
Excluding Polynomial-time Approximation
Schemes for Max CSP

Fredrik Kuivinen
freku@ida.liu.se

Joint work with Peter Jonsson and Andrei Krokhin

Department of Computer and Information Science
Linköpings Universitet, Sweden

Nashville 2007



Outline

1 Preliminaries

2 Hard Constraint Languages

3 Only One Relation

4 Conclusions



MAX CSP

Let D be a finite set, the domain.
An n-ary relation is a subset of Dn.
A constraint language L is a set of relations over D.
“Ri(x1, . . . , xn)” where Ri ∈ L, is an L-constraint.

The problem MAX CSP(L) is:

Instance: A collection of L-constraints C.
Solution: An assignment to the variables.
Measure: The number of satisfied constraints.

Natural optimisation analogue of CSP(L).



MAX CSP

Let D be a finite set, the domain.
An n-ary relation is a subset of Dn.
A constraint language L is a set of relations over D.
“Ri(x1, . . . , xn)” where Ri ∈ L, is an L-constraint.

The problem MAX CSP(L) is:

Instance: A collection of L-constraints C.
Solution: An assignment to the variables.
Measure: The number of satisfied constraints.

Natural optimisation analogue of CSP(L).



MAX CSP

Let D be a finite set, the domain.
An n-ary relation is a subset of Dn.
A constraint language L is a set of relations over D.
“Ri(x1, . . . , xn)” where Ri ∈ L, is an L-constraint.

The problem MAX CSP(L) is:

Instance: A collection of L-constraints C.
Solution: An assignment to the variables.
Measure: The number of satisfied constraints.

Natural optimisation analogue of CSP(L).



Example: MAX CUT

Find a partition A, B of the set of vertices such that the number
of edges between A and B are maximised.

Equivalent to MAX CSP({R}) where R = {(0, 1), (1, 0)}.



Example: MAX CUT

Find a partition A, B of the set of vertices such that the number
of edges between A and B are maximised.

Equivalent to MAX CSP({R}) where R = {(0, 1), (1, 0)}.



Open Problem

Open problem: Characterise the constraint languages L such
that MAX CSP(L) is tractable.



Hard Constraint Languages

Theorem (Bulatov, Jeavons, Krokhin)

Let L be a core constraint language. If Ac
L contains a non-trivial

factor which only have projections as term operations, then
CSP(L) is NP-complete.

We say that a constraint language which have this property is
hard.

What happens for MAX CSP in this case?

As CSP(L) is NP-hard we cannot hope to find optimal solutions
to MAX CSP(L) in polynomial time.

Can we do anything at all?



Hard Constraint Languages

Theorem (Bulatov, Jeavons, Krokhin)

Let L be a core constraint language. If Ac
L contains a non-trivial

factor which only have projections as term operations, then
CSP(L) is NP-complete.

We say that a constraint language which have this property is
hard.

What happens for MAX CSP in this case?

As CSP(L) is NP-hard we cannot hope to find optimal solutions
to MAX CSP(L) in polynomial time.

Can we do anything at all?



Hard Constraint Languages

Theorem (Bulatov, Jeavons, Krokhin)

Let L be a core constraint language. If Ac
L contains a non-trivial

factor which only have projections as term operations, then
CSP(L) is NP-complete.

We say that a constraint language which have this property is
hard.

What happens for MAX CSP in this case?

As CSP(L) is NP-hard we cannot hope to find optimal solutions
to MAX CSP(L) in polynomial time.

Can we do anything at all?



Approximation

An approximation algorithm is a polynomial-time algorithm such
that:

R ≥ Optimal value
Found value

Worst case over the instances. The value R is called the
performance ratio of the algorithm.



Known Results

For any L there is an R and an approximation algorithm for MAX

CSP(L) which produces solutions of performance ratio R.

Algorithm: Pick a random value, uniformly and independently,
for each variable. In expectation we will satisfy a constant
fraction of the constraints.

So, the answer to the question “can we do anything at all?” is
Yes.

Can we do (much) better?



Known Results

For any L there is an R and an approximation algorithm for MAX

CSP(L) which produces solutions of performance ratio R.

Algorithm: Pick a random value, uniformly and independently,
for each variable. In expectation we will satisfy a constant
fraction of the constraints.

So, the answer to the question “can we do anything at all?” is
Yes.

Can we do (much) better?



Known Results

For any L there is an R and an approximation algorithm for MAX

CSP(L) which produces solutions of performance ratio R.

Algorithm: Pick a random value, uniformly and independently,
for each variable. In expectation we will satisfy a constant
fraction of the constraints.

So, the answer to the question “can we do anything at all?” is
Yes.

Can we do (much) better?



Known Results

For any L there is an R and an approximation algorithm for MAX

CSP(L) which produces solutions of performance ratio R.

Algorithm: Pick a random value, uniformly and independently,
for each variable. In expectation we will satisfy a constant
fraction of the constraints.

So, the answer to the question “can we do anything at all?” is
Yes.

Can we do (much) better?



Approximation, PTAS

A polynomial-time approximation scheme (PTAS) is an
algorithm such that for any R > 1 we have

R ≥ Optimal value
Found value

in time polynomial in the size of the instance.

Note: The time may depend arbitrarily on R! In particular

n1/(R−1)

is OK. (Here n denotes the size of the instance.)



Approximation, PTAS

A polynomial-time approximation scheme (PTAS) is an
algorithm such that for any R > 1 we have

R ≥ Optimal value
Found value

in time polynomial in the size of the instance.

Note: The time may depend arbitrarily on R! In particular

n1/(R−1)

is OK. (Here n denotes the size of the instance.)



PTAS’s for MAX CSP(L)?

Question: Is there a PTAS for MAX CSP(L) for some hard
constraint language L?

Theorem (Jonsson, Krokhin, Kuivinen)
For any hard constraint languages L, there is a α > 1 such that
it is NP-hard to approximate MAX CSP(L) better than α.



PTAS’s for MAX CSP(L)?

Question: Is there a PTAS for MAX CSP(L) for some hard
constraint language L? No! (unless P = NP)

Theorem (Jonsson, Krokhin, Kuivinen)
For any hard constraint languages L, there is a α > 1 such that
it is NP-hard to approximate MAX CSP(L) better than α.



Hardness at gap location 1

A MAX CSP problem is hard at gap location 1 if it is NP-hard to
distinguish instances in which all constraints are simultaneously
satisfiable from instances where only an α-fraction of the
constraints are simultaneously satisfiable.

Example (Håstad)

It is NP-hard to distinguish instances of MAX 3SAT in which all
constraints are simultaneously satisfiable from instances where
only 7/8 + ε of the constraints are satisfiable.
Therefore, MAX 3SAT is hard at gap location 1.

Example

MAX 2SAT is not hard at gap location 1. Why?
It is easy (in P) to decide if all constraints are simultaneously
satisfiable.



Hardness at gap location 1

A MAX CSP problem is hard at gap location 1 if it is NP-hard to
distinguish instances in which all constraints are simultaneously
satisfiable from instances where only an α-fraction of the
constraints are simultaneously satisfiable.

Example (Håstad)

It is NP-hard to distinguish instances of MAX 3SAT in which all
constraints are simultaneously satisfiable from instances where
only 7/8 + ε of the constraints are satisfiable.

Therefore, MAX 3SAT is hard at gap location 1.

Example

MAX 2SAT is not hard at gap location 1. Why?
It is easy (in P) to decide if all constraints are simultaneously
satisfiable.



Hardness at gap location 1

A MAX CSP problem is hard at gap location 1 if it is NP-hard to
distinguish instances in which all constraints are simultaneously
satisfiable from instances where only an α-fraction of the
constraints are simultaneously satisfiable.

Example (Håstad)

It is NP-hard to distinguish instances of MAX 3SAT in which all
constraints are simultaneously satisfiable from instances where
only 7/8 + ε of the constraints are satisfiable.
Therefore, MAX 3SAT is hard at gap location 1.

Example

MAX 2SAT is not hard at gap location 1. Why?
It is easy (in P) to decide if all constraints are simultaneously
satisfiable.



Hardness at gap location 1

A MAX CSP problem is hard at gap location 1 if it is NP-hard to
distinguish instances in which all constraints are simultaneously
satisfiable from instances where only an α-fraction of the
constraints are simultaneously satisfiable.

Example (Håstad)

It is NP-hard to distinguish instances of MAX 3SAT in which all
constraints are simultaneously satisfiable from instances where
only 7/8 + ε of the constraints are satisfiable.
Therefore, MAX 3SAT is hard at gap location 1.

Example

MAX 2SAT is not hard at gap location 1. Why?

It is easy (in P) to decide if all constraints are simultaneously
satisfiable.



Hardness at gap location 1

A MAX CSP problem is hard at gap location 1 if it is NP-hard to
distinguish instances in which all constraints are simultaneously
satisfiable from instances where only an α-fraction of the
constraints are simultaneously satisfiable.

Example (Håstad)

It is NP-hard to distinguish instances of MAX 3SAT in which all
constraints are simultaneously satisfiable from instances where
only 7/8 + ε of the constraints are satisfiable.
Therefore, MAX 3SAT is hard at gap location 1.

Example

MAX 2SAT is not hard at gap location 1. Why?
It is easy (in P) to decide if all constraints are simultaneously
satisfiable.



A Stronger Result

Theorem (Jonsson, Krokhin, Kuivinen)

For hard constraint languages L, MAX CSP(L)-B is hard at gap
location 1.

Corollary

For hard constraint languages L, CSP(L)-B is NP-complete.



A Stronger Result

Theorem (Jonsson, Krokhin, Kuivinen)

For hard constraint languages L, MAX CSP(L)-B is hard at gap
location 1.

Corollary

For hard constraint languages L, CSP(L)-B is NP-complete.



Proof Ingredients

Prove hardness at gap location 1.
Use bounded occurrence instances.
Use an alternative characterisation of hard constraint
languages.
Use the fact that the problem MAX NOT-ALL-EQUAL-3SAT

is hard at gap location 1.



Why hardness at gap location 1 and bounded
occurrence?

For the CSP problem we have

Lemma
Let L be a constraint language and let R be a relation which
can be expressed by a primitive-positive formula using L. If
CSP(L ∪ {R}) is NP-hard, then CSP(L) is NP-hard.

We want something similar for MAX CSP.



Why hardness at gap location 1 and bounded
occurrence? cont.

Lemma
Let L be a constraint language and let R be a relation which
can be expressed by a primitive-positive formula using L.
If MAX CSP(L∪ {R})-k has a hard gap at location 1, then there
is an integer k ′ such that MAX CSP(L)-k ′ has a hard gap at
location 1.

Preserves non-approximability!



Proof Idea

Use the primitive-positive formula to replace constraints using
R by constraints which only use L.

Due to proving hardness at gap location 1 we get two cases:
When all constraints are satisfiable in the original instance,
it is not hard to see that all constraints in the resulting
instance are satisfiable.
Otherwise, less than an α (some constant α < 1) fraction
of the constraints are satisfied in the original instance.
Prove that there is a constant α′ < 1 such that at most an
α′ fraction of the constraints are satisfied in the resulting
instance.

The bounded occurrence property is used in the second case.



Alternative Characterisation

Let NAE be the not-all-equal relation, that is,
NAE = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Theorem (Bulatov, Jeavons, Krokhin)
Let L be a core constraint language. The following are
equivalent:

The algebra Ac
L has a non-trivial factor whose term

operations are only projections.
There exists a subset B of D and a surjective mapping
φ : B → {0, 1} such that the relational clone 〈L ∪ CD〉
contains the relation φ−1(NAE) which is the full preimage
(under φ) of NAE.

CD is the set of all singleton unary relations (the constants).



The Constants Cause Problems

For CSP we have:

Theorem (Bulatov, Jeavons, Krokhin)

If L is a core, then CSP(L ∪ CD) is tractable if and only if
CSP(L) is tractable.

The construction introduces one variable per domain element.

For MAX CSP there are problems with this construction:
Equality constraints are introduced.
The resulting instance is not of bounded occurrence.



The CSP Construction



The CSP Construction



A Workaround

Prove that for any orbit Ω of the automorphism group of L,
we can pp-express the equality relation restricted to Ω.
Use several indicator constructions, instead of one, and
impose partial equality constraints on the relevant
variables.
Use expander graphs to bound the number of variable
occurrences.



The MAX CSP Construction



Only One Relation, Problem Statement

We want to characterise the complexity of MAX CSP({R}).
That is, MAX CSP in which only one constraint type is allowed.

Includes MAX CUT, MAX DICUT and MAX H -COLOURING

among others.



Known Results

Say that a relation R is valid if there is a d such that
(d , d , . . . , d) ∈ R.

Theorem
If R is valid, then MAX CSP({R}) is tractable.

Proof: Assign all variables the value d . All constraints will be
satisfied.

Theorem (Jonsson, Krokhin)

If R is not valid, then MAX CSP({R}) is NP-hard.

Validity is the only way to make MAX CSP({R}) tractable!
(unless P = NP)



Known Results

Say that a relation R is valid if there is a d such that
(d , d , . . . , d) ∈ R.

Theorem
If R is valid, then MAX CSP({R}) is tractable.

Proof: Assign all variables the value d . All constraints will be
satisfied.

Theorem (Jonsson, Krokhin)

If R is not valid, then MAX CSP({R}) is NP-hard.

Validity is the only way to make MAX CSP({R}) tractable!
(unless P = NP)



Known Results

Say that a relation R is valid if there is a d such that
(d , d , . . . , d) ∈ R.

Theorem
If R is valid, then MAX CSP({R}) is tractable.

Proof: Assign all variables the value d . All constraints will be
satisfied.

Theorem (Jonsson, Krokhin)

If R is not valid, then MAX CSP({R}) is NP-hard.

Validity is the only way to make MAX CSP({R}) tractable!
(unless P = NP)



What about PTAS’s?

Is there a non-valid relation R such that MAX CSP(R) have a
PTAS?

Theorem
If R is not valid, then MAX CSP({R}) do not admit a PTAS,
unless P = NP.



What about PTAS’s?

Is there a non-valid relation R such that MAX CSP(R) have a
PTAS?

Theorem
If R is not valid, then MAX CSP({R}) do not admit a PTAS,
unless P = NP.



Proof Ingredients

Reduce the problem to one binary relation.
Study the automorphism group of the binary relation. Only
vertex-transitive digraphs remain after this step.
Adapt a result of MacGillivray, which characterises the
complexity of CSP(G) for vertex-transitive digraphs G, to
the algebraic framework.
Use the knowledge of when CSP is hard for
vertex-transitive digraphs to get hardness at gap location 1
for MAX CSP.



Constraints Satisfaction and Vertex-transitive Digraphs

A digraph G = (V , E) is vertex-transitive if for any x , y ∈ V
there is an automorphism ρ such that ρ(x) = y .

Theorem (MacGillivray)

Let G = (V , E) be a vertex-transitive digraph which is a core. If
G is a directed cycle, then CSP({E}) is tractable. Otherwise,
CSP({E}) is NP-hard.



Constraints Satisfaction and Vertex-transitive Digraphs

A digraph G = (V , E) is vertex-transitive if for any x , y ∈ V
there is an automorphism ρ such that ρ(x) = y .

Theorem (MacGillivray)

Let G = (V , E) be a vertex-transitive digraph which is a core. If
G is a directed cycle, then CSP({E}) is tractable. Otherwise,
CSP({E}) is NP-hard.



Conclusions and Open Problems

Our result holds for bounded occurrence instances, but we
have not bothered to state any explicit bounds. What is the
fewest number of occurrences we need to rule out PTAS’s?
Similarly, we have not calculated any explicit
non-approximability bounds. What are the best bounds we
can get?
Characterise the complexity of MAX CSP(L) for all L.


	Preliminaries
	Hard Constraint Languages
	Only One Relation
	Conclusions

