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Abstract

We derive an alternative expression for a delayed logistic equation, assuming that the rate of change of the population depends on

three components: growth, death, and intraspecific competition, with the delay in the growth component. In our formulation, we

incorporate the delay in the growth term in a manner consistent with the rate of instantaneous decline in the population given by the

model. We provide a complete global analysis, showing that, unlike the dynamics of the classical logistic delay differential equation

(DDE) model, no sustained oscillations are possible. Just as for the classical logistic ordinary differential equation (ODE) growth model,

all solutions approach a globally asymptotically stable equilibrium. However, unlike both the logistic ODE and DDE growth models, the

value of this equilibrium depends on all of the parameters, including the delay, and there is a threshold that determines whether

the population survives or dies out. In particular, if the delay is too long, the population dies out. When the population survives, i.e., the

attracting equilibrium has a positive value, we explore how this value depends on the parameters. When this value is positive, solutions of

our DDE model seem to be well approximated by solutions of the logistic ODE growth model with this carrying capacity and an

appropriate choice for the intrinsic growth rate that is independent of the initial conditions.

r 2005 Elsevier Ltd. All rights reserved.
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0. Introduction

The classical logistic equation was introduced by
Verhulst (1838), to describe population growth in a limited
environment, and ‘‘rediscovered’’ in the 1920s by Pearl and
Reed (1920). Subsequently, many researchers interested in
population dynamics studied these equations, trying to
identify the parameters for various populations. For
example, this was done for human populations in the
USA by Pearl and Reed (1930) and Pearl et al. (1940), and

in Canada by MacLean and Willard Turner (1937). To
read about how this equation fits into the history of
population ecology, see Kingsland (1982). The logistic
equation also plays an important role in models involving
more than one interacting population, since it is often
assumed that the growth rate of one or more of the
populations satisfy the logistic equation in the absence of
the other populations. See for example the classical models
for predator–prey interactions or for competition between
species in any textbook on mathematical models in biology
(e.g., Edelstein-Keshet, 1988).
Hutchinson (1948) pointed out that the logistic equation

would be inappropriate for the description of population
growth in the case where there is a lag in some of the
processes involved. Although a short remark in a much
longer paper about circular causal systems in ecology, the
formulation for the delayed logistic equation he proposed
has been the object of much attention from the mathema-
tical community. Known as the delayed logistic equation,
Hutchinson’s equation, or under a change of variables,
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Wright’s equation, it is one of the first examples of a delay
differential equation (DDE) that has been thoroughly
examined (see for example Cushing, 1977; MacDonald,
1978; Nisbet and Gurney, 1982; Gopalsamy, 1992 and
Kuang, 1993 and the references within). Its study coincides
with the development of the theory of delay differential
equation (DDE), and it is one of the first examples of the
potential for the nature of the solutions of a DDE to be
very different, when compared to its ordinary differential
equation (ODE) counterpart. Indeed, while the solutions of
the logistic ODE all converge monotonically to a positive
equilibrium, with value equal to the parameter interpreted
as the carrying capacity of the environment, the solutions
of this ‘‘classical’’ logistic DDE oscillate about this
carrying capacity. These oscillatory solutions are either
damped, eventually converging to the carrying capacity, or
sustained, i.e., nontrivial periodic solutions.

While the quest for the mathematical understanding of
the solutions to this classical logistic DDE has proved
fundamental in the development of the theory of DDEs, it
was thought by some that this oscillatory behavior limited
its usefulness in the field of ecology where intrinsically
oscillating populations seem to be infrequently observed.
Hutchinson, in fact, argued that this lack of observed
oscillatory behavior in nature is likely the consequence
of natural selection, with oscillating populations prone
to extinction if some catastrophic event takes place when
the population is at a minimum. To quote Hutchinson
(1948),

In spite of some glaring exceptions, it seems probable
that an internally oscillating population is less likely to
survive indefinitely than a stable one. If this be so, the
time lags will be reduced to minimal values.

There are, however, many examples of processes in the
biological world that involve significant delays. The most
obvious ones include the time between fertilization and
birth in the case of sexual reproduction, the time between
initiation of cellular division and effective division in the
case of mitosis, and the time required for digestion in the
case of consumption of nutrient and its conversion to
viable biomass. Should these time lags be ignored in a
logistic-type framework, because the models seem to lead
to oscillations that are not observed?

The mathematical community was quick to pick up on
the exciting new problems stemming from the inclusion of
time delays in the logistic equation. However, Hutchinson’s
reservations about the use of delays in such population
models made a lasting impression on the ecological
community. As well, Nisbet and Gurney (1982) criticized
the classical logistic DDE model because its derivation was
not based on clearly defined birth and death processes.
Since its introduction, an assortment of other models for
single population growth involving delays have been
derived and investigated. See Ruan (2006) for an excellent
survey describing many of these models, including as well,
a discussion of models involving distributed delays in the

form of integro-differential equations. We will restrict our
discussion here to logistic-type models involving constant
(or discrete) time lags.
In this paper, we provide a derivation for an alternative

form of a logistic DDE model in which the rate of change
in the population involves a growth rate that depends on
the population density at an earlier time, but the rate of
decline in the population is assumed to be instantaneous.
An important aspect of our derivation, is that we take the
actual dynamics of the rate of decline of the population
given by the model into consideration when determining
how to incorporate the delay in the growth term. Although
we do not derive our model from an age-structured model,
it has the form suggested by such derivations. However, it
is also appropriate when the delay modelled is the time
taken for conversion of nutrient consumed to viable
biomass. Our model reduces to the logistic ODE model
when the delay is set to zero and to a discrete delayed
exponential model when one of the parameters is set to
zero. (As one would expect, the reciprocal of this
parameter is related to the carrying capacity of the
environment.)
We compare the dynamics of this alternative form of the

logistic DDE with the dynamics of both the classical
logistic ODE and DDE, and discuss how both the form
and the dynamics of our model compare with other related
models. The dynamics of our model are unusual in that
convergence is to an equilibrium with value depending on
the delay. As might be expected, if the delay is too long,
this model predicts that the population dies out. A
threshold giving the interface between extinction and
survival is determined in terms of parameters in the model.
This paper is organized as follows. In Section 1, we

review the main results concerning the dynamics of the
classical logistic ODE and DDE equations and describe
some other closely related models. In Section 2, we provide
a derivation of an alternative logistic DDE. We discuss the
global dynamics of this model in Section 3 and indicate
how the asymptotic outcome depends on the parameters in
the model. However, we leave the technical aspects of the
analysis including the proofs to appendices. We also prove
that a more general model of similar form has similar
dynamics. Finally, we comment on our findings in a
Discussion (Section 4) where we compare our model and its
dynamics with other related models in the literature and
discuss the significance of these results with respect to
including delays in population models.

1. Classical logistic type models and other closely related

models

1.1. The classical logistic ODE

The classical nondelayed logistic ODE model is given by

N 0ðtÞ ¼ rNðtÞ 1�NðtÞ
K

� �
. (1)
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The parameter r denotes the intrinsic growth rate, and K

denotes the carrying capacity of the environment. An
extensive and captivating review of the history of the
logistic equation is given in Kingsland (1982). The analysis
of (1) can be found in most undergraduate textbooks on
ODEs. Equation (1) is easily solved as either a separable or
a Bernoulli equation, with solution given by

NðtÞ ¼ KN0

N0 þ ðK �N0Þe�rt
, (2)

where N0:¼Nð0Þ, the initial population size. Recall that all
autonomous scalar first-order ODEs have monotone
solutions. From either the equation itself or from the given
solution, it is easy to see that NðtÞ increases monotonically
to K, if N0oK , decreases monotonically to K if N04K, or
remains equal to K for all time if N0 ¼ K .

Typical solutions for a fixed r and K, but a variety of
initial conditions look just like those depicted later, in
Fig. 2, although the solutions for that figure were found by
solving the equation given by our alternative formulation
of a logistic DDE.

1.2. The classical logistic DDE

Hutchinson (1948) remarked that for (1) to make sense,
the biological mechanisms under consideration must
operate so rapidly that the time lag between the instant
where a given value N is reached and the instant when the
effective reproductive rate 1�N=K is updated, is negli-
gible. Arguing that oscillations have been observed in some
Daphnia populations, he proposed the following equation:

N 0ðtÞ ¼ rNðtÞ 1�Nðt� tÞ
K

� �
. (3)

It was derived from (1) by simply assuming that the net per
capita rate of change N 0=N might depend on the state of
the system t time units in the past.

Another derivation of (3) was given by Cunningham
(1954). He assumed that a population whose per capita rate
of change would normally be constant (i.e., N 0=N ¼ A), is
subject to additional effects that decrease the rate of
growth A. If these effects are functions of the state of the
population at the time t� t (the previous generation, for
example), then one has the equation

N 0ðtÞ ¼ ½A� BNðt� tÞ�NðtÞ.
Note that this equation can be obtained from (3) by setting
A ¼ r and B ¼ r=K .

We will refer to (3) as the classical logistic DDE.

1.3. Equivalent forms of the classical logistic DDE

As already mentioned, the classical logistic DDE is
intimately linked with the development of the theory of
DDEs. One of reasons for this, is that it is easy to
transform (3) into an equation that has a very simple form.
For example, (3) has been studied using a change of

variables that considers time in units of tt and transform-
ing it into an equation with time lag equal to one. In
particular, Kakutani and Markus (1958) obtained a
simplified form of (3) by also transforming the state
variable,

yðtÞ ¼ rt
K
NðttÞ.

This gives the equation

y0ðtÞ ¼ frt� yðt� 1ÞgyðtÞ.
Wright (1955) used the state variable

yðtÞ ¼ NðttÞ
K

� 1,

instead, obtaining the equation

y0ðtÞ ¼ �rtf1þ yðtÞgyðt� 1Þ.
Letting a ¼ rt leads to the classical Wright’s equation,

y0ðtÞ ¼ �ayðt� 1Þf1þ yðtÞg. (4)

Historically, it is the form (4) given by Wright that has
been the object of most work. Part of the reason lies
perhaps, in the fact that, as remarked by Wright himself,
this equation appears in many different contexts.

1.4. Dynamics of the classical logistic DDE

In this section we summarize results concerning the basic
dynamics of (3). This summary is not meant to be
comprehensive, but will be helpful when we compare the
dynamics of (3) with the behavior of the model that we
propose. Although most of the results here were originally
formulated in the context of Wright’s equation (4), since
our focus here is on the delayed logistic equation, for
consistency we use the notation in (3).
In order for the DDE equation to be well-posed, a

suitable initial function must be supplied, defined on an
interval with length equal to the time lag. In this case, this
is done by assuming

(H1) on the interval ½�t; 0�, there is a function f 2
Cð½�t; 0�;Rþnf0gÞ such that NðtÞ ¼ fðtÞ for all
t 2 ½�t; 0�.

The following result summarizes the local behavior of
solutions of (3). The proof of (i) and (ii) is quite standard
and can be found in Ruan (2006). The proof of (iii) can be
found in Kaplan and Yorke (1975).

Theorem 1.1. Consider (3) and assume the initial data

satisfies (H1).

(i) If rt 2 ð0;p=2Þ, then K is a locally asymptotically stable

equilibrium.
(ii) At rt ¼ p=2 there is a supercritical Hopf bifurcation

of the equilibrium K, giving rise to an asymptotically

stable periodic orbit that exists for each choice of

rt4p=2.
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(iii) If rt4p=2, then K is unstable, and there is an annulus A

in the ðNðtÞ;Nðt� tÞÞ-plane whose boundary is a pair of

orbits of slowly oscillating periodic solutions. The

annulus A is an asymptotically stable invariant set.

Wright (1955) proved that if 0orto37
24
, the equilibrium

point K attracts all solutions with positive initial data and
conjectured that this holds for 0ortop=2. The conjecture
remains an open problem.

1.5. Other closely related models

For a very nice recent survey of differential delay
equations modelling single species growth, we once again
refer the reader to Ruan (2006). Here, we only discuss
several models that are very closely related to the model
that we will derive in the next section.

Kaplan and Yorke (1975) considered a general equation
of the form

y0ðtÞ ¼ f ðyðt� 1ÞÞ,
where f ð0Þ ¼ 0, f : R ! R is continuously differentiable
and f 0ðyÞo0 for all y 2 R. To write (3) in this form, use the
change of variable

yðtÞ ¼ ln
NðttÞ
K

� �
(5)

and the function f ðvÞ ¼ rtð1� evÞ.
Walther (1995) considered the more general equation

y0ðtÞ ¼ �myðtÞ þ f ðyðt� 1ÞÞ (6)

and carried out the most complete study to date of the
nature of the attractor. He assumed the parameter m to be
nonnegative and the function f to be differentiable and
satisfy f ð0Þ ¼ 0, f 0ðxÞo0 for all x, and xf ðxÞo0 for xa0.
Using the change of variables (5) with the function
f ðvÞ ¼ rtð1� evÞ, and m ¼ 0, puts (3) in this form.

Note that even though (6) is a very general model, the
model that will be derived in the next section is not of this
form.

Seifert (1987) considered the Volterra logistic DDE

N 0ðtÞ ¼ NðtÞfa� bNðtÞ �Nðt� 1Þg. (7)

Eq. (7) reduces to Wright’s equation (4) if b ¼ 0. If b41,
any solution of (7) with positive initial data satisfies
limt!1 NðtÞ ¼ a=ðbþ 1Þ. For bo1, for certain parameter
combinations ða; bÞ, a Hopf bifurcation yields nonconstant
periodic solutions near NðtÞ ¼ a=ðbþ 1Þ.

Another form, studied by Györi (1989), is the equation
with n delays defined for tX0 by

N 0ðtÞ ¼ NðtÞ a�
Xn
j¼1

bjNðt� tjÞ
 !

.

This equation is meant to describe a situation where several
of the processes affecting the population occur with
(different) time delays. As for (3) or (7), this equation has

periodic solutions. In this case, oscillatory solutions occur
for t ¼ maxiti4p=2.
Beddington and May (1975) analysed the DDE:

N 0ðtÞ ¼ �dNðtÞ þ bNðt� tÞ 1�Nðt� tÞ
K

� �
Nðt� tÞ

Nðt� tÞ þ X 0
,

that includes an Allee effect, which they described as an
approximation to a fully age-structured model first
discussed in Oster and Takahashi (1974) and Auslander
et al. (1974). This model approaches

N 0ðtÞ ¼ bNðt� tÞ 1�Nðt� tÞ
K

� �

if one lets d�!0 and X 0�!0.
In Blythe et al. (1982) a formal derivation from the

equations for an age-structured population is given to
obtain a model of the general form

N 0ðtÞ ¼ RðNðt� tÞÞ �DðNðtÞÞ. (8)

They then consider special cases, in particular,

N 0ðtÞ ¼ PNðt� tÞe�Nðt�tÞ �mNðtÞ
and

N 0ðtÞ ¼ PNðt� tÞ
1� cNðt� tÞd �mNðtÞ,

but they do not explain how the function RðNðt� tÞÞ was
chosen, in either case. The model we derive in the next
section is of the form (8). In our derivation, we assume that
it is those individuals who were around at time t� t who
must survive to grow at time t. Under this assumption, we
motivate how to choose the function RðNðt� tÞÞ so that it
is consistent with the function DðNðtÞÞ.
Rodrı́guez (1998) comes closest to our approach. He

talks about the preadult survival rate and solves an ODE,
similar to the one we solve to obtain a model of the form

N 0ðtÞ ¼ Nðt� tÞf ðNðt� tÞÞsðNðt� tÞf ðNðt� tÞÞÞ �mNðtÞ.
(9)

The function s is meant to model the probability that a
newborn reaches maturity. He assumes that the function f

decreases exponentially. He points out that f has no
mechanistic justification in the case of competition for food
in adults, but might model the crowding effect in adults.
Thus, the ODE that he solves is not related to the rate of
decline in (9). Once he obtains the model, he carries out
simulations that indicate that for large delays the system
has limit cycles, but does no local or global analysis.

2. Derivation of an alternative model of delayed logistic

growth

In this section we derive an alternative logistic DDE. We
assume that growth rate of the population is not
proportional to the current population size, but rather
depends on the population size some fixed t time units in
the past. However, the rate of decline of the population
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depends on the current population. We incorporate the
delay in the growth rate in a manner consistent with the
rate of decline of the population given by the actual DDE
itself.

We begin by assuming that the rate of change of the
population depends on three components: growth, death,
and intraspecific competition (crowding or direct inter-
ference). By the decline rate we mean the death and the
intraspecific competition rates together. We assume that
the decline rate is instantaneous and that the death rate is
given by a linear term whereas the intraspecific competition
rate is given by the quadratic term.

With this in mind, we rewrite the classical logistic ODE
model (1), using the following notation:

N 0ðtÞ ¼ gNðtÞ � mNðtÞ � kN2ðtÞ, (10)

where g, m, and k are nonnegative constants. To obtain (1),
set

r ¼ g� m and K ¼ ðg� mÞ=k. (11)

In (1), the decline rate is given by mNðtÞ þ kN2ðtÞ and the
growth rate is given by gNðtÞ. Both are assumed to depend
on the present population size. We continue to assume that
the decline rate is instantaneous, but we now assume that
the growth rate is proportional to the number of
individuals in the population t� t time units in the past,
that manage to survive until time t.

To obtain an equation that describes how many
individuals alive at time t� t are still alive at time t, we
solve the following first order ODE for NðtÞ as a function
of Nðt� tÞ:
N 0ðtÞ ¼ �mNðtÞ � kN2ðtÞ.
Using the technique of separation of variables and
integrating both sides from t� t to t, it follows thatZ NðtÞ

Nðt�tÞ

1

mN þ kN2
dN ¼ �

Z t

t�t
dt,

and hence

NðtÞ ¼ mNðt� tÞ
memt þ kðemt � 1ÞNðt� tÞ . (12)

Since we assume that growth in the population at time t is
proportional to those individuals alive at time t� t who
survive until time t, we replace NðtÞ in the monomial with
coefficient g in (10) by (12), to obtain our alternative logistic
DDE model with fixed (or discrete) time delay, t:

N 0ðtÞ ¼ gmNðt� tÞ
memt þ kðemt � 1ÞNðt� tÞ � mNðtÞ � kN2ðtÞ. (13)

If t ¼ 0, (13) reduces to (1). It is interesting to note that if
k ¼ 0, then (10) is actually a model of exponential growth,
and as expected, setting k ¼ 0 in (13), we obtain the
discrete delayed exponential model

N 0ðtÞ ¼ gNðt� tÞe�mt � mNðtÞ. (14)

As is customary, one has to provide initial data over an
interval of length t. Considering the assumption under

which this model has been derived, it only makes sense to
consider initial data that is positive over the entire interval.
Under this assumption, solutions of both (13) and (14)
remain positive. Since (14) is a linear first order scalar
DDE, it is easily determined that (e.g., see Kuang, 1993), if
t4ð1=mÞ lnðg=mÞ then all solutions of (14) approach zero
asymptotically and hence the population dies out, whereas
if this inequality is reversed, then all solutions blow up.
We show later that solutions of (13) remain bounded

and, as in the logistic ODE model, do not oscillate.
However, solutions converge to a positive value if
0pto 1

m lnðgmÞ or the population dies out if this inequality
is reversed.

3. Dynamics of the alternative logistic DDE

In this section, we state our results for model (13) as well
as for a more general model of similar form. Proofs are
postponed to the appendices.

Proposition 3.1. Let X :¼Cð½�t; 0�;Rþnf0gÞ. Then for any

given f 2 X , there is a unique solution of (13) satisfying

NðsÞ ¼ fðsÞ; s 2 ½�t; 0�, and the solution remains positive

and bounded, and hence is well-defined.

It is easy to check that a threshold

tH :¼
1

m
ln

g
m

� �
, (15)

exists, and if

memtXg or equivalently tXtH ,

then Eq. (13) admits only the trivial equilibrium N ¼ 0, but
if

memtog or equivalently totH ,

besides the trivial equilibrium, Eq. (13) admits a unique
positive equilibrium,

N̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4agm

p
� mð1þ 2aÞ

2ak
, (16)

where a ¼ emt � 1. We call this value the delayed carrying

capacity.
The following theorem characterizes the global behavior

of solutions to Eq. (13).

Theorem 3.2. Consider Eq. (13).

(i) For initial data f 2 Cð½�t; 0�;Rþnf0gÞ such that

fðtÞoN̄ for all t 2 ½�t; 0�, NðtÞoN̄ for all tX0 and

when fðtÞ4N̄ for all t 2 ½�t; 0�, then NðtÞ4N̄ for all

tX0.
(ii) If t4tH holds then the trivial solution NðtÞ ¼ 0 of (13)

is globally asymptotically stable with respect to

nonnegative initial data.
(iii) If 0ptotH holds then the positive equilibrium N̄ of (13)

is globally asymptotically stable with respect to positive

initial data.
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In fact, using basically the same proof, given in the
appendix, the following result concerning a more general
model can be proved.

Theorem 3.3. Consider N 0ðtÞ ¼ RðNðt� tÞÞ �DðNðtÞÞ,
where R : Rþ ! Rþ;D : Rþ ! Rþ, Rð0Þ ¼ Dð0Þ ¼ 0, and

R and D are both continuously differentiable functions. If
ðd=dyÞRðyÞ40 and all solutions are bounded, then we have

generic convergence to equilibrium, and hence there are no

sustained oscillations.
In addition, assume that RðyÞ ¼ yrðyÞ and DðyÞ ¼ ydðyÞ,

where rðyÞ40 and dðyÞ40 for all yX0, both rðyÞ and dðyÞ
are continuously differentiable, ðd=dyÞyrðyÞ40, and rðyÞ �
dðyÞ is a strictly decreasing function of y for y40.

(i) There is at most one positive equilibrium.
(ii) For initial data f 2 Cð½�t; 0�;Rþnf0gÞ such that

fðtÞoN̄ for all t 2 ½�t; 0�, NðtÞoN̄ for all tX0, and
when fðtÞ4N̄ for all t 2 ½�t; 0�, then NðtÞ4N̄ for all

tX0.
(iii) If N ¼ 0 is the only equilibrium point, then it is globally

attractive with respect to all solutions with nonnegative

initial data.
(iv) If there is a positive equilibrium point, then it is the only

positive equilibrium and it is globally attractive with

respect to all solutions with positive initial data.

By Theorem 3.2, the behavior of solutions to (13) is
determined by the relative values of t and tH , where tH
depends on m and g. Solutions approach N̄ asymptotically
if 0ototH , but die out if t4tH and in this case, neither
sustained oscillations nor damped oscillations about N̄ are
possible. This behavior is different from the behavior of the
classical delayed logistic equation (3), where the population
never dies out and the value of the nontrivial equilibrium
does not depend on parameters other than K. It is therefore
important to study the dependence of N̄, when it exists, on
the parameters of the system.

First, notice that limt!0þ N̄ ¼ ðg� mÞ=k, which corre-
sponds to the carrying capacity K for the classical logistic
DDE (3) using the transformation given by (11).

Fig. 1 illustrates the effect of varying t on the solutions
of (13). The delay t is allowed to vary between 0 and 1:4 in
steps of 0:1. All other parameters are fixed: g ¼ 1, m ¼ 1

2

and k ¼ 0:005. The top curve corresponds to the case
t ¼ 0, i.e., the ODE case. In this case the classical carrying
capacity is K ¼ ðg� mÞ=k ¼ 100. Then, since

qN̄
qt

¼ � m2emt
ffiffiffi
m

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 4gemt � 4g

p� �2
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 4gemt � 4gÞ

p
ðemt � 1Þ2ko0,

the value of the equilibrium N̄ decreases as t increases.
Each dash–dotted solutions tend to N̄ (which is globally
asymptotically stable in each case). As t is further
increased, N̄ becomes negative and the only biologically
relevant equilibrium is zero, towards which the dotted
solution curve tends (albeit very slowly).

It is clear that N̄ is monotonically increasing in g.
Finally, the delayed carrying capacity is a monotone
decreasing function of m, as shown in Appendix C.

4. Discussion

Although the original motivation of Hutchinson (1948)
for introducing time delay in the classical logistic ODE, to
obtain what we have been calling the classical logistic DDE
(3), was to try to account for oscillations observed in
Daphnia populations, on the grounds that ‘‘fertility of the
pathogenetic female is influenced in part by past popula-
tion densities,’’ he also suspected that internally oscillating
populations had a disadvantage and were less likely to
survive. He thus concluded, since the model he proposed
had significant oscillations if time lags were large, that time
lags in nature ‘‘will be reduced to minimal values.’’
Hutchinson’s model (3) has been criticized for several

reasons, as described in the Introduction. We criticize this
model further. If one considers the total rate of change
given by this model, its terms should also be interpretable.
In fact, Hutchinson’s aim was to model the effect of delay
on the fertility rate, but instead, in (3), it is the rate of
decline, not the growth rate that involves the delay. As
well, the rate of change involves a cross term of the form
NðtÞNðt� tÞ that is difficult to justify, since there can be no
direct interaction between populations at time t and at time
t� t. As well, the dynamics predicted by the model are
suspect. One would expect that if a delay in a population is
too long, that population would not be able to avoid
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Fig. 1. This figure illustrates how the value of the positive equilibrium N̄

decreases as the time lag t increases from 0 to 1:4. NðtÞ versus time is

shown for increasing values of t (by steps of 0:1), with g ¼ 1, m ¼ 0:5 and

k ¼ 0:005. For these values the threshold tH ¼ 2 lnð2Þ ’ 1:39. The top

curve (solid), illustrates the ODE case (t ¼ 0). The bottom curve (dotted),

illustrates t ¼ 1:44tH , and so this solution approaches zero as do all

solutions for which t4tH . The dash–dotted curves correspond to

0ototH , where N̄40 is globally asymptotically stable.
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extinction. However, the only effect of increasing the delay
in model (3), is to replace the positive equilibrium by a
globally attracting positive periodic orbit. Of course, the
amplitude of the periodic orbit gets larger as the delay gets
larger, and so the solution spends a substantial amount of
time at very small population levels. Thus, the model does
predict that for large enough delays, stochastic effects, not
included in the model, would likely result in the extinction
of the population. However, it would be more satisfying if
the model predicted that large enough delays actually
resulted in the stability of the extinction equilibrium,
N ¼ 0, since in the case that the delay is too long, the rate
of growth would not be able to keep up with the rate of
decline. It would then also make sense that in the case of
more moderate delays, the equilibrium population level
should decrease as the delay is increased and in fact should
depend on other species specific parameters.

In this paper we derived what we have been calling an
alternative logistic DDE under clearly indicated assump-
tions to model the delay in growth due to such processes as
digestion and/or cell division. Instead of assuming that the
net per capita rate of change depends on the population t
time units in the past, as Hutchinson did, we derive a
logistic-like model considering the total rate of change of
the population, and ensuring that the delayed growth rate
is consistent with the rate of decline given by the model.
Although we did not derive our model using the equations
for an age-structured population, the model we obtained is
of the general form (8), suggested by such derivations.
However, we also motivate how to choose the growth term
so that it depends on the delay in a manner that is
consistent with the term modelling the decline in the
population. Eq. (13) takes into account that if the present
population growth depends on the population level t time
units in the past, then growth at time t can only depend on
those individuals present at time t� t that survive to time t.
Our model reduces to the classical logistic ODE model
when the time delay is ignored, i.e., t ¼ 0.

We were able to carry out a complete global analysis of
our alternative logistic DDE model (13). In Theorem 3.2
we state that a threshold tH ¼ ð1=mÞ lnðg=mÞ exists, and if
0ptotH solutions with positive initial data converge to
the delayed carrying capacity, N̄40, but if t4tH , they
converge to the trivial equilibrium N ¼ 0 and the popula-
tion dies out. Hence, no sustained oscillations are possible.
The parameters m, g and t also influence the value of N̄.
This equilibrium value increases as g increases, but
decreases as t and/or m increase. Thus, even though the
delay in our model does not produce oscillations, delays
are harmful in that the longer the delay, the lower the value
of the delayed carrying capacity, and sufficiently long
delays result in the extinction of the population.

Usually one thinks of the carrying capacity of the
environment as the total capacity of a population that the
environment can support. So you might ask, why should
this depend on the length of the delay, t? Think of two
identical populations, except for the fact that one takes a

longer time to digest or have its cells divide. Why would the
carrying capacity be lower for the population with the
longer delay? In the case of digestion we distinguish
between viable biomass and nonviable biomass. Once
nutrient is absorbed, by conservation of mass the total
mass of the organism increases. However, only once the
nutrient is digested does the viable biomass increase, that
part of the mass that will allow increased growth and/or
consumption. For example, once nutrient is completely
digested by an organism, the organism might develop more
receptors for absorbing nutrient. In the case of cell
division, if cells take longer to divide, then they must get
either bigger or more dense before dividing, due to more
stored nutrient. For example, if NðtÞ is the number of cells
in the population, and t is the time between the beginning
of the G2 phase and the end of cytokinesis, then the larger
t, the more growth of the cells before division. Since cells
are either growing or dividing (multiplying), a longer delay
results in a smaller number of (potentially larger) cells. Our
model predicts that the delayed carrying capacity is also a
decreasing function of m and k, but an increasing function
of g.
In part (iii) of Theorem 3.2, it was shown that, for initial

data that remains less than N̄ for all t 2 ½�t; 0�, NðtÞ
remains smaller than N̄ for all tX0 and when the initial
data remains larger than N̄ for all t 2 ½�t; 0�, then, NðtÞ
remains larger than N̄ for all tX0, and so, in these cases,
there are no overshoots or undershoots of the positive
equilibrium value N̄. This is illustrated in Fig. 2.
This graph should look familiar, since it looks exactly

like the graph that would be expected if one solves the
classical logistic ODE model for a fixed K and r and
various initial conditions. Although the graph in Fig. 2 was
produced by numerically solving (13) with g ¼ 1;m ¼ 0:5,
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Fig. 2. NðtÞ versus time, for constant initial data fðsÞ � f on ½�t; 0�
increased from 5 to 100 by steps of 5. Parameter values are g ¼ 1, m ¼ 0:5,
k ¼ 0:005, and t ¼ 0:29, resulting in N̄ ’ 60. This graph is almost

indistinguishable from the graph that would be found by solving (1) using

K ¼ 60 and r ¼ 0:3.
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and t ¼ 0:29, if instead we chose K ¼ N̄ and r ¼ 0:3 and
solved (1), the graph would actually be virtually indis-
tinguishable to the eye. In fact, for r ¼ 0:294 and K ¼ N̄, if
one finds the explicit solution of (1) using (2), and uses this
as an approximation of the solution for (13), the left- and
right-hand side of (13) agree to at least three decimal places
for t 2 ½0; 40�.

When discrete delay is included in a chemostat model
using ideas based on the net per capita rate of change, the
way that Hutchinson derived the classical logistic DDE
model, for sufficiently large delay the solutions also exhibit
sustained oscillations (see for example MacDonald, 1978).
However, when reasoning similar to the way that the
alternative logistic DDE model is derived is used, one
obtains the model studied in Wolkowicz and Xia (1997),
where it is proved that no sustained oscillations are
possible. The population either dies out, if the delay is
too long and/or the level of nutrient is not adequate, or it
approaches a positive steady state with size dependent on
the length of the delay.

Therefore, if the per capita growth rate approach is used
to derive the chemostat or logistic DDE models, a term of
the form NðtÞNðt� tÞ, that is difficult to justify, occurs and
sustained oscillations are possible. However, with delay
included in either model, in the growth rate term in a
manner consistent with the decline rate given by the
equation, again both models give similar predictions and
no sustained oscillations are possible. It seems that by
clarifying the role of the various effects acting on the
population, we have provided convincing evidence that a
simple delayed growth response to account for the delay in
such processes as digestion or cell division is not alone

responsible for sustained oscillations in the growth of
single species. If such oscillations occur, then they must be
the consequence of delayed dependence on other processes,
or of a more complex dependence on past population
density, e.g., a model involving different mortality rates for
juveniles and adults. For example, our alternative model
would probably not be appropriate for populations that
lay eggs, and a more complicated model like the models
suggested by Rodrı́guez, or even a model involving
difference equations might be more appropriate. Such
models are not of logistic type, in that they do not revert to
the classical logistic ODE when the delay is set to zero.

In the introduction we asked whether delays should be
ignored in a logistic-like framework, because they would
lead to oscillations that are not observed. Our model
includes delays, but does not lead to oscillations. We could
now ask whether it makes a difference if we include delays
in models of multi-species interactions when one or more of
the populations satisfies a logistic-like equation in the
absence of the other species. Many such multi-species
models have been studied neglecting the delay. The analysis
given here suggests that the answer might be that in the
case that the delay is in such processes as digestion or cell
division, or even more generally if the rate of change can be
modelled by a DDE of the form given in Theorem 3.3, it

does not make a significant difference to the dynamics if,
for the sake of mathematical tractability, one uses the ODE
and neglects explicitly modelling the delay, but instead
adjusts the carrying capacity and intrinsic growth rate
appropriately, as described in the example illustrated in
Fig. 2. This is the subject of future research. It could also be
asked whether similar results occur if distributed delay is
used instead of discrete delay. This is also the subject of our
ongoing research.

Appendix A. Proof of Proposition 3.1

Proof. By the method of steps (Bellman and Cooke, 1963),
we can show that for each f 2 X ¼ Cð½�t; 0�;Rþnf0gÞ,
there is a unique solution of (13) through f. Denote this
solution by Nðf; tÞ (NðtÞ for short). Suppose NðtÞ admits
negative values. Then there is t140 such that NðtÞ40 for
t 2 ½�t; t1Þ, Nðt1Þ ¼ 0 and N 0ðt1Þp0. However,

N 0ðt1Þ ¼ � gNðt1Þ � kNðt1Þ2 þ
gmNðt1 � tÞ

memt þ ðemt � 1ÞkNðt1 � tÞ
¼ gmNðt1 � tÞ

memt þ ðemt � 1ÞkNðt1 � tÞ
40,

a contradiction. Therefore NðtÞ remains positive for all
tX0. We next show that NðtÞ is bounded. Let M1 be the
unique positive number that satisfies �mM1 � kM2

1 þ
gm=ððemt � 1ÞkÞ ¼ 0 and let M2 ¼ maxs2½�t;0�fðsÞ. Then we
claim that NðtÞpM for all tX0, where M ¼ maxðM1;M2Þ.
Note that NðtÞpM2pM for t 2 ½�t; 0�. Suppose t140 is
the first time at which Nðt1Þ ¼ M. Then

N 0ðt1Þ ¼ � mNðt1Þ � kNðt1Þ2 þ
gmNðt1 � tÞ

memt þ ðemt � 1ÞkNðt1 � tÞ
o� mM1 � kM2

1 þ
gm

ðemt � 1Þk ¼ 0.

This implies that when NðtÞ reaches M, it will be
decreasing. Therefore, NðtÞpM for tX0. The proof is
complete. &

Appendix B. Proof of Theorem 3.2

To prove Theorem 3.2, we first prove the following
threshold result concerning the local asymptotic stability of
equilibria of Eq. (13).

Lemma B.1.

(i) If t4tH holds, then the equilibrium point, N ¼ 0, is

locally asymptotically stable. If 0ptotH holds, N ¼ 0
is unstable.

(ii) If 0ptotH holds, then the equilibrium point,
N ¼ N̄40, is locally asymptotically stable.
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Proof. (i) Linearizing Eq. (13) about 0 we obtain

N 0ðtÞ ¼ �mNðtÞ þ ge�mtNðt� tÞ. (B.1)

Now (i) follows immediately from the well-known Hayes
theorem (Bellman and Cooke, 1963).

(ii) Let yðtÞ ¼ NðtÞ � N̄. Linearizing (13) about N̄, we
obtain

y0ðtÞ ¼ �pyðtÞ þ qyðt� tÞ, (B.2)

where

p ¼ mþ 2kN̄ ; q ¼ gm2emt

½memt þ kN̄ðemt � 1Þ�2 .

It suffices to show that the trivial solution y ¼ 0 of (B.2) is
asymptotically stable. Since N̄ is the positive equilibrium of
(13), it follows that

q ¼ emt

g
ðmþ kN̄Þ2.

Noting that a ¼ emt � 1, condition 0ptotH implies that
g4memt ¼ mð1þ aÞ and so

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ag

m

s
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4amð1þ aÞ

m

s

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4að1þ aÞ

p
¼ 2ð1þ aÞ.

Therefore,

g 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ag

m

s !
42gð1þ aÞ,

which implies that

g4
2gð1þ aÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4ag=mÞ

p
¼ 2gð1þ aÞð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4ag=mÞ

p
Þ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4ag=mÞ

p
Þð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4ag=mÞ

p
Þ

¼ ð1þ aÞm
2a

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ag

m

s !
. ðB:3Þ

Subtracting mð1þ aÞ from both sides of (B.3), and using
(16) we obtain

g� mð1þ aÞ4 ð1þ aÞ
2a

�ð2aþ 1Þmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4agm

ph i
¼ ð1þ aÞkN̄,

and so

g� memt4emtkN̄,

from which it follows immediately that

g� memt � emtkN̄40.

Multiplying by m=g and then adding kN̄ to both sides, we
obtain

g� memt

g
ðmþ kN̄Þ4kN̄.

This, together with the obvious fact that 0og�memt

g o1,
yields

g� memt

g
ðmþ kN̄Þ24 g� memt

g
ðmþ kN̄Þ

� �2
4ðkN̄Þ2.

Thus,

ðmþ kN̄Þ24ðkN̄Þ2 þ memt

g
ðmþ kN̄Þ2.

This implies that

p ¼ mþ 2kN̄4
emt

g
ðmþ kN̄Þ2 ¼ q,

and so we have shown that qop, in the linear equation
(B.2). Therefore, by Hayes’ theorem, it follows that N̄ is
locally asymptotically stable. &

We are now in a position to prove Theorem 3.2.

Proof (Theorem 3.2). Denote the right-hand side of
Eq. (13) by gðNðtÞ;Nðt� tÞÞ. Clearly
qg
qy

ðx; yÞ40.

This implies that the scalar delay differential equation (13)
generates an eventually strongly monotone semiflow on the
space X ¼ Cð½�t; 0�;Rþnf0gÞ with the usual pointwise
ordering (see Smith, 1995) and hence is strongly order
preserving.
(i) First we establish this using a direct and elementary

approach. Assume that the initial data f 2
Cð½�t; 0�;Rþnf0gÞ with fðtÞoN̄ for all t 2 ½�t; 0�. Suppose
there exists a first time t̄ such that Nðt̄Þ ¼ N̄. Then N 0ðt̄ÞX0.
But since Nðt̄� tÞoN̄, directly from the equation it follows
that N 0ðt̄Þo0, since yrðyÞ is an increasing function of y.
Thus, no such t̄ exists and the result follows. If instead,
fðtÞ4N̄, for all t 2 ½�t; 0�, the result follows using a similar
proof. (Using a less elementary approach, monotone
dynamical systems theory, (see Hirsch and Smith, 2004;
Smith, 1995), this follows immediately, since in (i) we
established that (13) generates an eventually strongly
monotone semiflow on the space X).
(ii) When t4tH , there is only a single nonnegative

equilibrium N ¼ 0 in the space X and so assertion (i)
follows from Theorem 2.3.1 of Smith (1995).
(iii) On the other hand, if 0ototH holds, there are two

equilibrium points in X, namely, 0 and N̄40. By
Proposition 4.1 of Hirsch and Smith (2004) and Theorem
2.3.2 of Smith (1995), it follows that solutions of (13) all
converge to one of these equilibria.
Next we show that if 0ptotH , no solutions with

positive initial data converge to the equilibrium N ¼ 0, and
hence all solutions must converge to the positive equili-
brium N̄. Suppose NðtÞ converges to 0. Then clearly, there
exists TX0 such that NðtÞoN̄ for all t4T . Now N 0ðtÞ is of
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the form

N 0ðtÞ ¼ Nðt� tÞrðNðt� tÞÞ �NðtÞdðNðtÞÞ
¼ RðNðt� tÞÞ �DðNðtÞÞ,

where the function rðyÞ ¼ gm=ðmemt þ kðemt � 1ÞyÞ is a
decreasing function of y, and the function dðyÞ ¼ mþ ky
is a strictly increasing function of y, so that rðyÞ � dðyÞ is
decreasing in y, but RðyÞ ¼ yrðyÞ is strictly increasing in y.
Observe therefore, that since N̄40 is an equilibrium,
rðN̄Þ � dðN̄Þ ¼ 0. If Nðt� tÞXNðtÞ but NðtÞoN̄, then since
yrðyÞ is increasing, but rðyÞ � dðyÞ is strictly decreasing, it
follows that N 0ðtÞ ¼ Nðt� tÞrðNðt� tÞÞ �NðtÞdðNðtÞÞX
NðtÞrðNðtÞÞ �NðtÞdðNðtÞÞ ¼ NðtÞ½rðNðtÞÞ � dðNðtÞÞ�4NðtÞ
½rðN̄Þ � dðN̄Þ�40. Hence,

if 0oNðtÞoN̄ and Nðt� tÞXNðtÞ then N 0ðtÞ40.

(B.4)

Therefore, solutions cannot decrease monotonely to 0.
To rule out the possible nonmonotone convergence to 0,

define

m:¼ min
t2½T�t;T �

NðtÞ.

We show that NðtÞXm for all t4T . From (B.4), either
NðTÞ4m or NðTÞ ¼ m and N 0ðTÞ40. If a first t̄ exists, so
that NðtÞ eventually decreases to Nðt̄Þ ¼ m, with
N̄4NðtÞ4m for t 2 ðT ; t̄Þ, then N 0ðt̄Þp0. But since
Nðt̄� tÞXm, from (B.4), we obtain the contradiction that
N 0ðt̄Þ40, and so NðtÞ cannot converge to 0 and so must
converge to N̄. &

The same proof can also be used to prove Theorem 3.3,
with only minor modifications. Part (i) of Theorem 3.3
follows immediately, since rðyÞ � dðyÞ is strictly decreasing.

Appendix C. N̄ is a decreasing function of m

Note that

N̄ ¼ m� 2memt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4gmðemt � 1Þ

p
2kðemt � 1Þ .

Then

qN̄
qm

¼ L

2kðemt � 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4gmðemt � 1Þ

p ,

where

L:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4gmðemt � 1Þ

p
L1 þ L2,

with L1:¼3emt � 2e2mt þ mtemt � 1 and L2:¼memt � 2gmte2mt

þ2ge2mt � 4gemt � mþ 2gmtemt þ 2g� m2temt. Let L1ðxÞ ¼
3ex � 2e2x þ xex � 1. Then it is easy to verify that
L

0
1ðxÞo0 when x40. Therefore, L1p0. Note also that

N̄40 since g4memt, hence m2 þ 4gmðemt � 1Þ4m2 þ 4memtm

ðemt � 1Þ ¼ m2ð2emt � 1Þ2. Therefore,

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4gmðemt � 1Þ

p
L1 þ L2

pmð2emt � 1ÞL1 þ L2

¼ �2ðemt � 1Þ½ðemt � 1Þð2memt � gÞ þ ðg� mÞmtemt�
¼:� 2ðemt � 1ÞhðgÞ.

Note that since h0ðgÞ ¼ mtemt � ðemt � 1Þ40, and
hðmemtÞ40, it follows that hðgÞ40 when g4memt. Therefore,
we have Lp0 and so

qN̄
qm

p0.

Thus, N̄ decreases as m increases.
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