) =
∫

((ξ, â))α±dΓ(â) (4)

where (x)± = max(±x, 0).

We can use a multivariate version of Proposition 2 to strengthen the connection
between the LK measure and the probability density function of X.

Theorem 4 Let X ∈ HM,α. Then the probability density function of X has the
same asymptotics as the LK measure of X.

Thus the behaviour of large values of a random vector X ∈ HM,α is determined
by Γ. We introduce a set of “large events” parameterized by a radius R > 0:
BR = {X : |X| > R}, where | · | denotes Euclidean norm. Now letXR = X|R
be X conditioned on the event BR. The probability density function of XR is
ρ(x)χR(x)/

∫
ρ(x)χR(x) dx. To emphasize that the following result is very different

from what will happen with Gaussians, observe that if X is a multivariate Gaus-
sian, then for R large XR becomes concentrated on the maximal eigenspace of the
covariance matrix of X. Thus the dependences possible for large Gaussian events
are very restricted.

Theorem 5 Suppose X ∈ Hα,M with spectral measure Γ and vanishing mean. Then
the correlation matrix of XR is asymptotic to the correlation of Γ:

CR,ij =
E[(XRi − X̄Ri)(XRj − X̄Rj)]√

var(XRi)var(XRj)
∼ EΓ[ai − āi)(aj − āj)]√

varΓ(ai)varΓ(aj)

Example: A well-studied fat–tailed distribution in economics is the univariate
t–distribution with 3 degrees of freedom which has probability density function
C(1+x2)−2 and log–characteristic function Ψ(u) = |u|− log(1+ |u|). We can prove
that this distribution satisfies H1,H2. Now we use this distribution to generate a
family of multivariate t–distributions satisfying H1–H3 with tail exponent α = 3.
Let X = (X1, X2, . . . , XM) be a random vector whose components are i.i.d. random
variables with this distribution. Then define the family to consist of all Y = B(X)
for any value M and any linear transformation B. Such distributions have the
asymptotic behaviour (2). The spectral measure of Y consists of a finite number
of “atoms” (delta functions) at the points B(ei) with weights |B(ei)|α, where ei is
the i–th standard basis vector in RM .



V CONCLUSIONS

We have seen that the scaling prediction leads for each M to a broad class of
M–dimensional distributions which are characterized by an asymptotic scaling in
both the LK measure and in the probability density function. For such random
vectors, the joint distribution of large events is determined by an exponent α > 2
and the spectral measure Γ, an arbitrary finite measure on the unit sphere in
RM . Normalized moments of the conditional random vector XR are given by the
moments of Γ if R is large enough.

Such behaviour is completely different in character from what is possible in the
Gaussian universe.

It remains to be seen whether the spectral measure can really be observed in
real data. In principle, this will require processing huge amounts of data to sift out
the large events. One is looking for the normalized moments of XR to stabilize as
R gets large. Equivalently, one can project XR radially onto the unit sphere: the
resulting measure should be approximated by Γ for R large. If the spectral measure
does exist in real equity data, this will be a strong verification that some form of
self–organized criticality is true in financial markets.
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