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Abstract. In this paper, we propose a two species competition model in a chemostat that
uses a distributed delay to model the lag in the process of nutrient conversion and study the global
asymptotic behavior of the model. The model includes a washout factor over the time delay involved
in the nutrient conversion, and hence the delay is distributed over the species concentrations as well
as over the nutrient concentration (using the gamma distribution). The results are valid for a very
general class of monotone growth response functions.

By using the linear chain trick technique and the fluctuation lemma, we completely determine
the global limiting behavior of the model, prove that there is always at most one survivor, and
give a criterion to predict the outcome that is dependent upon the parameters in the delay kernel.
We compare these predictions on the qualitative outcome of competition introduced by including
distributed delay in the model with the predictions made by the corresponding discrete delay model,
as well as with the corresponding no delay ODEs model. We show that the discrete delay model and
the corresponding ODEs model can be obtained as limiting cases of the distributed delay models.
Also, provided that the mean delays are small, the predictions of the delay models are almost identical
with the predictions given by the ODEs model. However, when the mean delays are significant, the
predictions given by the delay models concerning which species wins the competition and avoids
extinction can be different from each other or from the predictions of the corresponding ODEs
model. By varying the parameters in the delay kernels, we find that the model seems to have more
potential to mimic reality. For example, computer simulations indicate that the larger the mean
delay of the losing species, the more quickly that species proceeds toward extinction.
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1. Introduction. Mathematical modeling has played a central role in many
theoretical and experimental investigations of the chemostat, a device used for the
continuous culture of microorganisms. A derivation of the basic chemostat equations,

S′(t) =
F

V
(S0 − S(t))−N1(t)

p1(S(t))
c1

−N2(t)
p2(S(t))

c2
,
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(
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V

+ p1(S(t))
)
,

N ′2(t) = N2(t)
(
−F
V

+ p2(S(t))
)
,

(1.1)

describing exploitative competition by two populations of microorganisms for a single,
essential, nonreproducing, growth-limiting nutrient, input at a constant rate can be
found in Herbert, Elsworth, and Telling [21].
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In model (1.1), S(t) denotes the concentration of nutrient and Ni(t) denotes the
density of the ith population of microorganisms in the culture vessel at time t. The
parameter V denotes the volume of the culture vessel and F denotes the intake/output
flow rate, so F

V is the dilution rate. The concentration of the input nutrient in the feed
vessel is denoted by S0. The specific growth rate for each population is assumed to be
a function of the nutrient concentration and is denoted by pi(S(t)). The consumption
rate is given by pi(S(t))

ci
and hence is assumed to be proportional to the specific growth

rate, with constant of proportionality given by ci, called the growth yield constant.
The culture vessel is assumed to be well stirred. Species-specific death rates are
assumed to be insignificant compared to the dilution rate and are ignored.

The global analysis of these equations was given by Hsu, Hubbell, and Waltman
[25] and Hsu [24], in the case of response functions of the Michaelis–Menten form, often
called the Monod model (see [37]). See Butler and Wolkowicz [7] and Wolkowicz and
Lu [47] for a global analysis involving a more general class of response functions. See
also Smith and Waltman [40] for a review of mathematical results on the theory of the
chemostat. The global stability properties of the steady states derived from model
(1.1) have led to interesting ecological predictions (see [21]). In particular, the model
predicts that at most one population avoids extinction and that it is the relative values
of the break-even concentrations that completely determine the outcome, dispelling
the widely believed notion from classical competition theory (see Strobeck [42]) that
the outcome of competition is independent of the intrinsic rates of increase of the two
species. Also, the model predicts that this qualitative outcome is independent of the
growth yield constants. Motivated by the mathematical predictions in [25], Hansen
and Hubbell [20] carried out experiments that seemed to demonstrate the usefulness
of these break-even concentrations in predicting the qualitative outcome. On the
other hand, they noticed that the losing population had a faster death rate in their
experiments than the model predicted and that there seemed to be more oscillations
in the transients. Tilman [45] provides interesting theoretical, experimental, and
correlational information on the chemostat.

Others have also noticed experimental deviations of a quantitative nature from
theoretical predictions based on the Monod model. Jannasch and Mateles [27] and
Veldkamp [46] mentioned that the yield constants in practice do not seem to be con-
stant and pointed out that this might account for the discrepancy. This was exten-
sively discussed in the work of Droop [14], who observed that, under nonequilibrium
conditions, the nutrient concentration in the chemostat remained relatively high at
low dilution rates, an anomaly that cannot be explained by the Monod equations.
This led him to introduce the notion of an internal nutrient pool and the formula-
tion of the variable-yield model. According to Droop, only the internal nutrient is
immediately available for cell growth, and passage of nutrient from outside to inside
the cells introduces inevitable time delays. Thus the assumption that the external
nutrient supply is instantaneously converted to biomass is a broad oversimplification
and should (at least in part) account for the inadequacies of the Monod model in
nonequilibrium situations. See Smith and Waltman [40] for a global analysis of this
model.

The recognition of time delay in the growth response of a population to changes
in the environment has led to extensive experimental and theoretical studies. To
better fit his observed data, Caperon [8] introduced a discrete delay as well as a dis-
tributed delay in one of the equations of the Monod chemostat model. The model used



DISTRIBUTED DELAY MODEL OF COMPETITION IN A CHEMOSTAT 1283

by Caperon [8], however, allowed the nutrient concentration to take negative values.
This problem with the model was corrected by Thingstad and Langeland [44], who
adopted the original Monod model and incorporated a discrete delay in the species
growth equation. Bush and Cook [6] considered the same discrete delay model, but
with inhibitory growth response functions. In an attempt to analyze the existing
laboratory data, MacDonald [31] considered distributed delay models and discussed
them in terms of linear stability. Delays were also introduced in Droop’s model by
Cunningham and Nisbet [11] in order to understand the observed transient behavior
following sharp changes in dilution rate. We refer to MacDonald [33] for a thorough
survey of earlier work on chemostat models with time delay. See also Freedman,
So, and Waltman [16] for a model that predicts that oscillatory coexistence of two
competing species in a chemostat is possible. We remark that most of the delay
models mentioned in this paragraph permit nontrivial periodic solutions when delays
are increased beyond a threshold. This is not surprising, because time delay is often
considered to be a source of oscillations. However, as MacDonald [33] points out, em-
pirical evidence for sustained, undamped oscillations in simple chemostat experiments
has been rather sporadic. One usually observes strongly damped oscillations under
nonequilibrium conditions (see, for example, [8]). See Cunningham and Nisbet [11]
for a discussion on the difficulties involved in introducing delays in chemostat models.

Recent attempts have been made to incorporate delays more appropriately in
chemostat models. In [17], Freedman, So, and Waltman consider a different discrete
delay model than the one they considered in [16]. What distinguishes this model from
the earlier delay chemostat models is the inclusion of a washout factor over the time
of the delay, and hence the delays appear simultaneously in the variables of nutrient
and species concentrations. Using the same notation as in model (1.1), with D = F

V
the model takes the form

S′(t) = D(S0 − S(t))− x1(t) p1(S(t))− x2(t) p2(S(t)),

x′1(t) = −Dx1(t) + e−Dτ1 x1(t− τ1) p1(S(t− τ1)),

x′2(t) = −Dx2(t) + e−Dτ2 x2(t− τ2) p2(S(t− τ2)),

(1.2)

where for convenience the yield constants have been scaled out by letting xi(t) = Ni(t)
ci

.
Each constant τi ≥ 0 represents the time delay involved in the conversion of nutrient
to viable cells. Due to the outflow in the chemostat, only e−Dτi xi(t− τi), not xi(t),
of the xi(t − τi) microorganisms that consumed nutrient τi units of time previously
survive in the chemostat the τi units of time assumed necessary to complete the
process of converting the nutrient to new cells.

Model (1.2) appears to be more reasonable than the previous model considered in
[16]. It was also studied by Ellermeyer [15], Hsu, Waltman, and Ellermeyer [26], and
Wolkowicz and Xia [48]. In [48], it was shown that under the assumptions that the
response functions pi are monotone increasing and locally Lipschitz, model (1.2) gen-
erates parameters λi(τi) that depend on the delays, are analogues of the break-even
concentrations (λi = λi(0)) in model (1.1), and, as for (1.1), completely determine the
competitive ability of each species. Also, as for (1.1), under the generic condition that
λ1(τ1) 6= λ2(τ2), at most one population avoids extinction and all concentrations even-
tually equilibrate. Thus the global asymptotic behavior of (1.2) is fully understood.
However, as Wolkowicz and Xia [48] point out, since the criteria that determine com-
petitive ability depend on the delays, if at least one of the delays τi is large enough,
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for fixed pi and pj , it is possible that λi(0) < λj(0) but that λj(τj) < λi(τi); that is,
the relative values of the λk(τk) can be reversed, and so model (1.2) can predict the
opposite outcome of competition predicted by the corresponding ODEs model. See
[48] for a detailed mathematical analysis of model (1.2) that also covers the n-species
competition model and allows for differential death rates.

The idea of taking into account the washout factor over the time delay in chemo-
stat models is not new and was seen, for example, in Levin, Stewart, and Chao [30],
who studied a discrete delay competition model of bacteria (prey) and bacteriophage
(predator) in the chemostat. Since delay occurs between the attack of bacteriophages
and the appearance of new bacteriophages, only those bacteria and bacteriophages
not washed out during the delay need to be considered. Even before that, Dietz,
Molineaux, and Thomas [13] included an approximation of the exponential factor (in
fact, (1 −D)τ , where D is the death rate of the populations concerned and τ is the
incubation period) in an epidemiological model of malaria. Because the lifetime of
infective individuals may be shorter than the incubation period, the factor is needed
to represent the approximate proportion of newly infected individuals who survive
during the incubation period (see also Aron and May [1] and Bailey [2]). MacDonald
[33, 34] also discusses this idea.

As is well known, in many biological models, the assumption that the time de-
lay is discrete as in model (1.2) is often an oversimplification. It is the purpose of
this paper to propose and analyze a more realistic model in which a distributed de-
lay is incorporated. The model is based on (1.1) and, as suggested by MacDonald
[33], includes the washout rate in the delay kernel as in (1.2). We study the global
asymptotic behavior of the solutions and draw conclusions about the effect distributed
delay has on the qualitative outcome of competition. We choose a special family of
generic delay kernels, the gamma distribution, to model the delay. As for models
(1.1) and (1.2), there are analogous parameters λ1 and λ2 depending on parameters
in the delay kernel that completely determine the competitive ability of each species.
As in models (1.1) and (1.2), provided the generic condition λ1 6= λ2 holds, there is
always at most one competitor population that avoids extinction, and all solutions
eventually equilibrate. And as for model (1.2), reversal of the prediction of outcome
compared to model (1.1) is possible for appropriate members of the family of delay
kernels. Also, our computer simulations seem to indicate that the delay can influence
how quickly a population approaches extinction or how quickly its concentration equi-
librates. Solutions can also have slightly more transient oscillations than solutions of
the instantaneous model. We thus believe that our model may more accurately mimic
the dynamic behavior of pure and simple competition in the chemostat and hence help
to explain some of the experimental discrepancies from previous theory. Also, it is
interesting to note that it is possible to obtain models (1.1) and (1.2) as limiting
cases of the model proposed here, and in this sense our model represents a unifying
framework.

Distributed delay (or integrodifferential equation) models have been used in bio-
logical modeling since the work of Volterra (see Scudo and Ziegler [39]), and they are
considered to be more realistic than discrete delay models (see, for example, Caperon
[8], Caswell [9], and May [35]). The monographs of Cushing [12] and MacDonald [32]
give excellent descriptions of models involving integrodifferential equations and dis-
cuss their mathematical analysis. However, there has been relatively little emphasis
on including distributed delay in chemostat models (see Caperon [8], MacDonald [31],
Ruan and Wolkowicz [38], and Stephens and Lyberatos [41]). Although global results
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are known for many other population models involving distributed delay (see Gopal-
samy [18] and Kuang [28]), there are few results on the global asymptotic behavior of
such models in the chemostat (see Beretta and Takeuchi [3] for some interesting re-
sults on chemostat-like models with nutrient recycling). To the best of our knowledge,
the results in this paper appear to be the first global results on the basic chemostat
model involving distributed delay. Our proofs are based on the linear chain trick
technique (see MacDonald [32]) and the fluctuation lemma (see Hirsch, Hanisch, and
Gabriel [23]). We avoid the local stability analysis and the theory of asymptotically
autonomous differential equations (see Thieme [43]) that are often used in analyzing
chemostat models.

This paper is organized as follows. The model is described in section 2. In
section 3, we state the main results. The proofs are carried out in section 4. Some
observations based on computer simulations are given in section 5. We conclude the
paper with a discussion in section 6. Finally, in the appendix we prove that models
(1.1) and (1.2) are limiting cases of the proposed distributed delay model.

2. The model and preliminary analysis. We consider the following modifi-
cation of the basic chemostat model (1.1) that includes a distributed delay to describe
the delay involved in the process of conversion of nutrient consumed into viable cells.
As for model (1.2), we use the same notation as in model (1.1), with D = F

V , and the
yield constants scaled out by letting xi(t) = Ni(t)

ci
. The model takes the form

S′(t) = (S0 − S(t))D − x1(t) p1(S(t))− x2(t) p2(S(t)),

x′1(t) = −Dx1(t) +
∫ t

−∞
x1(θ) p1(S(θ))e−D(t−θ)K1(t− θ) dθ,

x′2(t) = −Dx2(t) +
∫ t

−∞
x2(θ) p2(S(θ)) e−D(t−θ)K2(t− θ) dθ.

(2.1)

Ki : R+ → R+ denote the delay kernels. Throughout this paper, we use the family of
generic delay kernels of the form

Ki(u) =
αri+1
i uri

ri!
e−αiu, i = 1, 2,(2.2)

where the αi > 0 are constants and the ri ≥ 0 are integers. According to MacDonald
[32], ri is called the order of the delay kernel Ki and the mean delay corresponding
to the Ki is

τi =
∫ ∞

0
uKi(u) du =

ri + 1
αi

.

In the literature, the kernels Ki(u) with ri = 0 and ri = 1 are called the weak
and strong kernels, respectively, and are frequently used in biological modeling (see
Cushing [12], MacDonald [32]). It is worth noting that the discrete delay model (1.2)
can be viewed as a limiting case of model (2.1) by letting the ri go to infinity while
keeping the mean delays ri+1

αi
fixed (see Appendix).

We shall study the global asymptotic behavior of model (2.1) under the following
assumptions concerning the nutrient uptake functions pi, i = 1, 2 :

pi : R+ → R+ is monotone increasing and locally Lipschitz with pi(0) = 0;(2.3)
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there exists a positive (possibly extended) real number λi such that

pi(S) < D

(
D + αi
αi

)ri+1

if S < λi,

pi(S) > D

(
D + αi
αi

)ri+1

if S > λi.

(2.4)

Under assumptions (2.3) and (2.4), system (2.1) always has the washout equilibrium
E0 = (S0, 0, 0). Moreover, for each i such that λi < S0, there is an equilibrium of the
form

E1 =

(
λ1,

(
α1

D + α1

)r1+1

(S0 − λ1), 0

)
if i = 1,

E2 =

(
λ2, 0,

(
α2

D + α2

)r2+1

(S0 − λ2)

)
if i = 2.

Note that the presence of the washout memory factor in model (2.1) changes the
equilibrium values for the corresponding ODEs model. Therefore, the equilibria
Ei, i = 1, 2, differ from those when delays and washout effects are ignored.

Let BC3
+ denote the Banach space of bounded continuous functions mapping from

(−∞, 0] to R3
+. From the general theory of integral differential equations (see Burton

[4] and Miller [36]), for any initial data φ = (φ0, φ1, φ2) ∈ BC3
+, there exists a unique

solution π(φ; t) := (S(φ; t), x1(φ; t), x2(φ; t)) for all t ≥ 0 and π(φ; ·) |(−∞,0]= φ.
Throughout, we will also use (S(t), x1(t), x2(t)) to denote the solution π(φ; t) with φ ∈
BC3

+, when no confusion arises. By a positive solution π(φ; t) or (S(t), x1(t), x2(t))
of (2.1), we shall mean the solution has initial data φ ∈ BC3

+ and each component of
the solution is positive for all t > 0.

In this section, we give two preliminary results about model (2.1). The first
one indicates that model (2.1) possesses the property that positive initial data yield
positive solutions.

LEMMA 2.1 (positivity lemma). For any φ ∈ BC3
+ with φ0(0) ≥ 0 and φi(0) >

0, i = 1, 2, the solution π(φ; t) remains positive for all t > 0.
Proof. If S(ξ) = 0 for some ξ ≥ 0, the first equation of (2.1) gives S′(ξ) > 0. This

implies S(φ; t) > 0 for all t > 0. To show that xi(φ; t) > 0 for all t > 0, we suppose,
to the contrary, that it is not true. Let t = inf{ t > 0; xi(φ; t) = 0 and xi(θ) > 0 for
0 ≤ θ < t } <∞. Then xi(t̄) = 0 and x′i(t) ≤ 0. But, from (2.1), we have

x′i(t) = −Dxi(t) +
∫ t

−∞
xi(θ) pi(S(θ)) e−D(t−θ)Ki(t− θ) dθ

=
∫ t

−∞
xi(θ) pi(S(θ)) e−D(t−θ)Ki(t− θ) dθ > 0.

This is a contradiction. Therefore, xi(φ; t) > 0 for any t > 0.
Analogous to models (1.1) and (1.2), system (2.1) is also dissipative in the sense

that every positive solution is bounded.
LEMMA 2.2 (dissipativity lemma). All positive solutions of model (2.1) are bounded

for t > 0.
Proof. Recalling that the delay kernels are of the form (2.2), we use the lin-

ear chain trick technique (see MacDonald [32]). Let (S(t), x1(t), x2(t)) be any fixed
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positive solution of (2.1). We define

yi(t) =
∫ t

−∞
x1(θ) p1(S(θ))GiD,α1

(t− θ) dθ, i = 0, 1, . . . , r1,

zj(t) =
∫ t

−∞
x2(θ) p2(S(θ))GjD,α2

(t− θ) dθ, j = 0, 1, . . . , r2,

(2.5)

where

GkD,αi(t) =
αk+1
i

k!
tk e−(D+αi)t, i = 1, 2 and k = 0, 1, . . . ,max (r1, r2).

Observe that for any k ≥ 1, i = 1, 2,

d

dt
GkD,αi(t) = αiG

k−1
D,αi

(t)− (D + αi)GkD,αi(t),

d

dt
G0
D,αi(t) = −(D + αi)G0

D,αi
(t).

We find that (S(t), x1(t), y0(t), . . . , yr1(t), x2(t), z0(t), . . . , zr2(t)) satisfies

S′ = (S0 − S)D − x1 p1(S)− x2 p2(S),

x′1 = −Dx1 + yr1 ,

y′0 = −(D + α1) y0 + α1 x1 p1(S),

y′i = −(D + α1) yi + α1 yi−1, i = 1, 2, . . . , r1,

x′2 = −Dx2 + zr2 ,

z′0 = −(D + α2) z0 + α2 x2 p2(S),

z′j = −(D + α2) zj + α2 zj−1, j = 1, 2, . . . , r2.

(2.6)

Let

W (t) = S0 − S(t)−
r1∑

i=0

yi(t)
α1
−

r2∑

j=0

zj(t)
α2
− x1(t)− x2(t), t ≥ 0.(2.7)

It follows from (2.6) that W ′(t) = −DW (t), t ≥ 0, and therefore

S(t) +
r1∑

i=0

yi(t)
α1

+
r2∑

j=0

zj(t)
α2

+ x1(t) + x2(t) = S0 + ρ(t), t ≥ 0,(2.8)

where ρ(t) is a continuous function and ρ(t) → 0 exponentially as t → ∞. Note
that yi(t) and zj(t) are all positive for t > 0. The boundedness of the solution
(S(t), x1(t), x2(t)) now follows immediately from (2.8).

3. Statement of results. In each of the theorems below, we assume that model
(2.1) satisfies (2.2)–(2.4). Our results shall give a complete description of the global
asymptotic behavior of model (2.1) under the generic condition λ1 6= λ2.

The first result states that if λi for population xi is larger than the input nutrient
concentration, that population approaches extinction whether or not there is a com-
petitor. Thus the elimination of xi in this case has nothing to do with competition.
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THEOREM 3.1 (inadequate competitor). Let π(φ; t) be any positive solution of
(2.1). If λi ≥ S0 for some i ∈ {1, 2}, then xi(φ; t)→ 0 as t→∞.

Theorem 3.1 immediately implies the following global result that describes out-
comes in which both populations are eliminated from the chemostat because the
chemostat is an inadequate environment for either population to survive, rather than
as a result of competition.

THEOREM 3.2. If λ1, λ2 ≥ S0, then limt→∞ π(φ; t) = E0 for every positive solu-
tion π(φ; t) of (2.1).

When only one of the λi’s is smaller than S0, we can also determine the global
asymptotic behavior of positive solutions.

THEOREM 3.3. If λi < S0 ≤ λj , i 6= j, then limt→∞ π(φ; t) = Ei for every
positive solution π(φ; t) of (2.1).

As we will see in the proofs of Theorems 3.1–3.3, when only one population x1 is
cultured in the chemostat, the necessary and sufficient condition for x1 to survive is
λ1 < S0. The most interesting question is then whether both populations can coexist
in the chemostat in the case that each population can survive in the absence of the
other. In this case, we show that model (2.1) exhibits competitive exclusion and hence
competition is the agent of elimination.

THEOREM 3.4 (competitive exclusion). If λi < λj < S0, i 6= j, then
limt→∞ π(φ; t) = Ei for every positive solution of (2.1).

4. Proofs of the results. We begin with the following elementary lemma due
to Barbǎlat, which will be needed throughout this section. For a proof, see Gopalsamy
[18].

LEMMA 4.1 (Barbǎlat lemma). Let a be a finite number and f : [a,∞)→ R be a
differentiable function. If limt→∞ f(t) exists (finite) and the derivative function f ′ is
uniformly continuous on (a,∞), then limt→∞ f ′(t) = 0.

Remark. This lemma will be useful, since if (S(t), x1(t), y0(t), . . . , yr1(t), x2(t),
z0(t), . . . , zr2(t)) satisfies (2.6) for positive initial conditions, then each component of
this solution vector and its derivative function is a uniformly continuous function on
[0,∞). To see this, note that by (2.8), it follows that all of the components of this
solution vector are bounded functions on [0,∞). Therefore, all of their derivatives are
continuous and bounded functions on [0,∞), as they are defined by (2.6). Applying
the mean value theorem, all the component functions are thus Lipschitz continuous
and hence uniformly continuous. Since S(t) is bounded, let M = supt≥0 S(t) < ∞.
Then, each function pi, i = 1, 2, is uniformly continuous on [0,M ]. By (2.6), the
derivative of each component of the solution vector is defined as the sum, difference,
product and composition of uniformly continuous functions and hence, is also uni-
formly continuous.

Proof of Theorem 3.1. Without loss of generality, we assume that λ1 ≥ S0. Let
yi(t) be defined as in (2.5). It follows from (2.6) that (S(t), x1(t), y0(t), . . . , yr1(t))
satisfies

S′ = (S0 − S)D − x1 p1(S)− x2 p2(S),

x′1 = −Dx1 + yr1 ,

y′0 = −(D + α1) y0 + α1 x1 p1(S),

y′i = −(D + α1) yi + α1 yi−1, i = 1, 2, . . . , r1.

(4.1)
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Define

w(t) =
r1∑

i=0

(D + α1)i

αi+1
1

yi(t) +
(
D + α1

α1

)r1+1

x1(t), t ≥ 0.(4.2)

It follows from (2.5) and (2.8) that w(t) is positive and bounded for t > 0. Moreover,
by (4.1),

w′(t) = x1(t)

[
−D

(
D + α1

α1

)r1+1

+ p1(S(t))

]
.(4.3)

On the other hand, from the first equation of (4.1), we conclude that either S(t) ↓ S0

as t→∞ or S(t) < S0 for all large t.
Suppose that we have S(t) ↓ S0 as t → ∞. Then, limt→∞ x1(t) = 0 follows

immediately from (2.8), as desired.
Now suppose that S(t) < S0 ≤ λ1 for all large t. In this case, (4.3) gives w′(t) < 0

for large t. Thus w(t) ↓ w∗ as t→∞ for some w∗ ≥ 0. Note that (2.8) holds. It follows
from (4.1) and the remark following Lemma 4.1 that the functions y′i(t) and x′1(t) are
all uniformly continuous. Hence w′(t) is also uniformly continuous. By Lemma 4.1,
limt→∞ w′(t) = 0. Now we use (4.3) to obtain

lim
t→∞

x1(t)

[
−D

(
D + α1

α1

)r1+1

+ p1(S(t))

]
= 0.(4.4)

If lim supt→∞ x1(t) > 0, then limm→∞ x1(tm) = γ for some sequence {tm} ↑ ∞ and
real number γ > 0. By (4.4), we have limm→∞ S(tm) = λ1. This is a contradiction if
λ1 > S0. When λ1 = S0, we use (2.8) to obtain limm→∞ x1(tm) = 0, contradicting
γ > 0. Therefore lim supt→∞ x1(t) = 0 and the conclusion follows.

Proof of Theorem 3.2. We first observe that by Theorem 3.1, limt→∞ xi(t) = 0 for
i = 1, 2. Define yi(t) and zj(t) as in (2.5). Then (S(t), x1(t), y0(t), . . . , yr1(t), x2(t),
z0(t), . . . , zr2(t)) satisfies (2.6). By using the boundedness of the solution, Lemma
4.1, and the equations in (2.6), it is not difficult to see that limt→∞ yi(t) = 0 for all
i = 0, 1, 2, . . . , r1 and limt→∞ zj(t) = 0 for all j = 0, 1, 2, . . . , r2. According to (2.8),
we then obtain limt→∞ S(t) = S0. Therefore limt→∞ (S(t), x1(t), x2(t)) = E0.

To prove Theorems 3.3 and 3.4, we first study system (2.6). By using (2.8),
it suffices to consider the following reduced system of asymptotically autonomous
differential equations:

x′1 = −Dx1 + yr1 ,

y′0 = −(D + α1) y0 + α1 x1 p1


S0 −

r1∑

i=0

yi
α1
−

r2∑

j=0

zj
α2
− x1 − x2 + ρ(t)


 ,

y′i = −(D + α1) yi + α1 yi−1, i = 1, 2, . . . , r1,

x′2 = −Dx2 + zr2 ,

z′0 = −(D + α2) z0 + α2 x2 p2


S0 −

r1∑

i=0

yi
α1
−

r2∑

j=0

zj
α2
− x1 − x2 + ρ(t)


 ,

z′j = −(D + α2) zj + α2 zj−1, j = 1, 2, . . . , r2,

(4.5)
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where ρ(t) is continuous and ρ(t) → 0 exponentially as t → ∞. For the sake of
convenience, we rewrite (4.5) in another form by introducing new variables

ui(t) = x1(t) +
r1∑

j=i

yj(t)
α1

, i = 0, 1, . . . , r1 + 1,

vi(t) = x2(t) +
r2∑

j=i

zj(t)
α2

, i = 0, 1, . . . , r2 + 1,

(4.6)

where we use the convention that
∑n
j=m kj ≡ 0 if n < m. Thus, x1 ≡ ur1+1 and

x2 ≡ vr2+1. By using (4.6), we obtain a new system as follows

u′0(t) = −Du0(t) + ur1+1(t) p1(S0 − u0(t)− v0(t) + ρ(t)),

u′i(t) = −(D + α1)ui(t) + α1 ui−1(t), i = 1, 2, . . . , r1 + 1,

v′0(t) = −Dv0(t) + vr2+1(t) p2(S0 − u0(t)− v0(t) + ρ(t)),

v′j(t) = −(D + α2) vj(t) + α2 vj−1(t), j = 1, 2, . . . , r2 + 1.

(4.7)

If (S(t), x1(t), x2(t)) is a positive solution of (2.1), then by Lemma 2.2, together with
(2.5), (2.8), and (4.6), ui(t) and vj(t) are all positive and bounded. Therefore, the
following numbers are well defined:

δi = lim inf
t→∞

ui(t), γi = lim sup
t→∞

ui(t), i = 0, 1, . . . , r1 + 1,

aj = lim inf
t→∞

vj(t), bj = lim sup
t→∞

vj(t), j = 0, 1, . . . , r2 + 1.
(4.8)

Clearly, 0 ≤ δi ≤ γi and 0 ≤ aj ≤ bj for all i ∈ {0, 1, . . . , r1 +1} and j ∈ {0, 1, . . . , r2 +
1}. Moreover, it follows from the remark following Lemma 4.1, that ui(t), vj(t) and
their derivatives u′i(t), v

′
j(t) are also uniformly continuous on [0,∞).

To proceed further, we need the following useful lemma due to Hirsch, Hanisch,
and Gabriel [23].

LEMMA 4.2 (fluctuation lemma). If f : R+ → R is a differentiable function
and lim inft→∞ f(t) < lim supt→∞ f(t), then there exist sequences {tm} ↑ ∞ and
{sm} ↑ ∞ such that

lim
m→∞

f(tm) = lim sup
t→∞

f(t), f ′(tm) = 0,

lim
m→∞

f(sm) = lim inf
t→∞

f(t), f ′(sm) = 0.

In what follows, we assume that (S(t), x1(t), x2(t)) is an arbitrarily fixed positive
solution of (2.1) and yi(t), zj(t), ui(t), vj(t), δi, γi, aj , bj are defined as in (2.5), (4.6)
and (4.8). Recall that yi(t), zj(t) and ui(t), vj(t) are all positive and satisfy (4.5) and
(4.7), respectively.

The proofs of Theorems 3.3 and 3.4 will follow from the following five lemmas.
LEMMA 4.3. We have

(
α1

D + α1

)i
δ0 ≤ δi ≤ γi ≤

(
α1

D + α1

)i
γ0, i = 1, 2, . . . , r1 + 1(4.9)

and
(

α2

D + α2

)j
a0 ≤ aj ≤ bj ≤

(
α2

D + α2

)j
b0, j = 1, 2, . . . , r2 + 1.(4.10)
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Proof. We first show that

γi ≤
α1

D + α1
γi−1, i = 1, 2, . . . , r1 + 1.(4.11)

We consider two cases.
Case 1. δi < γi. We apply Lemma 4.2 to obtain a sequence {tm} ↑ ∞ such that

lim
m→∞

ui(tm) = γi and u′i(tm) = 0

for all m. By (4.7), we have

(D + α1)ui(tm) = αi ui−1(tm).

Taking the limit (m→∞) on both sides leads to (4.11).
Case 2. δi = γi. In this case, we apply Lemma 4.1 to obtain limt→∞ u′i(t) = 0.

Using (4.7) once more, we have

lim
t→∞

[−(D + α1)ui(t) + α1ui−1(t)] = 0,

which gives

γi = lim
t→∞

ui(t) = lim
t→∞

α1

D + α1
ui−1(t) =

α1

D + α1
γi−1,

as desired.
It now follows from (4.11) that

γi ≤
(

α1

D + α1

)i
γ0, i = 1, 2, . . . , r1 + 1.(4.12)

Similarly, one can show that

δi ≥
α1

D + α1
δi−1 ≥

(
α1

D + α1

)i
δ0, i = 1, 2, . . . , r1 + 1.(4.13)

Combining (4.12) and (4.13) then gives (4.9). The proof of (4.10) is similar and we
omit the details.

LEMMA 4.4. γ0 ≤ S0 −min(S0, λ1) and b0 ≤ S0 −min(S0, λ2).
Proof. We show that γ0 ≤ S0 −min(S0, λ1). The proof for b0 ≤ S0 −min(S0, λ2)

is similar. We consider two cases.
Case 1. λ1 ≥ S0. It will suffice to show that δ0 = γ0 = 0. We first apply

Theorem 3.1 to obtain limt→∞ x1(t) = 0. By Lemma 4.1 and the boundedness of
x1(t), it follows that limt→∞ x′1(t) = 0. Using the first equation of (4.5), we then have
limt→∞ yr1(t) = 0. Repeating this argument, we conclude that limt→∞ yi(t) = 0 for
all i = 0, 1, 2, . . . , r1 + 1. Now (4.6) gives limt→∞ u0(t) = 0, i.e., δ0 = γ0 = 0, as
desired.

Case 2. λ1 < S0. In this case, we apply Lemmas 4.1 and 4.2 to obtain a sequence
{tm} ↑ ∞ such that

lim
m→∞

u0(tm) = γ0 and lim
m→∞

u′0(tm) = 0.
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From (4.7) it follows that

Dγ0 = lim
m→∞

Du0(tm)

= lim
m→∞

[ur1+1(tm) p1(S0 − u0(tm)− v0(tm) + ρ(tm))]

≤ lim sup
m→∞

ur1+1(tm) p1(S0 − u0(tm) + ρ(tm))

≤ γr1+1 p1(S0 − γ0).

(4.14)

Applying Lemma 4.3, we have from (4.14) that

Dγ0 ≤
(

α1

D + α1

)r1+1

γ0 p1(S0 − γ0).(4.15)

If γ0 = 0, there is nothing to prove. If γ0 > 0, (4.15) implies that

D ≤
(

α1

D + α1

)r1+1

p1(S0 − γ0).

Therefore, by (2.4)

S0 − γ0 ≥ λ1, i.e., γ0 ≤ S0 − λ1,

as desired.
LEMMA 4.5. If λ1 < min(S0, λ2), then δi > 0 for all i = 0, 1, . . . , r1 + 1.
Proof. By (4.9), it suffices to show that δ0 > 0. First, we prove that

δ := lim inf
t→∞


α1u0(t) +

r1+1∑

j=1

D

(
D + α1

α1

)j−1

uj(t)


 > 0.(4.16)

Define

w(t) = α1u0(t) +
r1+1∑

j=1

D

(
D + α1

α1

)j−1

uj(t), t > 0.(4.17)

It follows from (4.7) that

w′(t) = −D(D + α1)r1+1

αr11
ur1+1(t) + α1 p1(S0 − u0(t)− v0(t) + ρ(t))ur1+1(t)

= −α1 ur1+1(t)

[
D

(
D + α1

α1

)r1+1

− p1(S0 − u0(t)− v0(t) + ρ(t))

]
.

(4.18)

Let 0 < ε < 1
2 [min(S0, λ2)− λ1]. We prove (4.16) by contradiction.

Suppose that δ = 0. Then there is a sequence {sm} ↑ ∞ such that for all m,
ρ(sm) > − ε2 , w′(sm) ≤ 0, and limm→∞ w(sm) = 0. This implies that for all large
m, w(sm) < 1

2 α1 ε. Notice that by (4.17), α1 u0(t) ≤ w(t). Thus u0(sm) < 1
2 ε for all

large m. Since w′(sm) ≤ 0, it follows from (4.18) that

α1ur1+1(sm)

[
D

(
D + α1

α1

)r1+1

− p1
(
S0 − u0(sm)− v0(sm) + ρ(sm)

)
]
≥ 0.
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Since ur1+1(sm) > 0, the above inequality implies that

S0 − u0(sm)− v0(sm) + ρ(sm) ≤ λ1.

Consequently, for all large m,

v0(sm) ≥ S0 − λ1 − u0(sm) + ρ(sm)
> S0 − λ1 − ε
> S0 − λ1

2
− 1

2
min (S0, λ2)

= S0 −min (S0, λ2) +
1
2

[min (S0, λ2)− λ1].

Thus b0 = lim supt→∞ v0(t) > S0−min(S0, λ2), contradicting Lemma 4.4. Therefore,
(4.16) holds and so δ > 0.

We now prove δ0 > 0. Suppose, to the contrary, that δ0 = 0. We then have a
sequence {s̃m} ↑ ∞ such that limm→∞ u0(s̃m) = 0. Note that from (4.6)

u0(s̃m) = ur1+1(s̃m) +
r1∑

j=0

yj(s̃m)
α1

.

Since yj(t), j = 0, 1, . . . , r1, are all positive for t > 0, the above equation implies that

lim
m→∞

ur1+1(s̃m) = 0 and lim
m→∞

yj(s̃m) = 0, j = 0, 1, 2, . . . , r1.

Using (4.6) once more, we obtain limm→∞ uj(s̃m) = 0 for all j = 0, 1, 2, . . . , r1 + 1.
Now (4.17) implies that limm→∞ w(s̃m) = 0, which leads to δ = 0, a contradiction.
This proves δ0 > 0.

LEMMA 4.6. If λ1 < λ2 < S0, then aj = bj = 0 for all j = 0, 1, 2, . . . , r2 + 1.
Proof. By (4.10), it suffices to show that a0 = b0 = 0. We first apply Lemmas 4.1

and 4.2 to the function u0(t) to obtain a sequence {sm} ↑ ∞ such that

lim
m→∞

u0(sm) = δ0 and lim
m→∞

u′0(sm) = 0.

It then follows from (4.7) that

lim
m→∞

Du0(sm) = lim
m→∞

p1(S0 − u0(sm)− v0(sm) + ρ(sm))ur1+1(sm).(4.19)

Let ε > 0 be given. We have ρ(sm) > − ε2 , ur1+1(sm) ≥ δr1+1−ε, and v0(sm) ≤ b0 + ε
2

for all large m. Then (4.19) implies that

lim
m→∞

Du0(sm) ≥ lim
m→∞

p1(S0 − u0(sm)− b0 − ε) (δr1+1 − ε),

or, equivalently,

D δ0 ≥ p1(S0 − δ0 − b0 − ε) (δr1+1 − ε).

Since ε > 0 is arbitrary, upon letting ε→ 0, it follows that

D δ0 ≥ p1(S0 − δ0 − b0) δr1+1.
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By Lemma 4.3, the above inequality leads to

D

(
D + α1

α1

)r1+1

δr1+1 ≥ p1(S0 − δ0 − b0) δr1+1.

Note that from Lemma 4.5, δr1+1 > 0. Canceling δr1+1 in the above inequality yields

S0 − δ0 − b0 ≤ λ1.(4.20)

We now show that b0 = 0. Suppose, to the contrary, that b0 > 0. Let ε > 0
be arbitrarily given. We apply Lemmas 4.1 and 4.2 once more to obtain a sequence
{tm} ↑ ∞ such that ρ(tm) < ε

2 ,

lim
m→∞

v0(tm) = b0, lim
m→∞

v′0(tm) = 0, and

vr2+1(tm) ≤ br2+1 + ε, u0(tm) ≥ δ0 −
ε

2
.

By (4.7), we have

D b0 = lim
m→∞

Dv0(tm)

= lim
m→∞

p2(S0 − u0(tm)− v0(tm) + ρ(tm)) vr2+1(tm)

≤ lim
m→∞

p2(S0 − δ0 − v0(tm) + ε) (br2+1 + ε)

= p2(S0 − δ0 − b0 + ε) (br2+1 + ε).

Letting ε→ 0, we obtain

D b0 ≤ p2(S0 − δ0 − b0) br2+1.(4.21)

Together with (4.10), this leads to

D

(
D + α2

α2

)r2+1

br2+1 ≤ p2(S0 − δ0 − b0) br2+1.(4.22)

Since b0 > 0, by (4.21) br2+1 > 0. Canceling br2+1 in (4.22) yields

S0 − δ0 − b0 ≥ λ2.

This contradicts (4.20) since, by assumption, λ1 < λ2. Therefore, b0 = 0 and hence
a0 = b0 = 0.

LEMMA 4.7. If δ0 > 0 and a0 = b0 = 0, then δi = γi = ( α1
D+α1

)i(S0 − λ1) > 0 for
all i = 0, 1, 2, . . . , r1 + 1.

Proof. We first show that δ0 = γ0. Suppose for the purpose of contradiction that
δ0 < γ0. By Lemma 4.2, there is a sequence {sm} ↑ ∞ such that

lim
m→∞

u0(sm) = δ0 and u′0(sm) = 0 for all m.

By (4.7),

Du0(sm) = ur1+1(sm) p1(S0 − u0(sm)− v0(sm) + ρ(sm)).
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Letting m→∞ on both sides of this equation and using (4.9) yield

D δ0 = lim
m→∞

ur1+1(sm) p1(S0 − δ0) ≥ δr1+1 p1(S0 − δ0)

≥
(

α1

D + α1

)r1+1

δ0 p1(S0 − δ0).
(4.23)

Canceling δ0 > 0 in (4.23), we obtain S0 − δ0 ≤ λ1; i.e., δ0 ≥ S0 − λ1. Note that
γ0 > 0. By Lemma 4.4, we must have λ1 < S0 and so γ0 ≤ S0 − λ1. This leads to
δ0 ≥ γ0, a contradiction. Therefore, δ0 = γ0.

We now show that δ0 = γ0 = S0 − λ1. Since limt→∞ u0(t) exists, (4.9) implies
that limt→∞ ui(t) = δi = γi exists for every i = 1, 2, . . . , r1 + 1. Note that by Lemma
4.1, limt→∞ u′0(t) = 0. It follows from (4.7) that

lim
t→∞

[−Du0(t) + ur1+1(t) p1(S0 − u0(t)− v0(t) + ρ(t))] = 0.

Together with (4.9), this gives

D δ0 = δr1+1 p1(S0 − δ0) ≥
(

α1

D + α1

)r1+1

δ0 p1(S0 − δ0).(4.24)

Since δ0 > 0, canceling δ0 in (4.24) yields S0 − δ0 ≤ λ1. By Lemma 4.4, this implies
that δ0 = γ0 = S0 − λ1, as desired. The rest of the proof now follows immediately
from (4.9).

We are now in the position to prove Theorems 3.3 and 3.4.
Proof of Theorem 3.3. Without loss of generality, we assume λi = λ1 and λj =

λ2. We first apply Lemmas 4.4 and 4.3 to conclude that aj = bj = 0 for all j =
0, 1, . . . , r2 + 1. Note that by Lemma 4.5, δ0 > 0. It now follows from Lemma 4.7 that
δ0 = γ0 = S0 − λ1 and

δr1+1 = γr1+1 =
(

α1

D + α1

)r1+1

(S0 − λ1).

Consequently, by (2.8),

lim
m→∞

(S0 − S(t) + ρ(t)) = lim
t→∞



r1∑

i=0

yi(t)
α1

+
r2∑

j=0

zj(t)
α2

+ x1(t) + x2(t)




= lim
t→∞

[u0(t) + v0(t) ]

= γ0 + b0 = S0 − λ1.

Hence, limt→∞ S(t) = λ1. This leads to

lim
t→∞

π(φ; t) = lim
t→∞

(S(t), ur1+1(t), vr2+1(t))

= (λ1, γr1+1, br2+1)

=

(
λ1,

(
α1

D + α1

)r1+1

(S0 − λ1), 0

)
= E1,

as required.
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TABLE 1
Basic run parameters.

Strain ci ki mi Ni(0) D = F
V

cell/g g/liter per hr cell/liter per hr
N1 6.3× 1010 1.6× 10−6 0.68 104.25 7.5× 10−2

N2 6.2× 1010 1.6× 10−6 0.96 103.1

Figure S(0) S0

g/liter g/liter
1, 2 2× 10−6 5× 10−6

3 2× 10−7 2× 10−7

Proof of Theorem 3.4. Assume that λi = λ1, λj = λ2; i.e., λ1 < λ2 < S0. We first
apply Lemmas 4.5 and 4.6 to obtain δ0 > 0 and aj = bj = 0 for all j = 0, 1, . . . , r2 +1.
By Lemma 4.7, it follows that δ0 = γ0 = S0 − λ1 and

δr1+1 = γr1+1 =
(

α1

D + α1

)r1+1

(S0 − λ1).

The rest of the proof is the same as that for Theorem 3.3.

5. Observations and numerical simulations. In this section we make some
numerical observations, based on computer simulations using Matlab, about the pos-
sible effects of including delay in the conversion process in the basic chemostat model.
In order for the simulations to be somewhat biologically meaningful, at least with
respect to orders of magnitude, we used the data given for the first two experiments
done in Hansen and Hubbell [20]. The outcome of all of the simulations agreed with
the theoretical predictions in this paper. In order to use the data given in [20], we
simulated model (1.1) and model (2.6) without the yield constants scaled out. That is,
throughout (2.6), xi(t) was replaced by Ni(t) = ci xi(t), yi(t) was replaced by ci yi(t),
and zi(t) was replaced by ci zi(t). The equilibrium concentration of the surviving
population is therefore given by N∗i = ci (S0 − λi). All of the simulations done on
model (2.6) represent solutions of model (2.1) for some choice of initial data.

We noticed some interesting characteristics of the solutions that were consistent
in all of the simulations. We describe these observations below and illustrate them
using the data from the second experiment done in Hansen and Hubbell for two strains
of Escherichia coli. In order to focus on certain aspects of the solutions, the graphs
are only shown for 150 hours. However, many of the simulations were done for 2000
hours at a tolerance of 10−12 to make sure that the convergence was as predicted.

Hansen and Hubbell [20] used the Michaelis–Menten form to model the response
functions pi(S) = mi S

ki+S
. The basic run parameters for all of the simulations, based on

experiment 2 in [20], are summarized in Table 1.
The initial conditions, Ni(0), were estimated from a graph given in Hansen and

Hubbell. However, there was no indication of what S(0) was in their paper, so this
was selected arbitrarily. In Figure 3, in order to emphasize the point we wished to
make, we were required to select a different value for S0. Since it was not possible to
know the past history of the microorganisms used in the experiment of Hansen and
Hubbell we chose the initial data (for t < 0) arbitrarily. Figures 1 (a), (c) and 2 (a),
(c), (e) were done using one choice for the initial data and Figures 1 (b), (d) and 3
(b), (d), (f) were done using another.
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We first make some general observations. Note that model (2.1) and hence model
(2.6) approach the discrete delay model (1.2) as a limiting case (see Appendix). The
criteria for the prediction of the outcome given in this paper can approximate the
criteria necessary for the outcome in the discrete delay case. To be more specific, let
us denote by λi(τi) the corresponding λ values for the discrete delay model (1.2). For
convenience, we assume that p1 and p2 in (1.2) and (2.1) are locally Lipschitz and
strictly increasing with p1(0) = p2(0) = 0. This implies that, for each i ∈ {1, 2},

λi(τi) = p−1
i (D eD τi),

λi(αi, ri) = p−1
i

(
D

(
D + αi
αi

)ri+1
)
.

(5.1)

As in [32], if we let ri go to infinity while keeping the mean delay, ri+1
αi

= τi fixed, it
follows from (5.1) that

lim
ri→∞

λi(αi, ri) = lim
ri→∞

p−1
i

(
D

(
D + αi
αi

)ri+1
)

= p−1
i

(
lim
αi→∞

D

(
1 +

D

αi

)αi τi)

= p−1
i (D eD τi) = λi(τi).

This observation was made by MacDonald [32], as far as the local stability analysis was
concerned. The theoretical results in this paper demonstrate the global significance of
this observation. The numerical simulations (see Figures 1 and 2) seem to show that
it is the mean delay, rather than the order of the kernel that plays the most important
role.

On the other hand, the ODEs model (1.1) can also be thought of as a limiting
case of the distributed delay model and it can be shown that if the mean delays in
the distributed delay model (2.1) are sufficiently small, then the predictions about
whether a population survives or dies out will be the same as the predictions of the
ODEs model. To see this note that if τi = 0 in model (1.2), the discrete delay model
becomes the ODEs model. Therefore, λi(0) can also be used to denote the break-
even concentrations in the ODEs model. Since each λi(αi, ri) is in fact a continuous
function of αi and the kernel order ri (see (5.1)), if λ1(0) < λ2(0) it follows that if the
mean delay τi is sufficiently small (e.g., let αi → ∞ with τi → 0), then λ1(α1, r1) <
λ2(α2, r2) and, also, the relative values of the λi’s and S0 will be maintained. Hence
it seems, at least qualitatively, that small mean delays can be neglected.

We now describe the numerical simulations. In Figures 1–3, to distinguish N1(t)
and N2(t), use the relative values of N1(0) and N2(0) given in Table 1. The first figure
demonstrates the effect of varying the members of the delay kernel (i.e., varying the
ri and αi) while holding the mean delays (i.e., τi = ri+1

αi
) fixed. In Figures 1 (a) and

(b) we show the effect of increasing the order of the kernel for both populations while
keeping the mean delay fixed. Although there is a small difference between the case
of r1 = r2 = 0 and r1 = r2 = 20, for the scale of the graph the cases of r1 = r2 = 20,
r1 = r2 = 40, and r1 = r2 = 60 are indistinguishable. In Figures 1 (c) and (d) we
show the effect of increasing the order of one of the kernels. For the initial data used
for Figure 1 (c), there was very little difference among all of the cases. However, for
Figure 1 (d), the difference between r1 = 40 and r2 = 0 and the other cases during
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FIG. 1. The effect of varying ri and αi while holding τi = ri+1
αi

fixed. Figures 1 (a) and (c)
were done using one set of initial data and Figures 1 (b) and (d) were done using another. The key
to this figure is summarized in Tables 1 and 2.

TABLE 2
Run information and key for Figure 1.

Strain τi ri αi λi N∗i N∗i Figure Line
hours per hr g/liter cells/liter log10cells/liter type

N1 1 0 1 2.15× 10−7 0 −∞ 1(a), (b) · · ·
N2 2 0 0.5 1.58× 10−7 261050 5.417
N1 1 20 21 2.16× 10−7 0 −∞ 1(a)–(d) —
N2 2 20 10.5 1.60× 10−7 258439 5.412
N1 1 40 41 2.16× 10−7 0 −∞ 1(a), (b) - - -
N2 2 40 20.5 1.60× 10−7 258369 5.142
N1 1 60 61 2.16× 10−7 0 −∞ 1(a), (b) − · −·
N2 2 60 30.5 1.60× 10−7 258345 5.147
N1 1 40 41 2.16× 10−7 0 −∞ 1(c), (d) · · ·
N2 2 0 0.5 1.58× 10−7 261050 5.142
N1 1 0 1 2.15× 10−7 0 −∞ 1(c), (d) - - -
N2 2 40 20.5 1.60× 10−7 258369 5.142

the first 150 hours was very noticeable, although asymptotically the result was almost
identical, as seen by the values of N∗i and λi. Although not depicted, the graphs for
the cases of r1 = 60 and r2 = 0 as well as r1 = 80 and r2 = 0 were indistinguishable
from the case of r1 = 40 and r2 = 0. Thus, Figure 1 seems to demonstrate that the
order of the kernel does not play a very significant role and that an order of 40 may
be a good approximation for the discrete delay case. Also, Figure 1 seems to show
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FIG. 2. The effect of varying τi while holding ri fixed. Figures 2 (a), (c), and (e) were done
using one set of initial data, and Figures 2 (b), (d), and (f) were done using another. The key to
this figure is summarized in Tables 1 and 3.

that although the initial data plays no role in determining the asymptotic outcome,
it can affect the initial transients and hence how long it takes for the culture to reach
near equilibrium concentrations. Figure 1 (d) indicates that the order of the kernel
could similarly affect the initial transients, although as shown by Figure 1 (a), (b),
and (c), this need not generally be the case.

The second figure demonstrates the effect of varying the mean delay τi while
holding the order of the kernels ri fixed. In order to make comparisons, the simulation
with τ1 = 0.5 = τ2 appears in all of the graphs in Figure 2. In Figures 2 (c) and (d)
this simulation is compared with the simulation of the ODEs model. For the initial
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TABLE 3
Run information and key for Figure 2.

Strain τi ri αi λi N∗i N∗i Figure Line
hours per hr g/liter cells/liter log10cells/liter type

N1 0 ODE 1.98× 10−7 0 −∞ 2(c), (d) - - -
N2 0 ODE 1.35× 10−7 301593 5.479
N1 5 0 0.2 2.86× 10−7 0 −∞ 2(a), (b) · · ·
N2 0.5 1 4 1.41× 10−7 290260 5.463
N1 3 0 0.33 2.50× 10−7 0 −∞ 2(a), (b) - - -
N2 0.5 1 4 1.41× 10−7 290260 5.463
N1 0.5 0 2 2.07× 10−7 0 −∞ 2(a)–(f) —
N2 0.5 1 4 1.41× 10−7 290260 5.463
N1 0.5 0 2 2.07× 10−7 0 −∞ 2(e), (f) - - -
N2 3 1 0.67 1.71× 10−7 241894 5.384
N1 0.5 0 2 2.07× 10−7 291060 5.464 2(e), (f) · · ·
N2 8 1 0.25 2.43× 10−7 0 −∞

data in Figure 2(c), the delay of 1
2 hour slowed down the convergence to equilibrium

concentrations a small amount, whereas for the initial data in Figure 2 (d), the delay
increased the rate of convergence.

Figures 2 (a) and (b) illustrate the effect of increasing the mean delay of the losing
strain for the ODEs model from 1

2 hour to 3 hours to 5 hours, while keeping the mean
delay of the survivor for the ODEs model fixed at 1

2 hour. In all of the simulations,
the increase in the delay for the losing strain sped up the death rate of this strain.
In the experiment by Hansen and Hubbell, they observed that the actual death rate
was more rapid than the rate predicted by the ODEs model. Our simulations indicate
that this could be accounted for if the mean delay of the losing strain was larger than
that of the surviving strain.

On the other hand, Figures 2 (e) and (f) show the effect of increasing the mean
delay of the surviving strain according to the predictions of the ODEs model from 1

2
hour to 3 hours to 8 hours while keeping the mean delay of the losing strain according
to the predictions of the ODEs model fixed at 1

2 hour. The 3-hour delay for the surviv-
ing strain significantly slowed down the death rate of the losing strain, and the 8-hour
delay resulted in a reversal in prediction of the outcome of the competition; that is,
the losing competitor for the ODEs model survived and the surviving competitor for
the ODEs model approached extinction. This seems to be consistent with some exper-
imental evidence. Tilman [45] reported experiments showing the dependence of the
outcome of competition on temperature, and Halbach [19] did experiments that seem
to indicate that the length of the time delay in growth response in laboratory popu-
lations is a function of controlled temperature. See also Herbert [22] for a discussion
of the effect of temperature on substrate uptake of microorganisms.

Figure 3 demonstrates that including delay in the model can account for more
oscillatory behavior in the initial transients, compared to the ODEs model. However,
to obtain this behavior, we had to reduce S0 from the value used in the actual exper-
iment in [20]. Perhaps making a better selection for the initial data could have had
a similar effect, but although it seems clear that the initial data affect the transients,
it is still unclear how to manipulate the transients by means of the initial data.

We make some final remarks concerning the numerical simulations. Figures 1
and 2 demonstrate that the selection of the initial data does affect the transient
behavior. However, it is usually, if not always, impossible to know the life history of the
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FIG. 3. An example in which delay accounts for more oscillation in the transients. The key to
this figure is summarized in Tables 1 and 4.

TABLE 4
Run information and key for Figure 3.

Strain τi ri αi λi N∗i N∗i Line
hours per hr g/liter cells/liter log10cells/liter type

N1 0 ODE 1.98× 10−7 0 −∞ —
N2 0 ODE 1.36× 10−7 13293 4.124
N1 0.6 3 6.67 2.09× 10−7 0 −∞ · · ·
N2 0.4 1 5 1.40× 10−7 12635 4.102
N1 6 3 0.67 3.25× 10−7 0 −∞ - - -
N2 4 1 0.5 1.84× 10−7 7765 3.890

microorganisms. Therefore it seems unlikely that this approach to modeling will ever
yield a good predictor of the exact initial transient behavior for a specific experiment.
However, Figures 1–3 seem to indicate that it could well be delay that accounts
for some of the discrepancies that have been observed between experiments and the
predictions of the ODEs model, and that delay seems to have certain consistent effects
that can be used to enhance predictions, or to obtain information about the relative
length of the delays in the conversion process for two different populations.

6. Discussion. In this paper, we studied a class of two species competition
models in a chemostat. We included distributed delay to model the lag between
the consumption of nutrient and the change in the concentration of the consuming
populations. By using the linear chain trick technique and the fluctuation lemma, we
determined the global asymptotic behavior.

The predictions based on the model involving distributed delay are similar to those
for the corresponding chemostat model with discrete delay (see Ellermeyer [15], Hsu,
Waltman, and Ellermeyer [26], and Wolkowicz and Xia [48]) and with no delay (see
Hsu, Hubbell, and Waltman [25], Hsu [24], Butler and Wolkowicz [7], and Wolkowicz
and Lu [47]). In all of these models, all species concentrations, eventually approach
equilibrium concentrations, and hence no nontrivial periodic solutions are possible.
However, it must be remembered that the critical parameters λ1 and λ2 depend on
the delay kernel chosen and so including delays in the model can change the relative
values of the λ’s and hence the predictions about whether a population survives or
dies out. Also, as proved in the appendix, the discrete delay model (1.2) and the
ODEs model (1.1) can be thought of as limiting cases of the distributed delay model.
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Our predictions can be summarized as follows. If λi ≥ S0 for some i ∈ {1, 2}, then
the chemostat environment cannot support population xi and it will be washed out,
regardless of whether or not there is a competitor. This is an example of competition-
independent extinction. If λi < S0 ≤ λj , then population xi survives and xj is washed
out. Finally, if λi < λj < S0, then again population xi survives and the competition
eliminates the competitor xj (with the larger λ value); i.e., competitive exclusion
occurs. Note that in this last case, each species can survive in the chemostat in the
absence of the other, and thus competition is the agent of elimination.

In a recent paper, Wolkowicz and Xia [48] discussed discrete delay effects on the
predicted outcomes of competition. As in the case of the discrete delay model (1.2),
distributed delay can also alter the predicted outcomes of competition. To be more
precise, since λi is a continuous function of αi and the kernel order ri, if we increase
the mean delay τi = ri+1

αi
, it can be seen from (5.1) that the corresponding λi will

also increase. This, together with our results, implies that a species with smaller λ(0)
value may lose the competition if its actual mean delay is sufficiently large (see Figures
2 (e) and (f)). As a consequence, compared with the ODEs model, the distributed
delay model (2.1) may give completely different predictions about whether or not a
population survives.

Cooke and Grossman [10] point out that two models with parallel structure,
one with discrete delay and one with distributed delay, may not exhibit the same
qualitative behavior (see MacDonald [33] for a general discussion of the effects of
incorporating distributed delay in biological models). In theory, it is also possible for
the predictions based on model (2.1) to differ from those given by the discrete delay
model (1.2), since it is possible to arrange αi and ri with τi = r1+1

αi
in such a way

that inequalities

λ2(α2, r2) < λ1(α1, r1) < λ1(τ1) < λ2(τ2) < S0

hold. Thus model (2.1) would predict population x2 as the winner but model (1.2)
would predict population x1 as the winner. However, the numerical simulations seem
to show that this inconsistency in predictions may not be likely in the chemostat.
For example (see Table 2), using the data from the second experiment of Hansen
and Hubbell, increasing ri from 0 to 20 changed λi by at most 0.002 micrograms
per liter, and further increases seemed to have even less effect. Hansen and Hubbell
considered the λi’s equal if they differed by 0.001 micrograms per liter as indicated by
their third experiment, and simulations done on populations where |λ1 − λ2| ≈ 0.002
micrograms had to be run beyond 2000 hours to determine which population had the
advantage and beyond 3000 hours to eliminate the possibility of coexistence. The
order of magnitude of changes in the λi’s due to changes in the mean delay are much
more significant (see Table 3).

The results in this paper depend on the choice of the family of delay kernels (2.2),
since this choice makes it possible to apply the linear chain trick technique. This
form of distributed delay kernels has been widely used in biological modeling (see
Cushing [12], MacDonald [32] and the references therein) and seems to be the most
useful family of reducible kernels (i.e., delay kernels that allow a distributed delay
model to be converted to an equivalent system of ordinary differential equations).
Not only are these kernels mathematically convenient, but also linear combinations of
them represent a generic class of distributed delay kernels (see Busenberg and Travis
[5]). As far as the local asymptotic stability is concerned, in [5], they showed that
there always exists an appropriate reducible system that can be analyzed instead of



DISTRIBUTED DELAY MODEL OF COMPETITION IN A CHEMOSTAT 1303

the actual (not necessarily reducible) delay differential equations system. However,
empirical evidence (see, for example, Caperon [8]) seems to suggest that the non-
reducible distribution should be used in parallel with the gamma distribution (2.2).
In order to show the robustness of the global results we obtained, it is of practical
importance to investigate the question of whether or not similar results hold for more
general delay kernels. Unfortunately, the technique used in this paper cannot be
used for general delay kernels, although it is possible to apply it in principle to linear
combinations of members of the family of kernels (2.2).

It is not usually possible to know the past history of the microorganisms or the
actual form of the delay kernel. Also, a particular member of the family of kernels
(2.2) is at best an approximation. Therefore, it is not likely that αi and ri have any
real biological meaning. However, the quantitative as well as qualitative dynamic
behavior of the model depends on the parameters αi and ri in the delay kernels. As
our computer simulations seem to indicate, it is the mean delay τi = ri+1

α1
rather than

the order of the kernel that plays the more significant role. It might be possible to get
some idea of the length of the mean delay from experiments. Assume that the dilution
rate D and the nutrient input concentration S0 are held constant and we culture the
species Ni alone in the chemostat. If a positive steady-state equilibrium is reached in
the culture, we measure the yield constant ci and the equilibrium concentrations of
the surviving species Ni and of the nutrient S, that is, N∗i and λi, respectively. Then,
by our theory, we obtain the equilibrium equation

N∗i = ci

(
αi

D + αi

)ri+1

(S0 − λi).

This implies that the mean delays

τi =
ln ci (S0−λi)

N∗i

ln
(

1 + D
αi

)αi ≈
ln ci (S0−λi)

N∗i

D

when the αi are large. Thus, although different choices for αi and ri may satisfy this
equilibrium equation, the mean delay τi may be similar for all large αi of these choices
(our numerical simulations also confirm this; see Table 2), and so it might be possible
to estimate the mean delay in this manner. The estimate could possibly be improved
by repeating the experiment with the same culture but with a different dilution rate
or input nutrient concentration.

This also suggests another relatively simple approach for predicting the outcome
of competition of two species in a chemostat, without even knowing the form of the
response functions or the form of the delay kernels, that could easily be tested by
experiments. The theory predicts that the relative values of the λi’s determine the
outcome and, as mentioned above, that these λi’s can be determined by culturing
each population alone in the chemostat, using the appropriate feed concentration S0

and dilution rate D, and then just measuring the equilibrium concentration of the
nutrient. We refer to Wolkowicz and Xia [48] for a similar discussion on the discrete
delay model (1.2).

On a more qualitative level, the numerical simulations (Figure 2) seem to demon-
strate that if the death rate, observed in experiments, of the losing population is
slower than predicted by the ODEs model, one might suspect that the mean delay in
the conversion process of the surviving population is relatively long compared to the
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mean delay of the losing population. On the other hand, if the actual death rate of
the losing population is much faster than predicted by the ODEs model, one might
suspect that the mean delay in the conversion process of the surviving population is
relatively short compared to the mean delay of the losing population. Also, delay may
account for more oscillations in the initial transients.

Appendix. In this appendix, we show how the discrete delay model (1.2) and
its corresponding ODEs model can be regarded as limiting cases of the distributed
delay model (2.1). The results proved here can be extended to general distributed
delay models with gamma distribution delay kernels, but for simplicity, we only give
the results that are directly related to the present paper.

We begin by considering two nonlinear functionals. Let τ > 0 be a constant and
h : R3

+ → R be a continuous function. We define the following families of functionals
on the Banach space BC3

+ of bounded and continuous functions from R3
+ into R with

uniform norm:

fα(φ) =
∫ ∞

0
h(φ(−u)) e−DuEα(u) du, α > 0,(A.1)

gr(φ) =
∫ ∞

0
h(φ(−u)) e−DuGr(u) du, r = 0, 1, 2, . . . ,(A.2)

where φ ∈ BC3
+, D > 0 is a constant, and

Eα(u) =
αp+1up

p!
e−αu, p ≥ 0 is a fixed integer,

Gr(u) =
βr+1ur

r!
e−βu, β = r+1

τ .

Notice that for each α > 0 and r = 0, 1, 2, . . . ,

∫ ∞

0
Eα(u) du =

∫ ∞

0
Gr(u) du = 1.

Thus, functionals (A.1) and (A.2) are well defined. We study the limits of fα and gr,
as α→∞ and r →∞, respectively.

THEOREM A. For any φ ∈ BC3
+, limα→∞ fα(φ) = h(φ(0)).

Proof. Let ε > 0 be given. Since h(φ(−u)) e−Du is continuous at u = 0, there
exists δ = δ(ε) > 0 such that

∣∣h(φ(−u)) e−Du − h(φ(0))
∣∣ < ε

2
for all 0 ≤ u ≤ δ.

Let M = 1 + supθ∈(−∞,0]|h(φ(θ)) eDθ − h(φ(0))|. Since 0 < M < ∞, we can find a
number N = N(ε) > 0 such that

∫ ∞

αδ

vp e−v

p!
dv <

ε

2M
for all α ≥ N.
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Therefore, if α ≥ N ,

|fα(φ)− h(φ(0))| =
∣∣∣∣
∫ ∞

0
[h(φ(−u)) e−Du − h(φ(0)) ]Eα(u) du

∣∣∣∣

≤
(∫ δ

0
+
∫ ∞

δ

)
∣∣h(φ(−u)) e−Du − h(φ(0))

∣∣ Eα(u) du

<
ε

2

∫ δ

0
Eα(u) du+M

∫ ∞

δ

Eα(u) du

<
ε

2
+M

∫ ∞

δ

αp+1upe−αu

p!
du

=
ε

2
+M

∫ ∞

αδ

vpe−v

p!
dv (where αu = v )

<
ε

2
+
ε

2
= ε.

This shows that limα→∞ fα(φ) = h(φ(0)), as claimed.
THEOREM B. For any φ ∈ BC3

+, limr→∞ gr(φ) = h(φ(−τ)) e−Dτ .
Proof. Let ε > 0 be given. We can find δ = δ(ε) < τ such that if |u− τ | ≤ δ,

∣∣h(φ(−u)) e−Du − h(φ(−τ)) e−Dτ
∣∣ < ε

3
.

This implies that for all r = 0, 1, 2, . . . ,

I1 :=
∫ τ+δ

τ−δ

∣∣h(φ(−u)) e−Du − h(φ(−τ)) e−Dτ
∣∣ Gr(u) du

<
ε

3

∫ τ+δ

τ−δ
Gr(u) du <

ε

3
.

(A.3)

Observe that each Gr(u) attains a unique maximum value at u = r
β = rτ

r+1 and Gr(u)
is increasing on [0, rτ

r+1 ] and decreasing on [ rτr+1 ,∞). If r ≥ R1 = τ
δ − 1, we have

rτ
r+1 ≥ τ − δ and thus for every u ∈ [0, τ − δ],

Gr(u) ≤ Gr(τ − δ) =
βr+1(τ − δ)r

r!
e−(τ−δ) β

=
(r + 1)

(
r+1
τ

)r+1 (τ − δ)r
(r + 1)!

e−
τ−δ
τ (r+1).

(A.4)

By Stirling’s formula (see Lang [29, Theorem 2, p. 220]), there exists 0 < θr < 1 such
that

(r + 1)! =
√

2π(r + 1)
(
r + 1
e

)r+1

e
θr

12(r+1) ,(A.5)

and so it follows from (A.4) that for all u ∈ [0, τ − δ],

Gr(u) ≤ e

τ
√

2π
(r + 1)

1
2

[
e(τ − δ)

τ

]r
e−

τ−δ
τ r

=
e

τ
√

2π
(r + 1)

1
2

[ a

ea−1

]r
,

(A.6)
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where 0 < a = τ−δ
τ < 1. Let M = 1 + supθ∈(−∞,0]|h(φ(θ)) eDθ − h(φ(−τ)) e−Dτ |.

Since 0 < M < ∞ and a < ea−1, there exists R2 = R2(ε) ≥ R1 such that for all
r ≥ R2,

e

τ
√

2π
(r + 1)

1
2

[ a

ea−1

]r
<

ε

3M(τ − δ) .

Therefore, by (6), if r ≥ R2,

Gr(u) <
ε

3M(τ − δ) for all u ∈ [0, τ − δ],

and, as a consequence,

I2 :=
∫ τ−δ

0

∣∣h(φ(−u)) e−Du − h(φ(−τ)) e−Dτ
∣∣ Gr(u) du

< M

∫ τ−δ

0
Gr(u) du <

ε

3
.

(A.7)

We now estimate the following integral:

I3 :=
∫ ∞

τ+δ

∣∣h(φ(−u)) e−Du − h(φ(−τ)) e−Dτ
∣∣ Gr(u) du.

By using Stirling’s formula (A.5) once more, we obtain

I3 ≤M
∫ ∞

τ+δ
Gr(u) du

≤ M√
2π

∫ ∞

τ+δ
(r + 1)

1
2

( e
τ

)r+1
ure−

r+1
τ u du

=
M

τ
√

2π

∫ ∞

τ+δ
(r + 1)

1
2

(u
τ
e−

u
τ +1

)r
e−

u
τ +1 du

=
M√
2π

∫ ∞

1+ δ
τ

(r + 1)
1
2

[
v e−(v−1)

]r
e−(v−1) dv,

(A.8)

where v = u
τ . Notice that the function v e−(v−1) is decreasing on [1,∞). Thus, for all

v ≥ 1 + δ
τ ,

v e−(v−1) ≤
(

1 +
δ

τ

)
e−

δ
τ < 1.

Therefore, there exists R3 = R3(ε) > 0 such that for all r ≥ R3,

M√
2π

(r + 1)
1
2

[
v e−(v−1)

]r
<
ε

3
, v ∈ [1 + δ

τ ,∞),

and so from (A.8) it follows that if r ≥ R3,

I3 ≤
ε

3

∫ ∞

1+ δ
τ

e−(v−1) dv <
ε

3
.(A.9)



DISTRIBUTED DELAY MODEL OF COMPETITION IN A CHEMOSTAT 1307

Let R = R(ε) = max (R2, R3). It then follows from (A.3), (A.7), and (A.9) that if
r ≥ R,

∣∣gr(φ)− h(φ(−τ)) e−Dτ
∣∣ =

∣∣∣∣
∫ ∞

0
[h(φ(−u)) e−Du − h(φ(−τ)) e−Dτ ]Gr(u) du

∣∣∣∣

≤
∫ ∞

0

∣∣h(φ(−u)) e−Du − h(φ(−τ)) e−Dτ
∣∣ Gr(u) du

= I1 + I2 + I3 < ε.

Therefore, limr→∞ gr(φ) = h(φ(−τ)) e−Dτ .
In what follows, we use Theorems A and B to show that the discrete delay model

(1.2) and its corresponding ODEs model are limiting cases of model (2.1). By using
the standard notation for functional differential equations (see, for example, Burton
[4] and Kuang [28]), we rewrite model (2.1) in the form

x′(t) = Hα,r(xt),(A.10)

where x(t) = (S(t), x1(t), x2(t)) ∈ R3, xt ∈ BC3
+ is defined by xt(θ) = x(t + θ), θ ∈

(−∞, 0], Hα,r : BC3
+ → R3 is given by

Hα,r(φ) =




(S0 − φ0(0))D − φ1(0) p1(φ0(0))− φ2(0) p2(φ0(0))
−Dφ1(0) +

∫∞
0 φ1(−u) p1(φ0(−u)) e−DuK1(u) du

−Dφ2(0) +
∫∞

0 φ2(−u) p2(φ0(−u)) e−DuK2(u) du


 ,

φ = (φ0, φ1, φ2) ∈ BC3
+, Ki are given by (2.2), α = (α1, α2), and r = (r1, r2).

Similarly, if we define the functionals

Hτ (φ) =




(S0 − φ0(0))D −∑2
i=1 φi(0) pi(φ0(0))

−Dφ1(0) + e−Dτ1 φ1(−τ1) p1(φ0(−τ1))
−Dφ2(0) + e−Dτ2 φ2(−τ2) p2(φ0(−τ2))




and

H0(φ) =




(S0 − φ0(0))D −∑2
i=1 φi(0) pi(φ0(0))

−Dφ1(0) + φ1(0) p1(φ0(0))
−Dφ2(0) + φ2(0) p2(φ0(0))


 ,

where φ = (φ0, φ1, φ2) ∈ BC3
+ and τ = (τ1, τ2), then model (1.2) can be rewritten as

x′(t) = Hτ (xt)(A.11)

and the corresponding ODEs model (i.e., model (1.2) with τi = 0) takes the form

x′(t) = H0(xt).(A.12)

Let hi(x0, x1, x2) = xi pi(x0), i = 1, 2. Applying Theorem A, it follows that for any
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φ ∈ BC3
+,

lim
α1→∞
α2→∞

Hα,r(φ) =




(S0 − φ0(0))D − φ1(0) p1(φ0(0))− φ2(0) p2(φ0(0))
−Dφ1(0) + limα1→∞

∫∞
0 φ1(−u) p1(φ0(−u)) e−DuK1(u) du

−Dφ2(0) + limα2→∞
∫∞

0 φ2(−u) p2(φ0(−u)) e−DuK2(u) du




=




(S0 − φ0(0))D − φ1(0) p1(φ0(0))− φ2(0) p2(φ0(0))
−Dφ1(0) + limα1→∞

∫∞
0 h1(φ(−u)) e−DuK1(u) du

−Dφ2(0) + limα2→∞
∫∞

0 h2(φ(−u)) e−DuK2(u) du




=




(S0 − φ0(0))D −∑2
i=1 φi(0) pi(φ0(0))

−Dφ1(0) + h1(φ(0))
−Dφ2(0) + h2(φ(0))




=




(S0 − φ0(0))D −∑2
i=1 φi(0) pi(φ0(0))

−Dφ1(0) + φ1(0) p1(φ0(0))
−Dφ2(0) + φ2(0) p2(φ0(0))


 = H0(φ),

where each ri ≥ 0 (the order of each Ki) is fixed. Similarly, by letting τ = τi, i = 1, 2,
we can apply Theorem B to obtain

lim
r1→∞
r2→∞

Hα,r(φ) = Hτ (φ) for any φ ∈ BC3
+,

where each τi = ri+1
αi

(the mean delay of each Ki) is fixed. In this sense, we can view
systems (A.11) and (A.12) as limiting equations of system (A.10). The discrete delay
model (1.2) can be obtained from the distributed delay model (2.1) by letting ri →∞
while keeping each mean delay τi = ri+1

αi
fixed, and the corresponding ODEs model

can be obtained from (2.1) by letting each αi → ∞ while keeping each kernel order
ri fixed.
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autonomous differential equations, J. Math. Biol., 30 (1992), pp. 755–763.
[44] T. F. THINGSTAD AND T. I. LANGELAND, Dynamics of chemostat culture: The effect of a

delay in cell response, J. Theoret. Biol., 48 (1974), pp. 149–159.
[45] D. TILMAN, Resource Competition and Community Structure, Princeton University Press,

Princeton, NJ, 1982.
[46] H. VELDKAMP, Ecological studies with the chemostat, in Advances in Microbial Ecology, Vol. I,

M. Alexander, ed., Plenum Press, New York, 1977, pp. 59–94.
[47] G. S. K. WOLKOWICZ AND Z. LU, Global dynamics of a mathematical model of competition

in the chemostat: general response functions and differential death rates, SIAM J. Appl.
Math., 52 (1992), pp. 222–233.

[48] G. WOLKOWICZ AND H. XIA, Global asymptotic behavior of a chemostat model with discrete
delays, SIAM J. Appl. Math., 57 (1997), pp. 1019–1043.


