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Introduction

Abstract

We investigate possible refinements of the algebraic dichotomy
conjecture of Bulatov, Jeavons, Krokhin in an attempt to classify
tractable CSP’s within standard complexity classes via
(i) tame congruence theory (TCT) and
(ii) (non-)expressibility in fragments of Datalog.
The connection might also shed light on the decidability issue
for various fragments of Datalog.



Introduction

The BJK algebraic dichotomy conjecture

A finite relational core structure Γ; what is the complexity of
CSP(Γ) ?

the algebra A = A(Γ): its terms are all those idempotent
operations that preserve the basic relations of Γ;

if the variety V(A) generated by A admits the unary type,
then CSP(Γ) is NP-complete (BJK 2000)

The “converse” is conjectured: if V(A) omits the unary
type, then CSP(Γ) is in P.
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Introduction

The classification of Boolean CSP’s

In Allender, Bauland, Immerman, Schnoor, Vollmer (2005),
a complete classification of the complexity of Boolean
CSP’s is obtained;
all Boolean CSP’s satisfy one of the following conditions:

in AC0;
L-complete;
NL-complete;
⊕L-complete;
P-complete;
NP-complete.

the above are all standard complexity classes.
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Remarkably, the classification of the complexity of Boolean
CSP’s lines up perfectly with

the typeset of the variety of the associated algebra
the (non-)expressibility of the CSP in various logics
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Outline of Part I: Complexity

We describe 5 important complexity classes

for each class we describe a problem that somehow
captures its essence (complete problems);

we give a CSP form of each problem:
some of these will be used as running examples.
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Reductions, hardness, completeness

Reductions

All reductions are first-order reductions
(unless otherwise specified)

A problem P is hard for the complexity class C if every
problem in C reduces to P;

the problem P is C-complete if it is hard for C and belongs
to the class C.
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The class NP

NP is the class of problems recognised by a polynomial
time bounded non-deterministic Turing machine

equivalently: NP is the class of polynomially verifiable
problems

for any structure Γ the problem CSP(Γ) is in NP:
given a solution to CSP(Γ), one may verify it in polynomial
time.
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A complete problem for NP

(positive) NOT ALL EQUAL 3-SAT

Input: Sets S1, . . . , Sm with at most three elements;

Question: can one colour the elements so that no set gets
only one colour ?
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A complete problem for NP, CSP form

CSP form of positive NOT ALL EQUAL 3-SAT

CSP(Γ), where Γ is the structure Γ = 〈{0, 1}; θ〉 where

θ = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.
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The class P

P is the class of problems recognised by a polynomial time
bounded (deterministic) Turing machine



Some Complexity Classes Relationship between Classes

A complete problem for P

HORN-3-SAT

Input: A conjunction of Horn 3-clauses

Question: is there a satisfying assignment ?
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A complete problem for P, CSP form

CSP form of HORN-3-SAT

CSP(Γ), where Γ is the structure Γ = 〈{0, 1}; {0}, {1}, ρ〉 where

ρ = {(x , y , z) : (y ∧ z)→ x}

= {0, 1}3 \ {(0, 1, 1)}
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A complete problem for P, cont’d

An unsatisfiable instance:

1 1

1
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The class NL

NL is the class of problems recognised by a logarithmic
space bounded non-deterministic Turing machine
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A complete problem for NL

Directed Reachability

Input: a directed graph and two specified nodes s and t ;

Question: is there a directed path from s to t ?
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A complete problem for NL, CSP form

CSP form of Directed Reachability

CSP(Γ), where Γ is the structure Γ = 〈{0, 1}; {0}, {1},≤〉

Note: this is actually Unreachability, but NL is closed under
complementation (Immerman 1988; Szelepcsényi 1987)
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A complete problem for NL, cont’d

An unsatisfiable instance (and target): there exists a directed
path from a node coloured 1 to a node coloured 0.

0

1

0

0

1
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The class L

L is the class of problems recognised by a logarithmic
space bounded (deterministic) Turing machine
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A complete problem for L

Undirected Reachability

Input: an undirected graph and specified nodes s and t ;

Question: is there a path from s to t ?

The fact that this problem is in L follows from a deep result
of Reingold (2005)
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Note: the CSP actually encodes Unreachability.
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A complete problem for L, CSP form

CSP form of Undirected Reachability

CSP(Γ), where Γ is the structure Γ = 〈{0, 1}; {0}, {1}, =〉

Note: the CSP actually encodes Unreachability.



Some Complexity Classes Relationship between Classes

A complete problem for L, cont’d

An unsatisfiable instance (and target): there exists an
undirected path from a node coloured 1 to a node coloured 0.

0

1

0
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Some Complexity Classes Relationship between Classes

The classes modpL

Let p ≥ 2 be a prime.

A language L is in modpL if there exists a logarithmic
space-bounded non-deterministic Turing machine M such
that w ∈ L precisely if the number of accepting paths on
input w is 0 mod p.

If p = 2, mod2L is denoted ⊕L and is called parity L.
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A complete problem for modpL

Linear equations mod p

Input: a system of linear equations mod p;

Question: is there a solution ?
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Some hard problems for modpL, CSP form

let A = 〈A; +, 0〉 be a finite Abelian group and let b be any
non-zero element of A such that pb = 0 for some prime p;

the following problem is modpL-hard
(BL, Tesson, 2007)

modpL-complete CSP form

CSP(Γ), where Γ is the structure 〈A; µ, {b}, {0}〉 with

µ = {(x , y , z) : x + y = z}.
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Containments of these complexity classes

AC0

L

mod L
p

NL

NC2

P

NP(positive NAE 3-SAT)

(Horn 3-SAT)

(directed reachability)

(linear equations mod p)

(undirected reachability)

...... ......
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Datalog and some Fragments
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Outline of Part II: Datalog and some Fragments

We define the notion of Datalog Program, a means of
describing certain sets of structures;

we define 2 fragments of Datalog, i.e. special restricted
versions;

we describe, for each fragment,
a CSP which is definable in it;

each of these CSP’s somehow captures the essence of
each fragment
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Datalog

A Datalog Program consists of rules, and takes as input a
relational structure.

a typical Datalog rule might look like this one:

I(x , y)← J(w , u, x), K (x), θ1(x , y , z), θ2(x , w)

the relations θ1 and θ2 are basic relations of the input
structures (EDB’s);

the relations I, J, K are auxiliary relations used by the
program (IDB’s);

the rule stipulates that if the condition on the righthand side
(the body of the rule) holds, then the condition of the left
(the head) should also hold.
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An example

Recall:

HORN-3-SAT

CSP(Γ) where Γ = 〈{0, 1}; {0}, {1}, ρ〉 with

ρ = {(x , y , z) : (y ∧ z)→ x}

Here is a Datalog program that accepts precisely those
structures that are NOT in CSP(Γ), i.e. that do not admit a
homomorphism to Γ:
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A Datalog program for HORN-3-SAT

A Datalog program

W (x) ← 1(x)

W (x) ← W (y), W (z), ρ(x , y , z)

G ← W (x), 0(x)

the 0-ary relation G is the goal predicate of the program: it
"lights up" precisely if the input structure admits NO
homomorphism to the target structure Γ.
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Definition (Definability in Datalog)

We say that ¬CSP(Γ) is definable in Datalog if there exists a
Datalog program that accepts precisely those structures that do
not admit a homomorphism to Γ.

Theorem

If ¬CSP(Γ) is definable in Datalog then CSP(Γ) is in P.

Idea: IDB’s have bounded arity, so the program can do
only polynomially many steps before stabilising
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A first fragment: Linear Datalog

Definition (Linear Datalog)

A Datalog program is said to be linear if each rule contains at
most one occurrence of an IDB in the body.

In other words, each rule looks like this

I(x , y)← J(w , u, x), θ1(x , y , z), θ2(x , w)

where I and J are the only IDB’s, or like this

I(x , y)← θ1(x , y , z), θ2(x , w).
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A non-linear Datalog program

Our program for HORN-3-SAT is not linear, since the IDB W
occurs twice in the body of the second rule:

A non-linear program

W (x) ← 1(x)

W (x) ← W (y), W (z), ρ(x , y , z)

G ← W (x), 0(x)
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A linear Datalog program for Directed Reachability

A linear Datalog program

W (x) ← 1(x)

W (y) ← W (x), θ≤(x , y)

G ← W (x), 0(x)
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Expressibility in Linear Datalog

Theorem

If ¬CSP(Γ) is definable in Linear Datalog then CSP(Γ) is in NL.

Idea: the program rejects if and only if there is a derivation
path that ends in the goal predicate: this amounts to
directed reachability
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Another fragment: Symmetric Datalog

Definition (Symmetric Datalog)

A Datalog program is said to be symmetric if (i) it is linear and
(ii) it is invariant under symmetry of rules.

In other words, if the program contains the rule

I(x , y)← J(w , u, x), θ1(x , y , z), θ2(x , w)

then it must also contain its symmetric:

J(w , u, x)← I(x , y), θ1(x , y , z), θ2(x , w).
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A non-symmetric (linear) Datalog program

Our program for Directed Reachability is not symmetric:

A non-symmetric linear program

W (x) ← 1(x)

W (y) ← W (x), θ≤(x , y)

G ← W (x), 0(x)
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A symmetric Datalog program for
Undirected Reachability

A symmetric Datalog program

W (x) ← 1(x)

W (y) ← W (x), θ
=
(x , y)

W (x) ← W (y), θ
=
(x , y)

G ← W (x), 0(x)
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Expressibility in Symmetric Datalog

Theorem (Egri, BL, Tesson, 2007)

If ¬CSP(Γ) is definable in Symmetric Datalog then
CSP(Γ) is in L.

Idea: The program rejects if and only if there is a derivation
path that ends in the goal predicate: since the rules are
symmetric this amounts to undirected reachability
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Non-expressibility Results

The problems we described above which are complete for
modpL, P and NL also have “extremal” properties with respect
to expressibility in fragments of Datalog:
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Non-expressibility Results, cont’d

Theorem (Feder, Vardi, 1993)

Let µ = {(x , y , z) : x + y = z} and let b 6= 0. Then
¬CSP(A; µ, {b}) is not expressible in Datalog.

This result has been recently extended to more general
logics by Atserias, Bulatov, Dawar (2007).

Theorem (Dalmau, Egri, BL, Tesson, 2007)

HORN-3-SAT is not expressible in Linear Datalog.

Directed Reachability is not expressible in
Symmetric Datalog.

The result on linear Datalog is implicit in
Cook, Sethi (1976).
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A remark about expressibility

It is still unknown whether the following problems are decidable:

Decidability for Datalog fragments

Input: a finite relational structure Γ;

Question:
is ¬CSP(Γ) expressible in (linear, symmetric) Datalog ?



Types Strictly Simple Algebras Valeriote’s Lemma A second key lemma

Part III

Some Tame Congruence Theory
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Outline of Part III: TCT

to every CSP is associated an idempotent algebra A;

we present a lemma correlating the existence of certain
“minimal” algebras in V(A) with the typeset of V(A);

we describe key properties of these “minimal” algebras,
connecting them to the problems described in
Parts I and II.
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A very vague overview of types

to each (finite) algebra A is associated a set of types;
the possible types are:

the unary type, or type 1;
the affine type, or type 2;
the Boolean type, or type 3;
the lattice type, or type 4;
the semilattice type, or type 5.

the typeset of the variety V(A) is the union of all typesets
of all finite algebras in it.
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The Ordering of Types

we shall refer later to the following ordering of types:

1 < 2 < 3 > 4 > 5 > 1

1

2

3

4

5
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Factor algebras

Definition (Factors)

We say that the algebra B is a factor of the algebra A if
B ∈ HS(A), i.e. it is a homomorphic image of a subalgebra of A.
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Factor algebras, cont’d

The algebra B is a homomorphic image of the subalgebra C of
A, hence B is a factor of A:

A

B

C
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Strictly simple algebras

Definition (Strictly simple algebra)

An algebra is strictly simple if it has no proper factors, i.e. it is
simple and has no non-trivial subalgebras.
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A key lemma

every strictly simple idempotent algebra has a unique type
associated to it;

The next lemma is one of the two key links between
typesets and CSP’s we shall require:

Lemma (Valeriote, 2007)

Let A be an idempotent algebra, and suppose type i is in the
typeset of V(A). Then A has a strictly simple factor of type ≤ i .
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Valeriote’s Lemma, cont’d

To illustrate:

1

2

3

4

5

if V(A) admits type 1, then A has a strictly simple factor of
unary type;

if V(A) omits type 1 but admits type 4 , then A has a strictly
simple factor of semilattice type or lattice type.

Etc.
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A property of strictly simple algebras

We now have conditions on the existence of strictly simple
factors of our algebra A;

Szendrei (1992) has completely classified these algebras
according to their type. We need the following
consequences (we split up the result into 4 distinct
lemmas):
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A property of strictly simple algebras, cont’d

Lemma (unary type 1)

Let A be a strictly simple idempotent algebra of unary type.
Then it is a 2-element algebra, and its basic operations
preserve the relation

θ = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

Lemma (affine type 2)

Let A be a strictly simple idempotent algebra of affine type.
Then there exists an Abelian group structure on A such that the
basic operations of A preserve the relation

µ = {(x , y , z) : x + y = z}.
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A property of strictly simple algebras, cont’d

Lemma (lattice type 4)

Let A be a strictly simple idempotent algebra of lattice type.
Then it is a 2-element algebra, and its basic operations
preserve the usual ordering ≤ on {0, 1}.

Lemma (semilattice type 5)

Let A be a strictly simple idempotent algebra of semilattice
type. Then it is isomorphic to a 2-element algebra whose basic
operations preserve the relation

ρ = {(x , y , z) : (y ∧ z)→ x}.
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A property of strictly simple algebras, cont’d

Lemma (lattice type 4)

Let A be a strictly simple idempotent algebra of lattice type.
Then it is a 2-element algebra, and its basic operations
preserve the usual ordering ≤ on {0, 1}.

Lemma (semilattice type 5)

Let A be a strictly simple idempotent algebra of semilattice
type. Then it is isomorphic to a 2-element algebra whose basic
operations preserve the relation

ρ = {(x , y , z) : (y ∧ z)→ x}.
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Part IV

Hardness and non-expressibility Results
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Outline of Part IV: Hardness and non-expressibility

A recap of Parts I, II and III:

From Part I: some specific CSP’s that are hard for the
complexity classes NP, P, NL and modpL;

from Part II: some specific CSP’s that are not expressible
in Datalog, Linear Datalog and Symmetric Datalog;
from Part III:

if the variety generated by the idempotent algebra A admits
type i , then there exists a factor of A of type ≤ i ;
the basic operations of this factor preserve specific
relations related to the problems described in Parts I and II.
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Outline of Part IV: cont’d

We describe a lemma that relates the complexity and
expressibility of the “factor CSP” to the CSP associated to
the algebra A;

We deduce hardness and non-expressibility results in
terms of the typeset of V(A);

We present some preliminary evidence for the natural
conjectures associated to the above-mentioned results.
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Outline of Part IV: cont’d
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A reduction lemma

Lemma (BL, Tesson, 2007)

Let Γ be a core and let A be the (idempotent) algebra
associated to CSP(Γ). Let B be a factor of A, and let Γ′ be a
structure whose basic relations are irredundant and invariant
under the operations of B. Then

there is a first-order reduction of CSP(Γ′) to CSP(Γ);

if ¬CSP(Γ) is expressible in (Linear, Symmetric) Datalog
then so is ¬CSP(Γ′).
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Hardness results

Corollary (1)

Let Γ be a core and let A be the (idempotent) algebra
associated to CSP(Γ).

(BJK, 2000) If V(A) admits the unary type, then CSP(Γ) is
NP-complete;

if V(A) admits the affine type, then CSP(Γ) is modpL-hard
(∃p);

if V(A) admits the semilattice type, then CSP(Γ) is P-hard;

if V(A) admits the lattice type, then CSP(Γ) is NL-hard.
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Non-expressibility results

Corollary (2)

Let Γ be a core and let A be the (idempotent) algebra
associated to CSP(Γ).

(BL, Zádori, 2006) If V(A) admits the unary or affine type,
then ¬CSP(Γ) is not expressible in Datalog;

if V(A) admits the semilattice type, then ¬CSP(Γ) is not
expressible in Linear Datalog;

if V(A) admits the lattice type, then ¬CSP(Γ) is not
expressible in Symmetric Datalog.
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Recap

A core CSP(Γ) with associated idempotent algebra A.

V(A)

omits admits complexity expressibility

1 NP-complete not Datalog

1 2 modpL-hard (∃p) not Datalog

1,2 5 P-hard not Linear Datalog

1,2,5 4 NL-hard not Symmetric Datalog
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Some natural conjectures

It is tempting to make the following conjectures: (but I won’t)

Conjecture

Let Γ be a core and let A be the idempotent algebra associated
to CSP(Γ).

(BJK) If V(A) omits type 1 then CSP(Γ) is in P;

(BL, Z) V(A) omits types 1 and 2 if and only if ¬CSP(Γ) is
in Datalog;

V(A) omits types 1, 2 and 5 if and only if ¬CSP(Γ) is in
Linear Datalog;

V(A) omits types 1, 2, 4 and 5 if and only if ¬CSP(Γ) is in
Symmetric Datalog.
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The Boolean Case

V(A)

omits admits complexity in/not in

1 NP-complete -/Datalog

1 2 ⊕L-complete -/Datalog

1,2 5 P-complete Datalog/Linear

1,2,5 4 NL-complete Linear/Symmetric

1,2,4,5 L-complete/FO Symmetric/-
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More evidence

∃ majority term (implies congruence-distributive, implies
omit 1,2, 5): in Linear Datalog (Dalmau, Krokhin 2007)

∃ Maltsev term + Datalog (implies omits type 1,2,4,5):
in Symmetric Datalog (Dalmau, BL 2007)

strictly simple algebras of type 3: in Symmetric Datalog
(Egri, BL, Tesson, 2007)

term equivalent to FO (implies only type 3):
in Symmetric Datalog (Egri, BL, Tesson, 2007)
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Decidability of types: notes

Let Γ be a core, and let A be the idempotent algebra associated
to CSP(Γ).

Decidability: input is Γ

V(A) omits type 1 ? NP-complete (Bul Jea, 2000) ;

V(A) omits types 1,2 ? NP-complete (Bul);

V(A) omits types 1, 2, 5 ? decidable, likely in NP (Val);

V(A) omits type 1, 2, 4, 5 ? decidable, likely in NP (Val).

Decidability: input is A

All the above: in P (Freese, Valeriote, 2007)
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