SIAM J. APPL. MATH. (© 2002 Society for Industrial and Applied Mathematics
Vol. 63, No. 2, pp. 636-682

BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM
WITH NONMONOTONIC FUNCTIONAL RESPONSE*

HUAIPING ZHU', SUE ANN CAMPBELL#, AND GAIL S. K. WOLKOWICZ

Abstract. We consider a predator-prey system with nonmonotonic functional response: p(z) =
%. By allowing b to be negative (b > —2y/a), p(z) is concave up for small values of z > 0 as
it is for the sigmoidal functional response. We show that in this case there exists a Bogdanov—Takens
bifurcation point of codimension 3, which acts as an organizing center for the system. We study the
Hopf and homoclinic bifurcations and saddle-node bifurcation of limit cycles of the system. We also
describe the bifurcation sequences in each subregion of parameter space as the death rate of the
predator is varied. In contrast with the case b > 0, we prove that when —2/a < b < 0, a limit
cycle can coexist with a homoclinic loop. The bifurcation sequences involving Hopf bifurcations,
homoclinic bifurcations, as well as the saddle-node bifurcations of limit cycles are determined using
information from the complete study of the Bogdanov—Takens bifurcation point of codimension 3
and the geometry of the system. Examples of the predicted bifurcation curves are also generated
numerically using XPPAUT. Our work extends the results in [F. Rothe and D. S. Shafer, Proc. Roy.
Soc. Edinburgh Sect. A, 120 (1992), pp. 313-347] and [S. Ruan and D. Xiao, SIAM J. Appl. Math.,
61 (2001), pp. 1445-1472].
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1. Introduction. The classical predator prey model with an inhibition response
function was introduced in Freedman and Wolkowicz [12] to establish a veritable
paradox of enrichment. In this paper we analyze the classical predator-prey model
with a specific inhibition response function, the Holling type IV response function. In
particular, we study the model

& =rp (1 _ %) —yp(x) = p(a)(F(z) —y),
(1.1) ¥y =y(—d+cp(z)),
z(0) > 0,y(0) > 0,

where z and y denote the density of the prey and predator populations, respectively,
r,K,d, and c are positive constants, and F(z) = rz(1 — %)/p(z).

The specific growth rate of the prey population in the absence of predator popula-
tion is assumed to satisfy logistic growth, and so r denotes the intrinsic growth rate of
the prey population, and K denotes the carrying capacity. The natural death rate of
the predators is denoted by d, and the predator response function is denoted by p(z).
It is assumed that the rate of conversion of prey captured to predator is proportional
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to the predator response function, where c is the constant of proportionality or yield
constant.

The predator-prey system (1.1) has been extensively studied by many authors.
(See Ruan and Xiao [28] and Wolkowicz [30] for an extended list of references.) In
the literature, different functions have been used to model the predator response.
(See Holling [15] and Freedman and Wolkowicz [12] for a description of the general
conditions that this function should satisfy.) In Wolkowicz [30], assuming only these
general conditions and a technical assumption, a complete one parameter bifurcation
analysis of (1.1) was carried out using the carrying capacity K as the bifurcation
parameter. It was proved that the model has rich dynamics, including parameters for
which there is a homoclinic bifurcation. It was pointed out that both supercritical and
subcritical Hopf bifurcations are possible, and that when there is a subcritical Hopf
bifurcation, there must be parameters for which there is a saddle-node bifurcation of
limit cycles and a range of parameters for which there are at least two limit cycles.
To do a more detailed analysis, it is useful to specify the function p(x).

The form most often used (see, for example, Holling [14]), is the Holling type
IT form, p(z) = 347, also associated with Monod and Michaelis-Menten. This is
an increasing function that saturates, i.e., has a finite positive limit as x approaches
infinity. For a very nice description of the biological interpretation of each of the pa-
rameters, see Rinaldi, Muratori, and Kuznetsov [24], where they also study the effect
of periodically forcing each of the parameters individually, and propose a universal
bifurcation diagram.

In this paper we consider the Holling type IV functional response, associated with
Monod-Haldane (see Andrews [1]):

mx

(1.2) p(x) = ar? +bxr+1

)

where a and m are positive constants, and b > —2/a (so that az? + bz +1 > 0 for
all z > 0 and hence p(z) > 0 for all > 0).

When a is positive, this function increases to a maximum and then decreases,
approaching zero as x approaches infinity. Thus, p(x) models the situation where the
prey can better defend or disguise themselves when their population becomes large
enough, a phenomenon called group defense. See [12] and [28] for more information
about this phenomenon and examples of populations that use this strategy.

The response function (1.2) has been primarily considered assuming m positive
and a and b nonnegative. In this case, for x sufficiently small, p(z) resembles the
Holling type IT model while for large x the effect of inhibition is seen (Figure 1.1(a)).
If —2y/a < b < 0 and a is nonnegative, p(z) remains nonnegative, the inhibition
effect is still observed for large x, however, for « small p(x) resembles the Holling
type IIT (sigmoidal) function (Figure 1.1(b)). We shall show in section 5 that for
model (1.1) with the nonmonotonic response function (1.2), the organizing center of
the bifurcation diagram is at

me 2
b=— d= ——— K= ——+
\/aa b—|—2\/6’ \/&7

where there is a Bogdanov—Takens bifurcation of codimension 3. Ignoring the neg-
ative, but physically relevant, values of b misses this important fact as well as some
rich dynamics of the model.
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p(x) p(X)

(a)b>0 (b) =2¢/a<b<0

FiG. 1.1. Response functions.

Using the response function (1.2) in (1.1), the model to be considered is

X mx
1 = 1 _— -y = F —
i o= (1= )=y oy = P@)(F@) - ),
(1.3) o — _oomr Y
yo=y(—dte 5 y(—d + ep(x)),
z(0) > 0,y(0) > 0,
where
_rin_ T 2
(1.4) Fa) = (1 K) (az? + bz + 1)
and
(1.5) K, r, m, a, ¢, d>0, and b> —2V/a.

Rothe and Shafer [25, 26] considered the system
do =1z (1—2) (E—l) o) 4a) -
dr K/ \\\ [ I

w =G-0G-)

which may be obtained from (1.3) by rescaling time ¢ via

T /Ot { az?(t) —l—lbx(t) +1 } dt

and by assuming that the system always has two equilibria inside the positive quad-
rant. Using results for polynomial systems and taking (%, %, i) as parameters, the
authors studied the bifurcations of the model. Rothe and Shafer were the first to
consider the case b negative (—2y/a < b). However, after the transformation and
reduction to (1.6), the effect of allowing b < 0 was hidden. They proved that there is

a set of parameters for which there is a cusp of codimension 2, in a neighborhood of

(1.6)
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which the system realizes every phase portrait possible under small smooth pertur-
bation. They also indicated that there is a cusp of codimension at least 3, but did
not prove that the codimension is exactly 3. They point out for parameters near this
cusp there is a semi-stable limit cycle. The results of [26] are in terms of parameters
which are composites of the model parameters and thus are more difficult to interpret
for the biological system.

In [28], Ruan and Xiao restricted b = 0 in (1.3) and carried out a global analysis.
In particular, they proved that a limit cycle cannot coexist with a homoclinic loop.
They determined a set of parameters for which the system has a unique limit cycle
which is stable and another for which no cycles exist. They also studied the Bogdanov—
Takens bifurcation of codimension 2.

Model (1.3) involves 7 parameters (see (1.5)) that all have biological interpreta-
tions. By rescaling the state variables and time we could eliminate 3 of them. For
example, we could eliminate a, m, and ¢ by using

1
@t, —z, — y)
me Va | Va

and replacing r by %r, K by /aK, d by %d, and b by ﬁb. Similarly, using the
change of variables

(1.7 (t, z, y) — (

t
(ta Z, y) - (7 L'ra Ty>a
T mc m

and replacing a by (i)%, K by m¢K, d by %d, and b by -—b we could eliminate
r,m, and ¢. We choose not to do this so that the effect of all the parameters may be
easily seen in our results.

The x and y axes, the nonnegative cone and its interior are all invariant sets with
respect to system (1.3). A standard phase plane argument can be used to show that
all solutions initiating in the positive cone are bounded (see [30]).

This paper is organized as follows. Section 2 contains the linear analysis of the
equilibria, where we emphasize how this depends on the slope of the prey isocline. In
section 3 we give the geometric properties of the predator and prey isoclines, and we
show how the parameters (1.5) influence the geometry of the isoclines. In section 4,
we study the effect of this geometry on the existence, number, and criticality of Hopf
bifurcations which occur as d = % is varied. We determine that the parameter r
plays no role here. In section 5, we continue our analysis, examining the degener-
ate equilibria, especially the cusp points of codimension 2 and 3. In section 6 we
consider the global dynamics. We conclude with section 7 where we summarize our
results, compare them with other closely related results, and indicate their biological

significance.

2. Linear stability analysis. We consider equilibrium solutions to exist only if
they lie in the nonnegative cone. System (1.3) has at most four equilibrium solutions.
Two always lie on the boundary of the nonnegative cone: Fy = (0,0), representing the
extinction of both species, and Ex = (K,0), representing the extinction of the preda-
tor population and the density of the prey population equilibrating at the carrying
capacity.

Let A < p denote the two possible solutions of the quadratic equation cp(z) = d,
and By = (A, F(A\)) and E,, = (u, F'(1)) denote the corresponding equilibria. Whether
zero, one, or both of these other equilibria exist and sit in the nonnegative cone
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ERT X X
la
(a) Parameters A and (b) Isoclines and equilibria

Fic. 2.1. Typical geometry for system (1.3).

depends on the relative positions of the prey isocline y = F(x) and the predator
isoclines * = X\ and « = p. Figure 2.1(b) illustrates one of the possible positions,
where both Fy and F, exist.

Define
d= r:c ’
2.1
- ) = 22

Then cp(z) = d or p(z) = d is equivalent to

(2.2) g(z) = adz® — (1 —bd)z +d = 0.
If we define
i 1
M= T —)

A(] = (1 — bd)Q — 4(]/6?2,

then from a simple calculation it follows that for d € (0,dy], (2.2) has two positive
roots A < p where

1—bd — /A 1 —bd + /Ao

(2.4) A=
2ad 2ad

Ifde (0, ciM)7 then A < ﬁ < . As d increases, \ increases and p decreases. When
d=dy, \=p= ﬁ (Figure 2.1(a)). When d > dj;, A and p are no longer real.
Then Ey and Ei are the only equilibria in the nonnegative cone, and Fx attracts all
orbits initiating in the positive cone.

Next we investigate the stability of the equilibrium solutions Ey, Ex, Ey, and E,
by linearizing about each one. The variational matrix about any equilibrium (Z, §) is

| Y@ FE@) -y +p@)F(2)  —p(2)
(2:5) V(@.g) = cp'(2)y cep(z) —d
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TABLE 2.1

Linear analysis of the equilibrium solutions.

Fixed point K<Ax<p A< K<p A<pu<K
FEo saddle saddle saddle
Ex attracting node saddle attracting node
E does not exist repeller repeller F'(A) >0
attractor attractor F'(\) <
Eu does not exist does not exist saddle

641

An easy calculation indicates that Fy is always a saddle point. For £, note that the
determinant of V(u, F'(u)) is

cdm?F () (1 — ap?)

(2.6) (ap® 4+ bp +1)2

)

det (V(u, F(u))) = cyp(p)p’ (1) =

and that for d € (O,JM), w> % Hence, if E, lies in the positive cone, i.e., when
p < K, det(V(p, F(p))) <0, therefore E, is a saddle point.

Similarly, when F) lies in the positive cone, i.e., if A < K, det(V (A, F(\))) > 0.
Further, the trace of V/(\, FI(\)) is
(2.7) tr VA, F(N) = p(A\)F'(N).

Hence, E) is an attractor (resp., repeller) if F’(X\) <0 (resp., F'(\) > 0).

From the discussion above, it is clear that there is a saddle-node bifurcation
involving F\ and E, when d= JM.

The two eigenvalues of the variational matrix about Ex are —r < 0 and —d +
ep(K) = me[p(K) — d]. Thus Ek is an attracting node if d > p(K). It is a saddle
point if d < p(K). If d = p(K), Ex undergoes a transcritical bifurcation. As d
increases from 0, the steady state bifurcations outlined below occur.

1. If K < %, denote dyx = p(K). A transcritical bifurcation involving FE

and Fx occurs when d= (f,\ k- Pk changes its stability from a saddle point
to an attracting node. When d = dj;, a saddle-node bifurcation involving F
and F, occurs outside the nonnegative cone.

2. f K > ﬁ, denote J#K = p(K). A transcritical bifurcation involving E,,

and Ex occurs when d = JMK. FEi changes its stability from a saddle point
to an attracting node. When d=d M, a saddle-node bifurcation involving F
and F, occurs inside the positive cone.

3. If K = %, then p(K) = dyr. When d = JM, Ey, E,, and Eg coalesce
at Fx. Phase portrait analysis shows that Ex is an asymptotically stable
degenerate node.

The linear analysis for system (1.1) is summarized in Table 2.1.

3. Geometry of the isoclines. The geometry of the prey and predator isoclines
plays an important role in the analysis of both the local and global bifurcations. We
begin with a useful observation about the intersections of the prey isocline y = F(x)
with the predator isoclines, the lines z = A and x = p.

LEMMA 3.1. Consider F(\) and F(p):
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L If 0< K < 2 and d € (0,dy), then F(\) > F(u).

2. If K = %, then F(A\) = F(u) if and only if d = dy. Otherwise, if d €
(0,dnr), then F(XN) > F(u). A

3. If K > %, then there exists d..,

; 1
~1 =
(3.1) ="K +o

satisfying d. € (0,dyr) such that
o if 0<d<d,., then F(\) > F(u);
e if d=d., then F(\) = F(u);
o ifd. <d<dy, then F(\) < F(u);
o ifd=dy, then F(\) = F(y).
Proof. 1f d € (0,&1\4), two interior equilibria E\ and F, exist and A < pu. By
(2.2), we have

(3.2) A p= I_de , )\,u:é.
Then
FO) ~ F(u) =~ [\ = ) + (aK — B ) + (0K — (A~ o)
= PO ()~ )+ (0K — B+ )+ (b — 1)
- f% [(1 ~bd)? — ad? — d(aK — b)(1 —bd) — ad*(bK — 1)}
_ 772(22;”‘? 1 (ak + b)d].
(3.3)

For 0 < K < % and 0 < d < dp, (aK +b)d < (b+ 2y/a)dy < 1. Note that
A < p; therefore, F'(A\) > F(u).

For K = \35 ,if d € (0,dys), then (aK + b)d < 1, hence F(\) > F(u). It also

follows from (3.3) that F(A\) = F(u) if and only if d = dy;.
Assume that K > % By F(A\) — F(u) = 0 we obtain either A\ = p or

(3.4) 1— (aK +b)d = 0.

Hence, if d = dps, F(N\) = F(p). If d € (0,dyr), we can solve (3.4) to obtain d = d.
such that the rest of the results follow. 0

The prey isocline y = F(z) is a cubic polynomial with lim,_, . F(x) = co and
lim, o F(x) = —o0. It is either decreasing or has two humps, a local minimum with
x coordinate H,, and a local maximum with = coordinate Hj;, where H,, and Hj,
are the solutions of the quadratic equation F’(z) = 0, or, equivalently,

(3.5) 3ax? — 2(aK —b)x +1 —bK = 0.
Let
(3.6) Ay = a*’K? 4 abK + b* — 3a.
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F1G. 3.1. Three basic regions Vo, Vi1, and Va in the bK plane, Q = (v/a, %) (See Proposition
3.2).

Then when Ay > 0, we have

(3.7) H,, = 3%[@1(—17—\/5], Hy ::3%[@[(—1)4—\/?1].
H,, is always to the left of Hyy, i.e., H,, < Hjps. The number and the position of the
humps of the prey isocline inside the positive cone are determined by the signs of A;
and 1 — bK. For K > 0, the curve defined by A; = 0 (part of an ellipse) is tangent
to 1 —bK = 0 at the point Q(v/a, ﬁ)
A straightforward analysis of the signs of the quantities A; and 1 — bK gives the
following proposition.
ProprosITION 3.2. The two curves

ClzK:%[ 3(4a — b?) — 1], —-2ya<b<Va,
a
(3.8) )

CQ:K:T, b>07

divide the region K > 0, b > —2+/a into 3 subregions Vg, V1, and Vs (see Figure 3.1):

{ —2/a<b< /a } { Va<b }
Vo = 1 U 1 (>
0< K < 5:[v/3(4a — b?) — 0] 0<K<y

V1={0<b7%§K},

- —2y/a<b<0 U 0<b<a
o LI/3da—b?) —b] < K LV3a—0) —b <K<t [’
(3.9)
In regions Vi, V1, and Vs, the prey isocline has 0, 1, and 2 humps in the first quadrant,
respectively (see Figure 3.2).
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Fia. 3.2. The positions of the two humps of the prey isocline as a function of K and b. A x
indicates the position of the line x = %

1. Along C1, the two humps of the prey isocline coalesce at an inflection point
with x coordinate

aK —b

Hp = —5a (Hr = H,, = Hyp).
2. Along Cs,
o if K > —— then H,, =0, i.e., the left hump sits on the y-axis;
o if 0< K < f , then Hyr =0, i.e., the right hump sits on the y-azis;
o if K = f , then H,, = Hy; = Hy = 0, i.e., the inflection point sits on
the y-axis.

3. In region Vy, the prey isocline is decreasing and hence there are no humps
inside the first quadrant.
4. In region Vi, only the right hump Hj, sits inside the positive cone and
o if K =2 f’ then Hy = f’
osz> thenHM>f,

° sz< Vo’ thenHM<%.

5. In region Vs, both humps sit inside the ﬁrst quadmnt For (b,K) € V3,

oz‘fK:ﬁandb< —va, then Hp, f’

o if K = % and b > —\/a, then Hy; = f’

. ifK:% and b = —y/a, i.e., at the point P = (—+/a, ja), H,, =
Hy = —=,

oifK>f, then H,, <f<HM’

oifK<ﬁand —2y/a<b< f,then\/ia<Hm<HM
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o if K< 7= and —/a <b< a, then Hy, < Hy < .
Next we consider how the left and right humps of the prey isocline move as either
b or K is varied.
ProrosiTiON 3.3.
1. For any fized b satisfying b > —2+/a, as K increases, Hy; moves to the right
and H,, moves to the left. Also
lim Hjy; = oo,

K—o00

b
Klim H, = ~5g" (Note that this is positive if and only if b < 0.)
—00 a
2. For any fired K > 0,
e if 26+ aK <0 (and —2v/a <b < —\/a), as b increases,
— Hys mowes left,
—if 0< K< %, then H,, moves right,
—if K> \%, then H,, moves left,
— 4 - 2 1.
’LfK— Ja’ then H,, = Va’
3. if 2b+aK > 0, as b increases,
— H,, mowves left,
- if0<K< %, then Hpy; moves right,
—if K> \%, then Hpyr moves left,

- isz\/la, then Hy = ——

Ja
Also
lim H,, = 2+ va—|VaK — 1| ,
b—>—2\/a 3\/&
2 K—-1
lim Hy = +va+tlva | ,
b—>—2\/5 3\/&
blim H,, = —,
K
b—oo 2

Proof. The limits follow from straightforward calculations.

To study the movement of the humps, we need the following derivatives from
(3.7):

OHy b+ 2aK +2VA;

(3.10) oK 6avA, |
OHn — —(b+2aK) +2VA;
oK N 6(1\/Z1 7
OHy — 2b+aK —2y/A;
(3.11) o 6av/A, |
0H,, 2b+ aK + 2v/Ay
ob - 6@\/Z1

1. Inside the region Vi U Vs, for any fixed b > —2+/a, we have b+ 2aK > 0. By
(3.10), 8{1;{}?4 > 0, i.e., as we increase K, the right hump moves to the right. For the
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left hump, by (3.10) we have

0H,, b? — 4a

OK — 2avVA(b+2aK + 2\/A))

For b > 2y/a, the left hump does not lie inside the positive cone. Hence, if it exists,
B(;LI—K’” < 05 i.e., as we increase K, the left hump moves left.

2. Fix K inside the region V3 U V5.

First note that the distance between the two humps has a minimum ﬁ\/ b2 —a
along the line segment 2b 4+ K = 0 when —2y/a < b < —y/a.

In the subregion where 20+ aK < 0, by (3.11), Mg—bM < 0, so as we increase b, the
right hump moves left. The sign of

0H,, a2 — K?)

o 2V/A(2VA] — 2b — aK)

indicates the direction that the left hump moves in.
Similarly, in the subregion where 2b + aK > 0, the results follow from % <0
and

BHM - CL(% — KQ) 0
8() 2\/Z1(2b+aK+2\/ Al) '

4. Hopf bifurcations. From the analysis in section 2, E is the only candidate
for a Hopf bifurcation. It follows from (2.7) that if a Hopf bifurcation occurs, it occurs
when A coincides with a hump of the prey isocline y = F(x), i.e., when X is such that
F'(\) = 0 or, equivalently,

(4.1) 3a\? — 2(Ka —b)A+1—Kb=0.
Eliminating A from §(A\) = 0 and F’(\) = 0, we obtain
(4.2)  (4a —b*)(aK? 4+ bK 4+ 1)d? + 2(abK? + 2(b*> — 2a) K + b)d + 3(1 — bK) = 0.

For each fixed a > 0, (4.2) determines the Hopf bifurcation surface d(b, K). This
is illustrated in Figure 4.1. The significance of P, @, and R will be discussed in
Proposition 4.3 and Theorem 5.2.

Note that, depending on the values of a and b, there may be one or two values of
d at which a Hopf bifurcation occurs. These may be found explicitly by solving (4.2)
for d to obtain

i3 Qo —(abK? +2(0* — 2a) K + b) + (2 + bK) /A
(4.3) £ (4a — b?)(a K2 + DK + 1)

4.1. Existence of Hopf bifurcations. Our analysis is based on the positions
of the humps of the prey isocline relative to the vertical line x = % We study the
Hopf bifurcation on the surface (4.2) by fixing (b, K') in each region V; (i = 0,1,2)
and using d as a bifurcation parameter.

THEOREM 4.1. Fiz all parameters except d > 0. Provided that H,, # Hy, a
generic Hopf bifurcation occurs

L. at By = (Hu, F(Hpy)), whend =d_, if 0 < Hy, < —— and
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k=2
a

Fic. 4.1. Hopf bifurcation surface d = d(b, K).

2. at Ex = (Hy, F(Hy)), when d =d., if 0 < Hy < —J—.
No other nondegenerate Hopf bifurcations occur in the interior of the positive cone.
Proof. Consider the variational matrix about Ex = (A, F'())) (see (2.5)). It is
clear from (2.2), (2.5), and (2.7) that V(A, F((A)) has pure imaginary eigenvalues if
and only if 0 < A\ < ﬁ and F’'(A) =0, and hence A = H,;, or A = Hy.

If \ = H,,, then d = p(H,,). Substituting (3.7) in p(H,,) yields

: 3laK —b— V&)

d=p(Hp,) = =d_.
D) = = o K 4 9abK — 12 + 6a — (2K + b)v/A;

Similarly, if A = Hyy, then d = p(H,,), and we can show that p(Hy;) = d..

Next we verify the transversality condition. At E\ with A = H,, or Hy;, let ~
be the real part of the eigenvalue. Then a straightforward calculation from (2.5) and
(2.7) gives

rm) A(3ar? —2(aK — b)A + 1 — bK)

1
4.4 = — F’ =—|=—=
@44 7= pWFX (2}( aX? £ bA+ 1
Using Maple [29], we obtain

o
Oy _ Mo

(45 od  2Ta’K

[3a(bK — 1)(2a2K? + 2abK — b? + 6a)

~ (463K + 3a%0K2 + 26° — 9ab + 2) (Ka - \/Aoﬂ :

Note that % :—(i\/’\AfoséOaslongasA>Oandso %:Oifandonlyifthe
term in square brackets in (4.5) equals 0. This occurs only when H,, =0 or Hy =0
or H,, = Hy; = Hy. Thus the transversality condition is satisfied.

The only other equilibria of (1.3) are Ey, E,,, and Ex. No nondegenerate Hopf
bifurcation can occur at any of these equilibria, since the corresponding variational

matrix always has real eigenvalues in each case. a
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Subcritical Hopf at the
left hump when d=d_

K
Lb

Subcriti caIAHopf at the left hump
when d=d_, Supercritical Hopf
at the right hump when d=d4

Supercritical Hopf at the
left humpwhen d=d_

Supercritical  Hopf at the
right hump when d=d,

1 i Hopf at the left hump when d=d_, atthe

M:a: right hump when d=d, , both supercritical

| No Hopf
—27@a —(a O fa

F1G. 4.2. The existence and criticality of Hopf bifurcations in the bK plane as d is varied.

By the above theorem, if the predator isocline has a hump inside the positive
cone, and the hump is to the left of the vertical line x = %7 there exists a d defined

by (4.3) such that system (1.3) undergoes a Hopf bifurcation. Hence, if we define
vi={o.K) e Vl‘K >-2 1

V9= {6 K) e Valp < —va, K < 2}

from Theorem 4.1 and Proposition 3.2 (as shown in Figure 3.2), we obtain the follow-
ing corollary as illustrated in Figure 4.1 and Figure 4.2.
COROLLARY 4.2. Fiz all parameters except d > 0 and allow d to vary (see
Figure 4.2).
1. No Hopf bifurcation occurs if

(a) (b,K)€eVoUVUWY,

(b) (b,K) € (4,

(c) (0,K)€Cy and K < —— or K > -2

Va Va -
2. There is exactly one Hopf bifurcation and it occurs at (Hpr, F(Hpr)) when
(a) (bK)€Cy and —— < K < -2 or

va Va
(b) (b,K) eV, K < %
3. There is exactly one Hopf bifurcation and it occurs at (Hyp,, F(Hy,,)) when
d=d_ if
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e bK)eVy, K>
4. There are exactly two Hopf bifurcations: one occurs at (Hy,, F(H,,)) when
d=d_, and the other occurs at (Hyy, F(Hyp)) when d = dy if
o bK)eW, K< a, and b > —/a.

Proof. Recall that a Hopf blfurcation occurs when Ey = ()\ F (X)) coincides with
a hump, i.e., when either H,, = Aor Hyy = A with 0 < A < f The results 2(b), 3,
and 4 are the consequences of Theorem 4.1 and Proposition 3.2. It remains to prove

1 and 2(a).
Now for (b, K) € Vp, y = F(x) has no humps. For (b,K) € V}!, y = F(x)
has only one hump, with Hy; > . For (b,K) € Vi, y = F(x) has two humps,

a’

w1th\/a<H < Hy. For( )601, m:HM:HI For (b,K) € Cy, if
K < I,HM—O if K > f , Hyp =0and Hy < f Thus a Hopf bifurcation is
precluded in all cases. ]

4.2. Criticality of the Hopf bifurcations. In a study [30] of Hopf bifurcation
in systems of the form (1.1), the following formula for the Liapunov coefficient, o, was
obtained:

T F// T /1 T
(1.6 o) = <P ) 0) 4 2/ ) 0),
We will use this formula to give a complete description of the criticality of the Hopf
bifurcation at d =dy and d =d_.
PRrROPOSITION 4.3.
1. When the Hopf bifurcation occurs at Ey with A = Hyy, it is always supercrit-
ical.
2. Define the curve DH (Figures 4.1 and 4.2) connecting the two points P(—+/a,

2) and Q(va, L):

16a*K* + a?b(8a — 3b*)K® — a?(144a — 15b%) K2
—8ab(9a — b*) K + 16b* — 144ab? + 300a> = 0.

When the Hopf bifurcation occurs at Ey with A\ = H,,, it is supercritical if
(b, K) € Vy below DH; it is subcritical if (b,K) € Vo and —2v/a <b < —/a
or above DH.
3. For (b,K) € DH, a degenerate Hopf bifurcation occurs at Ex with A = H,
when d=d_.
Proof. 1f the Hopf bifurcation occurs at Ey with A = Hyy, it follows from (4.6)
that we have

(4.7) DH :

F'(H
() = D) 1002 (51,) ()t (o)) + () F (Ha)
v (Hwm)
2m? F"(Hyy 6ra
- o ) = S ).
(aH3; +bHpy +1)2 p'(Hwm) mK
Note that p'(Hp) > 0 and F”(Hp) < 0. It then follows from (4.8) that o < 0,
i.e., when the Hopf bifurcation occurs at Ex = (Hy, F(Hpr)) with d = dy, it is
supercritical. R R
Assume that when d = d_, a Hopf bifurcation occurs at E, with A\ = H,,. By
(46),

(4.8)

2r[3a®X\3 — 9a\ — 2(b — aK)]
K(1—aX)(aX2+b)\+1)

(4.9) o(N) =
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Note that when A € (0, 5=), the denominator of (4.9) is positive. Consider o defined

by (4.9) as a function of b, K, and A. Using X\ as the parameter with A € (0, ﬁ),
then ¢ = 0 defines a simple curve connecting the two points P(—+/a, %) and

Q(Va, %) Now we develop an expression for this curve segment called DH.
If the Hopf bifurcation occurs at x = A, then \ satisfies both (2.2) and (4.1). For
the Hopf bifurcation to occur at Ey\ = (Hy,, F'(H,,)) when d = d_, it follows that

(24 bK)d_
3—(b+2aK)d_

(4.10) A=

Substituting (4.10) into (4.9) and using (4.3), we obtain an implicit equation o = 0
which defines a simple curve in the bK plane, along which the Liapunov coefficient of
the Hopf bifurcation vanishes. Using Maple [29], we can solve the equation and obtain
K = =bEybida V222_4“7 which is not real for —y/a < b < y/a, and an implicit equation of b
and K, which can be simplified to

16a*K* + a?b(8a — 3b*)K® — a?(144a — 15b?) K2
(4.11)
—8ab(9a — b?) K + 16b* — 144ab® + 300a? = 0.

For K > 0, (4.11) defines a cusp curve with the cusp point located at P. The
upper branch of the cusp curve is above the line K = % and is not relevant because
it is an artifact of simplification. The lower branch passes through the point ) where
it is tangent to Cs. Only the curve segment DH is relevant since there are no humps
for (b, K) € Vi. Along the curve segment DH, the Hopf bifurcation is degenerate.
One can verify that for (b, K) above the curve DH, ¢ > 0, and so a subcritical Hopf
bifurcation occurs at the left hump. Below the curve segment DH, o < 0, and so a
supercritical Hopf bifurcation occurs at the left hump.

At the two points P(—+/a, %) and Q(v/a, ﬁ), if the Hopf bifurcation occurs,
it occurs at A = \/ia, and the associated 0 = 0. The Hopf bifurcation is therefore
degenerate. a

The next theorem follows from Theorem 4.1, Corollary 4.2, and Propositions 4.3.

THEOREM 4.4. Fix all parameters except d > 0 and allow d to vary (see Fig-
ures 3.2, 4.1, and 4.2).

1. In region Vi \ Vi, a supercritical Hopf bifurcation occurs at (Hpr, F(Hpr))
when d = cz+.

2. In region Vo, for K > %, above the curve DH, a subcritical Hopf bifurca-
tion occurs at (Hp,, F(H,y,)) when d = d_.

3. In region Vo, for K > %, below the curve DH, a supercritical Hopf bifur-

cation occurs at (Hp,, F(H,,)) when d =d_.

4. In region Vo, for b > —\/a, K < %, below the curve DH, two Hopf
bifurcations occur. When d = d_, one occurs at (Hy,, F(H,,)). When d =
dy, one occurs at (Hpy, F(Hpy)). They are both supercritical.

5. In region Vo, for K < %, above the curve DH , two Hopf bifurcations occur.

When d = d_, one occurs at (Hp,, F(H,,)) and is subcritical. When d = d..,
one occurs at (Hyr, F(Hpr)) and is supercritical.
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y y
%
” E
E
O 1 2 X 0] i T 1 Y2 X
X:p:Hm=ﬁ K= k_u_Hm_HM_N? K==
(a) At the left hump (b) At the inflection point
y
y
E -
X x
o )\:u:HM:N% KzN% o A= u:HM:N%T K:N'%
(c) At the right hump (d) At the right hump

F1G. 5.1. Positions of the isoclines and equilibria at the cusp bifurcation of codimension 2, (a),
(c), (d), and 3, (b).

5. The cusp points of codimension 2 and 3. From the analysis in sections 3
and 4, when

2 me
va' b+2Va

(5.1) K = = medyy,

two equilibria E\ and E,, coalesce on the vertical line x = % That is,

Ey=F _<1 ’"(”2\@) =B

va' o 2mya

Using (2.6) in (2.5) it follows that the equilibrium E* has two zero eigenvalues.
From Proposition 3.3 and Figure 5.1, the position of E* is described below. If
b € (—2y/a,—+/a), then E* is at the left hump (Figure 5.1(a)). As b increases in this
range, the right hump moves to the left until b = —/a, when the two humps coalesce
and E* is at the inflection point (Figure 5.1(b)). For b € (—+/a,o0), E* is at the right
hump (Figure 5.1(c)). As b increases, the left hump moves to the left until b = @,
when the left hump reaches the y-axis and leaves the first quadrant (Figure 5.1(d)).
In this section, we prove that E* is a cusp singularity of codimension 2 for all
b € (—2y/a,00) except at b = —y/a where it is a cusp singularity of codimension 3.
This generalizes the results in [28] and [26]. In [28] they only consider b = 0, and
hence the cusp singularity of codimension 2. In [26], they proved that there is a set of
parameters for which there is a cusp of codimension 2 for (1.6). They also indicated
that there is a cusp of codimension at least 3, but did not prove that the codimension

is exactly 3.
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For any b € (—2+/a, ) and K, d satisfying condition (5.1), system (1.3) becomes
izrm(l—?m)— mey

ar? +bx+1’
(5.2)

. mc L mex
v=y b+2ya ar?+br+1]’
which has a unique equilibrium E* in the positive cone. Using a series of transforma-

tions, we shall reduce system (5.2) to normal form.
The translation

B 1 r(b+2y/a)
(5.3) X—x—%, Y—y—w,

brings E* to the origin. Expanding the right-hand side of the resulting system in a
Taylor series about the origin, we obtain

m__y rva(b + \/a)Xz

(5.4) X = aa ~ 20 +2va)  Ruo(X,Y),
’ . acr 5
Y = 72(1)4—2\/5))( + Roo(X,Y),

where R (i = 1,2) is C® in (X,Y) and R;o(X,Y) = O(|(X,Y)]3).
Reversing time and making the transformation

m
X=X 4 =——7Y,
’ b+2ya

system (5.4) becomes

. b
X=27Z+ MXQ + Rll(Xa Z)v
(5.5) 2(b+2v/a)
. acmr
Z=—X? X,z
St ayary thalX2),
where R;; (i = 1,2) is C® in (X, Z) and R (X, Z) = O(|(X, Z2)?).
Making the near-identity transformation

rva(b+va) 5
. —X =Z+ X Xz
(56) " , v + 2(b+2\/a) +R11( ) )a
we obtain
U=,
(57) { D= 61U2 =+ (SQU’U + R22(u7 U)a

where Ryy is C* in (X, Z), Raa(u,v) = O(|(u,v)|?), and

acmr rv/a(b+ va) ‘

. SN N (RN

Thus we have the following theorem.
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THEOREM 5.1. For any b > —2\/a, if d and K satisfy (5.1) and b # —+/a, then
the equilibrium E* is a cusp point of codimension 2 (a Bogdanov-Takens bifurcation
point).

If b = —/a, the cusp point is at the inflection point of F(x) (Figure 5.1(b)), and
by (5.8), 82 = 0 in the normal form (5.7). Thus the Bogdanov—Takens bifurcation is
degenerate and the codimension of the cusp singularity is at least 3. To show that
the codimension is exactly 3, one needs to show that system (5.7) is C*° equivalent
to the generic normal form of the cusp point of codimension 3. This is the approach
taken in the following theorem.

THEOREM 5.2. If (b, d, K) is at the point R (Figure 4.1), i.e.,

2 mc
(5.9) b=—a, K= Ja d= Ja
then the equilibrium E* = (ﬁ, 5-) s a cusp point of codimension 3 (a degenerate
Bogdanov-Takens bifurcation point).

Proof. Tt has been shown [8, 18, 21] that any system which has a cusp point of
codimension 3 is C°° equivalent to the following:

&=y,
(310 U5 it 06 ¢ Qa0

where (3 # 0. Thus, we will prove this theorem by showing that there exist smooth

coordinate changes which take system (1.3) with the parameter values (5.9) into (5.10).

Under condition (5.9), E* = (\/ia, 5—). As in the case b # —+/a, after translating
the equilibrium to the origin and performing a Taylor expansion, we obtain

. 1
X = —%Y +VamX?Y = JarX® + Quo(X,Y),

(5.11)
. 1 1
Y = —5\/6ch2 — mevaX?Y + EarcX3 + Q20(X,Y),

where Qo (1 =1,2) is C* in (X,Y) and Q;o(X,Y) = O(|(X,Y)[*).
Reversing time and rescaling

m

N

X=X, Z-=
system (5.11) becomes

. 1
X=27Z-aX?Z+ iarXS +Qu (X, 2),

(5.12)

Z= "X g mevaxz - TV 4 (X, 2),

where Q;1 (i =1,2) is C® in (X, Z) and Qi1 (X, Z) = O(|(X, 2)[).
Using the near-identity transformation

1
(5.13) u=X, v=Z2-aX>Z+ 5arX?’ +Qu(X,2),

and changing u, v into x,y, we obtain

T =1y,
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where
cmr

q(z) = Tac + O(ac?’)7

g2(z) = (mc\/a + 3ra> 2 — meax® + O(z?),

Qa(x,y) (i =1,2) is C* in (z,y) and Q2(z,y) = O(|(X, Z)|*).
Let

(5.15) wo = ydy — [g1(x) + yga(2) + ¥*Q2(x, y)]dx.

By using the 1-form (5.15) for system (5.14), we develop the normal form for the cusp
singularity.

(1) Reduction of g;(x) to z2. Since g (0) = crm # 0, there exists a local diffeo-
morphism in z near the origin,

X=Lx)= ¢ ?m + O(2?),
such that
(5.16) X2dX = g (x)dz.

By this diffeomorphism, the term g; (z) is reduced to x2. Writing z instead of X, wy
becomes

(5.17) wo = ydy — [2° + ygs(z) + y*Qs(x, y)]da,
where
gs(x) = ax? + Bz + O(m4)

with a = (mey/a + %ar);m and = —2

(2) Elimination of 22 term from g3(z). Lot S(z,y) = 3y*— 523, Then dS(z,y) =
ydy — z>dzx. Thus

(5.18) yridr = y?dy — ydS.

Substituting (5.18) into (5.17), we obtain

(5.19)  wo = (1 +ay)dS(z,y) — ay®dy — y[Bx> + O(z*) + yQs(x, y))dx.
It follows that

2 3 4
1 Y0 g§(ay) — — Y gy YT+ O] +yQu(w,y)
+ay 1+ ay 1+ ay

2

=dS(z,y) — %dy —y[B2® + O(2*) + yQa(z,y)]dz,

dx

(5.20)

where for i = 3,4, Qi(x,y) is C*> in (z,y) and Q;(x,y) = O(|(x,y)|*). Now a near-
identity transformation

(5.21) X=z, Y=y+-
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it
Y X3dX remains unchanged. Writing # and y instead of X and Y, system (1.3)
in a neighborhood of E* is thus equivalent to (5.10). Since § = —% # 0, E* is a cusp
point of codimension 3. O
By Theorem 5.1, if K = % and d = b_:;‘f/a but b # —+/a, the cusp point is
of codimension 2. One can find standard analysis for this codimension 2 bifurcation
in Dumortier [6], Dumortier and Roussarie [7], Kuznetsov [18], and Mardési¢ [21].
In [28], the authors study this cusp point in the case b = 0 and develop a versal
unfolding using K and d as distinguished parameters. The analysis of the cusp point
of codimension 2 in the case b # 0 is similar; thus we will present only the codimension
3 versal unfolding of the cusp singularity. By the analysis in section 3, we have several
different choices for the parameters to unfold the codimension 3 singularity: (b,d, K),
(b,m,K), (b,c,K), (a,b,d),.... In this paper, we take (b,d, K) as the bifurcation
parameters and develop a versal unfolding for the codimension 3 cusp singularity when
these three parameters are perturbed near the point (bg, do, Ko) = (—/a, %, %) We

ay? :
transforms the exact 1-form dS(z,y) — yay dy into dS(X,Y), where the term

study the bifurcations of this unfolding by using the results in [8] and [21].
We wish to study system (1.3) for parameters (b, d, K) in a neighborhood of (—+/a,
%, %) Thus we let

b= _\/a+€17

(5.22) d= % + €2,
K= \/lﬁ + €3

in (1.3) and we study the bifurcations of the resulting system

T maxy

Car?+ (—a+e)z+ 1

a'c:mtll—

2 + &3
(5.23) ve
. me mexy
ey [_ <ﬁ+€2> T (Varee 1)
for € = (g1, e9,¢e3) sufficiently small.
THEOREM 5.3. For parameters ¢ = (e1,€2,¢e3) sufficiently small, system (5.23)
is a generic unfolding of the cusp singularity of codimension 3.
Proof. It has been shown in [8] that a generic unfolding, with the parameters
(v1,v9,v3), of the codimension 3 cusp singularity is C* equivalent to

(5.24) {x 4

g =uv1+ 2%+ ylve + vz + 23 + Oz + 2 Q(z, y).

Using the method and results of [8, 10], we will show that system (5.23), with parame-
ters (€1, €2, €3), is also a generic unfolding of the codimension 3 singularity by showing
that there exist smooth coordinate changes which take (5.23) into (5.24) with

D, va,v5)
D(eq,e2,€3) le=(0,0,0)

£0

System (5.23) has a cusp point at (ﬁ, o) if e = (0,0,0). Applying the transla-
tion
1 T

ff:ff—ﬁv yzy—%,
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and expanding system (5.23) in the power series about the origin, we have

(5.25) { & = L11(7) + yL12(Z) + 5°Q10(Z,9)

_— 7@ 9y
§ = Lo1(Z) + §L22(Z) + 5°Q20(Z, 7),
where Q;0(0,0) =0 (i = 1,2) and

—_ r(aes + 2v/ag1e3 + 2¢1) Vares

L T =

1) = S Ja(Vat e @+ vacs) T 2+ vass”

Var(a®Pes — 4\/ae; — 25%)332 B a’r # 1 0(#Y)
2(va+e1)2(2 + vaes) 2(v/a +¢1)? ’

— m a3/2m a2m
L 7) — 2 =3 o) =4

12(7) \/6—1—51_'—(\/64—51)21: (\/6+€1)2x + 0(z),

3/2 2

- r mceq a°’“cr _9 a~cr -3 —4
Tor(#) = — (5 — -

21() 2m< €2 \/6(\/64—51)) (at e’ +2(\/6+51)2x +O0(z*),
B 3/2 2
Ton(f) = —e — 51 a?em @me s 4 o

ValVate) (atet' | (Vate)

By the transformation
(5.26) =2z,  §=Lu(@) +yL2(z) + 57 Q10(,%),

system (5.25) is C'*° equivalent to

(5:27) { ; i %21(33) + §L2s (%) + 7 Q2(7,9),
where
Loy (7) = 2a7“ﬁ ((emey — aza) + O(le]?)) + 2—35 (e3(cmey — az2) + O(e]?)) 7
+ Emcr + 0(|5|)} 72— [%\/acmr + 0(|s|)} 7+ 0%,
Lo (%) = % (=2mce1 + 2aes + av/ares + O(|ef?)) + 7 (—e1 + aes + O(|e]?)) &
- % (3v/ar +2em + O([e])) ° + (acm + O([e])) 2 + O(z*).

Note that for e sufficiently small, cog(e) := 325221 (0) = 2mer + O(|e]) # 0. Thus,
in the proof of Theorem 5.3, we can reduce Lo1(Z) to a quadratic polynomial without

linear terms. First, by rescaling y and time ¢ using

O SR I
=1, y=y 020(6)7 t= 7157

C20 (5)

the coefficient of 2 in Lo (%) becomes 1+ O(|e|), and the coefficient of # becomes

c10(e) = \/Zzlmc

[e3(meer — aea) + O([e]?)] .
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Then the translation
(5.28) & =cio(e) +O(le’) +a, §=1,

brings system (5.27) to

(5.29) {u:v o

where
Loy (,€) = 1(e) + 42 + O(@®),
Los(it ) = €ole) + &1 (e)i + &x(e)a® — E3(e)i® + O(at),
and
= aTame (mee1 — aga + O(le?)),
N 1

= ——— [—2cme; + 2ae; + av/ares + O([e]?)],

b0 = av2rme

51 \/% (—51 + aeg + O(|5|2)),

€ = /| —— (3v/ar + 2me + O(le])),

2mer

€3 = 3a, /% +O(le]).

Consider the corresponding 1-form of (5.29):

(5.30) 00 — | Lox (@,2) + 0Laa (@ €) + 0°Qa (@, ) | dit = 0.

Now we reduce ﬁgl(ﬁ7 €) to i + 42, Denote

L(t,e) = in ()t + = 0% + O(at).

W =

Using the Malgrange preparation theorem [5], we find a coordinate change of the form
(5.31) 0= ®(i,e) = p(e)ii + O(@?),

where ¢(0) = 1 such that

. 1

L(®(d,¢e),e) = ()t + gﬂ?’,
and () = #1(¢) + O(|e|?). Performing this coordinate change to family (5.30) and
writing ¥ = ¥, we obtain

(5.32) 5 — [igl(a, €) + BLas (@, €) + 520 (@, ﬁ)]dﬂ —0,
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where

Lgl(’fb,é‘) = 121(6) + ’EL2,

Las(ii,e) = &o(e) + &1 ()i + &a(e)i? — &()a® + O(a*),

and & (e) = &(e) + O(le]?) (i =0,1,2,3).
Then similar to step (2) in the proof of Theorem 5.2, using S(@,7) = %17 — %ﬂ ,
and a near-identity transformation of the form

S

(5.33)

= u,
=

+ 3&(e)v? + O(v3),

we eliminate the term 942 in (5.32), and system (5.23) is C*° equivalent to

U=,
(5.34) { 0 =101 +u+ U[go + égu — 53113 + O(u4)] + ’UQQ(u’ v).

For € sufficiently small, the dominant terms in 7 and & (i = 0,2, 3) remain unchanged.
Hence, we keep the previous notation.

For system (5.34), £3(0) = 3a/ 50— > 0. Thus the rescaling

1 1
—=U, v==
3 &3

shows that system (5.23) is equivalent to

(5.35) { L=y

~ 1
v, i=gr

u =

§=in+a2 +yldo+ b —2° + 0@ + v’ Qx,y),
where we have replaced (U, V, 1) with (z,y,t).

To apply the results from [8], we change the sign of the term 3y in the second
equation of (5.36) to positive by the transformation

(1’7 Y, ta 1517 507 gl) — (IL’, Y, 7t7 513 7507 751);

then system (5.35) becomes

(5.36) { L=y

§ = i1 + 2% + yléo + G2 + 2° + O()] + 12 Q(x, ).

To simplify the expressions for the parameters, we make the rescaling

o= 8172 z

PV et (me)z TV
9 =

5.37 =
(5:37) "2 \/ 64a”r*(mc)S o,

64r* =

__ 10
"= \/ 9a3(mc)? 1.
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This yields (5.24), where using Maple, we obtain

v1 = meya(meey + ags)

+ Q(mc)zsf + damceiea + a2s§ + O(|(e1, 52)|3),

vy = —2mcer — 2aes + arv/ares
1
+ = [—4(me)%e? — 3a®/amere? — 4a%e2 — 16amesreo
(5.38) 1l 3 2 2

+ 2ame(3v/ar + me)eies + 24 (Var + me)eses] + O(|ef?),
1
vy = —e1 + ags + 1 [—2rmee] — 3a®merel — 2aree;

+Vame(11v/ar + 4me)eie3 + 4v/a(2v/ar + me)ezes] + O(Je]?),

and

D(V17V27V3)

3
= —a’rmc # 0.
D(€1382763) 7&

£=(0,0,0)

So system (5.23) with parameters ¢ = (£1,¢€9,¢3) is a generic family unfolding the
codimension 3 cusp singularity. O

By Theorem 5.3, system (5.23) is a generic family unfolding the cusp singularity of
codimension 3. So by the main theorem in [8], system (5.23) has the same bifurcation
set with respect to £3 as (5.24) has with respect to v, at least up to a homeomorphism
in the parameter space. This bifurcation set is a cone with vertex at the origin of the
parameter space.

If 1 > 0, system (5.24) obviously has no equilibria. In a neighborhood of the
origin, v; = 0 is a saddle-node bifurcation plane. Crossing the plane in the direction of
decreasing vy, two equilibria are created: a saddle and an antisaddle (node or focus).
Correspondingly, from (5.38), there is a surface in the parameter space (e1,¢e9,€3)
defined by v (e1,e2) = 0:

(5.39) £y = —%81 + %ai L O(ED).
Along this surface, system (5.23) has a saddle-node bifurcation. Substituting (5.22)
into (2.2), it follows that the exact saddle-node bifurcation surface is given by

mc €1
Vva Ja+er’

which is consistent with (5.39). To the right of the surface X g, system (5.23) has no
equilibria, thus all the bifurcation surfaces are located to the left of ¥g5. Since up
to a homeomorphism in the parameter space, each bifurcation surface is a cone with
vertex at the origin; they can best be visualized by drawing their trace on the sphere

(5.40) Ysn: €=

S = {(I/l,VQ,I/g)‘I/l <0,V + v+ Vg =¢ep,g9 > 0 sufficiently small}

to the left of the surface Xgn.

As in Figure 5.2, let I' = S N Xgn be the intersection of the “half” sphere S
with Ygn. Then along I', except for the two points b; and by, there is a saddle-node
bifurcation. The next result follows from the bifurcation diagram given in Figure 3 of

[8].
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Fic. 5.2. T', the intersection curve of the saddle-node bifurcation surface Xgn with the half
sphere S.

THEOREM 5.4. For system (5.24), using € = (€1,¢€2,€3) as parameters, the bifur-
cation diagram on S is given in Figure 5.3.
On S, there are three bifurcation curves as shown in Figure 5.3:
e a curve H of Hopf bifurcations,
e a curve H,,, of homoclinic bifurcations, and
e a curve SN of saddle-node bifurcations of limit cycles.
As shown in Figure 5.3, the curve SN, joins a point hy on H to a point ¢z on Hy,,
and SN is tangent to H at hy and tangent to H,,, at co. The curves H and H,,,
have first order contact with the boundary of S at the points b; and by. In the
neighborhood of b; and bs, system (5.24) is an unfolding of the cusp singularity of
codimension 2. This corresponds to the bifurcations along K = % with (d,b) in the
neighborhood of (%, —+v/a). If b > —/a, the cusp singularity of codimension 2 is at
the right hump, while if b < —+/a, it is at the left hump.
Along the arc bihs of the curve H, a supercritical Hopf bifurcation occurs with
a stable limit cycle appearing when the arc bjhs is crossed from right to left. Along
the arc hobs of the curve H, a subcritical Hopf bifurcation occurs with an unstable
limit cycle appearing when the arc hgbs is crossed from left to right. The point hs
is a degenerate Hopf bifurcation point, i.e., a Hopf bifurcation point of codimension
2. The point hy in Figure 5.3 corresponds to the degenerate Hopf curve DH in
Figures 4.2 and 6.1, which represents a three dimensional curve of codimension 2
Hopf bifurcations, projected onto the bK plane.
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Fic. 5.3. Bifurcation diagram for system (5.24) on S.

Along the curve H,,,, except at the point ¢z, a homoclinic bifurcation of codi-
mension 1 occurs. When the arc bico of H,, is crossed from left to right, the two
separatrices of the saddle point coincide and a stable limit cycle appears. The same
phenomenon gives rise to an unstable limit cycle when the arc cobs of H,,, is crossed
from right to left. The point ¢ corresponds to a homoclinic bifurcation of codimension
2 (see [2, 23, 27] for references).

The curves H and H,,, intersect transversally at a unique point P* representing
a parameter value of simultaneous Hopf and homoclinic bifurcation. The point P* in
Figure 5.3 corresponds to the curve HH in Figure 6.1, a projection to the bK plane
of the three dimensional curve along which Hopf and homoclinic bifurcations occur
simultaneously.

For parameter values in the curved triangle P*haco, there exist exactly two limit
cycles; the inner one is unstable and the outer one is stable. These two limit cycles
coalesce in a generic way in a saddle-node bifurcation of limit cycles when the curve
SN, is crossed from left to right. On the arc SN;. itself, there exists a unique semi-
stable limit cycle.

6. Global dynamics. In the previous section we proved that a degenerate
Bogdanov-Takens bifurcation of codimension 3 occurs when (5.9) is satisfied. There-
fore, when the parameters (1.5) are varied in a neighborhood of (5.9), a degenerate
homoclinic bifurcation, degenerate Hopf bifurcation, and saddle-node bifurcation of
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limit cycles must occur. In this section, using the information obtained from the anal-
ysis of the codimension 3 Bogdanov—Takens bifurcation and the geometry of system
(1.3), we study the role of each of the parameters (1.5) in the global bifurcations
of system (1.3). In order to do this, we determine when certain phenomena occur
simultaneously. We then combine this information with the local dynamics stud-
ied in section 4 to determine the sequence of bifurcations in the different regions of
parameter space as d= % is varied.

6.1. Periodic orbits and homoclinic loops. It was proved in [30] that if
system (1.3) has a limit cycle in the positive cone, it has to surround a hump of
the prey isocline. In this subsection we prove several theorems which help determine
whether system (1.3) has periodic orbits or homoclinic loops. Throughout this section,
by periodic orbits we mean nontrivial periodic orbits.

THEOREM 6.1. For system (1.3), the horizontal line y = F(X) can intersect the
prey isocline y = F(x) at most three points in the first quadrant. If there is a periodic
orbit, it lies entirely to the left of Ex and E,, (if E,, exists). Furthermore,

o if \ % H,,, Hys, the periodic orbit must surround Ey and another intersection
point (z*, F(z*)), where F(x*) = F(\);

e if \= H,, or Hy, the periodic orbit must surround E), the tangent point of
y=F(\) withy = F(z).

Proof. From (1.4) it is clear that y = F(z) is a cubic polynomial and hence
y = F()\) can intersect y = F(x) at at most three points.

If d > ciM7 then ¢ < 0 along all orbits and hence system (1.3) has no periodic
orbits. The only case remaining is 0 < d < dy.

Using standard phase plane arguments, it is clear that any periodic orbit must lie
entirely to the left of Ex and E,, (if E, exists). By a consequence of the Poincaré-
Bendixson theorem, a periodic orbit in the plane must surround an equilibrium. By
phase plane analysis, E is the only candidate.

Consider an auxiliary function of the form L(z,y) = M(x) + N(y), where M(x)
and N(y) are continuous and differentiable and satisfy the following equations, re-
spectively:

o) p(z)M'(z) = d — ep(x), M) =0, x>0,
6.1
yN'(y) =F(A\)—y,  N(F(XA)=0,y>0.

Solving these equations, we obtain a function L(z,y) defined in the first quadrant.
Along the trajectories of system (1.3) we have

(62) 4 Lie,y) = (d - ep(@)[Flx) ~ V)]

For d € (0,dyy), (6.2) can be rewritten as

(63)  Elt) = 5 De(0),5(0) = — (= N(w — p)[F(@) ~ FO)L
Denote
(6.4) i = min {y, K}.

If there is a closed orbit, L must undergo a change of sign along this orbit. If
A= H,, or Hy;, then L changes sign when x = A, and if A # H,,, or Hy;, L can change
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sign only when x = p or x = z* # A, where F(2*) = F(A). Therefore, A = H,, or
H)y;, and the periodic orbit surrounds E), or there exists a * € (0,A) U (A, i) such
that F(z*) = F(XA), and (z*, F(z*)) sits inside the closed orbit. a
COROLLARY 6.2. For system (1.3), if Ex is the only intersection point of the
horizontal line y = F(X\) with the prey isocline y = F(x), and A # Hyy, then there
are meither periodic orbits nor homoclinic loops.
THEOREM 6.3. Assume d € (0, dM) Neither periodic orbits nor homoclinic loops
exist if either
1. F'(xz) <0 for all z € (\, ), or
2. F'(\) >0 and F'(u) > 0.
Proof. To prove the theorem, we make a change of variables and rescale time by
setting

¢
1
(6.5) u=Inz, v=Iy, 7 /0 P N
to obtain
= m[F(e") — €],
(6.6) { b = —meg(e®),

where §(z) is defined in (2.2).

1. We proceed by using the Dulac criterion with the positive auxiliary function
B(v) = e™P¥ where 3 is a nonnegative constant to be determined.

The divergence

div (B(v)[it, 6]) = —me™[—e"F'(e") + Bmeg(e®)]

(67) = _memﬂ’uR(eu7 ﬂ)a
where
R(z,B) = —xF'(x) + fmcg(x)
_ 3ar 5 2r(aK —b)
(6.8) = nxt (“dmcﬁ T mK ) v
+ | (bd — 1)mes — % & 4 meAd.

It follows from Theorem 6.1 that a periodic solution or a homoclinic loop must
lie entirely inside the strip

{(:U,y)|0 <z <p,y>0}.
Thus it is enough to show that there exists a 81 > 0 such that
(6.9) R(z,p1) >0, x€(0,f).

Consider the cubic, R(z,0). By the hypothesis, R(x,0) > 0 for A < z < f.
Therefore (6.9) is satisfied with 31 = 0, unless there is either one or two simple roots
of R(z,0) inside the interval (0, \). We now consider this case.

Note that lim, 4 R(z, 3) = £oo for any § > 0, and g(\) = g(u) =0, g(x) < 0if
x € (\ ), and §(z) > 0, otherwise. Therefore for 5 > 0, there is always one negative
root of R(z, () and for 8 > 0 sufficiently small there are two positive roots in (0, A].
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Since R(A,B) = —AF'(A) > 0 for all 8 > 0, and since g(x) > 0 for = € [0, \), there
exists 41 > 0 such that R(x,3;) has a double root in (0, A], and thus R(z, 51) > 0 for
z € (0, ).

2. The argument is similar. Using the auxiliary function B(v) = e~™5", the
divergence

(6.10) div (B(v)[1, 0]) = me~"™P R(e%, ),

where R(x, 8) = «F'(x) + fmecg(z). Note that lim,_ 1+ R(z, 3) = Foo for all >0,
the hypothesis implies that F'(x) > 0 for A < x < p, and there is always a root of
R(z, B) such that > 3 rather than a negative root. d
COROLLARY 6.4.
1. Assume K # % There exists a d € (0,dyr) such that for all d > d, system

(1.3) has neither periodic orbits nor homoclinic loops.
2. Assume K > % Then for all d > d. (d. was defined in (3.1)), system
(1.3) has neither periodic orbits nor homoclinic loops if
o (b,K)eV, or
e (b,K) e Vs and F(0) < F(X).
Proof. 1. As d € (0, dM) increases, A and p tend to ﬁ monotonically from the
left and right side, respectively. Hence if K # %, neither the left nor the right

hump is at \/ia, and so there exists a d € (0,dys) such that for d € (d,dyy), there are

no interior equilibria or both of the interior equilibria satisfy either F’(\) > 0 and
F'(u) > 0 or F'(z) < 0 for all x € (A\,1). By Theorem 6.3, in either case, system
(1.3) has no periodic orbits nor homoclinic loops.
2. This is a direct consequence of part 3 of Lemma 3.1 and Theorem 6.1. 0
COROLLARY 6.5. For system (1.3) with parameters (1.5), if (b,K) € Vo U VY,
then for any d>0, system (1.3) has neither periodic orbits nor homoclinic loops.
Proof. For any (b,K) € V, F'(x) < 0 for all x > 0, so the result follows from
Theorem 6.3.
Assume (b, K) € V{, and d € (0,dy). In this region, 0 < ﬁ < H, <Hy<K.

By Lemma 3.1, since K < %, F(\) > F(p). If p > Hyy, then F(N) > F(Hy),
and there is a unique intersection of y = F(A) and y = F(x). The result follows

from Corollary 6.2. If ﬁ < p < Hyy, besides (A, F(\)), any other intersection of
y = F()\) and y = F(x) must have x coordinate great than p. The result follows from
Theorem 6.1. ]
THEOREM 6.6. Fiz all parameters except d>0.
1. No homoclinic bifurcation can occur for d € (0,d,x) (where d,x is the value
ofcz at the transcritical bifurcation involving E,, and Ex ).
2. When a homoclinic bifurcation occurs,
o if F'(u) <0, then it is supercritical,
o if F'(u) > 0, then it is subcritical.

Proof. Part 1 is obvious since in this case, if £, does not exist, £ is the only
equilibrium inside the positive cone and it is never a saddle. Ex cannot form a
saddle loop as the z-axis is invariant. Part 2 follows from a standard result [2], since
er(V (1, F(1))) = p(u) F'(11) (see (25)). O 2

THEOREM 6.7. Fiz all parameters except d > 0. For b,K) eV, and K > o

there exists a d; € (J“K,JM) such that a homoclinic loop bifurcation involving E,,

occurs when d = dj.
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Proof. If a homoclinic loop bifurcation occurs, it involves F,; hence it occurs for
de (CZ#K,JM). For d < CZ#K(< d_), Ey is the only equilibrium in the interior of the
first quadrant and it is asymptotically stable. Since solutions are bounded, there must
either be no limit cycles or an even number, excluding semistable periodic orbits. For
d > dyy, system (1.3) has no limit cycles. By Corollary 4.2, there is exactly one Hopf
bifurcation which occurs at (Hp,, F(H,,)) when d = d_ and changes the parity of the
limit cycles. Therefore, there must exist a d; € (CZH K.d ) such that a homoclinic loop
bifurcation occurs to compensate for this change in the number of limit cycles. a

6.2. Simultaneous phenomena. We will subdivide V,, Vi, and V5 using the
curves defined below along which simultaneous phenomena occur for some d > 0:

NS: a Hopf bifurcation at E with A = H,, and a neutral saddle at E,,
when pu = Hyy;

E.k: a Hopf bifurcation at Ey with A = H,, or A = Hj; and a transcritical
bifurcation involving E,, and Fk;

HH: a Hopf bifurcation at F) with A = H,, and a homoclinic loop
involving F,;

Dhom:: a homoclinic bifurcation involving E,, when FE|,, is a neutral saddle,
i.e., u = Hys (degenerate homoclinic bifurcation);

ST: a saddle-node bifurcation of limit cycles and a transcritical bifurcation

involving F, and Ef.

In the rest of this subsection, we will find analytic expressions for curves E, x and N.S

and prove that curves HH and Dhom must exist in certain regions in parameter space.

We will prove the existence of the curve ST in the next subsection. Information about

these curves is summarized in Table 6.1 and illustrated in Figure 6.1 and Figure 6.4.
PROPOSITION 6.8. In the bK plane (Figure 6.1), along the curve

2
(6.11) NS:K:—B, —Va<b<0,

there exists a unique d € (0,dar) such that a Hopf bifurcation at (H,,, F(H,,)) and a
neutral saddle at (Hpr, F(Hpr)) occur simultaneously. To the left of NS the neutral
saddle at (Hpr, F(Hpy)) occurs before the Hopf bifurcation at (H,,, F(Hy,)). To the
right of NS this ordering is reversed.

Proof. Recall from Theorem 4.1 that a Hopf bifurcation occurs at (H,, F(Hp,))
where d = d_ as given in (4.3). In a similar manner to the proof of Theorem 4.1, it

can be shown that for % < K < %, a neutral saddle occurs at (Hy, F(Hpr)) when

d = d,, as given in (4.3). We thus obtain

(2 + V) VAT
(4a — 0?)(aK2 +bK +1)

(6.12) dy —d_ =

Clearly, when K = —%, dAJr =d_= 2(%2(71), thus the Hopf bifurcation and the neu-

tral saddle occur simultaneously at this value of d. Note that b2 —4a < 0. Hence when
—2ya <b< f%, aAlJr < cf_, the neutral saddle occurs before the Hopf bifurcation,
and when —% <b< %, the order is reversed. To complete the proof we note that
A1 =0 only when A = H,, = Hy; = H; = p, which corresponds to the point P. 0
Recall that a transcritical bifurcation involving £, and Ex occurs when K > 1

P va
and d = d,x = P(K) (see (2.1)).
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PROPOSITION 6.9. In the bK plane (Figure 6.1), along the curve

3 —aKk? \/5
.1 . = " —
(6.13) Eux b RGK? =3 K>/,

there exists a unique de (O,JM) such that the Hopf bifurcation and the E,, and Eg
transcritical bifurcation occur simultaneously. The curve E, i is tangent to Ci at
(0,+/3/a). Along this curve, if b < 0, the Hopf bifurcation occurs at the left hump,
and if b > 0, the Hopf bifurcation occurs at the right hump.

1. For (b,K) € Vi \ Vi,

(a) if (b,K) is above E, ki, the transcritical bifurcation occurs before the
Hopf bifurcation at Ey with A = Hy;;

(b) if (b, K) is below E, i, the Hopf bifurcation at Ex with A = Hy; occurs
before the transcritical bifurcation.

2. For (b,K) € Vo \ V3,

(a) if (b, K) is to the left of E, i, the transcritical bifurcation occurs before
the Hopf bifurcation at E\ with A = H,,;

(b) if (b,K) is to the right of E,k, the transcritical bifurcation occurs after
the Hopf bifurcation at Ey with A = H,, and, if K < %, it occurs before
the Hopf bifurcation at Ey with X = Hyy;

(c) if (b, K) is below E,r, the Hopf bifurcations at Ex with A\ = H,, and
A = Hys occur before the transcritical bifurcation.
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Proof. Let K = p and set H,, = A (see (2.4) and (3.7)),

_1-bd+ VA,
2ad 7

aK—b—\/Al 1—bd — /A
3a 2ad

Eliminating d from (6.14), we obtain (6.13).

Eliminating d from p = K and Hy; = A yields (6.13).

From Theorem 4.4 it follows that the branch of E,x with b < 0 corresponds to
the Hopf bifurcation at (H,,, F'(H,,)), whereas the branch with b > 0 corresponds
to the Hopf bifurcation at (Hps, F(Hpr)). The ordering of the Hopf bifurcation at
(Hps, F(Hyr)) and the transcritical bifurcation follows from part 1 of Proposition 3.3.
As K increases across E,x with b > 0, the right hump moves to the right. Thus
in the region above E,k, the transcritical bifurcation must occur before the Hopf
bifurcation at (Hps, F/(Hpr)), and in the region below, the ordering must be reversed.

To the left of E,x, it follows from Proposition 6.8 that a Hopf bifurcation can
occur at the same time as a neutral saddle. Thus in this region the transcritical
bifurcation must occur before the Hopf bifurcation at (Hm,F(H )). To the right
of F, i, notice that on C5 above @), H,, = 0. When d = duK, A > H,. Fix d.
For K slightly below C3, A > H,,, but K < u. Therefore the Hopf blfurcation at
(Hp, F(H,,)) occurs before the transcritical bifurcation in this region. O

For system (1.3), if b = 0, it was proved in [28] that the Hopf bifurcation and
homoclinic bifurcation cannot occur simultaneously. However, for b < 0 they can hap-
pen simultaneously along the curve H H. The bifurcation analysis of the codimension
3 cusp singularity in section 5 (Theorem 5.3) indicates that in a neighborhood of the
point P, there exist curves DH, HH, and Dhom emanating from P:

DH : K = Kpp(b),
(615) HH : K = KHH(b),
Dhom : K = Kppom(b),

HH and Dhom are tangent to DH at P, and Dhom is to the left of HH, which is to
the left of DH. Recall that an analytic expression for DH was derived (see (4. 11)) For
any (b, K) along HH in a neighborhood of P, there exists a d; such that when d = dj,
the system undergoes both a Hopf bifurcation and a homoclinic loop bifurcation.
For any (b, K) along Dhom in a neighborhood of P, there exists a dDhom € (O,CZM)
such that when d = dphom, system (1.3) undergoes a degenerate (codimension 2)
homoclinic loop bifurcation. Also in a neighborhood of P, for any (b, K) in the region
between DH and Dhom, there exists a dsn € (0, dM) such that when d = dsn, system
(1.3) undergoes a saddle-node bifurcation of limit cycles. In Figure 6.1 and Figure 6.2,
we use a dot-dash line to illustrate Dhom and a dashed line to illustrate HH. The
global extension of the curve Dhom has been observed numerically using XPPAUT.
In the following we prove the position of NS with respect to Dhom and HH.
2

LEMMA 6.10. Fiz all parameters as in (1.5) except d>0. For K < 7 and

K > f to the right of N.S, if a homoclinic bifurcation occurs, it is supercmtzcal

Proof. By Proposition 3.2, if K < %, Hy < ﬁ <u IfK > \/E to the
right of NS, then Hy; < p. Hence in both cases, F'(u) < 0. It follows from part 2
of Theorem 6.6 that if a homoclinic bifurcation occurs in either of these cases, it is

supercritical. ]

(6.14)
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Fic. 6.2. V*, subregzon of Va, bounded by Dhom, DH, and Ca. For (b,K) € Vsn, the shaded
region, there exists a dm > 0 such that when d = dm, system (1.3) undergoes a saddle-node
bifurcation of limit cycles.

COROLLARY 6.11. Dhom lies to the left of NS.

Before we establish the relative positions of NS and HH, we need the following
results.

LEMMA 6.12.

1. For (b,K) € Vo \ Vi and to the left of NS, any homoclinic bifurcation that
occurs must occur before the Hopf bifurcation.

2. For (b,K) € Vo, K > \/la to the right of E,x, any homoclinic bifurcation
that occurs must occur after the Hopf bifurcation.

3. For (b,K) € Vo\VP, K < f to the right of E, i, any homoclinic bifurcation
that occurs must occur after the Hopf bifurcation at (H,,, F(H,,)) and before
the Hopf bifurcation at (Hpyr, F(Hpr)).

4. For (b,K) € Vo \ V3, below E, ) with b > 0, both Hopf bifurcations occur
before any homoclinic bifurcation.

5. For (b, K) € Vi\V{t, any homoclinic bifurcation that occurs must occur before
the Hopf bifurcation at (Hyy, f(Hyr)) when d = dy.

Proof. 1. For (b,K) € Vo \ V3 and to the left of NS, from Theorem 4.4 and
Proposition 6.8, the Hopf bifurcation at (Hp,F(Hy,)) with d = d_ occurs after
the neutral saddle at (Hys, F(Hy)) with d = dy. This implies that for d > d.
Hp < A< p < Hyy, and hence F'(A) = 0 and F'(p) > 0. By part 2 of Theorem 6.3,
there are no periodic orbits or homochmc loops for d> d+

2. For (b,K) € Vo and K > f , it follows from Theorem 4.4 that the only Hopf

bifurcation that occurs is at the (Hy,, F(H,,)) when d = d_, and it is subcritical.
By part 2(b) of Proposition 6.9, the Hopf bifurcation occurs before the E,, and Ex
transcritical bifurcation. Hence by part 1 of Theorem 6.6, no homoclinic bifurcation
occurs for d € (0,d_].
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3. For (b,K) € Vo and K < %, by part 2(b) of Proposition 6.9, the transcritical
bifurcation involving E,, and Ex occurs after the Hopf bifurcation at (Hy,, F'(H,))
when d = d_ and before the Hopf bifurcation at (Has, F(Hy)) when d = dy. A
similar argument to that for part 2 shows that no homoclinic bifurcation occurs in
(0, cf_], and a similar argument to that for part 1 shows that no homoclinic bifurcation
occurs for d > JJr.

4. For (b,K) € Vo \ V2, below E,x (b > 0), by Theorem 4.4, Hopf bifurcations
occur at E\ when A = H,, and A = Hy;. But by part 2(c) of Proposition 6.9, both
Hopf bifurcations occur before the transcritical bifurcation involving E, and Ef,
which implies any homoclinic bifurcation must occur after both Hopf bifurcations.

5. For (b,K) € V4 \ Vi, by Theorem 4.4, there is one Hopf bifurcation at
(Hyp, F(Hy)) when d = dy. If d > dy, then Hy < A < jo and F'(z) < 0 for
x € (A, ). Thus by part 1 of Theorem 6.3, for d > ci+ no homoclinic loops can
exist. Hence any homoclinic bifurcation that occurs must occur before the Hopf
bifurcation. O

PROPOSITION 6.13. Fiz all the parameters in (1.5) except d > 0. If (b, K) is
outside the region bounded by NS, C1, and E, i (Figure 6.1), for all de (O,CZM), a
Hopf bifurcation and a homoclinic bifurcation cannot occur simultaneously.

Proof. 1t follows from Theorem 4.4 that no Hopf bifurcations can occur for (b, K)
in the regions Vy, Vo), and Vi!. The proofs for Vi \ Vit and V; \ Vi follow from
Lemma 6.12. 0

Recall that in the neighborhood of P, there exists a curve HH along which the
Hopf bifurcation at the left hump and a homoclinic bifurcation occur simultaneously.
Let Vg be the region bounded by curves NS, K = %, and E,x (b < 0). Now we
prove the following theorem regarding the extension of the curve HH in Vyg.

THEOREM 6.14. Fiz all parameters except d>0.In Vi, there exists a curve
HH: K = Kgg(b) with finite end point at P(—+/a, \%) (Figure 6.1). For any

(b,K) € HH, there exists a unique dpn € (CZHK,CZM), such that when d = dpy,, the
suberitical Hopf bifurcation at (Hy,, F(Hy,)) and a homoclinic loop bifurcation occur
simultaneously.

Proof. By Theorem 6.7, for (b, K) € Vypg there exists d, € (CZ“K,dAM) such
that a homoclinic bifurcation occurs at d = d. By Proposition 6.13, if the curve
K = Ky (b) exists, it lies inside the region Vig.

2 _3-aK?
TR Kk )
such that the subcritical Hopf bifurcation at the left hump and a homoclinic bifurca-
tion involving £, happen simultaneously when d= d,(< cZJr)

Now we prove that in Vg, for fixed K > %, there exists a b € (

(a) First we show that along NS, any homoclinic bifurcation at d = d; occurs
before the Hopf bifurcation.

From Proposition 6.8, if b = —2 (i.e., (b,K) € NS), a Hopf bifurcation at
(Hy,, F(H,,)) and a neutral saddle at (Hyr, F(Hys)) occur simultaneously when d =
201?@7571)' Then for d € [W%,d}\/[), we have F'(A) > 0 and F'(u) > 0. By

Theorem 6.3 neither periodic orbits nor homoclinic loops can exist. Hence along NS,
any homoclinic bifurcation occurs before the Hopf bifurcation.

(b) Next we show that along E, k, the Hopf bifurcation occurs before any homo-
clinic bifurcation.

This is obvious since the Hopf bifurcation occurs at d= CZM K, and any homoclinic
bifurcation occurs when d > JMK.
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TABLE 6.1
Curves in the bK plane corresponding to degenerate phenomena. For the last T curves, there
exists a d such that the indicated bifurcation occur.

Name | Phenomenon Expression
\/3(4a—b2)—b 3.8
C1 Hy, = Hyy K= : aQa ) ? ( )
—2va<b<a
1
Co Hpy =0o0r Hyy =0 K:E, b>0 (3.8)
E Hopf & E, — Ex t itical po B—ak” (6.13)
o - ranscritica, = —— .
nie Phe B B K(aK? - 2)
2
NS Hopf & neutral saddle K= % (6.11)
2
BT Bogdanov—-Takens K=— (5.1)
Vva
DH Degenerate Hopf o(K,b)=0 (4.11)
HH | Hopf & homoclinic K =Kpypu((b) Theorem 6.14
Dhom | Degenerate homoclinic K = Kphom(b) (6.15)

By (a) and (b), for any K with (b, K) in Vg there exists at least one b* €
(-2, 1(5())%5—22)) such that at (b*, K), there exists a unique d € (JMK, dyr) such that
a Hopf bifurcation and a homoclinic loop bifurcation occur simultaneously. a

Remark 6.15. Theorem 5.4 proves the local existence of the curve H H emanating
from P and lying between the curves NS and DH. Theorem 6.14 shows that this
curve may be globally extended into the region Vg . Since both NS and E,k tend
to b =0 as K — oo, the global extension of HH should do the same. In Figure 6.1
we have drawn the curve HH as a single branch emanating from P and lying above
DH in Vgpg. This representation of HH is supported by numerical simulations using
XPPAUT [11]; however, we have not been able analytically to preclude that HH has
multiple branches or crosses the curve DH.

We summarize the relevant curves in the bK plane in Table 6.1. As shown in
Figure 6.1, we use these curves to divide Vp, V1, and V5 into the following subregions:

Vo= Vo UV,
4
‘/1 = U Vlkv
k=1
11
= Jw.
k=0

6.3. Saddle-node bifurcation of limit cycles. Let V* be the subregion of V5
(Figure 6.1) bounded by Dhom, DH, and Cy; i.e.,
(6.16) V=V UVEuViuvEuvy uvle.

To study the saddle-node bifurcation of limit cycles for parameters away from P, we
introduce a line segment L in the following proposition (see Figure 6.2).
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PROPOSITION 6.16. In the bK plane, the line

b 2
1 L: K=—-
(6.17) a—i— Ja

lies between the curves Cy and DH and is tangent to C1, DH, and Cs at Q. In region
Va, below this line, F(0) > F(Hys); above the line, F(0) < F(Hy); and on the line,
F(0) = F(Hpp).
Proof. The proof follows from direct calculations. a
As shown in Figure 6.2, the line L subdivides the region V* into two subregions.
Denote the shaded subregion below L by
b 2
K<y } |
a

Ja

PROPOSITION 6.17. Fiz all the parameters except d > 0. If (b,K) € Vy,, there
exists a de, € (0,d_) such that when d = dy,, system (1.3) undergoes a saddle-node
bifurcation of limit cycles.

Proof. For (b, K) € Vy,, it follows from Proposition 6.16 that there exists a do >0
such that for d € (0,do), F()\) > F(Hy). By Corollary 6.2, system (1.3) has neither
periodic orbits nor homoclinic loops for (b, K) € Vi, and d € (0,dy). Further, it
follows from Theorem 4.4 that there exists a d_ € [do,dps) such that when d = d_,
system (1.3) undergoes a subcritical Hopf bifurcation at (Hp,, F'(Hy,)). Recall that
E) is asymptotically stable for 0 < d < d_ (see Table 2.1) and so an unstable periodic
orbit must be destroyed as d increases through d_.

(1) In Vg, for K > % and to the right of the curve N.S, from Theorem 4.4, there
are no other Hopf bifurcations. From Lemma 6.10 any homoclinic bifurcation that
occurs in supercritical. Thus, the only way to create the unstable limit cycle that
must be destroyed in the subcritical Hopf bifurcation is to first have a saddle-node
bifurcation of limit cycles.

(2) In Vy, for K < %, by part 5 of Theorem 4.4, in addition to the subcritical

Vip = {(b,K) ev*

Hopf bifurcation at d= cZ,, and there is a supercritical Hopf bifurcation at d= JJr.
From Lemma 6.10, any homoclinic bifurcation that occurs is supercritical. By a
similar argument as for case (1), there must be a saddle-node bifurcation of limit
cycles before the two Hopf bifurcations.

(3) In Vg, for K > %, by Theorem 6.7 there exists a d; such that when d = d,
system (1.3) undergoes a homoclinic bifurcation. By Lemma 6.12, this homoclinic
bifurcation must occur before the Hopf bifurcation. By definition, to the right of
Dhom there must be a supercritical homoclinic bifurcation. Thus, an unstable limit
cycle must already surround the asymptotically stable equilibrium. This limit cycle
must have been created by a saddle-node bifurcation of limit cycles. d

PROPOSITION 6.18.

1. In the bK plane (Figure 6.3), the curve

3—aKk? \/§
1 N = K > —
(6 8) Can b K 5 = a

lies between the curves Cy and E,x and is tangent to them at (0,+/3/a).
For (b, K) € Vg, below this curve, ifde (O,CLLK), system (1.3) has no closed
orbits. Therefore the saddle-node bifurcation of limit cycles must occur after
the transcritical bifurcation involving E,, and Eg .
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Dhom Ewx C,

!

Fic. 6.3. In the shaded subregion of Vsn below Csy, the saddle-node bifurcation of limit cycles
occurs after the transcritical bifurcation involving E,, and Eg . In the shaded subregion of Vspn to the
right of E, i, the saddle-node bifurcation of limit cycles occurs before the transcritical bifurcation.

2. For (b,K) € Vg, to the right of the branch of E, x with b <0, a saddle-node
bifurcation of limit cycles occurs before the transcritical bifurcation involving
E, and Eg.

Proof. Note that in Vi, F(0) > F(Hy). As d increases from 0, there exists a do
such that for d = dgy, A = Ao where F(Xo) = F(Hy) and Ao < Hy,. By Corollary 6.2,
for 0 < d < az(h there are no periodic orbits or homoclinic loops. Therefore, the
saddle-node bifurcation of limit cycles must occur for some d > dy.

Setting 1 = K and F(\) = F(Hy;) in (1.4), (2.4), and (3.7) and eliminating d,
we obtain (6.13) and (6.18). By Proposition 6.9, if (b, K) satisfies (6.13), then when
d = d,x, we have A\ = H,,. Hence (6.13) is not relevant and (6.18) corresponds
to JMK = dy. Straightforward calculations show that curve (6.18) lies between )
and E,k, is tangent to both C; and E, i at (0,+/3/a), and lies below L in Vj,.
Consideration of the sign of F(\)— F(Hj;) when d = (J?HK shows that for (b, K) € Vs,
below curve (6.18), do > ciMK, and above curve (6.18), do < JMK. Therefore, the result
follows.

On the other hand, for (b, K) € Vi, to the right of the branch of the curve
E,x with b < 0, the Hopf bifurcation at (H,,, F(H,,)) occurs at the same time as
or before the transcritical bifurcation involving E, and Ex. By Proposition 6.17,
for (b, K) € Vs, the Hopf bifurcation at (H,,, F'(H,,)) occurs after the saddle-node
bifurcation of limit cycles. Therefore in this region a saddle-node bifurcation of limit
cycles must occur before the transcritical bifurcation. 0

As shown in Figure 6.4, the segment of Cjs, between Dhom and DH and the
segment of L between Dhom and E, i divide the regions V3§ and V40 into subregions
Vi, Vb and Vj© (i = 8,10). For the saddle-node bifurcation of limit cycles and its
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phom HH Bk C,
1 ]

Q

F1a. 6.4. In Vsp, the curve Csn and line L divide the regions \/'28 and V210 into subregions V;a,
V3, and V¢ (i = 8,10).

relative order with respect to the transcritical bifurcation involving F, and Ex, we
make the following remark.
Remark 6.19.

1.

2.

By Proposition 6.18, for (b, K) in V3** and V%, the saddle-node bifurcation
of limit cycles occurs after the transcritical bifurcation involving F,, and Ek.
When d = 0, system (1.3) has a degenerate graphic with a line segment of
equilibria. The bifurcation analysis of this type of graphic is very complicated
(see [9] for reference), and will appear elsewhere.

. For (b, K) in V¢ (i = 8,10) and V3, above the line L, a saddle-node bifurca-

tion of limit cycles may occur or the required limit cycles may come from a
bifurcation of the degenerate singularity when d = 0. Numerical simulations
show that for (b, K) in Vi¢ (i = 8,10) and V3, above the line L, system (1.3)
has two limit cycles for d>0 very small.

For (b,K) in V4% (i = 8,10) and V¥, it follows from Proposition 6.18 that
there exists a curve that lies between Cs,, and E, k. For (b, K) on this curve,
there exists a dsn > 0 such that a saddle-node bifurcation of limit cycles and
the transcritical bifurcation involving E,, and Fg occur simultaneously. This
curve ST may not be unique.

6.4. Sequences of bifurcations. Although a three dimensional Hopf bifurca-
tion surface is shown in Figure 4.1, it is not convenient to visualize the entire bifurca-
tion diagram for system (1.3) in (b, d, K) space. Instead we describe the bifurcation

diagram as d varies for fixed b and K inside each subregion (see Figure 6.1) of the bK
plane. The sequences of bifurcations that occur in the interior of each subregion are
given using the “dictionary of phase portraits” in Table 6.2. The sequences on the
boundaries of each subregion are not included. These can easily be deduced by read-
ing Tables 6.3-6.5 vertically. On the boundaries various simultaneous or degenerate
bifurcations occur.
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TABLE 6.2
Dictionary of phase portraits.

y y y
x | O X | o X
A B C
y y y
Ol X | O X | O X
D E F
y y y
X | o x | O X
G H 1
TABLE 6.3

Sequences of phase portraits for (b, K) € Vp.

v A D I
(0,dux) | (dur.dar) | (dar,o0)
V02 A I
(0,drr) | (dax,0)

THEOREM 6.20. Fiz all parameters except d> 0. For (b,K) € Vi, when d>0
increases, the sequence of phase portraits occurring in the interior of each subregion
is given in Table 6.3. In the table, moving from left to right as d increases, the phase
portrait changes as a result of one of the following bifurcations:

e the transcritical bifurcation involving Ey and Ex that occurs at d d,\K,
e the transcritical bifurcation involving E,, and Ex that occurs at d= dMK,
o the saddle-node bifurcation involving £y and E,, that occurs at d=dy.

Proof. By Corollary 6.5, system (1.3) has neither periodic orbits nor homoclinic
loops for (b, K) € Vo. As d € (0,dy) is varied, if K > % the only bifurcation
that can occur is the transcritical bifurcation involving E,, and EK that occurs When
d= du & and the saddle-node bifurcation that occurs when d= dM o< K < —
the only bifurcation that can occur is the transcritical bifurcation involving E and
Fi that occurs when d= dA,\K. 0

THEOREM 6.21. Fiz all parameters except d > 0. For (b,K) € Vi, when d > 0
increases, the sequence of phase portraits occurring in the interior of each subregion
is given in Table 6.4. In the table, moving from left to right as d increases, the phase
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TABLE 6.4
Sequences of phase portraits for (b, K) € Vi.

v B F E 1
(0,dx) (durc,dp) (dy, dnr) (dar, 00)
V2 B F D 1
(0,dyrc) (durc,dy) (dy,dnr) (dar,00)
Ve B A D I
(0,d+) (dt,dur) | (durc,drr) | (dar,00)
Vi B A I
(0,d4) (dt,drg) | (dak,o0)

portrait changes due to one of the following bifurcations:

e the transcritical bifurcation involving Ey and Ex that occurs at d= (f,\K;
the transcritical bifurcation involving E,, and Ex that occurs at d= CZMK,‘
the saddle-node bifurcation involving E\ and E,, that occurs at d=dy;
the supercritical Hopf bifurcation that occurs when d= CZ+ ;

a supercritical homoclinic bifurcation that occurs when d=d,.

For (b,K) € V2 UV}, the sequence is complete up to an even number of saddle-node
bifurcations of limit cycles. For (b, K) € VLUV}2, the sequences are complete up to an
even number of saddle-node bifurcations of limit cycles and an even number of extra
supercritical homoclinic bifurcations.

Proof. In V; for d>0 sufficiently small, ', is an unstable node. Since solutions
are bounded, a simple phase plane argument shows that there must be a stable limit
cycle surrounding Fy.

If (b, K) € Vi1, by Theorem 4.4, system (1.3) does not undergo Hopf bifurcations.
Thus there must exist azl such that when d = cil there is a supercritical homoclinic
bifurcation destroying the limit cycle described above. Further, a transcritical bifur-
cation involving F,, and Ex occurs when d= CZHK. By Theorem 6.6, CZNK < cil. Thus,
for d € (0, czuK), the system has a stable periodic orbit. For d € ((fl, cZM), the system
has no periodic orbit.

If (b, K) € V2, by Theorem 4.4, system (1.3) undergoes a supercritical Hopf bifur-
cation when d = dy (A = Hy;). It follows from Proposition 6.8 that the Hopf bifurca-
tion occurs after the transcritical bifurcation involving E,, and Ex at d= Ju k. For
de(dy,dy), 0< Hy <A< % < p < K. By part 1 of Theorem 6.3, system (1.3)
has neither periodic orbits nor homoclinic loops and hence has the phase portrait D.

If (b, K) € V3, the sequence of bifurcations is the same as in V> except that the
supercritical Hopf bifurcation occurs before the transcritical bifurcation involving E,,
and Ex. Hence by part 1 of Theorem 6.3, no homoclinic bifurcations can occur.

If (b,K) € V{ then 0 < K < —=. For d € (0,dps), K < p. In this case, the

va
transcritical bifurcation involves Ey and Ex and occurs when d = d)g. Note that
since u > K, no homoclinic bifurcation can occur by part 1 of Theorem 6.6. a

THEOREM 6.22. Fiz all parameters except d > 0. For (b, K) € Va, when d>0
increases, the sequence of phase portraits occurring in the interior of each subregion
is given in Table 6.5. In the table, moving from left to right as d increases, the phase
portrait changes as a result of one of the following bifurcations:
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TABLE 6.5
Sequences of phase portraits for (b, K) € Va. In the three regions indicated by a T, above the
line L, instead of a saddle-node bifurcation of limit cycles, there could be a degenerate bifurcation
for d = 0. In this case the sequence of phase portraits would begin with C instead of A. If more than
one sequence is shown for a given region, it indicates that all of the sequences given are possible.

vy A D I
(0,dur) | (dux,dar) (dar, 00)
vt A C B F D I
(0» Czsn) (Czsm dAf) (szv CZMK) (‘i,qu d+) (CZ+7 ‘iM) (Csz oo)
vzt A C B A D I
(0, dsn) (dsn,d-) (d—,dy) (dy,du) | (dur,dar) (dar, 00)
V3 A B A D I
(0,d-) (d—,dy) (dy,duk) | (dur,dar) (dar, 00)
Vi A B F D I
(0,d-) (d-,dur) | (dux,d+) (dy,dnr) (dnr, 00)
v A D F D I
(07 CZMK) (CZMKv d*) (sz ’ dAJr) (Ci+7 dAIW) (CZ]y[, OO)
A D H F D I
V26 (01 CZMK) (JMKa d?’n) ((iS’l’L7 d*) (dA* ’ d+) (d+7 dA]W) (dAI\Jv OO)
C H F D I
(0> Czsn) (LZS”“ duK) (Czqu ‘i—) (dA— ’ 52+) (CZ-H dAJ\/I) (CZ]\/[, OO)
vy A D F E 1
0,dur) | (dux,d-) (d—,dp) (dy, dar) (dar,00)
yfabee A D H F E I
(0,dur) | (dur,dsn) (dsn,d—) (d—,dy) (dy,dar) (dar, 00)
vjbﬁc A C H F E I
(07 dAsn) (dAsny CZpK) ((ip,Ky (j—) ((j—v Cil) (Cilv JM) (dhfv OO)
Ve C H F E I
(0,dx) (durc,d-) (d—,dy) (dy,dar) (dar,00)
vt A C B F E I
(0, dsn) (dsn,d-) | (d—dur) | (dux,dyr) (di,dar) (das,00)
V21()a,b,c A D H G B I
(0,dur) | (durc,dsn) | (dsn,dr) (dy,d-) (d—,dr) | (dar,00)
Vv, 0he A C H G E I
(0,dsn) | (dsn,dur) | (dux,di) (dy,d-) (d—,dr) | (dar,o0)
VLoe c H G E I
(0,d.r) (dusxc,dy) (dy,d-) (d—,dar) (dar, o0)
Vi A D G E I
(0,d,x) (durxc,dy) (dy,d-) (d—,dar) (dar, 00)
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the transcritical bifurcation involving E,, and Ex that occurs at d= CZMK,'
the saddle-node bifurcation involving Ey and E,, that occurs at d = dpy;

a Hopf bifurcation that occurs when d=d_ ord= dy;
a homoclinic bifurcation that occurs when d=d ;
e a saddle-node bifurcation of limit cycles that occurs when d = ds,.

For (b, K) € VI, the sequence is complete.

For (b,K) € VUV, the sequences are complete up to an even number of extra
saddle-node bifurcations of limit cycles.

For (b,K) € ViQ UVt U VP UVE UVT UVY, the sequences are complete up to
an even number of extra supercritical homoclinic bifurcations and an even number of
extra saddle-node bifurcations of limit cycles.

For (b, K) € VZUVZOU VL, the sequences are complete up to saddle-node bifur-
cations of limit cycles and an even number of extra homoclinic bifurcations.

Proof. The region V» has 12 subregions V3 (i =0,1,...,11).

1. For (b,K) € V¥, 0 < 7= < Hyp < Hy < K. It follows from Theorem 4.4
and Corollary 6.5 that system (1.3) does not undergo Hopf bifurcations and has
neither periodic orbits nor homoclinic loops. The only bifurcations that can occur
are a transcritical bifurcation involving F, and Eg at d = ci# k and a saddle-node
bifurcation involving Ey and E, at d=d a- The transcritical bifurcation must occur
before the saddle-node bifurcation involving Ey and E,,.

2. For (b,K) € V; UVZUVS, 0 < Hy < Hy < oz < K. It follows from

Theorem 4.4 that there exist d_ and dy (d_ < dy) such that when d = d_, a
suberitical Hopf bifurcation occurs at (H,y,, F(H,,)), and when d = d, a supercritical
Hopf bifurcation occurs at (Hps, F'(Hpr)).

For (b, K) € Vi, by Proposition 6.9, the Hopf bifurcation at (Hm, F(H )) occurs
before the transcritical bifurcation involving E, and F, i.e., d_ < duK < d+ For
de (d+, dM), there are two equilibria, Ey and E,,, satisfying HM <A< ﬁ <p< K.
By Theorem 6.3, the system has neither periodic orbits nor homoclinic loops. The
two equilibria Fy and E,, disappear through a saddle-node bifurcation when d=dy.
If (b, K) is below the line L, by Proposition 6.17, there exists a ds, < d such that
the system undergoes a saddle-node bifurcation of limit cycles. If (b, K) is above the
line L, by part 3 of Remark 6.19, this saddle node bifurcation of limit cycles may not
occur; instead, two limit cycles bifurcate from d=0.

For (b, K) € V72, it follows from Proposition 6.9 that the only difference from
the case when (b, K) € V3 is that the transcritical bifurcation involving E, and Ef
occurs after the Hopf bifurcation at d= d+

For (b, K) € Vi, it follows from Proposition 6.9 that the transcritical bifurcation
involving E, and E occurs before both Hopf bifurcations. Since V¥ sits entirely
below the line L, by Proposition 6.17, there must exist a chn € (Oﬂ,) such that
system (1.3) undergoes a saddle-node bifurcation of limit cycles. From part 4 of
Remark 6.19, it is not clear whether dm < de or d#K < dsn

3. For (b K)eV3UVtuUVY, 0 < Hp, < Hy < f < K. By Theorem 4.4, there

are two supercritical Hopf bifurcations, the first at d=d_ and the second at d= d+
It follows from Proposition 6.9 that if (b, K) eVi,d <dy < d#K, if (b, K) € V3!,
d_ <dux <dy; if (b, K)eVz,dMK<d <d,.
4. For (b,K) € Vi, 0 < Hy, < f < Hjy; < K. By Theorem 4.4, there exists

ad_ € (0, dM) such that when d = d_, system (1.3) undergoes a supercritical Hopf



678 H. ZHU, S. A. CAMPBELL, AND G. S. K. WOLKOWICZ

TABLE 6.6 R
Additional homoclinic bifurcations observed for (b, K) € V21 as d is varied.

F E F
(durc,din) | (din,di2) | (dio.dy)

bifurcation. By Proposition 6.9, du K< d_ . By Theorem 6.7 and Lemma 6.10, there
exists a d; such that when d = dl, the system undergoes a supercritical homoclinic
bifurcation. The homoclinic bifurcation must destroy the periodic orbit created by
the Hopf bifurcation, so dy>d_.

5. For (b,K) € VUV UV UV 0 < H,y, < f < Hp; < K. By Theorem 4.4,

there exists a unique d_ € (0, JM) such that when d = d_, system (1.3) undergoes a
subcritical Hopf bifurcation. Therefore, an unstable periodic orbit must exist when
d_—e < d < d_ for some e. This periodic orbit must be created in either (i) a saddle-
node bifurcation of limit cycles for some ds, < d_, or (i) a degenerate bifurcation
at d = 0 creating an even number of limit cycles, or (iii) a subcritical homoclinic
bifurcation. In cases (i) and (ii), the outside, asymptotically stable periodic orbit
would have to be destroyed in a supercritical homoclinic bifurcation. Thus, in all
three cases, there must exist a cil at which a homoclinic bifurcation occurs.

By definition of Dhom, the homoclinic bifurcation changes stability and is sub-
critical in V' and supercritical in V¥ U V3 U V40, By definition of HH, d; < d_ to
the left of HH and ch > d_ to the right of HH. By definition of E,x, d_ < duK to
the right of the branch of £, x with b < 0, and d_ > dAMK to the left of this branch.

For (b, K) € Vi, there is a subcritical homoclinic bifurcation at d = d; (i.e.,
case (111) occurs) and by part 1 of Lemma 6.12, d; < d_. By part 1 of Theorem 6.6,
d#K < dl Therefore 0< dHK < dl <d_< dM

For (b, K) € V4 UVy UV, the homoclinic bifurcation is supercritical. In V4% U
V30 yvEeuVEL and V3 below the line L case (i) occurs. In V39U Ve and V3 above
the line L, case (i) or (ii) occurs.

6. By part 1 of Theorem 6.6 and part 1 of Theorem 6.3, there is no homoclinic
bifurcation for (b, K) € V2 U V3. Solutions are bounded. There are either an even
number or zero limit cycles for d>0 sufficiently small, and there are no limit cycles
for d > dp;. We have considered all the other possible local and necessary global
bifurcations. Hence, the sequences are complete as described in Table 6.5 up to
saddle-node bifurcations of limit cycles and homoclinic bifurcations as indicated in
the statement of the theorem. a

Remark 6.23. The sequence of phase portraits in Table 6.5 is complete up to
saddle-node bifurcations of limit cycles and homoclinic loop bifurcations. For (b, K) €
V!l and d e (dﬂK,cﬁ) numerical simulations using XPPAUT [11] suggest that in
addition to the critical values shown in the table, there could exist dll, dlg € (d/J K, d+)
such that when d = dll and d = de, system (1.3) undergoes homoclinic bifurcations
and includes the subsequence of phase portraits listed in Table 6.6.

Numerical continuation of bifurcation curves carried out with the software Auto
(through the XPPAUT [11] interface), supports our analysis. Fixing a = m = ¢ =
r = 1, which is consistent with the rescaling (1.7), we calculated the two parameter
bifurcation sets in dK space, for b = 0, —0.5, —1.5 (Figure 6.5). Fixing K in Figure 6.5
and allowing d to vary vertically, we obtain sequences of bifurcations indicated by our
analysis.
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7. Discussion. This study was stimulated by a series of papers [13, 19, 24]. In
[24], six mechanisms for periodically forcing the classical predator-prey model with
Holling type II response functions were shown, surprisingly, to have topologically
equivalent 2-parameter bifurcation diagrams for the associated first return map with
respect to fold, flip, and Neimark—Sacker bifurcation curves of the first and second
iterates and period doubling cascades. Even more unexpectedly, in [13] it was shown
that the eight mechanisms for periodically forcing the analogous predator-prey model
in a chemostat not only produced topologically equivalent diagrams, but these dia-
grams were topologically equivalent to the ones for the classical model. They con-
jectured a “universal diagram” for forced predator-prey systems. In [24] the authors
state explicitly that it would be of interest to extend their analysis to a predator-prey
model that has saddle-node bifurcations of limit cycles and homoclinic bifurcations
for the unforced system. System (1.3) seemed like an ideal choice, since we were aware
from previous studies [12, 30, 25, 26, 28] that it had the indicated bifurcations as the
carrying capacity was varied. We felt certain that it should be possible to obtain
2-parameter bifurcation diagrams of the periodically forced version of system (1.3)
that were not topologically equivalent to the ones in [13] and [24].

To our surprise, when the carrying capacity was forced, the 2-parameter bifur-
cation diagram was not significantly different [32]. In order to find parameters that
would produce different diagrams, it was necessary to perform a more detailed bifur-
cation analysis on the unforced system, i.e., system (1.3), in order to understand the
role of all of the parameters, and this was the motivation for this paper.

In fact, based on the results in this paper, in [32], we are able to show that for the
Holling type IV response functions, different mechanisms for periodic forcing result
in topologically distinct 2-parameter bifurcation diagrams and hence can be different
than the postulated universal diagram.

Our work in this paper, analyzing local and global bifurcations of system (1.3),
extends and complements the work in [12, 30, 25, 26, 28]. We now understand the role
of perturbing each of the parameters on the dynamics. We described, for any fixed a >
0, —2y/a < b, and K > 0, the sequence of bifurcations and associated phase portraits
which occur as % > 0 is varied. These results are summarized in Figure 6.1 and
Tables 6.1-6.5 and include both local and global bifurcations. In particular, explicit
regions in parameter space are provided for all of the phase portraits illustrated in
Table 6.2, including regions where there are at least two limit cycles. We showed that
for any a,r > 0 and —2+/a < b there is a Bogdanov—Takens bifurcation of codimension

2 whend = f;” e and K = \/la with b # —y/a and a Bogdanov—Takens bifurcation of

codimension 3 when b = —/a, d = Ta» and K = % We proved that the parameters
b, d, K give a versal unfolding of the codimension 3 bifurcation.

Although the model (1.3) contains seven parameters, our analysis shows that the
parameter r has no effect on the existence and stability of equilibria, or of limit cycles
created by Hopf bifurcations. Further, as seen in the results above, the parameters
¢, d, and m always occur in the ratio %, and the parameter a acts as a scaling factor
for b and K. These latter relations are not surprising given that a, ¢, and m could be
removed via the rescaling (1.7), but these relations seem to indicate that this is the
most “natural” way to reduce the seven parameters to four.

As discussed above, variation of the parameter d, the death rate of the predator,
results in many different bifurcation sequences depending on the values of the other
parameters. However, there is a common theme to all the sequences. For d > 0 small
enough, any system starting with positive initial conditions will lead to coexistence of
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the predator and the prey. For d large enough (i.e., d > ﬁ), all initial conditions

will result in extinction of the predator. In between there exists a range of values of
d for which either coexistence or extinction of the predator can occur depending on
the initial conditions. Most notably, if the initial prey population is large enough,
then extinction of the predator will result regardless of the initial size of the predator
population.

Our analysis allows us to describe the tremendous variation in the bifurcation
sequences. In particular, we have shown that the coexistence of the predator and
the prey can be in the form of a steady state or periodic solution, or, for some sets
of parameters, both. We have not been able to exclude the possibility of further
variation due to limit cycles appearing and disappearing in global bifurcations. Such
variations can lead to biologically interesting sequences of bifurcations. One example,
which we have observed numerically, discussed and listed in Table 6.6, involves two
homoclinic bifurcations that occur in succession as d is increased. The result is that
the system goes from a state where coexistence is possible to one where it is not and
then back again. This gives rise to the surprising result that, for this set of parameters,
increasing the per capita death rate of the predator actually increases the predator
population’s chance of survival (or analogously, reducing the per capita death rate of
the predator reduces the predator population’s chances of survival).
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