Excluding Polynomial-time Approximation Schemes for Max CSP

Fredrik Kuivinen freku@ida.liu.se Joint work with Peter Jonsson and Andrei Krokhin

Department of Computer and Information Science Linköpings Universitet, Sweden

Nashville 2007

- 2 Hard Constraint Languages
- Only One Relation

Let *D* be a finite set, the domain.

- An *n*-ary relation is a subset of *Dⁿ*.
- A constraint language *L* is a set of relations over *D*.
- " $R_i(x_1, \ldots, x_n)$ " where $R_i \in L$, is an *L*-constraint.

Let *D* be a finite set, the domain.

- An *n*-ary relation is a subset of *Dⁿ*.
- A constraint language *L* is a set of relations over *D*.
- " $R_i(x_1, \ldots, x_n)$ " where $R_i \in L$, is an *L*-constraint.

The problem Max CSP(L) is:

Instance: A collection of *L*-constraints *C*.

Solution: An assignment to the variables.

Measure: The number of satisfied constraints.

Let *D* be a finite set, the domain.

- An *n*-ary relation is a subset of *Dⁿ*.
- A constraint language *L* is a set of relations over *D*.
- " $R_i(x_1, \ldots, x_n)$ " where $R_i \in L$, is an *L*-constraint.

The problem MAX CSP(L) is:

Instance: A collection of *L*-constraints *C*.

Solution: An assignment to the variables.

Measure: The number of satisfied constraints.

Natural optimisation analogue of CSP(L).

Example: MAX CUT

Find a partition *A*, *B* of the set of vertices such that the number of edges between *A* and *B* are maximised.

Example: MAX CUT

Find a partition *A*, *B* of the set of vertices such that the number of edges between *A* and *B* are maximised.

Equivalent to Max $CSP(\{R\})$ where $R = \{(0, 1), (1, 0)\}$.

Open problem: Characterise the constraint languages L such that MAX CSP(L) is tractable.

Theorem (Bulatov, Jeavons, Krokhin)

Let L be a core constraint language. If A_L^c contains a non-trivial factor which only have projections as term operations, then CSP(L) is **NP**-complete.

We say that a constraint language which have this property is hard.

Theorem (Bulatov, Jeavons, Krokhin)

Let L be a core constraint language. If A_L^c contains a non-trivial factor which only have projections as term operations, then CSP(L) is **NP**-complete.

We say that a constraint language which have this property is hard.

What happens for MAX CSP in this case?

Theorem (Bulatov, Jeavons, Krokhin)

Let L be a core constraint language. If A_L^c contains a non-trivial factor which only have projections as term operations, then CSP(L) is **NP**-complete.

We say that a constraint language which have this property is hard.

What happens for MAX CSP in this case?

As CSP(L) is **NP**-hard we cannot hope to find optimal solutions to Max CSP(L) in polynomial time.

Can we do anything at all?

An approximation algorithm is a polynomial-time algorithm such that:

 $R \ge \frac{\text{Optimal value}}{\text{Found value}}$

Worst case over the instances. The value *R* is called the performance ratio of the algorithm.

Algorithm: Pick a random value, uniformly and independently, for each variable. In expectation we will satisfy a constant fraction of the constraints.

Algorithm: Pick a random value, uniformly and independently, for each variable. In expectation we will satisfy a constant fraction of the constraints.

So, the answer to the question "can we do anything at all?" is Yes.

Algorithm: Pick a random value, uniformly and independently, for each variable. In expectation we will satisfy a constant fraction of the constraints.

So, the answer to the question "can we do anything at all?" is Yes.

Can we do (much) better?

A polynomial-time approximation scheme (PTAS) is an algorithm such that for any R > 1 we have

$$R \geq \frac{\text{Optimal value}}{\text{Found value}}$$

in time polynomial in the size of the instance.

A polynomial-time approximation scheme (PTAS) is an algorithm such that for any R > 1 we have

 $\textbf{\textit{R}} \geq \frac{\text{Optimal value}}{\text{Found value}}$

in time polynomial in the size of the instance.

Note: The time may depend arbitrarily on R! In particular

 $n^{1/(R-1)}$

is OK. (Here *n* denotes the size of the instance.)

Question: Is there a PTAS for MAX CSP(L) for some hard constraint language *L*?

Question: Is there a PTAS for MAX CSP(L) for some hard constraint language L? No! (unless P = NP)

Theorem (Jonsson, Krokhin, Kuivinen)

For any hard constraint languages L, there is a $\alpha > 1$ such that it is **NP**-hard to approximate MAX CSP(L) better than α .

A MAX CSP problem is hard at gap location 1 if it is **NP**-hard to distinguish instances in which all constraints are simultaneously satisfiable from instances where only an α -fraction of the constraints are simultaneously satisfiable.

A Max CSP problem is hard at gap location 1 if it is **NP**-hard to distinguish instances in which all constraints are simultaneously satisfiable from instances where only an α -fraction of the constraints are simultaneously satisfiable.

Example (Håstad)

It is **NP**-hard to distinguish instances of MAX 3SAT in which all constraints are simultaneously satisfiable from instances where only $7/8 + \epsilon$ of the constraints are satisfiable.

A MAX CSP problem is hard at gap location 1 if it is **NP**-hard to distinguish instances in which all constraints are simultaneously satisfiable from instances where only an α -fraction of the constraints are simultaneously satisfiable.

Example (Håstad)

It is **NP**-hard to distinguish instances of MAX 3SAT in which all constraints are simultaneously satisfiable from instances where only $7/8 + \epsilon$ of the constraints are satisfiable. Therefore, MAX 3SAT is hard at gap location 1. A Max CSP problem is hard at gap location 1 if it is **NP**-hard to distinguish instances in which all constraints are simultaneously satisfiable from instances where only an α -fraction of the constraints are simultaneously satisfiable.

Example (Håstad)

It is **NP**-hard to distinguish instances of MAX 3SAT in which all constraints are simultaneously satisfiable from instances where only $7/8 + \epsilon$ of the constraints are satisfiable. Therefore, MAX 3SAT is hard at gap location 1.

Example

MAX 2SAT is not hard at gap location 1. Why?

A MAX CSP problem is hard at gap location 1 if it is **NP**-hard to distinguish instances in which all constraints are simultaneously satisfiable from instances where only an α -fraction of the constraints are simultaneously satisfiable.

Example (Håstad)

It is **NP**-hard to distinguish instances of MAX 3SAT in which all constraints are simultaneously satisfiable from instances where only $7/8 + \epsilon$ of the constraints are satisfiable. Therefore, MAX 3SAT is hard at gap location 1.

Example

MAX 2SAT is not hard at gap location 1. Why? It is easy (in **P**) to decide if all constraints are simultaneously satisfiable.

Theorem (Jonsson, Krokhin, Kuivinen)

For hard constraint languages L, MAX CSP(L)-B is hard at gap location 1.

Theorem (Jonsson, Krokhin, Kuivinen)

For hard constraint languages L, MAX CSP(L)-B is hard at gap location 1.

Corollary

For hard constraint languages L, CSP(L)-B is NP-complete.

- Prove hardness at gap location 1.
- Use bounded occurrence instances.
- Use an alternative characterisation of hard constraint languages.
- Use the fact that the problem MAX NOT-ALL-EQUAL-3SAT is hard at gap location 1.

Why hardness at gap location 1 and bounded occurrence?

For the CSP problem we have

Lemma

Let L be a constraint language and let R be a relation which can be expressed by a primitive-positive formula using L. If $CSP(L \cup \{R\})$ is **NP**-hard, then CSP(L) is **NP**-hard.

We want something similar for MAX CSP.

Why hardness at gap location 1 and bounded occurrence? cont.

Lemma

Let L be a constraint language and let R be a relation which can be expressed by a primitive-positive formula using L. If MAX $CSP(L \cup \{R\})$ -k has a hard gap at location 1, then there is an integer k' such that MAX CSP(L)-k' has a hard gap at location 1.

Preserves non-approximability!

Use the primitive-positive formula to replace constraints using R by constraints which only use L.

Due to proving hardness at gap location 1 we get two cases:

- When all constraints are satisfiable in the original instance, it is not hard to see that all constraints in the resulting instance are satisfiable.
- Otherwise, less than an α (some constant $\alpha < 1$) fraction of the constraints are satisfied in the original instance. Prove that there is a constant $\alpha' < 1$ such that at most an α' fraction of the constraints are satisfied in the resulting instance.

The bounded occurrence property is used in the second case.

Let *NAE* be the not-all-equal relation, that is, $NAE = \{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\}.$

Theorem (Bulatov, Jeavons, Krokhin)

Let L be a core constraint language. The following are equivalent:

- The algebra \mathcal{A}_L^c has a non-trivial factor whose term operations are only projections.
- There exists a subset B of D and a surjective mapping φ : B → {0,1} such that the relational clone ⟨L ∪ C_D⟩ contains the relation φ⁻¹(NAE) which is the full preimage (under φ) of NAE.

 C_D is the set of all singleton unary relations (the constants).

For CSP we have:

Theorem (Bulatov, Jeavons, Krokhin)

If L is a core, then $CSP(L \cup C_D)$ is tractable if and only if CSP(L) is tractable.

The construction introduces one variable per domain element.

For MAX CSP there are problems with this construction:

- Equality constraints are introduced.
- The resulting instance is not of bounded occurrence.

The CSP Construction

The CSP Construction

- Prove that for any orbit Ω of the automorphism group of L, we can pp-express the equality relation restricted to Ω.
- Use several indicator constructions, instead of one, and impose partial equality constraints on the relevant variables.
- Use expander graphs to bound the number of variable occurrences.

The MAX CSP Construction

We want to characterise the complexity of MAX CSP($\{R\}$). That is, MAX CSP in which only one constraint type is allowed. Includes MAX CUT, MAX DICUT and MAX *H*-COLOURING among others. Say that a relation R is valid if there is a d such that $(d, d, \dots, d) \in R$.

Theorem

If R is valid, then $MAX CSP(\{R\})$ is tractable.

Say that a relation R is valid if there is a d such that $(d, d, \dots, d) \in R$.

Theorem

If R is valid, then $MAX CSP(\{R\})$ is tractable.

Proof: Assign all variables the value *d*. All constraints will be satisfied.

Say that a relation R is valid if there is a d such that $(d, d, \ldots, d) \in R$.

Theorem

If R is valid, then $Max CSP(\{R\})$ is tractable.

Proof: Assign all variables the value *d*. All constraints will be satisfied.

Theorem (Jonsson, Krokhin)

If R is not valid, then $MAX CSP(\{R\})$ is **NP**-hard.

Validity is the only way to make MAX $CSP(\{R\})$ tractable! (unless P = NP)

Is there a non-valid relation R such that Max CSP(R) have a PTAS?

Is there a non-valid relation R such that MAX CSP(R) have a PTAS?

Theorem

If *R* is not valid, then MAX $CSP(\{R\})$ do not admit a PTAS, unless P = NP.

- Reduce the problem to one binary relation.
- Study the automorphism group of the binary relation. Only vertex-transitive digraphs remain after this step.
- Adapt a result of MacGillivray, which characterises the complexity of CSP(*G*) for vertex-transitive digraphs *G*, to the algebraic framework.
- Use the knowledge of when CSP is hard for vertex-transitive digraphs to get hardness at gap location 1 for MAX CSP.

A digraph G = (V, E) is vertex-transitive if for any $x, y \in V$ there is an automorphism ρ such that $\rho(x) = y$.

A digraph G = (V, E) is vertex-transitive if for any $x, y \in V$ there is an automorphism ρ such that $\rho(x) = y$.

Theorem (MacGillivray)

Let G = (V, E) be a vertex-transitive digraph which is a core. If *G* is a directed cycle, then $CSP(\{E\})$ is tractable. Otherwise, $CSP(\{E\})$ is **NP**-hard.

- Our result holds for bounded occurrence instances, but we have not bothered to state any explicit bounds. What is the fewest number of occurrences we need to rule out PTAS's?
- Similarly, we have not calculated any explicit non-approximability bounds. What are the best bounds we can get?
- Characterise the complexity of MAX CSP(L) for all L.