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What Does Identities and Types Do?

Usually we prove that if an algebra/variety does not have a 

term satisfying a certain identity, or if it omits certain types

then 

it allows some `bad’ structure, and then

it is cannot be solved / cannot be defined / cannot be 

represented, etc.



What Do We Need to Do?

We need to be able to prove results like

If there is a term satisfying a certain identity, or algebra/variety

then

a certain algorithm works / the problem belongs to some 

complexity class / expressible in a certain logic, etc.

Sometimes it works:     

- NU term

- 2-semilattice term

- Mal’tsev term

- GMM term

- k-cube term

- 3-Jonsson term
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Conservative Algebras

An algebra  is called  conservative if every its term operation 

satisfies the condition

or, equivalently,  every subset of the universe is a subalgebra
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A conservative algebra does not necessarily generates a 

variety of conservative algebras !

See  Jezek, McKenzie, Marković, Maroti for a study of varieties 

generated by conservative groupoids



Why Conservative Algebras

This talk:   A good place to start

Most of the time:   

List CSP.    Given relational structures  A and  B,  and for each

element  a ∈ A a list  L(a),   does there exist a 

homomorphism  φ: A → B such that  φ(a) ∈ L(a) for all  a



Graph of a Conservative Algebra  (I)

Let  A be a conservative algebra such that  CSP(A)  is not NP-

complete

Then for any its 2-element subalgebra B the problem  CSP(B) 

is not NP-complete

Therefore, for any 2-element set  { a,b} there is a term operation  

f such that               is either

a semilattice operation, or

a majority operation, or 

an affine operation

},{| baf



Graph of a Conservative Algebra  (II)

If   CSP(A)  is tractable, then an edge-colored graph  Gr(A)  

can be defined on elements of  A

semilattice

majority, but no semilattice

affine, but no semilattice or majority

Theorem.
If every pair of elements is a colored edge then  CSP(A) is 

solvable in polynomial time



Three Useful Operations
Lemma.

Let  A be a conservative algebra such that  CSP(A)  is not 

NP-complete. Then  A has term operations  f(x,y), g(x,y,z), and  

h(x,y,z) such that

- is a semilattice operation on every red edge  { a,b},
and a projection otherwise;

- is a majority operation on every yellow edge  { a,b}, a 

semilattice on red, and a projection on blue;

- is an affine operation on every blue edge  { a,b},  a
semilattice on red, and a projection on yellow.
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In general, f,g,h do not satisfy any useful identity



Case Study

if all edges are red then  f is a 2-semilattice operation

if all edges are yellow then  g is a majority operation

if all edges are blue then  h is an affine (Maltsev) operation

if all edges are yellow and blue

then  g and  h can be combined into a

GMM term



Directions

If the function  f is fixed then every red edge can be thought of 

as directed edges
Consider graph  Gr’(A)  obtained from  Gr (A)  by removing 

all yellow and blue edges

Gr’(A)  is a digraph

strongly connected components

maximal strongly connected 
components     max(A)



Algorithm  (I)

Stage 1.

If an instance of  CSP(A) has a 

solution,  it has a solution that 
takes only values from  max(A)



Algorithm  (II)

Stage 2.

Solve the problem for each strongly 
connected component of  max(A)

If for some of the components a 

solution does not exist, remove this 

component



Algorithm  (III)

Stage 3.

Select an element from each of the 

remaining strongly connected 

components

Solve the obtained  yellow / blue

problem

Corollary
If  Gr(A)  does not have blue edges then  CSP(A)  has 

relational width  3



Generalization 

pairs of elements   → pairs of elements modulo some 

congruence (not necessarily subalgebras)

local semilattice, majority, affine operations   → operations
on quotient subalgebras

Let  A be a finite algebra satisfying the following condition

(NO-GSET)      A is idempotent and  HS(A)  does not contain

G-sets



Generalization:  the graph (I)

a b

edge

classes of  θ
〈a,b〉

A

Gr(A)  is a graph with  A  as the vertex set

ab is an edge in  Gr(A)  if only if there is a congruence  θ of 

B = 〈a,b〉 and a term operation  f such that           is a 

semilattice or majority operation on                      or an affine 

operation on   

θ/f

θ/B

}/,/{ θθ ba



Generalization:  the graph  (II)

Theorem
For an idempotent algebra  A the following are equivalent:

- HS(A)  omits type 1

- A satisfies  (NO-GSET)

- for every subalgebra B of  A,  the graph  Gr(B)  is 

connected



Generalization:  Colours of Edges

An edge  ab is  red if there are  θ and  f such that           is a 

semilattice operation on

An edge  ab is  yellow if it is not red, and there are  θ and  f

such that           is a majority operation on

An edge  ab is  blue if it is not red or yellow, and there are  θ
and  f such that           is an affine operation on

θ/f
}/,/{ θθ ba

θ/f }/,/{ θθ ba

θ/f θ/B

B
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maximal congruences

is semilattice on α/f }/,/{ αα ba

there is no semilattice operation

on                    but         is 

majority on this set  
β/g}/,/{ ββ ba

This

prevails



Examples  (I)

Let  A be a semilattice;  then  ab is an edge iff a⋅b ∈ { a,b}
in this case it is a red edge



Examples (II)

Let  A be the group          ;   then every pair of elements is a 

blue edge
3Z
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Examples (III)

Let  A = {a,b,c} and  A = (A;f) where

cacc

abbb

cbaa

cbaf

a

b

c

g(x,y,z) = f(f(x,f(y,z)),f(f(x,y),z)  is majority on { b,c}



Generalization:  Examples (IV)

Let  A and  B be algebras with universe  {0,1}  and op-ns  f, g
On  A f is semilattice,  g is projection

On  B f is projection,   g is affine

A × B:     

〈00,01〉 = {00,01}, 〈00,10〉 = {00,10}, 〈10,11〉 = {10,11}, 
〈01,11〉 = {01,11}, 〈00,11〉 = 〈01,10〉 = A × B
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Omitting Blue Edges

Theorem
For an algebra  A satisfying  (NO-GSET)  the following 

conditions are equivalent
- Gr(A)  does not contain blue edges and  Gr(B) is connected

for any subalgebra B

- HS(A)  omits types  1 and 2

Corollary
If  CSP(A)  has bounded relational width then  Gr(A)  does 

not contain blue edges



Generalization:  Thick and Thin

thin edge
thick edge

a b

classes of  θ
〈a,b〉

A

If  ab is an edge and some congruence  θ witnesses this then

the set                      is called a  thick edge,  denoted

If  θ can be chosen to be         ab is called a thin edgeB

0000
θθ // ba ∪ abR



Observation
If  A’ is a reduct of  A satisfying  (NO-GSET)  condition then 

we can use  A’ rather than  A

Lemma

If  ab is red or yellow edge then

- A’ = (A;F) where  F = Term(A) ∩ Pol(      ) satisfies  

(NO-GSET)
- if  ab is red and  Gr(A)  is red-connected then  Gr(A’)  is 

red-connected
- if  ab is red or yellow and  Gr(A)  is red/yellow-connected 

then  Gr(A’)  is red/yellow-connected

Adding Subalgebras

abR



Adding  Blue Edges

Let  A be the group

Every pair of elements of  A is a blue edge

Let  A’ = (A;F) where  F = Term(A) ∩ Pol({0,1}).
It is easy to see that  A’ is a G-set 

3Z



Three Useful Operations

Lemma.
Let  A be an algebra satisfying (NO-GSET). Then  A has term 

operations  f(x,y), g(x,y,z), and  h(x,y,z) such that

- is a semilattice operation on every red edge

, and a projection on every yellow and blue edge;

- is a majority operation on every yellow edge    

,  a semilattice on red, and a projection on blue;

- is an affine operation on every blue edge  

a semilattice on red, and a projection on yellow.

}/,/{| θθ baf
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Red Thin Edges

Let  Gr’(A)  be the subgraph of  Gr(A)  obtained by omitting all 

the red edges except for thin ones

Lemma
- Gr’(B)  is connected for every subalgebra B

- If  Gr(A)  is red-connected then  Gr’(A)  is red-connected

- If  Gr(A)  is red/yellow-connected then  Gr’(A)  is 

red/yellow-connected



Generalization: Directions

If the function  f is fixed then every red edge can be thought of 

as directed edges
Consider graph  Gr’’(A)  obtained from  Gr’(A)  by removing 

all yellow and blue edges

Gr’’(A)  is a digraph

strongly connected components

maximal strongly connected 
components     max(A)



Unique Red Maximal Component

Condition (maximal red component)
For every subalgebra B the graph  Gr’’(B)  has a unique 

maximal strongly connected component

Theorem
If  A satisfies the maximal red component condition then 

CSP(A)  is solvable in polynomial time.

Moreover,  CSP(A)  has relational width  3



Applications: 2-Semilattice

Theorem
If  A is a 2-semilattice then  CSP(A)  has relational width 3

x ⋅ y = y ⋅ x,        x ⋅ (x ⋅ y) = x ⋅ y

Every pair  a (a ⋅ b) is a thin red edge



Applications: Minimal Clones  (I)

C is a minimal clone if it does not have proper subclones except

for the trivial one

Every minimal clone is generated by one operation

Theorem (Rosenberg)

Every minimal clone is generated by one of following operations:

- a unary operation that is either a permutation or an idempotent

of the semigroup of transformation

- a binary idempotent operation that is not a projection

- a majority operation

- an affine operation

- a semiprojection



Applications: Minimal Clones  (II)
Theorem

Let  f  be a binary operation generating a minimal clone, and 
A = (A; f). Then

(1)  if  Term(A)  does not contain a binary commutative 

operation then  Gr(A) is not connected

(2)  if  f is commutative then either  f(x,y) = ½(x + y) or
Gr’’(A)  satisfies the maximal red component condition

Corollary
If algebra  A is such that  Term(A)  is a minimal clone 

generated by a binary operation. Then  CSP(A)  is solvable 

in polynomial time iff Term(A)  contains a binary commutative 

operation;  otherwise it is  NP-complete


