ALGEBRAS WITH FEW SUBPOWERS ARE TRACTABLE

PETAR MARKOVIĆ

The results presented here are joint work with J. Berman, P. Idziak, R. McKenzie, M. Valeriote and R. Willard.

We introduce some new invariants for finitely generated varieties $\mathcal{V}(\mathbf{A})$. The behavior of these invariants is very closely tied to many classical Maltsev properties.

More precisely, we make the following definitions, for any finite algebra \mathbf{A} : For every positive integer n,

- $s_{\mathbf{A}}(n)$ is the logarithm, base 2, of the cardinality of the lattice of subuniverses of \mathbf{A}^{n} .
- $g_{\mathbf{A}}(n)$ is the least integer κ such that every subuniverse of \mathbf{A}^n has an at most κ -element generating set.
- $i_{\mathbf{A}}(n)$ is the least integer κ such that every independent subset of \mathbf{A}^n has at most κ elements (where $X \subseteq A^n$ is independent iff no proper subset of X generates the same subalgebra of \mathbf{A}^n as does X).

We prove that the property that function $i_{\mathbf{A}}(n)$ has growth 'similar' to n^k is a strong Maltsev property. The other two functions related to subpowers satisfy

(1) $g_{\mathbf{A}}(n) \leq i_{\mathbf{A}}(n) \leq s_{\mathbf{A}}(n) \leq C \cdot n \cdot g_{\mathbf{A}}(n)$, for $C = \log_2 |A|$.

These three functions exhibit a strong dichotomy, namely either all three have polynomial growth, or all three are at least singly exponential. We will say that the finite algebras for which the first holds have *few subpowers*. If the growth of the three functions is polynomial, then $\mathcal{V}(\mathbf{A})$ is a congruence modular variety.

We prove that the condition that **A** has few subpowers implies the existence of terms d(x, y), p(x, y, z) and $s(x_0, x_1, \ldots, x_k)$ satisfying

$$p(x, y, y) \approx x$$

$$p(x, x, y) \approx d(x, y)$$

$$d(x, d(x, y)) \approx d(x, y)$$

$$s(x, y, y, y, \dots, y, y) \approx d(y, x)$$

$$s(y, x, y, y, \dots, y, y) \approx y$$

$$s(y, y, x, y, \dots, y, y) \approx y$$

$$\vdots$$

$$s(y, y, y, y, \dots, y, x) \approx y.$$

Now, a pair $(a, b) \in A^2$ is a *minority* pair if d(a, b) = b. The pair $(f, g) \in (A^n)^2$ is a minority splitting with index (i, a, b) when f(j) = g(j) for all j < i, f(i) = a, g(i) = b and (a, b) is a minority pair.

Let **A** be such that $i_{\mathbf{A}}(n)$ has growth 'similar' to n^k . We prove that a subalgebra $\mathbf{B} \leq \mathbf{A}^n$ is characterized by its projections $proj_I(B)$ to all subsets $I \subseteq n$ with $|I| \leq k$ and with the set of indices of all the minority splittings in B^2 .

This enables us to slightly modify V. Dalmau's algorithm from [1] and generalize his result to say that finite algebras with few subalgebras of powers are tractable.

References

 V. Dalmau, Generalized majority-minority operations are tractable, in P. Panangaden, editor, Proceedings of the Twentieth Annual IEEE Symp. on Logic in Computer Science, LICS 2005, 438–447. IEEE Computer Society Press, June 2005.