Algebraic Tractability Criteria for Infinite-Domain Constraint Satisfaction Problems

Manuel Bodirsky

Institut für Informatik
Humboldt-Universität zu Berlin

May 2007
The Constraint Satisfaction Problem

Let $\Gamma = (V; R_1, \ldots, R_l)$ be a relational structure. V might be infinite! Let τ be the (finite) signature of Γ.

CSP(Γ)

Input: A finite τ-structure S.

Question: Is there a homomorphism from S to Γ?
The Constraint Satisfaction Problem

Let \(\Gamma = (V; R_1, \ldots, R_l) \) be a relational structure. \(V \) might be infinite!
Let \(\tau \) be the (finite) signature of \(\Gamma \).

CSP(\(\Gamma \))

Input: A finite \(\tau \)-structure \(S \).

Question: Is there a homomorphism from \(S \) to \(\Gamma \)?

Examples:
CSP((\(\mathbb{N}, =, \neq \))) - is \(x \) and \(y \) disconnected wrt \(= \) whenever \(x \neq y \) is in \(S \)?
CSP((\(\mathbb{Q}, < \))) - digraph acyclicity
CSP((\(\mathbb{Q}, \{(x, y, z) \mid x < y < z \lor z < y < x\}\))) - the betweenness problem
Acyclic H-colorings

Fix digraph H.

Acyclic H-coloring: (Feder+Hell+Mohar)

Input: A digraph G

Question: Can we H-color G such that each color class is acyclic?
Acyclic H-colorings

Fix digraph H.

Acyclic H-coloring: (Feder+Hell+Mohar)

Input: A digraph G

Question: Can we H-color G such that each color class is acyclic?

Formulation as CSP(Γ): choose $\Gamma = H[(\mathbb{Q}, <)]$.
CSPs in Temporal Reasoning

Betweenness:

\[
\text{CSP}((\mathbb{Q},\{(x, y, z) \mid x < y < z \lor z < y < x\}))
\]

NP-complete (Garey+Johnson)

Min-Ordering:

\[
\text{CSP}((\mathbb{Q},\{(x, y, z) \mid x > y \lor x > z\}))
\]

Simple linear time algorithm
Neither Datalog nor Maltsev-like
Consistency Problem for Basic Relations:

Input: A relational structure \((V, DR, PO, PP)\) where \(DR, PO, PP\) are binary relations

Question: Can we assign non-empty regions satisfying all the constraints?

Formulation as \(\text{CSP}(\Gamma)\):
Consistency Problem for Basic Relations:

Input: A relational structure \((V, DR, PO, PP)\) where \(DR, PO, PP\) are binary relations

Question: Can we assign non-empty regions satisfying all the constraints?

Formulation as CSP\((\Gamma)\):
choose \(\Gamma = (2^X \setminus \emptyset, DR, PO, PP)\) for an infinite set \(X\)
A Fundamental Lemma

Let \mathcal{C} be a set of τ-structures.

Definition 1.

\mathcal{C} is **closed under disjoint unions** if whenever $A, B \in \mathcal{C}$ then $A + B \in \mathcal{C}$.

\mathcal{C} is **closed under inverse homomorphisms** if $B \in \mathcal{C}$ and $A \rightarrow^h B$ implies $A \in \mathcal{C}$.

Example: the set of all triangle-free graphs

Observation (Feder+Vardi).

$\mathcal{C} = \text{CSP}(\Gamma)$ for some relational structure Γ if and only if \mathcal{C} is closed under disjoint unions and inverse homomorphisms.
Examples of CSPs

Triangle-Freeness:

Input: A graph G

Question: Is G triangle-free?
Examples of CSPs

Triangle-Freeness:
Input: A graph G
Question: Is G triangle-free?

Vector-space CSP:
Input: A system of linear equations $x + y = z$ and disequations $x \neq y$
Question: Is there a d and an assignment of d-dimensional Boolean vectors to the variables that satisfies all the constraints?
1 Infinite Domain Constraint Satisfaction Problems

2 The Universal-Algebraic Approach

3 Tractability Criteria

4 Complexity Classifications
Definition 2 (First-order Interpretation).

A τ-structure Δ has a interpretation in Γ if there is

- first-order formula $\delta(x_1, \ldots, x_d)$,
- for each m-ary $R \in \tau$ a first-order formula $\phi_R(x_1, \ldots, x_{md})$, and
- a surjective map $h : \delta(\Gamma^d) \to \Delta$

such that for all $a_1, \ldots, a_m \in \delta(\Gamma^d)$

$$\Delta \models R(h(a_1), \ldots, h(a_m)) \iff \Gamma \models \phi_R(a_1, \ldots, a_m).$$

Note: much more powerful than first-order definitions.

An interpretation is primitive positive if δ and the ϕ_R are primitive positive.

Observation .

If Δ has a pp-interpretation in Γ then there is a polynomial-time reduction from $\text{CSP}(\Delta)$ to $\text{CSP}(\Gamma)$.
How can we recognize whether Γ pp-interprets Δ?

Definition 3.

A relational structure Γ is ω-categorical iff every countable model of the first-order theory of Γ is isomorphic to Γ.

Example: $(\mathbb{Q}, <)$ (Kantor)

More: Infinite-dimensional vector-spaces over finite fields
The countable atomless boolean algebra
The countably infinite random graph
The universal homogeneous triangle-free graph

Many more: All Fraisse-limits of amalgamation classes of structures with finite signature are ω-categorical (and homogeneous)
Every CSP we have seen in this talk so far can be formulated with an \(\omega \)-categorical \(\Gamma \)!

Get new \(\omega \)-categorical structures from old:

Observation.

If \(\Delta \) is first-order interpretable in an \(\omega \)-categorical structure \(\Gamma \), then \(\Delta \) is also \(\omega \)-categorical.

- Allen’s Interval Algebra and all its fragments are \(\omega \)-categorical
- All CSPs in MMSNP can be formulated with an \(\omega \)-categorical template (MB+Dalmau’06)
The Basic Galois Connection

Theorem 4 (Engeler, Ryll-Nardzewski, Svenonius).

Tfae:

- Γ is ω-categorical
- $\text{Aut}(\Gamma)$ is oligomorphic, i.e., there are finitely many orbits of k-tuples in $\text{Aut}(\Gamma)$, for each k
- all orbits of k-tuples in $\text{Aut}(\Gamma)$ are first-order definable

Inv-Aut form a Galois connection between structures and permutation groups:

- $\text{Inv}(\text{Aut}(\Gamma))$: expansion by all first-order definable relations
- $\text{Aut}(\text{Inv}(F))$: locally closed permutation group
A Preservation Theorem

Definition 5.
A homomorphism f from Γ^k to Γ is called a polymorphism. We say that f preserves all relations in Γ.

Example: $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\mathbb{Q}, <)$, but not of $(\mathbb{Q}, Betweenness)$

Theorem 6 (MB+Nesetril’03).
A relation R has a pp definition in an ω-categorical structure Γ if and only if R is preserved by all polymorphisms of Γ.
Homomorphic Equivalence

Definition 7.
Two structures Γ, Δ are **homomorphically equivalent** if Γ is homomorphic to Δ and vice versa.

Example: $H[\langle \mathbb{Q}, < \rangle]$ and $\langle \mathbb{Q}, < \rangle$ are homomorphically equivalent for any finite acyclic digraph H.

Observation.
Two ω-categorical structures Γ and Δ are homomorphically equivalent if and only if $\text{CSP}(\Gamma)$ equals $\text{CSP}(\Delta)$.
Cores

Let Γ be ω-categorical.

Definition 8.

Γ is called a **core** if every endomorphism of Γ is an **embedding**.
Γ is called **model-complete** if every embedding of Γ into Γ is **elementary**.

Theorem 9.

Every ω-categorical structure Γ is homomorphically equivalent to a model-complete core Δ. Moreover,

- Δ is unique up to isomorphism
- orbits of k-tuples are **primitive positive** definable in Δ
- Δ is ω-categorical.

Consequence: can expand cores Δ by finitely many constants without changing the complexity of $\text{CSP}(\Delta)$.

CSPs over infinite domains (May 2007)

The Universal-Algebraic Approach
Definition 10.

The algebra $\text{Al}(\Gamma)$ of Γ
- has the same domain as Γ.
- has as functions the polymorphisms of Γ.

Observation: $\text{Al}(\Gamma)$ is a locally closed clone, i.e.,
- contains all projections,
- is closed under compositions, and
- is locally closed: if for all finite subsets S of the domain there is $g \in \text{Al}(\Gamma)$ s.t. $g(a) = f(a)$ for all $a \in S^k$, then $f \in \text{Al}(\Gamma)$.
The Pseudo-Variety of an Algebra

Definition 11.
The smallest class of algebras that contains an algebra A and is closed under subalgebras, homomorphic images, and finite direct products is called the \textit{pseudo-variety} $\mathcal{V}(A)$ generated by A.

Let Γ be ω-categorical.

Theorem 12.
A relational structure Δ has a primitive positive interpretation in Γ if and only if there is algebra B in $\mathcal{V}(\text{Alg}(\Gamma))$ all of whose operations are polymorphism of Δ.
Let Γ be an ω-categorical model-complete core.

Theorem 13.
If there is an expansion Γ' of Γ by finitely many constants such that $\forall(Al(\Gamma'))$ contains a 2-element algebra where all operations are essentially permutations, then $\text{CSP}(\Gamma)$ is NP-hard.

All hard ω-categorical CSPs satisfy this condition.

Conjecture.
Assuming $P \neq \text{NP}$, the opposite implication is true as well.
Outline

1. Infinite Domain Constraint Satisfaction Problems
2. The Universal-Algebraic Approach
3. Tractability Criteria
4. Complexity Classifications
Outline

1 Infinite Domain Constraint Satisfaction Problems
2 The Universal-Algebraic Approach
3 Tractability Criteria
4 Complexity Classifications
Quasi Near-unanimity Operations

A quasi near-unanimity function (qnuf) is an operation satisfying

\[f(x, \ldots, x, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x) = f(x, \ldots, x) \]

Theorem 14 (MB+Dalmau’06).

An \(\omega \)-categorical model-complete core \(\Gamma \) has a \(k \)-ary qnuf if and only if \(\text{CSP}(\Gamma) \) has strict bounded width (and hence, \(\text{CSP}(\Gamma) \) is tractable).

Remark: AI community says “local \(k \)-consistency implies global consistency” if \(\text{CSP}(\Gamma) \) has strict width \(k - 1 \).

Examples:

- \((\mathbb{Q},<)\) has a majority.
- \((\mathbb{Q},\leq,\neq)\) has a 5-ary, but no nuf and no 4-ary qnuf
 (MB+Chen’07 / Koubarakis)
- \((\mathbb{N},\{(x, y, u, v) \mid x \neq y \lor u \neq v\})\) has a 5-ary, but no 4-ary qnuf.
If $\Gamma = (D; R_1, \ldots, R_l)$ is a relational structure, denote by Γ^c the expansion of Γ by $\neg R_1, \ldots, \neg R_l$.

Theorem 15 (MB+Chen+Kara+vonOertzen’07).

Suppose that
- Γ is ω-categorical and admits quantifier-elimination
- Δ is first-order definable in Γ
- $\text{CSP}(\Gamma^c)$ is tractable
- there is an isomorphism $i : \Gamma^2 \to \Gamma$, and
- Δ is preserved by i.

Then $\text{CSP}(\Delta)$ is tractable.
If $\Gamma = (D; R_1, \ldots, R_l)$ is a relational structure, denote by Γ^c the expansion of Γ by $\neg R_1, \ldots, \neg R_l$.

Theorem 15 (MB+Chen+Kara+vonOertzen’07).

Suppose that

- Γ is ω-categorical and admits quantifier-elimination
- Δ is first-order definable in Γ
- $\text{CSP}(\Gamma^c)$ is tractable
- there is an isomorphism $i : \Gamma^2 \to \Gamma$, and
- Δ is preserved by i.

Then $\text{CSP}(\Delta)$ is tractable.

Idea: All relations in Δ have a quantifier-free Horn definition in Γ.

CSPs over infinite domains
May 2007
Remarks

“Let i be an isomorphism between Γ^2 and Γ."

1. Has no analogon in the finite!
2. Not so rare for infinite structures
3. There is automorphism α of Γ such that i satisfies

$$i(x, y) = \alpha(i(y, x))$$

4. All relations with a fo-definition in Γ that are preserved by i form a maximal constraint language.
Applications

Equality Constraints:

\[\Gamma := (\mathbb{N}, =). \]
\[\Gamma^c = (\mathbb{N}, =, \neq) \text{ clearly tractable.} \]
\[i: \text{ any bijection between } \mathbb{N}^2 \text{ and } \mathbb{N}. \]
\[\Delta = (\mathbb{N}, \{(x, y, u, v) \mid x = y \rightarrow u = v\}) \text{ tractable!} \]

Horn Vector-Space Equations:

\[\Gamma := (\mathbb{V}, \{(x, y, z) \mid x + y = z\}) \text{ the infinite-dimensional vector space over a finite field} \]
\[\Gamma^c = (\mathbb{V}, \{(x, y, z) \mid x + y = z\}), \{(x, y, z) \mid x + y \neq z\}) \text{ is tractable essentially by Gaussian elimination} \]
\[i: \text{ an isomorphism between } \mathbb{V}^2 \text{ and } \mathbb{V}. \]
Hence: can solve Horn equations over \(\mathbb{V}. \)
More Applications

Spatial Constraints:

\[\Gamma := (\mathbb{B}, PP, DR) \] the countable atomless boolean algebra without zero,
\[PP = \{(x, y) \mid xy = y\}, \quad DR = \{(x, y) \mid (x + y)x = x\} \]

\(\Gamma^c \) tractable (Renz+Nebel: Datalog)

\(i \): an isomorphism between \(\mathbb{B}^2 \) and \(\mathbb{B} \)

\(\Delta \): the maximal tractable tractable language that appeared in Drakengren+Jonsson and Renz+Nebel.

Similar applications for

- the universal triangle-free graph,
- “partially-ordered time”,
- “set-constraints”, . . .
Outline

1. Infinite Domain Constraint Satisfaction Problems
2. The Universal-Algebraic Approach
3. Tractability Criteria
4. Complexity Classifications
1 Infinite Domain Constraint Satisfaction Problems
2 The Universal-Algebraic Approach
3 Tractability Criteria
4 Complexity Classifications
An equality constraint language is a relational structure Γ with a first-order definition in $(\mathbb{N}, =)$.

Examples:

- $\Gamma = (\mathbb{N}, \neq, =)$
- $\Gamma = (\mathbb{N}, \{x = y \lor u = v\}, \{x \neq y \lor u \neq v\})$
- $\Gamma = (\mathbb{N}, \{x = y \rightarrow u = v\})$

Theorem 16 (MB+Kara’07). Let Γ be an equality constraint language. Then either $V(\text{Al}(\Gamma))$ contains a two-element algebra where all ops. are projections (and CSP(Γ) is NP-complete), Γ has a polymorphism f, α satisfying $f(x, y) = \alpha(f(y, x))$ (and CSP(Γ) is in P).

Proof uses polymorphisms and a Ramsey-like argument.
Equality Constraint Languages

An equality constraint language is a relational structure \(\Gamma \) with a first-order definition in \((\mathbb{N}, =)\).

Examples:

- \(\Gamma = (\mathbb{N}, \neq, =) \)
- \(\Gamma = (\mathbb{N}, \{x = y \lor u = v\}, \{x \neq y \lor u \neq v\}) \)
- \(\Gamma = (\mathbb{N}, \{x = y \rightarrow u = v\}) \)

Theorem 16 (MB+Kara’07).

Let \(\Gamma \) be an equality constraint language. Then either

- \(\text{V}(\text{Al}(\Gamma)) \) contains a two-element algebra where all ops. are projections (and \(\text{CSP}(\Gamma) \) is NP-complete),
- \(\Gamma \) has a polymorphism \(f, \alpha \) satisfying \(f(x, y) = \alpha(f(y, x)) \) (and \(\text{CSP}(\Gamma) \) is in \(\text{P} \)).
Equality Constraint Languages

An equality constraint language is a relational structure Γ with a first-order definition in $(\mathbb{N}, =)$.

Examples:

- $\Gamma = (\mathbb{N}, \neq, =)$
- $\Gamma = (\mathbb{N}, \{x = y \lor u = v\}, \{x \neq y \lor u \neq v\})$
- $\Gamma = (\mathbb{N}, \{x = y \rightarrow u = v\})$

Theorem 16 (MB+Kara’07).

Let Γ be an equality constraint language. Then either

- $\mathcal{V}(\text{Al}(\Gamma))$ contains a two-element algebra where all ops. are projections (and $\text{CSP}(\Gamma)$ is NP-complete),
- Γ has a polymorphism f, α satisfying $f(x, y) = \alpha(f(y, x))$ (and $\text{CSP}(\Gamma)$ is in P).

Proof uses polymorphisms and a Ramsey-like argument.
Conclusion

1. Allowing countable (ω-categorical) templates greatly expands the scope of (non-uniform) CSPs.
2. Polymorphisms are very useful to study their complexity.
3. Many more concepts from universal algebra might have generalizations to the oligomorphic setting.