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CSP and algebras

Let A be finite relational structure of finite type. Let CSP(A) denote
the constraint satisfaction problem over A .

To each problem CSP(A) is associated an algebra A :
base set of A = base set of A
operations of A = operations preserving the relations of A .

This talk is focused on finite algebras that arise from so-called
bounded width CSP’s; problems of the form CSP(A) for which a
particular local algorithm decides the problem in polynomial time.
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Definition of bounded width

In a 1998 paper Feder and Vardi studied a special type of CSP’s
termed problems of bounded width.

Their original definition of these problems involves a logical
programming language called Datalog, or comes equivalently via
certain two-player games.

Both of their definitions are proved to be equivalent to what follows.
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Definition of bounded width

Let k be a positive integer. The subsets of size at most k of a set are
called k -subsets.
Fix a structure A and integers 0 ≤ l < k .

(l, k)-algorithm

Input: Structure I similar to A .

Initial step: To every k -subset K of I assign the relation
ρK = Hom(K ,A) ≤ AK.

Iteration step:
Choose, provided they exist, two k -subsets H and K of I such that
|H ∩ K | ≤ l and there is a map ϕ ∈ ρH with the property that ϕ|H∩K

does not extend to any map in ρK .
Then throw out all such maps from ρH.
If no such H and K are found then stop and output the current
relations assigned to the k -subsets of I.
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Definition of bounded width

The relations given in the initial step are called the input relations of
the (l, k)-algorithm.

We refer to the relations ρK obtained during the algorithm as
k -relations.

The k -relations obtained at the end of the algorithm are called the
output relations.

Observe that the k -relations are all subalgebras of a power of A.

Moreover, the output relations form an l-consistent system of
relations, i.e., any two of them restricted to a common domain of size
at most l are the same.
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Definition of bounded width

Notice that the choice of the pair H and K in each iteration step of the
algorithm is arbitrary.

So the (l, k)-algorithm has several different versions depending on
the method of the choice of the pair H and K .

By using induction one can prove that the output relations produced
by the (l, k)-algorithm are the same for all versions of the algorithm.

Since the number of k -subsets of I is O(|I|k ), and in each iteration step
the sum of the sizes of the k -relations is decreasing, one can make
the algorithm stop in polynomial time in the size of the structure I.
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Definition of bounded width

Clearly, if the output relations of the (l, k)-algorithm for I are empty
then there is no homomorphism from I to A ; however, it might be that
the converse does not hold.

We say that a problem CSP(A) has width (l, k) if for any input
structure I there exists a homomorphism from I to A whenever the
output relations of the (l, k)-algorithm are nonempty.

CSP(A) has width l if it has width (l, k) for some k

CSP(A ) has bounded width if it has width l for some l.

Structure A has width (l, k), width l, bounded width if the related
CSP(A ) has the same properties.
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Definition of bounded width

It follows that CSP(A) has bounded width if and only if for some
choice of parameters l and k the (l, k)-algorithm correctly decides the
problem CSP(A): in particular, we get that CSP(A) ∈ P.

Suppose that (l, k) ≤ (l′, k ′). It can be easily verified that if CSP(A)
has width (l, k) then it has width (l′, k ′).
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Bounded strict width

Let k ≥ 3. A k-ary operation t satisfying the identities
t(y, x, . . . , x) = t(x, y, . . . , x) = · · · = t(x, . . . , x, y) = x
is called a near-unanimity operation.

A structure A is called k-near-unanimity if it admits a k -ary
near-unanimity operation.

If A is k -near-unanimity then it is k + 1-near-unanimity. Indeed,
s(x1, . . . , xk , xk+1) = t(x1, . . . , xk ) is a (k + 1)-ary near-unanimity
operation if t is a k -ary nu operation.

Bounded strict width theorem (Feder and Vardi)

Let 2 ≤ l < k .
1 Every (l + 1)-near-unanimity structure whose relations are at most

k -ary has width (l, k).

2 Every (l + 1)-near-unanimity structure has width l.
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Bounded strict width

Proof of the theorem for l = 2 and k = 3 :

Let A be a 3-near-unanimity structure with at most ternary relations.

Want to show that the (2, 3)-algorithm works properly for any
structure I similar to A .
So we assume that the output relations of the (2, 3)-algorithm applied
to I are nonempty.
We shall define a nonempty set of homomorphisms from any
j-element subset of I to A , for every j = 3, 4, . . . , |I|.
When j = 3 these nonempty sets are just the output relations of the
(2, 3)-algorithm.
Let j = 4, {1, 2, 3, 4} any four element subset of I and (a, b , c) any
tuple in the output relation ρ{1,2,3}.

1 a a a a
2 b b b b
3 c c c c
4 d1 d2 d3 d = t(d1, d2, d3)
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Bounded strict width

Then any 3-projection of the 4-tuple (a, b , c, d) is in the related
ternary output relation. Hence (a, b , c, d) is a homomorphism from
{1, 2, 3, 4} to A .

Then we replace the ternary ρ relations with the 4-ary relations that
correspond to the four element subsets of I and contain the tuples
(a, b , c, d) whose any 3-projection is in the related ternary output
relation.

For j = 5 we use these new 4-ary relations and a 4-ary nu operation.

Proceeding in this way, finally we get to a nonempty set of
homomorphisms from I to A , Q.e.d..

Actually, the above proof shows that every partial map from I to A
which satisfies the output relations extends to a full homomorphism.
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(l,k)-tree duality

A relational structure is an (l, k)-tree if it is a union of certain
substructures called nodes where the size of each node is at most k
and the nodes can be listed in such a way that the intersection of the
i-th node and the union of the first i − 1 nodes has at most l elements
and is contained in one of the the first i − 1 nodes.

A relational structure A has an (l, k)-tree duality if for any I that
admits no homomorphism to A there exists an (l, k)-tree T such that
T admits a homomorphism to I and admits no homomorphism to A .

Theorem (Feder and Vardi)
A structure A has width (l, k) if and only if it has an (l, k)-tree duality.
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The width 1 case

A relational structure is a tree if the tuples of its relations have no
multiple component and the tuples can be listed in such a way that
the i-th tuple intersects the union of the first i − 1 tuples in one
element. A forest is a disjoint union of trees.

An n-ary operation f is totally symmetric if
f(a1, . . . , an) = f(b1, . . . , bn) whenever {a1, . . . , an} = {b1, . . . , bn}.

We define a relational structure BA of the same type as A . The base
set of BA is the set of nonempty subsets of A and for each m-ary
relational symbol r
(A1, . . . ,Am) ∈ rBA iff rA ∩

∏m
i=1 Ai is a subdirect product of the Ai .
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The width 1 case

Width 1 Theorem (Feder and Vardi, Dalmau and Pearson)

TFAE:
1 A has width 1.
2 A has a (1, k)-tree duality for some k .
3 A has a tree duality.
4 BA admits a homomorphism to A .
5 A admits a totally symmetric operation of arity the maximum size of

the relations of A.
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The width 1 case

We define the notion of cycles of I similarly to hypergraphs:
a tuple with multiple components is a cycle,
two different tuples without multiple components form a cycle if they
share at least two components,
more than two tuples without multiple components form a cycle if they
can be listed in a cyclic way that the consecutive ones share a single
component and the nonconsecutive ones share no components.

The girth of I is the length of its shortest cycle. If I is a forest its girth is
defined to be the infinity.
The hardest part of the proof of the Width 1 Theorem uses a
generalization of a theorem of Erdős:

Big girth lemma (Feder and Vardi)

For any I that admits no homomorphism to A and any positve integer n
there exists a structure J of girth at least n such that J admits a
homomorphism to I, but not to A.
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The width 1 case

Proof of 2⇒ 3 in the Width 1 Theorem:

Suppose that A is a structure that admits a (1, k)-tree duality for
some k.
Want to show that A admits a tree duality.
Need to show that for any I that does not map to A there is a tree that
maps to I but not to A .
By the lemma we may assume that the girth of I is at least k + 1.
Since A has (1, k)-tree duality, there is a (1, k)-tree T that maps to I
under a homomorphism f such that T does not map to A .
Note that the f -image of each node of T in I is a forest because I has
large girth.
Let T ′ be the forest obtained from T by replacing each node of T by
its f -image in I in the obvious manner (with the necessary gluing).
Clearly, T ′ maps homorphically into I.
Moreover T maps into T ′, hence T ′ cannot map into A .
Thus, some tree component of T ′ maps to I but does not map to A ,
Q.e.d.
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Thus, some tree component of T ′ maps to I but does not map to A ,
Q.e.d.
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The width 1 case

Proof of 2⇒ 3 in the Width 1 Theorem:
Suppose that A is a structure that admits a (1, k)-tree duality for
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By the lemma we may assume that the girth of I is at least k + 1.
Since A has (1, k)-tree duality, there is a (1, k)-tree T that maps to I
under a homomorphism f such that T does not map to A .
Note that the f -image of each node of T in I is a forest because I has
large girth.
Let T ′ be the forest obtained from T by replacing each node of T by
its f -image in I in the obvious manner (with the necessary gluing).
Clearly, T ′ maps homorphically into I.
Moreover T maps into T ′, hence T ′ cannot map into A .

Thus, some tree component of T ′ maps to I but does not map to A ,
Q.e.d.
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Example of a structure of width 2 but not of width 1

Let A = ({0, 1}; {0, 1}2 \ {(0, 0)}, {0, 1}2 \ {(1, 1)}).

The clone of A is generated by the ternary nu operation.

By the Bounded Strict Width Theorem A has width (2, 3).

The only binary operations in the clone of A are the projections.

There is no totally symmetric operation f in the clone for any arity. For
otherwise g(x, y) = f(x, y, . . . , y) would be a binary commutative
operation in the clone.

Hence by the Width 1 Theorem A is not a structure of width 1.
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Open questions

Let l < k . Is it decidable that a finite structure of finite type has width
(l, k)?

Let l ≥ 2. Is it decidable that a finite structure of finite type has width l?

Is it decidable that a finite structure of finite type has bounded width?

Is it decidable that a finite structure of finite type is near unanimity
(has bounded strict width)?

Does there exist a structure for every i that has width i + 1 but not
width i?
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Structures of no bounded width

The first examples of structures of no bounded width are due to Feder
and Vardi.

They introduced the structures with the ability to count and proved
that they do not have bounded width.

Example:
Let (A ,+) be an Abelian group, a ∈ A , a , 0. Then the structure
(A ; {0}, {(x, y, z) : x + y + z = a}) has the ability to count and so it
does not have bounded width.
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Bounded width and the Hobby-McKenzie types

We say that a finite algebra A has bounded width if for every relational
structure B (of finite type) whose base set coincides with the universe
of A and whose relations are subalgebras of finite powers of A, the
structure B has bounded width.
If a relational structure A has bounded width then the related algebra
A has bounded width.

Lemma (Larose and Zádori)
Every finite algebra in the variety generated by a bounded width algebra
has bounded width.

The varietyV(A) interprets in the varietyV(B) if there exists a clone
homomorphism from the clone of term operations of A to the clone of
term operations of B.
Equivalently: V(A) interprets inV(B) if there is an algebra inV(A)
with the same universe as B, all of whose term operations are term
operations of B.
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Bounded width and the Hobby-McKenzie types

Theorem (Larose and Zádori)
If A and B are finite algebras such thatV(A) interprets inV(B) and A has
bounded width then B also has bounded width.

Lemma
For a locally finite idempotent varietyV the following are equivalent:

1 V omits types 1 and 2.
2 V does not interpret in any variety generated by an affine algebra.

Theorem (Larose and Zádori)
If A is a finite idempotent algebra of bounded width thenV(A) omits types
1 and 2.
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Bounded width and the Hobby-McKenzie types

Proof:
Let A be any finite idempotent algebra such thatV(A) admits type 1
or 2.

Then by the preceding lemmaV(A) interprets in the variety
generated by an affine algebra C.
SinceV(A) is idempotent, it interprets inV(B) where B is an algebra
on the base set of C and the clone of term operations of B coincides
with the clone of idempotent term operations of C.
Let us consider the structure B′ = (B; {0}, {(x, y, z) : x + y + z = a})
where B is the base set of B and a is a fixed non-zero element of B .
The relations of B′ are preserved by all operations of B and B′ is a
structure which has the ability to count.
So B′ has no bounded width.
Hence B does not have bounded width.
Now, the preceding theorem implies that A does not have bounded
width either, Q.e.d..
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Related notions of width

The notion of relational width is due to Bulatov.

An algebra A has relational width k , if for all I and H ⊆ 2I every
k -consistent system of nonempty relations ρL ≤ AL , L ∈ H admits a
solution, i.e., there exists a map ϕ : I → A such that ϕ|L ∈ ρL for all
L ∈ H.

A has bounded relational width if it has relational width k for some k .

Theorem (Bulatov)
If A is a finite idempotent algebra of bounded relational width thenV(A)
omits types 1 and 2.

Fact

If an algebra A has bounded relational width then it has bounded width.
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Related notions of width

The intersection property of algebras was introduced by Valeriote.
Let A be an algebra. Two subalgebras of AI are k-equal if their
restrictions to any k -subset of I agree.
A has the k-intersection property if for every finite I and subalgebra B
of AI the intersection of the subalgebras of AI that are k -equal to B is
nonempty.
We say that A has the intersection property if it has the k -intersection
property for some k .

Fact (Valeriote)
If a finite idempotent algebra A has bounded relational width then it has
the intersection property.

Theorem (Valeriote)
If a finite idempotent algebra A has the intersection property thenV(A)
omits types 1 and 2. .
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Related notions of width

By the previous results the following implications hold for a finite
idempotent algebra A:

A has bounded relational width =⇒ A has the intersection propertywwwwww� uBulatov
wwwwww�Valeriote

A has bounded width =⇒
L & Z

V(A) omits the types 1 and 2

None of the reverse implications are known to hold.

A reasonable goal is to test them in special cases.
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Results in the congruence distributive case

A nontrivial case occurs whenV(A) is a congruence distributive
variety, i.e. the congruence lattices of the algebras inV(A) are
distributive.

It is well known that ifV(A) is CD thenV(A) omits types 1 and 2.

The property thatV(A) is CD is characterized by the existence of a
nontrivial idempotent Malcev condition.

This Malcev condition is thought to be a sequence of sets of identities
indexed by n = 1, 2, 3, . . . .

For each n the terms satisfying the n-th set of identities are called the
n-th Jónsson terms.
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Results in the congruence distributive case

n-th Jónsson terms:
n = 1 : x = y
n = 2 : p(x, x, y) = p(x, y, x) = p(y, x, x) = x
n = 3 : p1(x, y, x) = p1(x, x, y) = p2(x, y, x) = p2(y, y, x) = x,

p1(x, y, y) = p2(x, y, y)

Theorem (Kiss and Valeriote)
If a finite algebra A admits 3rd Jónsson terms then it has bounded
relational width.
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Results in the congruence distributive case

Recall: A has the k -intersection property if for every finite I and
subalgebra B of AI the intersection of the subalgebras of AI that are
k -equal to B is nonempty.

A weaker property: A has the k-complete intersection property if for
every finite I the intersection of the subalgebras of AI that are k -equal
to AI is nonempty.

Theorem (Valeriote)
If a finite algebra A admits Jónsson terms (or equivalentlyV(A) is CD)
then it has the 2-complete intersection property.
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