Symmetric Datalog ≠ Linear Datalog

László Egri1,

joint work with Benoît Larose2 and Pascal Tesson3

1McGill University
2Concordia University
3Université Laval

UA and CSP, Nashville June 2007
Symmetric Datalog (LE, Larose, Tesson, 2007)
Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)
Symmetric Datalog (LE, Larose, Tesson, 2007)

- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions → all CSPs in L are in symmetric Datalog
Symmetric Datalog (LE, Larose, Tesson, 2007)

- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog
- Conjecture: all CSPs in L are in symmetric Datalog
Symmetric Datalog (LE, Larose, Tesson, 2007)
- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions → all CSPs in L are in symmetric Datalog
- Conjecture: all CSPs in L are in symmetric Datalog

Undirected st-connectivity is definable in symmetric Datalog
Symmetric Datalog (LE, Larose, Tesson, 2007)

- In logarithmic space (using Reingold, 2005)
- Boolean domains + standard complexity assumptions → all CSPs in L are in symmetric Datalog
- Conjecture: all CSPs in L are in symmetric Datalog

- Undirected st-connectivity is definable in symmetric Datalog
- Directed st-connectivity is not definable in symmetric Datalog
Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
 - In logarithmic space (using Reingold, 2005)
 - Boolean domains + standard complexity assumptions → all CSPs in L are in symmetric Datalog
 - Conjecture: all CSPs in L are in symmetric Datalog

- Undirected st-connectivity is definable in symmetric Datalog

- Directed st-connectivity is not definable in symmetric Datalog
 - Reflexive transitive closure of a binary relation is not definable in symmetric Datalog
Introduction

- Symmetric Datalog (LE, Larose, Tesson, 2007)
 - In logarithmic space (using Reingold, 2005)
 - Boolean domains + standard complexity assumptions \rightarrow all CSPs in L are in symmetric Datalog
 - Conjecture: all CSPs in L are in symmetric Datalog

- Undirected st-connectivity is definable in symmetric Datalog
- Directed st-connectivity is not definable in symmetric Datalog
 - Reflexive transitive closure of a binary relation is not definable in symmetric Datalog
 - $\neg\text{CSP}(\langle\{0, 1\}; \leq, \{0\}, \{1\}\rangle)$ is not definable in symmetric Datalog
Recap symmetric Datalog through an example
Outline

- Recap symmetric Datalog through an example
- Definitions: free derivation path, the free structure
Outline

- Recap symmetric Datalog through an example
- Definitions: **free derivation path, the free structure**
- Overview of the general proof
Outline

- Recap symmetric Datalog through an example
- Definitions: free derivation path, the free structure
- Overview of the general proof
- The main idea through an example
Datalog and Derivation Path Example

Input Vocabulary:

\[S^1, T^1, E^2 \]

Linear (Symmetric) Program:

EDB: Extensional Database Predicate
IDB: Intensional Database Predicate

\[
\begin{align*}
I(y) & \leftarrow S(y) \\
I(y) & \leftarrow I(x); E(x, y) \\
(I(x) & \leftarrow I(y); E(x, y)) \\
G & \leftarrow I(y); T(y)
\end{align*}
\]

Input Structure:

\[S = \{v_5\}, T = \{v_4\} \]

Derivation Path:

\[
\begin{align*}
G & \leftarrow I(y); T(y) \\
I(v_4) & \leftarrow G \\
E(v_3, v_4) & \leftarrow I(v_3) \\
T(v_4) & \leftarrow E(v_3, v_4) \\
E(v_6, v_3) & \leftarrow I(v_6) \\
I(v_5) & \leftarrow E(v_6, v_3) \\
E(v_5, v_6) & \leftarrow I(v_5) \\
S(v_5) & \leftarrow E(v_5, v_6)
\end{align*}
\]

Symmetric Datalog \neq Linear Datalog – p.4/34
The Free Derivation Path

Symmetric Program \mathcal{D}:

\begin{align*}
I(y) & \leftarrow S(y) \\
I(y) & \leftarrow I(x); E(x, y) \\
I(x) & \leftarrow I(y); E(x, y) \\
\text{(Rename the vars: } I(y) & \leftarrow I(x); E(y, x)) \\
G & \leftarrow I(y); T(y) \\
\end{align*}

Input Structure:

E:

- $E : s \xrightarrow{a} t$
- $S = \{s\}$, $T = \{t\}$

Derivation Path:

- $G \xrightarrow{I(t)} T(t)$
- $I(a) \xrightarrow{E(a, t)}$
- $I(s) \xrightarrow{E(s, a)}$
- $I(a) \xrightarrow{E(a, s)}$
- $I(s) \xrightarrow{E(s, a)}$
- $S(s)$

Free Derivation Path:

- $G \xrightarrow{I(x_1)} T(x_1)$
- $I(x_2) \xrightarrow{E(x_2, x_1)}$
- $I(x_3) \xrightarrow{E(x_3, x_2)}$
- $I(x_4) \xrightarrow{E(x_4, x_3)}$
- $I(x_5) \xrightarrow{E(x_5, x_4)}$
- $S(x_5)$

Symmetric Datalog \neq Linear Datalog – p.5/34
The Free Structure

Free Derivation Path \mathcal{F}:

$$\begin{align*}
G & \leftarrow I(x_1) \quad T(x_1) \\
 & \quad I(x_2) \quad E(x_2, x_1) \\
 & \quad I(x_3) \quad E(x_3, x_2) \\
 & \quad I(x_4) \quad E(x_4, x_3) \\
 & \quad I(x_5) \quad E(x_5, x_4) \\
S(x_5) &
\end{align*}$$

The free structure \mathcal{F} is accepted by \mathcal{D}

Free Structure \mathcal{F}:

Domain: $\mathcal{F} = \{x_1, x_2, x_3, x_4, x_5\}$

$$E^\mathcal{F}: \quad x_5 \quad x_4 \quad x_3 \quad x_2 \quad x_1$$

$S^\mathcal{F} = \{x_5\}, T^\mathcal{F} = \{x_1\}$
Proof Strategy

- Assume \exists works
Proof Strategy

- Assume \mathcal{D} works
- Input: long enough path
Proof Strategy

- Assume \(\mathcal{D} \) works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \(\mathcal{F} \)
Proof Strategy

- Assume \mathcal{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
- Using the symmetricity of \mathcal{D}, “zig-zag” on \mathcal{F} to create a new free derivation path $\mathcal{F'}$ such that:
Proof Strategy

- Assume \mathcal{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
- Using the symmetricity of \mathcal{D}, “zig-zag” on \mathcal{F} to create a new free derivation path \mathcal{F}' such that:
 - In \mathcal{F}', there is no path from the vertex in S to the vertex in T
Proof Strategy

- Assume \mathcal{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
- Using the symmetricity of \mathcal{D}, “zig-zag” on \mathcal{F} to create a new free derivation path \mathcal{F}' such that:
 - In \mathcal{F}', there is no path from the vertex in S to the vertex in T
 - \mathcal{F}' is a valid derivation path for \mathcal{D} over the free structure of \mathcal{F}'
Proof Strategy

- Assume \mathcal{D} works
- Input: long enough path
- Abstract away, i.e. take the free derivation path \mathcal{F}
- Using the symmetricity of \mathcal{D}, “zig-zag” on \mathcal{F} to create a new free derivation path $\mathcal{F'}$ such that:
 - In $\mathcal{F'}$, there is no path from the vertex in S to the vertex in T
 - $\mathcal{F'}$ is a valid derivation path for \mathcal{D} over the free structure of $\mathcal{F'}$
- Contradiction
Zig-Zag (Simple Example)

Free Derivation Path \mathcal{F}:

Zig-zag (mirror) the yellow segment:

1. $I(x_2)$
 $I(x_3)$
 $E(x_3, x_2)$

2. $I(x_2)$
 $I(x_3)$
 $E(x_3, x_2)$

3. $I(x_2)$
 $I(x_3)$
 $E(x_3, x_2)$

$I(y) \leftarrow S(y)$

$I(y) \leftarrow I(x); E(x, y)$

$I(x) \leftarrow I(y); E(x, y)$

$G \leftarrow I(y); T(y)$

Symmetric Datalog $\not=\text{Linear Datalog} – p.8/34
Zig-Zag Continued (Simple Example)

Before renaming the variables in mirrored \mathcal{F}

Before renaming the variables in mirrored \mathcal{F}

Structure \mathcal{F}

$E^\mathcal{F}: [x_5, x_4, x_3, x_2, x_1]$

$S^\mathcal{F} = \{x_5\}, T^\mathcal{F} = \{x_1\}$

Structure $\mathcal{F'}$

$E^\mathcal{F'}: [x_7, x_6, x_5, x_4]$

$S^\mathcal{F'} = \{x_7\}, T^\mathcal{F'} = \{x_1\}$

Symmetric Datalog \neq Linear Datalog – p.9/34
Two main complications:
About The General Proof

- Two main complications:
 - There could be more than one path from the vertex in S to the vertex in T in a free derivation path. **See free structure.**
Two main complications:

- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
- We disconnect each
Two main complications:

- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
 - We disconnect each
 - Careful, we do not want to create new paths when we disconnect a path
Two main complications:

- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
 - We disconnect each
 - Careful, we do not want to create new paths when we disconnect a path
 - A bit technical
Two main complications:

- There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
 - We disconnect each
 - Careful, we do not want to create new paths when we disconnect a path
 - A bit technical
- Arity of the IDBs can be arbitrary (but fixed). See our example program.
About The General Proof

Two main complications:

♦ There could be more than one path from the vertex in S to the vertex in T in a free derivation path. See free structure.
 • We disconnect each
 • Careful, we do not want to create new paths when we disconnect a path
 • A bit technical

♦ Arity of the IDBs can be arbitrary (but fixed). See our example program.
 • We give an intuition how to handle higher arities.
The UV-Path Following Diagram
The UV-Path Following Diagram

Symmetric Datalog ≠ Linear Datalog – p.12/34
The UV-Path Following Diagram
The UV-Path Following Diagram

\[u \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ v \]

\[G \]

\[I_1 \]

\[I_2 \]

\[I_3 \]

\[I_4 \]

\[I_5 \]

\[I_1 \]

\[x_1 \ x_2 \ x_3 \ x_4 \ x_5 \]

Symmetric Datalog ≠ Linear Datalog – p.14/34
Questions
Questions
Questions
Questions
Questions
Questions
Questions
Questions