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ABSTRACT 

After formulating a general model involving two populations of microorganisms 
competing for two nonreproducing, growth-limiting resources in a chemostat, we 
focus on perfectly substitutable resources. Leon and Tumpson considered a model of 
perfectly substitutable resources in which the amount of each resource consumed is 
assumed to be independent of the concentration of the other resource. We extend 
their analysis and then consider a new model involving a class of response functions 
that takes into consideration the effects that the concentration of each resource has 
on the amount of the other resource consumed. This new mode1 includes, as a 
special case, the model studied by Waltman, Hubbell, and Hsu in which Michaelis- 
Menten functional response for a single resource is generalized to two perfectly 
substitutable resources. Analytical methods are used to obtain information about the 
qualitative behavior of the models. The range of possible dynamics of model I of 
Leon and Tumpson and our new model is then compared. One surprising difference 
is that our model predicts that for certain parameter ranges it is possible that one of 
the species is unable to survive in the absence of a competitor even though there is a 
locally asymptotically stable coexistence equilibrium when a competitor is present. 
The dynamics of these models for perfectly substitutable resources are also com- 
pared with the dynamics of the classical growth and two-species competition models 
as well as models involving two perfectly complementary resources. 

1. INTRODUCTION 

The classical theory of ecological competition is attributed to Lotka 
[I81 and Volterra [30] and is an extension of the basic logistic model for 
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single-species growth due to Verhulst [29]. The appeal of this theory lies 
in its generality and simplicity. It seeks to describe how the numbers of 
competitors change without indicating the resources upon which compe- 
tition is based or how these resources are used by the consumer. As it is 
difficult to estimate the parameters of the classical model governing the 
extent of interaction without actually growing the species together 
in competition, these models are often more phenomenological than 
predictive. 

In response to these deficiencies, a more mechanistic, resource-based 
theory has developed (see, e.g., [12], [17], [21], and [221). The resources 
are incorporated into the models to capture consumer-resource inter- 
actions as well as competitive interactions. The resulting mathematical 
models may be less general and more difficult to analyze (see, e.g., 
[l]-[6], [13]-[15], and [31], [32]). However, these models are often 
predictive because the parameters can be measured on species grown 
alone, in advance of competition (see, e.g., Hansen and Hubbell [lOI). 
The models we consider here involve this resource-based approach. 

We examine a model of competition for multiple resources under 
chemostat-like conditions. There are many articles devoted to such 
studies; as a very incomplete sample of these, we mention [l]-[3], [5], 
[Sl, [ill, [141, 1151, [171, [193, [231, and [25]--[281. Here we restrict our 
attention to exploitative competition for two nonreproducing resources. 
With two resources available, it is important to consider how, once 
consumed, they are used by the individual competitors. This leads to the 
classification of resources as perfectly complementary, perfectly substi- 
tutable, and imperfectly substitutable (see Leon and Tumpson [17] and 
Rapport [24]). 

This paper is organized as follows. First we describe a resource-based 
model of exploitative, two-species competition in the chemostat for two 
growth-limiting, nonreproducing resources. We have found that many of 
the characteristics of such a model can be described without restricting 
one’s attention to specific resource types. We then describe the classifi- 
cation of resources provided by Leon and Tumpson [17] and Rapport 
[24] and specify the model in the extreme cases. 

For the remainder, we consider the perfectly substitutable case. First, 
as in Leon and Tumpson [17], we focus on functional responses that 
are strictly monotone increasing functions of resource concentrations. 
Implicit in their model is the further assumption that one of the amount 
of each resource consumed is independent of the concentration of the 
other resources. Under the assumption that an interior equilibrium 
exists, Leon and Tumpson [17] derive necessary and sufficient condi- 
tions for its local asymptotic stability and hence conditions for coexis- 
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tence of the competitors. In this setting, restricting our attention to 
nonreproducing resources (in [ 171 both reproducing and nonreproduc- 
ing resources are considered), we extend their work by giving a com- 
plete global analysis of the three-dimensional subsystems describing the 
growth of one species on the two resources. We then provide conditions 
that are necessary and sufficient to guarantee uniform persistence in 
the full four-dimensional competition model (i.e., coexistence of both 
species independent of their initial concentrations). Thus, these condi- 
tions are sufficient to guarantee the existence of a coexistence equilib- 
rium. We then extend their model to a more general and more realistic 
setting, incorporating the possible inhibitory effects that the concentra- 
tion of one resource may have on the consumption of the other, since 
the time spent handling one resource may reduce the amount of time 
available for handling the other resource. The model studied by Waltman 
et al. [31] is a special case. They specifically generalize the Monod 
model involving Michaelis-Menten functional response for a single 
resource to two perfectly substitutable resources. In the general setting, 
under the assumption that the intrinsic death rate is insignificant 
compared to the dilution rate, we give a complete global analysis of the 
three-dimensional subsystems describing the growth of one species on 
the two resources. Assuming differential death rates, in the full four- 
dimensional competition model we provide a characterization of those 
nutrient concentrations that yield coexistence equilibria. We use this 
characterization to obtain sufficient conditions for the existence of such 
equilibria and then consider local asymptotic stability. We provide an 
interesting example in which one species cannot survive in the absence 
of a competitor but for which there is a locally asymptotically stable 
coexistence equilibrium in the presence of a competitor. Finally, we 
provide conditions under which the competition model and the related 
three-dimensional one-species growth models are uniformly persistent. 

We conclude the paper with a discussion in which we summarize our 
results and then examine the similarities and differences in the range of 
possible dynamics of our model and the classical model, the perfectly 
substitutable model studied in [17], and the perfectly complementary 
model studied in [17] and [5], restricting our attention to noninhibitory 
resources. 

2. TWO-RESOURCE COMPETITION: A GENERAL 
FRAMEWORK 

We discuss exploitative competition in the chemostat for two nonre- 
producing resources. In the two-competitor case, the dynamical system 
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R’(t) = [R” -R(t)]; - 4: ~~(t)%&S(t),R(t)), (2.lb) 
i=l 

X:(T)=Xi(l)(-~+~(S(I),R(~))), i=1,2, (2.lc) 

S(0) > 0, R(0) 2 0, q(O) > 0, i = 1,2. 

Assuming, for convenience, that the volume I/ of suspension in the 
culture vessel is one cubic unit, the quantities in (2.1) are described as 
follows. In these equations, x,(t) is the biomass of the ith population of 
microorganisms in the culture vessel at time t, i = 1,2, while S(t) and 
R(t) represent the concentrations of the two nonreproducing resources 
in the culture vessel at time t. If only one feed bottle is used, S” and R” 
are the concentrations of resource S and resource R, respectively, in 
the feed bottle. The constant D is the input rate from the feed bottle to 
the culture vessel as well as the washout rate from the culture vessel 
to the receptacle. Thus constant volume is maintained. We assume 
that there is perfect mixing in the culture vessel so that nutrients, 
microorganisms, and by-products are removed in proportion to their 
concentrations. The constant Di denotes the rate at which population 
xi is eliminated from competition, either by death or by removal to the 
receptacle. Therefore, Di = D + cl, Ed 2 0, where ci is the intrinsic 
death rate of population xi, assumed to be a constant. 

The functions %‘&Xt), R(t)) and %&,(S(t), R(t)) represent the rate 
of consumption of resources S and R, respectively, per unit of biomass 
of population xi as a function of the concentrations of S(t) and R(t) in 
the culture vessel. It is generally assumed that 

FYsi,2&: R: + R, (2.2) 

and that 

?YSi, ZRi are continuously differentiable almost everywhere. (2.3) 

It is natural to expect that if the concentration of resource S in the 
culture vessel is zero, there will be no consumption of resource S. A 
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similar statement holds for resource R. Therefore, 

t?&(O, R) = 0 

2&( S,O) = 0 

for all R a 0, 

for all S > 0. 
(24 

In focusing on the consumer-resource interactions, we wish to 
describe each population’s functional response, that is, how the con- 
sumption rate of each population changes in response to fluctuations in 
resource concentrations. We assume that the rate of consumption of 
each resource is a monotone increasing function of the concentration of 
that resource. Let R: denote the interior of R:. Thus, 

&gsi(SpR) > 0 for almost all (S,R) E it, 

$sRi(SIR) 20 
(2.5) 

for almost all (S, R) E iit. 

Why we req$re (2.5) to hold for almost all (S, R) E @ rather than for 
all (S, R) E R: will be explained later when we specify the model in the 
complementary resource case. 

The function .9&S(t), R(t)) represents the rate of conversion of 
nutrient to biomass of population X, as a function of the concentrations 
of resources S and R in the culture vessel. We discuss the properties of 
Z$::(s(t), R(t)) later when we discuss the perfectly complementary case 
and the perfectly substitutable case. 

Let z(S, R) denote the rate of conversion of nutrient S to biomass 
of population xi. Assuming that the conversion of nutrient to biomass is 
proportional to the amount of nutrient consumed, the consumption rate 
of resource S per unit of competitor X, is of the form 

where & is the corresponding growth yield constant. Similarly, the rate 
of consumption of resource R per unit of competitor xi is of the form 

(2.7) 

where 9Fi(S, RI is the rate of conversion of nutrient R to biomass of 
population xi and qi is the corresponding growth yield constant. 

An important consideration that arises in the two-resource case is 
how the resources, once consumed, are used by the individual competi- 
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tors for growth. Rapport [24] and Leon and Tumpson [17] classify 
resources in terms of consumer needs. This classification yields a 
spectrum of resource types and hence a continuum of competitive 
situations. At opposite extremes are the perfectly complementary and 
perfectly substitutable resources. 

Between these extremes, we have the imperfectly substitutable 
resources. Although more realistic, this situation is more difficult to 
study as the nature of the corresponding conversion functions 9$S, R), 
5&?&S, R), and Yi(S, R) is less clear. Hence, competitive situations involv- 
ing the extreme resource types are examined initially. By understanding 
the similarities and differences we may be able to increase our under- 
standing of the dynamics in the intermediate cases. 

Perfectly complementary resources are substances that fulfill differ- 
ent essential needs in terms of growth and so must be taken together by 
the consumer. These resources must be used in fixed proportions to 
maintain a given rate of growth. If a higher growth rate is to be 
attained, it is necessary to increase the consumption rate of both 
resources. For example, a nitrogen source and a carbon source might 
be perfectly complementary for a bacterium. Following Butler and 
Wolkowicz [5], but restricting our attention to noninhibitory resources, 
we now describe the functions 9$S,R), 3Yi(S,R), and 3Yi(S,R) in the 
perfectly complementary case. 

Let hi(S) denote the rate of conversion of resource S to biomass of 
population xi when resource S alone is limiting. Similarly, let ki(R) 
denote the rate of conversion of resource R to biomass of population xi 
when resource R alone is limiting. It is assumed that 

hj,ki: R, + R,, (2.8) 
hi, ki are continuously differentiable, (2.9) 

and that 

h\(S) > 0 for all S > 0 and k;(R) > 0 for all R > 0. 

(2.10) 

-- 
For given concentrations of resources S and R, say (S, RI, only one 
resource is, in fact, limiting-the one that is in relatively short 
supply-unless hi(S) = k@). The other resource, in comparison, can 
be thought of as being in abundant supply because increasing its 
concentration would not affect the growth rate. Thus, if resource S is -- -- 
limiting at (S, R), then the conversion rate is given by Yi7i(S, R) = h.(s). -I 
The consumption rate of the limiting resource S is given by ZYsi(S, RI = 
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h,(!?)/&, and the rate of consumption of the nonlimiting resource R 
-- -- -- 

is %!&, RI = h,@>/q. Note that ?YRi(S, R) = (5, /q)Y&S, R). That is, 
the rate of consumption of the nonlimiting resource is proportional to 
the rate of consumption of the limiting resource, the constant of 
proportionality being the ratio of the growth yield constants & and vi. 

Thus, if the resources are perfectly complementary, the rate of con- 
version of nutrient to biomass of population X, is given by .Yi(S, R) = 

min{hi(S), k,(R)}, the rate of consumption of S is YSi(S, R) = 

.Yl(S, R)/&, and the rate of consumption of R is Z&(S, RI = 

Fi(S, R)/q. In this case, system (2.1) becomes 

2 x.(t) . ~‘(i)=[~~-s(t)]~-j~l~m~n{hj(S),ki(R)}, (2.11a) 

2 X-(t) 
R’(t)=[R”-R(t)]~-i~l~~i~{hi(S),ki(R)}, (2.1Ib) 

x:(q=xi(t)(-4 +min{hj(S),ki(R)}), i=1,2, (2.11~) 

S(0) > 0, R(0) > 0, q(O) a 0, i = 1,2. 

Note that at points where hi(S) = ki(R), it is unlikely that ZJS, RI, 

ZL,,JS, R), and Zi(S, R) are differentiable. It is for this reason that we 
require (2.5) to hold only for almost all (S, R) E 8:. 

This is precisely model III of Leon and Tumpson [17] adapted to the 
chemostat. If Di = D, i = 1,2, that is, the death rate of each population 
is assumed to be negligible compared to the dilution rate, then (2.11) is 
precisely the model studied by Butler and Wolkowicz [5] in the nonin- 
hibitory kinetics case. If we further assume that the hi’s and ki’s satisfy 
Michaelis-Menten dynamics, this is the model studied by Hsu et al. [15]. 

Perfectly substitutable resources are alternative sources of the same 
essential nutrient. In this case, the rates of consumption of the different 
resources can be substituted in a fixed ratio to maintain a given growth 
rate. An example for a bacterium would be two carbon sources or two 
nitrogen sources. 

For the remainder of our discussion we assume that resources S and 
R of system (2.1) are perfectly substitutable for both populations x1 
and x2. 
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3. THE MODEL IN THE SUBSTITUTABLE CASE 

The model that we consider is 

2 x.(f) 
S’(t) =.[S” -S(t)]+! - g yqS(r),R(t)), (3.la) 

I 

2 x.(f) R’(t)=[R”-R(f)]~-~~~~_i4(S(f),R(I)), (3.lb) 
1 

xi(t) =xJt)( -++qs(r),R(t))), i = 1,2, (3.lc) 

S(0) > 0, R(O) > 0, xi(o) > O, i = 1,2. 

Since perfectly substitutable resources are alternative sources of the 
same essential nutrient, the rate of conversion of nutrient to biomass of 
population xi is made up of a contribution from the consumption of 
resource S as well as a contribution from the consumption of resource 
R. Therefore, 

gi(s(t),R(t)) =T(S(t),R(t)) +zi(S(t),R(f))* (3.2) 

We strengthen hypothesis (2.3) by assuming that 

3, 9Yi are continuously differentiable. (3.3) 

The rate of consumption of each resource is assumed to be a strictly 
monotone increasing function of the concentration of that resource. 
Thus, hypothesis (2.5) becomes 

-j&(S, R) > 0 and &Pi(S, R) > 0 for all (S, R) E $. 

(3.4) 

It should be noted that with two resources available, both serving the 
same need, it becomes necessary to determine how changes in the 
concentration of one resource affect the consumption rate of the other. 
It seems natural to assume that increasing the amount of one resource 
consumed might result in a reduction in the amount of the other 
resource consumed. In Holling terminology [12], the handling time 
devoted to the processing of a unit of one resource is time no longer 
available for the processing of the other resource. This is reflected in 



By (2.4), (2.6), and (2.71, 

q(O,R) = 0 for all R > 0 

Define 

and sq( S,O) = 0 

P,(S) =y;‘(S,O) for all S > 0 

qi( R) = si(O, R) for all R a 0. 
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the assumption that 

&q(S,R)<O and &'j(S,R)<O forall(S,R)ER:. 

(3.5) 

for all S 2 0. 

(3.6) 

(3.7a) 

(3.7b) 

That is, p,(S)/& is the function describing the uptake of nutrient S in 
the absence of nutrient R. Similarly, q&R)/rl, is the function describing 
the uptake of nutrient R in the absence of nutrient S. We assume that 
both p,(S) and q,(R) are strictly monotone increasing functions. 

Further, define Ai and pi so that 

K(AiJo) [ =Pi(4)1 = Di and 5(0, Pi) [ = Si( PQ>] = Di. 

(3.8) 

Thus Ai and pj represent the breakeven concentrations for resources S 

and R, respectively, when none of the other resource is available. By 
the monotonicity of p,(S), Ai is a uniquely defined extended positive 
real number provided we assume that Ai = m if Y[:(S,O) < Di for all 
S > 0. A similar statement can be made for pi and q,(R) provided we 
assume that pi =a if Fi(O, R) < Di for all R a 0. 

If the amount of each resource consumed is independent of the 
concentration of the other resource, that is, if e(S, R) = pi(S) and 
Zi(S, R) = qi(R) for all S 2 0 and R a 0, then model (3.1) reduces to 
model I of Leon and Tumpson [17], adapted to the chemostat. However, 
model (3.1) allows for a more realistic selection of functions describing 
resource consumption, functions that take into consideration the possi- 
ble effects that the consumption of one resource has on how much of 
the other resource is consumed. 

With this in mind, we make the following assumptions regarding the 
functions that describe the rate of conversion of nutrient to biomass, 
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m si = py,(s) and mR = lim qi(R) 
R-m 

(39 

denote the maximal growth rates of population xi on resources S and 
R, respectively, when none of the other resource is available. Assume 
that one of the resources, say S, is superior in the sense that 

mS, a mR,* (3.10) 

Then it seems reasonable to assume that the more of resource S that is 
consumed, the better, that is, 

az$ 

aS>O for all ( S, R) E $. (3.11) 

However, if the inequality in (3.10) is strict, a critical concentration of S, 
say Sf, will exist such that 

g>o for all R > 0; 0 < S < SF, 

(3.12) 

for all R > 0; S > Sf , 

where Sf is related to mR in the following manner: 

gi;.( Sf; R) = mR, for all R 2 0. (3.13) 

Thus when both resources are in relatively short supply, increasing 
the concentration of either resource is beneficial. However, once 
resource S is plentiful enough that mR,, the maximal growth rate of 
population xi on resource R when there is no resource S available, 
would be exceeded by consuming only resource S, the presence of 
resource R would actually become detrimental. In any case, the pres- 
ence of resource R would never be detrimental enough to decrease 
Fi(S, R) below mR,. 

lim g( S, R) = ji_rmm qi( R) = mR, for each fixed S > 0. 
R+- 

(3.14) 

It is also assumed that ZYJS, R) can never increase above m,,, the 
maximal growth rate of population xi on resource S when there is no 
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resource R available, since an abundance of S and no R would be 
optimal for the growth of population xi. 

lim q( S, R) = ,li_mp,( S) = msL for each fixed R > 0. (3.15) 
S-m 

If, instead, mR, > m,,, a critical concentration of R, say Rf, can be 
defined in an analogous manner, making the appropriate changes in 
assumptions (3.11)-(3.15X If mR, = m,<, define RF = S,C =w. 

The following technical lemma summarizes some important conse- 
quences of assumptions (3.8H3.15). Also see Figure 1. An analogous 
result holds if mR > m,!. 

LEMMA 3.1 

(i) If m, > mR , then 
(a) gj::<S, Rj < mR ifR & 0 and 0 G S c S;, 
(b) AFJS, R) > mR’ ’ lfR>O andS>Sf, and 
(~1 gii(S, R) < m, ‘ifRa0 andS>O. 

(ii) If mS, 2 mR, and hi is finite, then 
(a) mR > Di and 
(b) Ai z!s finite and hi < Sic. 

(iii) If m, > mR 
(a) kR 

and pi = 00, then either 
<bi and h,>S,’ orh,=S,C=a, or 

(b) mR: = Di and hi=S,C<m. 

ProoJ Recall that S,C =m if m, = mR,. 
(i>(a), (i)(b) These follow from (3.11) and (3.13). 
(i>(c) If ms = mR,, then the result follows immediately from (i)(a), 

since Sf =m. Suppose m,, > mR,. If 0 6 S G SF, then by (i>(a) and (3.131, 
27&S, R) G mR, < m,, for all R 2 0. If S > S,C, then gL(S,O) > k?JS, R) for 
all R a0 and, by (3.111, %‘&S,O)G lim,,, 27&S,O)= msz. 

(ii>(a) mR = Fi(S;, pi) > Fi(O, pi) = Dj. 
(ii)(b) See Figure la. Since, in (ii>(a), m,, > mR, > Di, it follows that 

hi is finite. If m,, = mR,, then SF =m. If ms, > mR,, then Sf is finite and 
27&‘S~,O) = mR > Di = ZYi7i(Ai,0). 

(iii) See Figure lb and c. pi = ~0 implies that ZYJO, R) < Di for all 
R > 0. This implies that mR, = lim, -)r Zi(O, R) G Di. If S,C = cc), then 
L5’i(S,0) < mR, G Di for all S 2 0, and so hi =m. If SF is finite, then 
LYJSf,O> = mR, < Di = g(Ai,O). n 

The functions q(S) R) and 9JS, R) of Waltman et al. [31] general- 
ize the familiar Michaelis-Menten prototype of functional response to a 
single resource and are given by 

m,S 

z(s’ R, = Ks,(l + S/K;, + R/I&) 
(3.16a) 
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(a) 

(b) 

FIG. 1. Schematic diagram for Lemma 3.1. (a) m,, > mR, > D,; (b) rnxl 

D, ’ ms, > mR,. 
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and 

FIG. 1. continued. 

m,R 
9i(s’ R) = K,ll + S/K;, + R /KRr) 

(3.16b) 

where mSr? mR,7 K,,, and K,, are positive constants, so that 

F.(S R) = (m,,/K,~)S+(mR,/KR,)R 
I 3 l+S/K,,+R/K,, ’ 

(3.17) 

The functions 5$S, R) and Z&?&S, R) in (3.16) satisfy all assumptions 
(3.3)~(3.7), and 5Fi(S, R) in (3.17) satisfies all assumptions (3.2) and 
(3.8)-(3.15). In fact, 

A, = DiKs, /(ms, - Di) if m,, > Di, 
I (3.18a) 

CS otherwise 

and 

~, = DzK,, /(mu, - Oi> if mR, > Di, 
1 (3.18b) 

cc otherwise 

and 

‘5 R(msa - mR,> + m&K,, 

” - Ks~KR,(~ + S/K,, + R/KR,)’ 

(3.19a) 
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S(~R, - MS,> + mR& ae 
dR - K$,,(l+ S/K,, + R/K,,)’ ’ 

(3.19b) 

If mS, > mR,, then s; = RIR,&, /(ms, - m&j. 
If q(S, RI = p,(S) and %JS, RI = qi(R) for all S > 0 and R > 0, as 

in model I of Leon and Tumpson [17], then (3.2)~(3.11) hold 
but (3.12H3.15) do not hold. Since Fi(S, R) = p,(S)+ q,(R), instead, 
aZYi /JR > 0 for all R > 0 and S > 0, and 

sup Fi( S, R) = msr + mR,. 
(S,R)ER: 

3.1. THE SCALED VERSION: SOME PRELIMINARY RESULTS 

It follows immediately from (3.1) that if S” and R’ are both zero, 
then neither species survives. Also, if only one of S” or R” is zero, say 
S” = 0 and R” # 0, then 

2 x.(t) 
S’(t) = -S(t); - iFl 5,x(S(t), R(t)) < -S(t);. 

Therefore, S(t) G S(0)e-D’/V, and so for sufficiently large t, (3.1) is 
approximated by 

S’(t) = 0, 
2 x.(t) R’(f)=[R”-R(f)I~-i~l yqi(R(t))y 

$(t)=xi(t)(-$+qi(R(f)))y i=l,2, 

S(0) = 0, R(0) k 0, Xi(O) 2 O, i = 1,2. 

This is the model of exploitative competition in the chemostat for one 
limiting resource studied by Wolkowicz and Lu [32]. They considered n 
competitors and allowed both monotone kinetics and inhibitory kinetics. 
They extended some of the results of Butler and Wolkowicz [41, who 
restricted Di = D for i = 1,. . . , n. Under the additional assumption that 
qi assumes the form of Michaelis-Menten kinetics, the model is the 
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Monod model examined by Hsu et al. [14] in the case Di = D for 
i=l ,. . . , n and by Hsu [13] in the differential death rate case. For our 
purposes, we assume that neither S” nor R” is zero. 

It will be more convenient to analyze the model after the following 
substitutions: 

2(W)= 
VYJS,R) - - 

D > %$S,R) = v9i$f’ R) , (3.20b) 

q = 5 
D' 

i, = xi 
S” ’ 

qi=g7J. 

Removing the bars to simplify notation, we obtain 

2 x.(t) 
s’(t)=l-S(t)- c yq(S(r),R(t)), 

i=, 1 

2 x.(t) 
R'(t) = l- R(t) - c L9j(S(f),R(t))> 

j=l rl, 

(3.20~) 

(3.21a) 

(3.21b) 

x:(t)=xi(t)[-Di+~j(S(t),R(t))], i = 1,2, (3.21~) 

S(0) > 0, R(0) a 0, Xi(O) > 0, i = 1,2. 

All of the corresponding assumptions hold for this version of the model, 
so there will be no loss of generality if we study (3.21) instead of (3.1). 
Our results can be reinterpreted in terms of the unscaled variables 

using (3.20). 
We first note that all solutions of (3.21) are positive and bounded. 

These are minimum requirements for a reasonable model of the 
chemostat. 

THEOREM 3.2 

(i) All solutions S(t), R(t), x,(t), i = 1,2, of (3.21) for which xi(O) > 0, 
i = 1,2, are positive and bounded for t > 0. 

(ii) Given any 6 > 0, for all solutions S(t), R(t) of (3.211, S(t) < 1+ 6 
and R(t) < 1 + 6 for all sufficiently large t. 

(iii) If there exists a t,, > 0 such that S(t,> < 1, then S(t) < 1 for all 
t > t,. A similar result holds for R(t). 
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Pro06 The proof of (i) is similar to the proof given in [4]. By 
considering 

z(t)=S(t)+R(t)+ x1(t) + x*(t) 
m4 51) 7711 maxI E2 y r/A ’ 

it can in fact be shown that 

2 
z(t) < 

if z(0) < 2, 

z(0) otherwise. 

The proofs of (ii) and (iii) are immediate from (3.21). 

Remark Concerning Theorem 3.2. Suppose 

5, /rll = 52 /% 

D;=l, i=1,2, 

n 

(3.22) 

(3.23) 

and define 

z(t) = Cls(t) + vlR(t) + x,(t) + +(f). 
Then from (3.211, z’(t) = ( ,$I + ql) - z(t), so that z(t) = [z(O) - ( [I + 
vl)]ep’ + ( 5, + ql) and z(t) + ((I + vI) as t + 0~. Therefore, under as- 
sumptions (3.22) and (3.231, system (3.21) is conservative in the sense 

that the simplex 

(S,R,x,,x,): S,R,x,,x,>O, E,S+I~~R+X~+~X?=(~~+~I) 

is a global attractor for (3.21). Although there is some biological merit 
in assumption (3.221, our analysis does not require (3.22) or (3.23). 

THEOREM 3.3 

The equilibrium solution E, = (1, l,O, 0) is locally asymptotically stable 
for (3.21) if g(l,l)Di f or i = 1,2, and E, is unstable if ZYi(l, 1) > Dj for 
i=l or 2. 

ProoF See Section 3.3 for the local stability analysis. n 

The next result concerns competition-independent extinction of a 
population. It gives conditions under which there is total washout of 
both competing species. 
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THEOREM 3.4 

Define r’ = {(S, R): 0 G $ G 1 + F, 0 G R =z 1 + ~1. Assume that m,, 2 

mR; 

(i) Zf either (pi is finite and g(l, 1) < Di) or ( pi = 00 and Ai > 11, 
then there exists a 6, > 0 such that mz(s,R)= r;, pi R) < Di. 

(ii) Zf either ( p-Li is finite and Fii(l, 1) < Di) or ( pi = 00 and A, > 11, 
then x,(t) - 0 as t + 30, in (3.21). 

(iii) Zf x,(t) -+ 0 as t + WJ for i = 1,2, then E, = (1, l,O,O) is globally 
asymptotically stable for (3.21) with respect to all solutions satisfying 
xi(O) > 0 for i = 1,2. 

Proo$ (i) Since ms > mR,, it follows from part (iiXb) of Lemma 3.1 
that if p-LI is finite, then’ Ai is finite. Therefore, it suffices to consider the 

following three cases: 

(1) pi and hi are both finite, 
(2) pi = m, but Ai is finite, 
(3) pi =m and Ai =m. 

Case 1. By hypothesis, ZYi(l, 1) < Dj. By Lemma 3.l(iiXb), Ai < 
Sic, and so Di = Fi(A,,O)< ZYi(Ai,l). If hi G 1, then D, < Fi7i(Ai,1)< 
ZZJl,l) < Di, a contradiction. It follows that hi > 1. Therefore, ai > 0 
can be chosen sufficiently small that SC > 1-t ai and, by the continuity 
of 5Yi, so that FiO + &, l+ Si) < Di. Therefore, max($,RjE r, Fii(S, R) = 
Fi(l + a,, 1-t 6,) < Dj. 

Case 2. By hypothesis, A, > 1. By Lemma 3.l(iii) Ai > SF, and so 
either Ai > 1 > SF or Ai >, Sf > 1. If Ai > 1 > SF, then gi(l, 1) < Fl?,(l,O) < 
FJAi,O) = Di, and if Ai > Sf > 1, then FJl, 1) < .Yii(SF, 1) = mR < Di. In 
either case, it follows that FL:(l, 1) < Di, and hence, by the continuity of 
ZF’~, there exists 6, > 0 such that 9Jl-t ai, 1-t 6,) < D, and Ai > l+ 8,. 
If Ai > 1 2 Sf, then maxcs, Rj E r, FjS, R) = TYi(l + S,,O> < q(Ai,O) = 
Di, and if hi > SF > 1, ai can be’chosen so that Sic > 1 + Si, and so 

maxcS, Rj E r, F&S, RI = .YJl + Si, 1 + 8,) < Di. 

Case 3. In this case, since pi = 00 and hi = 30, mR G m, Q Di. There- 

fore, for any fiied ai > 0, if (S, R) E I?,,, then’ g(Sl R) < lim, ox 
FYi::(S, ii) = m, G Di. 

(ii) Suppose that either pi is finite and gi(l, 1) < Di, or /*‘i =m and 
Ai > 1. Choose si > 0 as in part (i). By Theorem 3.2(ii), S(t) < 1 + ai and 
R(t) < 1 + 6, for all sufficiently large t, and so, by (3.21), x:(t) < 0 for all 
sufficiently large t. Also, x:(t) is bounded below. It follows, by a result 
of Miller [20], that xi(t) + 0 as t +m. However, limsup,,, Fj(S(t>, 
R(t)) G max(s, R) t rb, Fi(S, R) < Di, and so the only possibility is that 
x,(t) + 0 as t + 00. 
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Suppose that pi = m and Ai = 1. Without loss of generality, assume 
that i = 1. First, consider mR, = D,. Then Sf = A,. By Theorem 3.2(iii), 
either s(t) > 1 for all t > 0 or S(t) < 1 for all sufficiently large t. 

Suppose S(t)> 1 for all t a 0. Then S’(t) < 0 for all t a 0, so 

that S(t)LS*>l. If’S*>l, then S’(t)<l-S(t)<l--S*<O, so that 
S(t) + --oo as t +m, a contradiction. Therefore, S(t) L 1 as t +a. Since 

S(t) > 1 for all t > 0, gl(S(t), R(t)) > D, for all t a 0 by part (i)(b) of 
Lemma 3.1. Then x;(t) > 0 for all t a 0, so that x,(t) 7 xT > 0. Define 
R max = sup{R(t): t > 01. Then R,,, G max{R(O), l}, so 

S’(t) <l-S(t)- Tq(S(t),R(t)) < -++l(LR,,,) CO, 

so that S(t) + --cc, as t -00, a contradiction. 
Therefore, S(t) < 1 for all sufficiently large t. By part (i)(a) of Lemma 

3.1, .i%,(S(t), R(t)) < D, for all sufficiently large t, so that x;(t) < 0 for 
all sufficiently large t. Therefore, x,(t) \ XT 2 0. Since x;(t) is bounded, 
x;(t) + 0 as t -x. If XT > 0, then 55’,(S(t>, R(t)) + D, as t +m, imply- 
ing that S(t) + 1 as t +a. But then S’(t) < 0 for all sufficiently large t. 
Since S(t) < 1 for all sufficiently large t, ,S(t) cannot decrease to 1. This 
contradiction implies that x7 = 0. 

Now consider mR, < D,. Then Sf < h, = 1. Again, either s(t)> 1 for 
all t a 0 or S(t) < 1 for all sufficiently large t. 

Suppose S(t) > 1 for all t a 0. As above, S(t) L 1 as t +a. If 
lim inf, ~ m x,(t) > 0, then there exists E > 0 such that x,(t)> E for all 
sufficiently large t. Then 

S’(t) <l-S(t)- +q(V),R(t)) G-+(LR,,,) <O 

for all sufficiently large t, so S(t) + -a as t + ~0, a contradiction. 
Therefore, lim inf, _ m x,(t) = 0. 

Suppose lim supI ~ a x,(t) = XT > 0. Then there exist sequences of 
consecutive local minima {~J~=, and consecutive local maxima {v~)~=, 
of x,(t) satisfying rn +a, a, -+m as n +m, TV < Us < T~+~ < v~+,, 

x;(Tn)=o=x;(un), 

q t) > 0 if rn < t < a,, 

xi(t) < 0 ifa, <t <rn+l. 
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Therefore, since x,(t) > 0 for all t > 0, 

(3.24~) 

(3.24b) 

(3.24~) 

But then R(r,) = (pi(S(7,)) for all IZ. Since q,(l) = 0, cp,(S) is continu- 
ous, and S(T,) -+ 1 as n -+ 00, R(T,) + 0 as II +x. Now, 

Since R(r,)+O as n-+30, ~z’~(S(~,),R(~,))+O, i=1,2, as n+x by 
(3.6), and since x,(t) is bounded for all t > 0, R’(T,,) + 1 as n +m. 
Therefore, S’(T,) < 0 and R’(7,) > 0 for all sufficiently large n, and so 
there 
exists an N> 0 and an F(N) > 0 such that .F?,(,S(t>, R(t)) < LS’J,S(~~), 
R(T,,,)) = D, for all T,,, < t < 7N + s(N), contradicting (3.24b). There- 
fore, lim supt _ ~ x,(t) = 0, and hence lim, jm x,(t) = 0. 

If S(t) < 1 for all sufficiently large t, then the proof of x,(t) + 0 as 
t -00 is similar to the proof given for rnR, = D,. 

(iii) Take Q E {(S, R, x1, x2) E R:: x1 > 0, x2 > 01. Let sZ(Q> denote 
the omega limit set of the orbit through Q. By the hypothesis, any 
P =(&&x1, xz> E n(Q) satisfies .x, = 0 and x2 = 0. On {(S, R,O,O) E 
R:} the system reduces to 

S’(t)=l-S(t), R’(t) =l- R(t), 

and hence S(t) + 1 and R(t) + 1. Therefore, (&I E a(Q). By Theorem 
3.2, n(Q) is a nonempty, compact subset of Rt. If P E 0(Q), then the 
entire trajectory through P is in n(Q). Hence, E,, is the only candidate. 

n 

Remarks Concerning Theorem 3.4 

(1) An analogous result holds if mR 2 m,,. Just interchange the 
roles of Ai and pi in the previous theorem. 

(2) It can be shown that if 5$(S, R) = p,(S) and 9Fi(S, R) = q,(R) for 

all S 2 0 and R 2 0, as in the model of Leon and Tumpson [17], then 
Fii(l, 1) < Di implies x,(t) + 0 as t -+ m regardless of the relative values 
of m, i’ mR,, and Di. 
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Next we discuss subsistence curves, q+(S) and gi(R), in the (S, R)- 
plane. These are curves that give the concentrations of S and R at 
which the biomass of population xi in the culture vessel is neither 

increasing nor decreasing. 

LEMMA 3.5 

(i) If Ai and pi are both finite, then there exist C’ functions q&S) 
and a,(R) satisfying 

‘Pi’ [“,Ai]~[03~i]~ ai: [O~/-Q]~[o~hi]~ 

gj(S, cPi(S)) = Di> g(ci(R),R)=Di, 

p;(s) < 0, q’(R) < 0. 

(ii) If m, > Di > mR , 

pi(S) and a,(‘R) satisfying 

and 0 < hi G 1, then there exist C’ functions 

‘pi: [ h,,M,S] +[O,ll, ai: [“,Cp,(Mf)] + [hi,M,S], 

q(S,cPi(‘))=Di, gi(ci(R),R)=Di, 

(p:( s> > 0, q’(R) > 0, 

where 

(3.25) 

(iii> If mR > Di > ms,, 
p,(S) and a,(k) satisfying 

and 0 < pi G 1, then there exist C’ functions 

ui: [ Pif”P] +[“Y1]> Pi: [“,gi(MiR)] + [ Pi>“iR]Y 

ziF;:(Sy ~i( J’)) = Di, Fi(ai(R),R)=Di> 

cpj(S) > 0, q’(R) > 0, 

where 

Proo& 

(i) By Lemma 3.1 and (3.8), q(S,O) < Di and S’$S, pi) > Di for 
each s E (0, Ai). Therefore, by (3.3), (3.11), and (3.12), to each fixed 
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S E (0, Ai), there corresponds a unique R, E (0, pi) such that gL?,(S, R,) 
= Di. Define ‘p,: [O, Ai] + [O, piI by setting cp,(S) = R,. Then .9’@, cp,W) 
= Di for all 0 6 S G Ai. In view of (3.11) and (3.12), by a straightforward 
application of the implicit function theorem, it follows that ‘pi E C’ and 
Cp:(S) < 0 for all 0 < S < A,. 

In a similar manner, one can define a function Eli: [O, II,] -+ 
[O, Ai] such that .S’JuJR), R) = Di for all 0 G R G pi, with Pi E C’ and 
a,‘(R) < 0 for all 0 < R < pLi. 

(ii) In this case, by Lemma 3.l(iii), Ai > S,C and so gi::(Ai, 1) < Di. 
Thus, Z?JS,O> > Di and gi(S, 1) < Di for each S E (Ai, MF). Therefore, 
by (3.3), (3.111, and (3.121, for each fixed S E [A,, M,Sl, there corresponds 
a unique R, E [O, 11 such that Yi(S, R,) = D,. Define ‘pi: [hi, M!l- [O, 11 
by setting cpi(S) = R,. Continue now as in the proof of (i). 

(iii) The proof is similar to the proof of (ii). n 

Remarks Concerning Lemma 3.5 

(1) Note that M;’ = 1 if and only if g&M:, 1) = ZYi(l, 1) G D,. 
This implies that cpi(Mf) < 1. Also, ikff < 1 if and only if ZYJl,l> > 
ZYi(Mf, 1) = Di. This implies that cpi(M:> = 1. 

(2) For the functions (3.16) and (3.171, the subsistence curves 

and 

q(R)= l+R 
[ 

are both linear functions. 

Before proceeding, we discuss the function gL?,(S, RI described above 
in the context of the classifications given by Rapport [241, Leon and 
Tumpson [171, and Tilman [28] and relate the subsistence curves to what 
they call indifference curves. Assume m, > mR,. Consider 

~,(S,R)-~=~(S,R)-Di=C, 
1 

where C is any constant such that - Di < C < m, - Di. The curve 
Q&S, R) = C projected onto the (9$S, RI, S’&S,dl)-plane gives an 
indifference curve, that is, a curve along which any combination of 
values of 9$S, R) and 9&S, R) gives the same rate of growth C. By 
(3.21, these curves are linear and decreasing, precisely as in Figure 1D 
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of [24] and Figure l(a) of [17]. Since Qj(S,R) = 0 = Qj(S, qi(S)) = 
@JvJR), R), these curves can be projected into the (S, RI-plane. Under 
our assumptions, Figure 2 depicts the indifference curves in the (S, R)- 
plane in the case that m,, > mR,. For C = mR, - Di, the indifference 
curve in (S, RI-space is the vertical line S = SF. For C < mR, - Di, the 
indifference curves are decreasing, and for C > mR - Di, they are 
increasing. If m,, = mR,, so that Sf = RF =m, then the indifference 
curves in the (S, RI-plane are decreasing. In the special case that the 
indifference curves in the (S, R)-plane are linear, as is the case when 
gi7i(S, R) is defined by (3.17) (see Remark 2 following Lemma 3.51, then 
resources S and R are perfectly substitutable in the sense of Tilman 
[28]. In the classification in [28], the resources S and R are considered 
perfectly substitutable if S and R, rather than the rates of consumption 
of S and R, can be substituted in a fixed ratio in order to maintain a 
given growth rate. 

3.2. SINGLE-SPECIES GROWH-THE THREE- DIMENSIONAL 
SUBSYSTEMS 

There are only two three-dimensional subsystems of (3.21) of inter- 
est. Each involves one population of microorganisms consuming the two 
nonreproducing, perfectly substitutable resources. Due to symmetry, 
both subsystems exhibit the same dynamics. Throughout this section, 
the same notation as in the previous sections is used, but the subscripts 

rn~_ - Di > C m,q, - D; < C 
R 

FIG. 2. “Indifference” curves in the (S, R)-plane and the “subsistence” curve, for 
m,, > mR Since Qi(S, R) = 0 = @,,(S, cpi(S)) = Qi(ai(R), R), the indifference curve 
with C = 0 gives the subsistence curve. 
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are omitted. We examine the system 

S’(t) =l-S(t)- y9(s(t),K(f)), 

R’(t)=l-R(t)- $+?(S(r),R(r)), 

(3.27a) 

(3.27b) 

x’(t) =x(t)[-d+~(S(t),R(t))], (3.27~) 

S(0) >, 0, R(0) > 0, X(0) > 0. 

Here, d represents the rate of removal of the microbial population from 
competition; that is, d = 1+ E, E > 0, where E is the intrinsic death 
rate. The functions Y(S(t), R(t)), 90(t), R(t)), and Z%!Xt>, R(t)) are 
assumed to satisfy all of the assumptions (2.2)-(2.10) and (3.2)-(3.15). 

By Theorem 3.2(i), all solutions S(t>,R(t), x(t) of (3.27) for which 
x(0) > 0 are positive and bounded for all t > 0. By Theorems 3.3 and 
3.4(G), if I_L is finite and F(l,l> < d, or if p =m and A > 1, then 
E, = (l,l,O) is globally asymptotically stable for (3.27) [with respect to 
solutions for which x(0) 2 01. 

Besides E, = (l,l,O), any other critical points must be one-species 
survival equilibria. A one-species survival equilibrium of (3.27) is a -- 
solution (S, R, X> of the system 

xP(S,R) = 5(1-S) (3.28a) 

x9(S,R) =~(l- R) (3.28b) 

F(S,R)=d (3.28~) 
-- 

with (S, R, X) E ii:. 

LEMMA 3.6 

Assume that m, & mR. Suppose that a one-species survival equilibrium -- 
(S, R, X) of (3.27) exists. 

(i) Zf p is finite, then 0 < 3 < min{l, ,I} and 0 < R < min{l, ~1. 
(ii) Zf p = ~0 and h G 1, then either 

or 

m,=d,andsoS”=handA=S<I, O<R<l, 

where MS is defined by (3.25). 
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Z’roo~ 

O<R<l. 
First, note that, from (3.28), X > 0 implies that 0 < S < 1 and 

(i) If p is finite, then, by part (ii)(b) of Lemma 3.1, A is finite and 
A < SC. Therefore, %S, R) > ZW,O) > 9(&O) = d for all S > A, R > 0; 
and HS, R) > g(O, R) > .5’(0, u) = d for all S > 0, R > t_~u; and so 0 < 
S < min{l, A} and 0 < R < min(1, p}. 

(ii) In this case, by part (iii) of Lemma 3.1, SC G A. First, consider 
S’<A. Then 5’(S,R)~%‘(S”,R)=m,<d for all O<SGS”, R> 
0; .Y(S, R) G X?‘(A, R) < g( A,O) = d for all SC < S G A, R > 0; and 
Z7(S, R) > %‘(Ms, R) > %‘(Ms, cp(Ms)) = d for all S 2 MS, cp(M’) > 
R>O; and so A<S<MS~l and O<R<cp(MS). If, on the other 
hand, SC = A, then Z%Y, R) = d = mR for all R > 0, and, by part (iXa, 
b) of Lemma 3.1, %‘(S, R) # d for any R > 0, S # SC; and so A = S < 1 
andO<R<l. n 

THEOREM 3.7 

Assume that m, 2 mR. 

(i) If p is finite, th en a one-species survival equilibtium of (3.27) exists 
if and only if ZY(l, 1) > d. When a one-species survival equilibrium exists, it 
is unique. In particular, if A < 1 or Al. < 1, then Hl, 1) > d. 

(ii) Suppose p =m. 
(a) Zf Aal or A=w, then (3.27) has no one-species survival 

equilibrium. 
(b) Zf mR= d, then Hl, 1) > d if and only if A < 1, and a one- 

species survival equilibtium of (3.27) exists if and only if X?‘(l, 1) > d. When 
a one-species survival equilibrium exists, it is unique. 

(c) Zf mR < d, then 9(1,1) > d if and only if MS < 1, and if 
F?(l) 1) > d, then (3.27) has at least one one-species survival equilibrium. 

Proof (i) First we show that if p is finite and a one-species survival -- 
equilibrium (S, R,_F) exists, then 9(1,1) > d. By Lemma 3.6, 0 < S < 
min{A, l} and 0 < R < min{ II, 1). By Lemma 3.l(ii)(a, b), mR > d and -- 
SC > A > S. If SC > 1, then d = 9(S, R) < _%l, R) < Z?(l,l). If SC < 1, 
then d < mR = F(S’, 1) G ZY(l,l). 

Next we show that if Z?‘(l) 1) > d, then a one-species survival equilib- 
rium exists. For S E (0, A), define 

S(l-9 
x”(s)=qs,q(s)) 

and 

where, by Lemma 3.5, Z&S, cp(S)) = d for all 0 < S < A. If Al. > 1, then 
g(0, 1) < d, and since ZZ’(A, 1) > d and 5??(1,1) > d, there exists a unique 
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,$ E (O,min{l, A}) such that g($, 1) = d and cp(s) = 1. By Lemma 3.5, 
0 < cp(S) < p for S E (O,min{l, A}) if p G 1, and 0 < cp(S) < 1 for S E 
(S,min{l, A}) if /L > 1. In both cases, by (3.4), (3.5), and Lemma 3.5, 
x,(S) is a decreasing function, x,(S) is an increasing function, and both 
functions are continuous. There are four cases to consider. 

Case 1. h G 1 and p G 1 (see Figure 3a). 

xs(0) =a and XR(0) = “(1; p) 

x 

s 
(A) = S(l- *I 

d 
and XR( A) =m. 

Case 2. h > 1 and Al. > 1 (see Figure 3b). 

x 
s 

($)= ‘3-S) >o 

‘@>l) 
and XR( S) = 0, 

x,(l) =o and 
rl(l- V(l)) > 0 

xR(l)= S?(l,‘p(l)) . 

Case 3. h < 1 and Al. 2 1 (see Figure 3~). 

x 

s 
($)= a-Q >o 

9(&l) 
and X&Q = 0, 

x 
s 

(A) = [(l-h) 
d 

and XR( A) =@J. 

Case 4. A 2 1 and p G 1 (see Figure 3d). 

x,(O) =02 and 

X,(l) = 0 and rl(l- 9(l)) 
XR(1)= 9(1&7(l)) . 

The;efore, in each case there exists a unique S^E (0, A) such that 
x,(S) = x,(S), and hence a unique one-species survival equilibrium, 

with s = s^, R = cp(s^), and X = x,(s^) = x,(s^). 
In particular, since SC > A, if A < 1, then g(l, 1) > .Y( A, 1) > d, and if 

p < 1, then Hl, 1) > Z%O, 1) > SO, p)= d. 

(ii>(a) By Theorem 3.4(u), if Al. = ~0 and A 2 1, then x(t) + 0 as t -+ 0~)) 
and so there can be no one-species survival equilibrium. 
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s x 1 

(a) 

R L 

Cd) 

R 1 x MS 1 

W (0 

FIG. 3. Schematic diagram for Theorem 3.7. For m, > mR > d: (a) h Q 1 and 
~~1;~b~h>1and~~l;~c~A~1and~~1;~d~h~1and~~1.Form,>d~mR: 
(e) mR = d; (f) m,<dand MS<l. 
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(ii)(b) If mR = d, then SC = A. 
Suppose that g?(l, 1) > d = mR. If AZ 1, then mR = 5XY,l)= 

Z?(h) 1) > .V(l, 1) > d = mR, a contradiction. It follows that A < 1. 
Suppose A < 1. Then d = mR = ZF’(S”, 1) = YY?(A, 1) < %‘7(1,1>, and so 

g7(1,1) > d. 
Next we show that if g(l, 1) > d = mR, then there exists a unique 

one-species survival equilibrium. Since SC = A, by Lemma 3.6(u), 3 = A, 
and so .%A, R) = d for all R 2 0. Therefore, by (3.28), a one-species 
survival equilibrium exists if and only if R satisfies 

f(R)+(l-A)g(A,R)=+-R)Y(A,R)=g(R). 

By (3.4) and (3.51, f(R) is an increasing function and g(R) is a 
decreasing function on [O, 11, with f(O) = 0, f(l) = 50 - AMA, 1) > 
0, g(O) = qd > 0, and g(l) = 0. (See Figure 3e.) Hence, there exists 
a unique i? satisfying f(R) = g(R), and hence a unique one-species 
survival equilibrium, (A, R, El, where X = ((1 - A)/%A, R> = $1 - 
R)/LZ!( A, R). Finally, if a one-species survival equilibrium exists in this 
case, then by (ii)(a), A < 1, and hence 50, 1) > d. 

(ii)(c) If mR <d, then SC < A. Suppose mR <d and 5X1,1)> d. 
Since MS d 1, and MS = 1 implies that LY(l,l) < d, it follows that 
MS < 1. Suppose mR < d and MS < 1. Then g(l, 1) > g?(MS, 1) = d. 

Next we show that if mR < d and g(l, 1) > d (and hence A < MS < l), 
then at least one one-species survival equilibrium exists. Define 
x,(S) and x,(S) as in (3.29) for S E (A,MS), where by Lemma 3.5, 
kY(S, C&S))= d for all S E[A,M~I. Then cp(A)= 0, &MS>= 1, and 
0 < c&) < 1 for all S E (A, MS>, and so xs and xR are continuous for 
all S E (A, MS). Since (see Figure 3f) 

xs(A)= 5(1-A) >o 
d and xR( A) =w, 

x 

s 
(&fS)= m-w >o 

I 
and XR( MS) = 0, 

there exists at least one point s^ E (A, MS> such that x,(S) = x,(S). 
Hence, th_ere exists at least one one-species survival equilibrium, (S, 
CPW, x,(S)). n 

Remarks Concerning Theorem 3.7 

(1) If m, < mR, an analogous result holds. Just interchange the roles 
of A and CL, and those of m, and mR. 
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(2) If I_L is finite, it is possible for A > 1, p > 1, and ZY?(l, 1) > d. For 
example, consider 

4S +3R 
g(S,R)= l+S+R’ 

d=g 
6 ’ 

kY(l,O) = 2 < d, and so A > 1, ZY7(0,1) = 3/2 < d, and so Al. > 1, and 

%X1,1> = 7/3 > d. 
(3) If p = m with mR < d, then h < 1 need not imply that g?(l, 1) > d. 

Rather, it is possible that MS = 1, and so .Y7(1,1) G d. There may or may 
not be one-species survival equilibria in this case, and multiple one- 
species survival equilibria are possible. For example, consider 

4S+R 
%(SyR) = l+S+R’ d+ 

Then mR = 1 < d, g7(11/13,0) = d, and so A = 11/13 < 1, but g?(l, 1) = -- 
5/3 < d. For a one-species survival e_quilibrium (S, R, 2) to exist, by 
Lemma 3.6(C), A < S < 1 and 0 < cp(S) < 1. Thus SE (11/13,1), and 
since cp(S) = (13s - 11)/5, cp(S) E (0,2/5). Also, since S must satisfy 
x,(S) = x,(S), where x,(S) and x,(R) are given in (3.291, 

5 4S( 16 - 13s) 

:= (l-5)(135-11). 

Since SE (11/13, l), it follows that t/v > 190.628 must hold. There- 
fore, if c/q < 190, then there is no one-species survival equilibrium. 
However, if t/v > 191, then there is at least one one-species survival 
equilibrium. In particular, if 5 = l/2 and 77 = l/384, so that t/n = 192, 
then there are exactly two one-species survival equilibria: 

12 1 23 --~ 
13 ’ 5 ’ 1040 

(4) Note that if PCS, R) = p(S) and A?(S, R) = q(R) for all S > 0 
and R 2 0, then, regardless of the relative values of m,, mR, and d, a 
one-species survival equilibrium exists if and only if Z@l, 1) > d, and if 
one exists then it is unique. 

Let us denote a one-species survival equilibrium, when it exists, by -- 
E = (S, R, 2). Next we investigate the local stability properties of the 
equilibria of (3.27) through an examination of the linearized system 
about each equilibrium. 



COMPETITION FOR SUBSTITUTABLE RESOURCES 155 

The eigenvalues of VJl, l,O>, the variational matrix of (3.27) evalu- 
ated at E, = (l,l,O>, are (pi = CY~ = - 1 and (Ye = S’?(l, 1)- d. Thus, if 
Z?‘(l) 1) > d, then E, is unstable, and by Theorem 3.7 at least one 
one-species survival equilibrium exists. Also, if S’?(l, 1) < d, then E, is 
locally asymptotically stable, and, provided that mR > d and ms a d, no 
one-species survival equilibrium exists. In fact, by Theorem 3.4, E, is 
globally asymptotically stable in this case. However, if mR < d or 
m, < d, it is possible for a one-species survival equilibrium to exist even 
though E, is locally asymptotically stable. For an example, see Remark 
3 following Theorem 3.7. -- 

Let us assume that the one-species survival equilibrium E = (S, R, X) 
exists, and examine the local stability properties of E. The characteristic -- 
equation of V’JS, R, Xl, the variational matrix evaluated at E, is given 
by a3 + A, a2 + A,a + A,, where 

~,=2+x ++Y(s,R)+$-&~(s,R)], 
[ 

-- -- 
(3.30a) 

A,=I+~ &&F(s,R)+~&~(s,R)] 
[ 

-- -- 

[ 

-- -- -- -- 
+x ;~(s,R)~B.(s,R)+~~(s.R)~B(s,R)] (3.3oq 

x* 

[ 

d -- a -- 
+ 577 +wR)~(W) 

- &P( s, R) -+( s, q] ) 

and 

If mR < d or m, < d, the stability of E is, in general, difficult to 
determine. However, if mR a d and ms a d, then by hypotheses (3.2), 
(3.4), (3.5), (3.111, and (3.121, it follows that 

-- -- 
~~(S,R)~~(S,R)-~~(~,R)~~(~,R)>O. (3.31) 
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Hence, A,, A,, and A, are all positive so that, by the Routh-Hurwicz 
criterion, to determine the stability of E it suffices to determine the 
sign of A,A, - A,, where A, A, - A, is given by 

-- -- 
&$(S,R)+$+‘(S,R) 1 

+x ~~(S,R)~3(S,R)i~~(S,R)~~(S’R)] [ 
-- -- -- -- 

+x2 $-$qs,R)+L&ys.R) I -- -- 
I 

[ 
-- -- 

x ~qS,R)-&(S.~) + $qS,R) 

+x2 ~-$(s,z?)+ [ 
-- -- ~&“(s,z?)]* 

-- g$qS,R) 
1 

1 z3 

i )[(I -- 
+si ; -$9(S,R)+($&qS,X)j 

(3.32) 

-- 
x 

i 
-- -&q s, R) &9( s, R) - -&q 3, R) -&?( 5, q] 

-- -- -- 
+~(2_d)[$.v(s,R)~sP(S,R)-~~(s,~)~~(SK)]. 

Assuming that mR a d and m, z d, a superficial examination of this 
expression yields a range of values of the intrinsic death rate E for 
which A, A, - A, is positive and hence E is locally asymptotically 
stable. In particular, a sufficient condition for the local asymptotic 
stability of E is d 6 2 (so that E Q 1). For example, if it is assumed that 
the intrinsic death rate is insignificant compared to the dilution rate, 
then d = 1, and so E is locally asymptotically stable. Moreover, if, by 
increasing d, E can lose its stability, it can do so only by means of a 
Hopf bifurcation, since A, > 0 implies that no root can equal zero. 
However, given p(a) = a3 + Ala2 + A,a + A, with A,, A,, and A, 
positive, if A, A, - A, < 0, then p has one negative real root and a pair 
of complex conjugate roots with positive real part. Since, by Theorem 
3.7, parts (i> and (iiXb), E exists only if k?‘(l, 1) > d, a Hopf bifurcation 
can occur only for 2 < d < 9(1,1>. Therefore, if m, > d, mR > d, and 
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S'(1, 1) 2, then no change 
possibility of a Hopf bifurcation, 

q(R) for all S 2 0 
and R a 0, as in model I of Leon and Tumpson [17], as long as E exists, 
A,, A,, and A, are always positive, and A,A, - A, is given by 

1 + PmP’m + 4mm 5 77 
2 - - 

+ ~*~~‘(~)q’(W 

+?2 

ii 
zm q’(R) 2 T+lr] +p(+?p~+q(R)[J$yj 

+x3 P'(;F) + q'(R) 

[ 

- f(S)q'(R). 
77 1 (3.33) 

Clearly, A, A, - A, is also always positive, regardless of the relative 
values of m,, mR, and d. Therefore, by the Routh-Hurwicz criterion, 
whenever E exists, it is locally asymptotically stable. 

Before examining the global properties of system (3.27), we define 
the terms persistent and uniformly persistent, as in [9l. Let f = (f,, . . . , f,> 
be a continuously differentiable function from R” to R” such that 

fi(w)>Owhenever w=(w~,...,w,) satisfies wi=O and 

w, 20, i# j. 

Consider the system 

w’(t) =f(w(t))3 wi(“) > 0, i=l ,..., n. (3.34) 

The conditions on f guarantee that (3.34) defines a dynamical system 
that leaves the positive cone in R” positively invariant. 

DEFINITION 3.1 

Zf every solution w(t) = (w,(t), . . . , w,(t)) of (3.34) with wi(0) > 0, i = 
1 ,..e, n, satisfies lim inf, ~ m w,(t) > 0, i = 1,. . . , n, then system (3.34) is 
persistent. 
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DEFINITION 3.2 

If there exists a 6 > 0 such that every solution w(t) = (w,(t), . . .,w,,(t)) 
of (3.34) with ~~(0) > 0, i = 1,. . . , n satisfies liminf, ~ co y(t) a 6, i = 
1 , . . . , n, then system (3.34) is uniformly persistent. 

THEOREM 3.8 

R:. Choose & = (S(O), R(O), 
x(O)) E $. By Theorem 3.2(i), Ln(X) is a nonempty, compact invariant 
set with respect to (3.27), and x(t) > 0 and bounded. Thus, by (3.3) and 
(3.61, S’(t) > 0 if S(t) is sufficiently close to zero and R’(t) > 0 if R(t) is 
sufficiently close to zero. Since S(t) and R(t) are also bounded by 
Theorem 3.2(i), it follows that any point in n(x) must satisfy lim 
inf ,,,S(t)>O and liminf,,, R(t) > 0. If we can show that lim inf, ~ ~ 
x(t) > 0, then (3.27) is persistent. 

Suppose {E,} E NX). Since 55X1,1) > d, E, is an unstable, hyper- 
bolic critical point. From (3.27) it is clear that E, is globally attrac- 
ting with respect to solutions initiating in its stable manifold M+ 
(E,) = (LS, R, 0) E R: }. Since X @ M+ (E,), {E,,} # a(&). Therefore, by 
the Butler-McGehee lemma (see Lemma Al of [9]), there exists P E 
WI+ (E,)\L5JHn N&> and hence cl B(P) c Cl(&), where H(P) de- 
notes the entire orbit through P and cl&‘(P) denotes the closure of 
H(P). But then, as t + - M, either B(P) becomes unbounded or one of 
the S or R components becomes negative. In either case we have a 
contradiction, and therefore {E,) P U&Y. 

Suppose lim inf f --f zI x(t) = 0. Then there exists a point P = (& &,O) E 
a(&), which implies that cl H(P) c Q(X). But then (E,} E a(&>, a 
contradiction. Thus lim inf, --) 3. x(t) > 0, and so (3.27) is persistent. It 
now follows from the main result of [7] that system (3.27) is uniformly 
persistent. W 

If in (3.27) the intrinsic death rate is assumed to be insignificant 
compared to the dilution rate, so that d = 1, and m, a 1 and mR > 1, 
then the results of Theorem 3.8 can be significantly strengthened. 

THEOREM 3.9 

Assume d = 1 in (3.27). 

(i) Suppose that m, > 1 and m R > 1. 1f ZY(l, 1) > 1, then there exists a 
unique one-species survival equilibrium E, and E is globally asymptotically 
stable with respect to all solutions for which S(O) > 0, R(O) > 0, and 
x(0) > 0. 
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(ii) If no one-species survival equilibrium E exists, then E, is globally 
asymptotically stable with respect to all solutions for which S(O) > 0, 
R(O) > 0, and x(O) > 0. 

Prooj (i) 

[(l - S(t)>+ ~(1 - R(t)), and consider the system 

s’(t)=l-S(t)-;[5(1-S(t))++R(t))]y(s(t)>R(t))> 

(3.35a) 

Rf(t)=l-R(t)-~[5(1-S(t))+17(1-R(f))]~(S(t),R(t)), 
(3.35b) 

S(0) > 0, R(0) > 0, 5 + rla (S(O) + rlR(0). 

_- 
From the local stability analysis it follows that the equilibrium E = (S, R) 

of (3.35) is locally asymptotically stable and that & = (1,l) is unstable. 
Fix S(t) = 1 in (3.35) and define 

F,(R(t))=S’(t)=--$-R(t)]p(l,R(t)). 

Then F,(l) = 0, and by (2.2) and (3.51, 

dF R dR 1( )=--@~)-&9(i,R)+$~(i,R)>0 

for all o < R < 1. Therefore, S’(t) < 0 at all points (1, RI where 0 G R < 1. 

Fix S(t) = 3 in (3.351, and define 
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Then F,(R) = 0, and by (2.2) and (3.5), 

for all 0 G R G 1. Therefore, s’(t) < 0 at all points (3, R) where 0 G R < 
R, and s’(t) > 0 at all points <%, R) where R < R G 1. 

Similarly, fixing R(t) = 1 and R(t) = R, we obtain the partial vector 
field shown in Figure 4. It is clear that no periodic orbits exist in 9, and -- 
so E = (S, R) is globally asymptotically stable for (3.35) with respect to 
all solutions for which S(O) 2 0, R(O) a 0, and 5 + n > tS(O)+ qR(O) > 0 
[i.e., x(O) = 5 + n - ,$S(O) - vR(O) > 01. 

First recall that the omega limit set of any solution of system (3.27) is 
contained in 9, and note that by Theorem 3.8, system (3.27) is uni- 
formly persistent and so there is no point of the form (S, R,O) E R: in 
the omega limit set of any solution of system (3.27) with S(0) > 0, -- -- 
R(O) a 0, x(O) > 0. Since E = (S, R) corresponds to E = (S, R, X), the 
global stability of E implies that E is in omega limit set of any solution 
of system (3.27) with S(O) > 0, R(O) a 0, x(O) > 0. Since E is locally 
asymptotically stable for (3.27) with d = 1, it follows that it is the only 
point in the omega limit set, and so it must be globally asymptotically 
stable for (3.27) with d = 1 with respect to all solutions satisfying 
S(O) 2 0, R(O) a 0, and x(O) > 0. 

(ii) The proof is similar to the proof of (9. n 

R 

1 

R 

FIG. 4. Partial vector field for Theorem 3.9. Vectors parallel to the S axis 
indicate the sign of S’(t) along the indicated line. Vectors parallel to the R 
axis indicate the sign of R'(t) along the indicated line. 
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If in (3.27) P’(s,R)=p(S) and 9(S, R) = q(R) as in model I of 
Leon and Tumpson [17] (with d not necessarily equal to l), then the 
results of Theorem 3.8 can again be significantly strengthened, regard- 
less of the relative values of ms, mR, and d. 

THEOREM3.10 

Assume that 9TS, R) = p(S) and Z’(S, R) = q(R) for all S > 0 and 
R > 0. 

(i) If g(l,l) =z d, then E, is globally asymptotically stable for (3.27) 
with respect to all solutions for which S(0) > 0, R(O) > 0, and x(O) 2 0. 

(ii) If ZY(l, 1) > d, then there exists a unique one-species survival equilib- 
rium E, and E is globally asymptotically stable for (3.27) with respect to all 
solutions for which S(O) > 0, R(O) > 0, and x(O) > 0. 

Proof (ii) The proof of existence and uniqueness of the one-species 
survival equilibrium E is similar to the proof of part (i) of Theorem 3.7. 
To prove the global stability of this equilibrium, define L: k: + R by 

Since p(S) and q(R) are continuous on R:, we have L E Cl@ ). -- -- 
Also, E = (S, R, X) is the global minimum of L on RI, and L(S, R, X> = 
0. The time derivative of L computed along solutions of (3.27) is 

i(S, R,x) = 5 p(S;;~(s‘))(~-S)+T( q(R;;;(R)I(l-R) 

-X[-d++(S,R)] 

Noting that X = [(l - S>/p(S) = ~(1 - @/q(R) and d = p(S)+ q(R), 
we have 

L(S,R,X)=~(P(S)-P(~)$+$#) 

- 

+7(4(R)-q(R)) 
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For 0 < S < S, p(S) - p(S) < 0 and (1 - S)/p(S) - (1 - S>/p(S> > 0, 

whereas for S > g, p(S) - p(S) > 0 and (1 - S)/p(S) - (1 - S)/p(s) < 
0. A similar result holds for R. 

Thus, i(S, R? x) < 0, and so L is a Lyapunov function for (3.27) in 
it. Note that L(S, R, x) = 0 if and only if S = S and R = R. Hence, by 
Theorem 3.2(i) and LaSalle’s extension theorem [16], every solution of 
(3.27) for which x(0) > 0 approaches _&, where J+? is the largest invari- 
ant subset of {(S, R,x) E R:: S = 3, R = R, x a 0). But then d=(E), a 
single point, since by Theorem 3.7 the one-species survival equilibrium 
is unique, and since x # X implies that either S’ # 0 or R’ # 0, x # X 

would violate the invariance of J%. This completes the proof. 

(i) Take 

and argue as in (ii). n 

In the next section we use the information from this section to 
determine existence and local stability properties of the equilibria of the 
four-dimensional system as well as to determine criteria for uniform 
persistence of the four-dimensional system. 

3.3. TWO- SPECIES COMPETITION- THE FOUR- DIMENSIONAL SYSTEM 

We now return to a study of the full four-dimensional system; that is, 

2 x.(t) 
S’(t)=1-S(t)- c ---3(S(f),R(t)), 

i=l ti 
(3.36a) 

2 x.(t) 
R’(t) = l- R(t) - c ---si(S(t),R(t)), 

i=l 77, 
(3.36b) 

~:(t)=Xi(t)[-Di+~(S(t),R(t))], i = 1,2, (3.36~) 

S(0) > 0, R(0) 200, xi(")Zoy i = 1,2. 

Three of the critical points of (3.36) are readily determined and will be 
denoted 

J% = (l,l,O,O), E, = (S,>&,%O), E, =(&&.0,X2). 

Conditions for the existence, and in some cases the uniqueness, of 
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equilibria of the form E,,i = 1,2, are given in Theorem 3.7 (with the 
appropriate subscripts included and d replaced by D,). 

We first determine the local stability properties of these equilibria of 
(3.36) through an examination of the linearized system about each 
equilibrium point. 

The eigenvalues of &Cl, l,O,O), the variational matrix of (3.36) evalu- 
ated at E, = (1, l,O,O), are CZ~ = CQ = - 1, CY~ = .Y’,(l, 1) - D,, and (Ye = 
g*(l, l>- D,. Thus, if either Z1(l, 1) > D, or kYZ(l, 1) > D,, then E, is 
unstable, and by Theorem 3.7 at least one one-species equilibrium 
exists. Also, if .Y’,(l, 1) < D, and 5YZ(1,1> < D,, then E, is locally asymp- 
totically stable and, provided that m, a Di and mR a D, for i = 1 and 
2, no one-species equilibrium exists.’ In fact, by Theorem 3.4, E, is 
globally asymptotically stable in this case. 

Now assume that k5”,(1,1) > D,, so that E, = (S,, R,,x,,O) exists. The 

characteristic polynomial of I’@, , R,, i,, 0), the variational matrix of 
(3.36) evaluated at E,, is given by 

where (Y 3 + A, a2 + A, LY + A, is the characteristic polynomial of 
V3(S,, R,, X,) given in (3.30) with fiS, R) = Yr(S, R), 9(S, R) = 
%‘r(S, R), 50, R) = g’,(S, R), and d = D,. From this, together with a 
local stability analysis of the one-species equilibrium in (S, R, x,)-space, 

we see that if m,, a D,, mR, a D,, .Y,(l,l) G 2, and 9Z(S,,R1) < D,, 
then E, is locally asymptotically stable. 

In the special case that P&S, R) = p,(S) and 9,(S, R) = q,(R) for all 
S> 0 and RaO, E, exists if and only if 9’,(1,1> > D, and is locally 
asymptotically stable if ZY2(S,, R,) < D,. A similar result holds for E,. 

If any other equilibria of (3.36) exist, they must be interior equilibria. 
An interior equilibrium of (3.36) is a solution E* = (S*, R*,xT, xz) of 
the system 

i 

gl(S,R) = D,, 

Fz(S,R) = D,; 
(3.37a) 

with (S*, R*, XT, xz) E kg. As in Lemma 3.6, one can show that S* and 
R* must satisfy the inequalities of Table 1. The following theorem is an 
immediate consequence of Theorem 3.4(u). 
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THEOREikf 3.11 

If hi=m, &>l or /.$=a, Ai 2 1 for at least one i E (1,2}, then no 
interior equilibn’um E * exists. 

THEOREM 3.12 

(i) Zf E* exists and, for i = 1 or 2, m,, > Di and mR, > Di, then Ej 
exists and is unique. 

(ii) Zf E* exists and, for i = 1 or 2, mR, < Di, M;’ < 1 or msA CD,, 
MiR < 1, then at least one Ei exists. 

Proof 6) Suppose m, > mR,. If mR, > Di, then 0 < S* < 
min{l, AJ < SF and 0 < R* < min{l,pJ. By (3.11) and (3.12), D, = 
5Yi(S*, R*) < .%‘#, 1). Therefore, by Theorem 3.7, part (8, E, exists and 
is unique. If mR = D,, then Sic = h,=S* <l and O< R* Cl, so 
that Dj = Fi(S*, RB) = IYi(S*, 1) < Y?‘Jl, 1). Therefore, by Theorem 3.7, 
part (ii)(b) E, exists and is unique. The argument is similar when mR, > 
m, 2 Di. 

(ii) Suppose mR < Di. Since E* exists, hi < 1 and so Di < mst. From 

Table 1, Ai < S* < ‘Mf and 0 < R* < cp,(M’>. If M;’ < 1, then pi(Mf) = 
1, and by (3.11) Di = F&S*, R*) = L?‘~(M~~‘, 1) < .Yi(l, 1). Therefore, by 
Theorem 3.7(n)(c), at least one Ei exists. The argument is similar when 
m, < D, and MzR < 1. w 

Remark Concerning Theorem 3.12. As Theorem 3.12(C) would indi- 

cate, the cases mR < Di, MIS = 1 and m, < Di, MiR = 1 are special. In 
these cases, it is, in fact, possible to construct examples in which one 

species cannot survive in the absence of competition and yet a locally 
asymptotically stable coexistence equilibrium exists when a competitor 
population is present. We now describe one such example. 

In this example, population xi cannot survive in the absence of 
competition, but population x2 can. If we take 

g(S R) = (9/4)S+(1/2)R 
1 ) l+S+R 

and D,=l, 

then (as in the example described in Remark 3 concerning Theorem 
3.71, provided that 5, /nl < 119, no equilibrium of the form E, exists. 
By Theorem 3.9(n), E, is globally asymptotically stable with respect to 
(S, R,x,)-space, and so species x, cannot survive in the absence of 
competition. If we take 

3St3R 
g*(S,R) = l+S+R and Dz=;, 
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then ZY*(l, 1) = 2 > D,, and hence by Theorem 3.7(i), a unique equilib- 
rium of the form E, exists. Moreover, E, is locally asymptotically stable 
with respect to (S, R,x,)-space and is unstable with respect to 
(S, R, x1, x,)-space. In this case, a coexistence equilibrium, E*, exists if 
and only if S* = 6/7, R* = l/7, and 

* _ 451%( 52 -36772) > 0 
Xl - 3(9t2n1 -251r/2) ’ 

* _ 25*%(162% - 61) > 0 
x2 - 9(%2771-2t1772) . 

Assuming that 5, /ql < 119, then XT > 0 and .x; > 0 if and only if 
t2 /Q > 36. If we wish to assume as well that 6, /ql = t2 /n2, then this 
condition becomes 36 < ,$I /ql = t2 /v2 < 119. In any case, it can also 
be shown (using a standard linear analysis involving the Routh-Hurwicz 
criterion) that whenever E* lies in the positive cone, it is locally 
asymptotically stable. 

To investigate under what conditions E* exists in general, we begin 
with an examination of system (3.37b). Note that for fixed values of S 
and R, a solution of (3.37b) with both x, and x2 positive is required. 
Define 

for (S, R) E R:. It follows from (3.37b) and Cramer’s rule that 

x 
1 

= (1/772)~2(S,R)(l-S)-(1/~2)~2(S,R)(l-R) 
A(S,R) 7 

x 
2 

= (1/5,)~(S,R)(I-R)-(I/7)1)~,(S,R)(l-S) 
(3.39) 

a(S,R) 
3 

provided a(S, R) # 0. The following lemma is a direct consequence of 
(3.38) and (3.39). 

LEMM 3.13 

Let (XT, xz> be a solution of (3.37b) forfied S, R satisfying 0 < S < 1 
and 0 < R < 1. Then XT > 0 and XT > 0 if and only if the numerators of xy 
and XT as given in (3.39) are nonzero and of the same sign. 

For the remainder of this section we study the existence and stability 
of E*. As in the one-species growth model, it is difficult to determine 
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criteria in the case that mR, < Di or ms, < Di, i = 1 or 2. In what follows 
we assume that mR 2 Di and ms 2 Di for i = 1 and 2. 

Using Lemma 3113 we are now able to provide a characterization 
of the solutions (S*,R*) of equations (3.37a) that yield an interior 
equilibrium. 

THEOREM 3.14 

(i) Suppose (mk, , > m,, 2 Di, i = 1 and 2), or (msz > mR > D, and 
mR, 2 ms, & DI), or (mR, > ms2 = D, and m,, > mR, > D, ) Suppose . 
further that there exists a solution (S*, R*) of (3.37a) and that pi exists, 
i = 1 and 2, with S, # 3,. If hi is finite and q,(O) > 1, then Ift Sj be the 
unique solution of the equation vi(S) = 1; otherwise, take Si = 0. Take 
i, j E {1,2}, i # j. For Si < Si, define 

Zij= [Si,min{l,hi}] n[ij,Fj]. 

Then the corresponding so$tion (XT, xz 1 of (3.37b) satisfies XT > 0 and 
xz > 0 if and only if S* E Iii. 

(ii) Suppose (ms, > mk, / > Di, i = 1 and 2), or (mR, > m, > D, and 
ms,a mR,> D,), or (msz> mR = D, and mR > m,, > D,). Suppose 
further that there exists a solution (S*, R*) of (3.37a) and that pi exists, 
i = 1 and 2, with R, # R2. Zf txi is finite and a,(O) > 1, then t$ Ri be the 
unique solution of the equation oi(R) = 1; otherwise, take Ri = 0. Take 
i, j E {1,2}, i # j. For Ri < Rj define 

Then the corresponding solt$ion (XT, xz) of (3.37b) satisfies XT > 0 and 
xz > 0 if and only if R* E Zij. 

(iii) Take i, j l {1,2}, i # j. Suppose msL > mR, = Di and mR, > m,, = 
Dj. Suppose further that there exists a solution (S*, R*) of (3.37a). Then 
the corresponding solution (XT, x2) of (3.37b) satisfies XT > 0 and xt > 0 
if and only if (hi < S, and t.~] < Ri) or (Sj < Ai and Ri < ~j). 

Proof (i) Note that by Theorem 3.1261, there is no loss of generality 
in assuming the existence of E, and E,. Suppose first that hi and pi 
are all finite, i = 1 and 2. Define 

~x(s)~~2(s7~2(s))(1_s)_~~(s~~~(s))[l-~ (S)] 
1 

772 52 
2 ’ 

O<S<A,, 

ox (s)~~(s~~l(s))[l_cp(s)]_~~(s~~~(s))(l-s), 

2 
51 

1 
71 
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Then .&Q(S) is the numerator of xi as given in (3.39) with R replaced 
by qj(S), where i, j = 1,2 and i # j. By Lemma 3.5(i) and hypotheses 
(3.4) and (3.5), J%%,(S) is a decreasing function of S and H&(S) is an 
increasing function of S provided S G 1 and IP_,(S) < 1, i = 1,2. 

Recall that at E, = <$, &,O, i$, 0 < S, < min{l, AZ), 0 < R2 < 
min{ 1, II*}, and 

52(1-Q 772(1- %(Q) 
“2=$72(s,,q2(s,)) =92(s,?v2(5;2)). 

Therefore, 

~x(s)=~2(s,,(P2(~2))(l_~)_~(~2~~2(~2))[1-p (S)]=o 
1 2 

772 
2 

52 
22 * 

Similarly, _Kx2(T1) = 0. 
Note that Si E[O,:~), since 0 < cp,(s,) = Ri < min{l, pi} and 0 < 

q,(S) G 1 for all S E [Si, hi]. 
If 3, < s,, then q,(S) < 1 for all S E [S,,min{l, A,}] and q2(S) < 1 for 

all S E [ 32, min{ 1, A~}]. Therefore, .Kx,(S) and _Kx,(S) are both positive 
for all S Eir2. 

If 5, < S,, then q,(S) < 1 for all S E [S,,min{l, A,11 and q,(S) < 1 
for all S E [S^,,min{l, A,}]. Therefore, Jyjc,(S) and J%,(S) are both 

negative for all S E f2r. Combining this with Lemma 3.13, the result 
follows. 

For the other cases, define J%,(S) as follows. In the numerator of x1 
as given in (3.39) if A, is finite, then define Jyjc, as above; otherwise 
take 

Nx,( S) = 92(;;P2) (,_,p(y2) (1-/J2), s>o. 

Define _Kx,(S) similarly, and proceed as above. 
(ii) Define JCx,(R) as follows. In the numerator of x1 as given in 

(3.39), if p2 is finite, then let 

Jyjc (R) = 922(~2(%R) 
1 

772 

[l-a (,)]_~(c2(R)‘R)(~-R), 
2 

52 
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otherwise take 

Jyjc,( R) = R>O. 

Define /Ix,(R) similarly, and proceed as in (9. 
(iii) Proceed as above. n 

Remarks Concerning Theorem 3.14 

(1) N_ote th_at unde_r the-hypotheses of Theorem 3.14, 3, < S, if and 
only if R, < ZJ,, and S, < S, if and only if R, < R,. 

(2) (a) If S, < s,, then (Jyjc,(S) > 0 and <x,(S) > 0 for all S E 19,) 
or (Nx,(R) > 0 and Nx,(R> > 0 for all R E I,,). Therefore, by Leomma 
3.13, A (S*, R*) > 0 for any solution (S*, R*) of (3.37a) with S* E I,, or 
R* E f12_ 

(b) If s, < s,, then (Jyji,(S) < 0 and JKx,(S) < 0 for all S E iz,> 
or Wx,(R) < 0 and A+,(R) < 0 for all R E I”,,). Therefore, by Lemma 
3.13, A(S*, R*) < 0 for any solution (S*, R*) of (3.37a) with S* E izl or 
R* E f2,. 

The next result links the existence of an interior equilibrium E* with 
the stability of the one-species equilibria E, and E,. We will require 
the following hypotheses: 

hi and pi are finite, i = 1 and 2; and cpi ( S) is linear, i = 1 and 2; 

(3.40) 

Ai or pi is infinite, i = 1 or 2. (3.41) 

THEOREM 3.15 

Suppose ms > D,, mR 2 Di, and the Ei exist, i = 1 and 2. Suppose 

further that for ; E (1,2}, at least one Ai is finite and at least one t..~ is finite. 

(8 Zf g,<&&) < D, and gz(!?,, RI) < D,, then E” exists. Zf (3.40) 
or (3.41) holds as well, then E* is unique. 

(ii) Zf 9?,<3,, i?J > D, and Pz(sl, R,) > D,, then E* exists. Zf (3.40) 
or (3.41) holds as well, then E* is unique. 

(iii> Zf either <EI(&, R2) > D, and .Fz(sl, R,) < D2) or (L?“,(s,, R2) 
< D, and LFz(sl, RI)> D2) and either (3.40) or (3.41) holds, then E* 

does not exist. 

Proof (i) Suppose h,_and_pi are finite, i = 1 and 2. Without loss of 
generality, assume that S, < S,. Since 5Fz(S,, R,) < D,, then (p2(S1) > 
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p,(s,) = Since %‘i($,R,) < D,, then cp,($) > (p2($) = R, > 0 and 
A1 > f,. This implies that a solution (S*, R*) of (3.37a) exists, with 
S, <S* < 3,. If (~126~)~ 1, then I,, =[??,,&I. If (p2(s1) > 1, then I,, = 

[$,, $1, where S, E (s,, 3,) because (~~(3~) = R2 < 1. Also, &I?) < 

R, < 1 and cp,(S) 2 1 for all 3, < S < &, so cp, and (pz do not intersect 
on [s,,$z]. Therefore, cpi and (p2 must intersect at some S* E f,2, so, by 
Theorem 3.14, E* exists. If, in addition, cpi and (pz are linear, then S* 
is unique, so E* is unique. 

In the other cases, the existence of E* is proved similarly, and its 
uniqueness is immediate. 

(ii) Suppose hi and _,ui a_re finite, i =_l and 2. Without loss of 

assume that S, < S,. Since gz(S,, R,) > D,, it follows that 
* 

(p2(,?,) < qo,(??,) = R, < 1 and S, < 3,. Since Y&, &) > D,, either ‘pi 
is defined at 3, (so _h, 2 3,) and cp,@) < (p2(S2)_= &, or cpl p not 
defined at 3, (so h, < S,). Then I,, = [S,,&l if A, > S,, and I,, = [$,, hII 
otherwise. In either case, 9, and (p2 must intersect at some S* E I,,, so, 
by Theorem 3.14, E* exists. If, in addition, cpl and (p2 are linear, then 
S* is unique, so E* is unique. 

In other cases, the existence of E* is proved similarly, and its 
uniqueness is immediate. 

(iii) Consider L?‘,($,, R2) > D, and g&?i, R,) < D,, and suppose 
that (3.40) holds. Without loss of generality, assume that 3, < 3,. 

Since .Y,(&, R2) > D,, cp,@,) < (p2(&) = &, and since g2(s1, RI) < D,, 
R, = cp,(s,) < (p2(s1). Since po, and (p2 are linear, cp,(S) Z cp,(S) for 

every S E Iq2, so, by Theorem 3.14, E* does not exist. 
The other cases, where the linearity hypothesis is not required, are 

proved similarly. n 

Remarks Concerning Theorem 3.15. From the characteristic polyno- 

mial of V,(S,,Z?,,%,,O), it follows that if Yz(S1,R1)< D,, then El is 
attracting from the interior, and if 9#i, R,) > D,, then El is repelling 
into the interior. A similar result holds for E,. 

Now, assuming that a solution E* = (S*, R*,.xT,xT) E kt of (3.37) 
exists, we investigate its stability. Define 

Evaluating the variational matrix I$( E*), the associated characteristic 

polynomial is 

a4+B,a3+B2a2+B3a+t4. (3.42) 
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If < Di or mR < Di for i = 1 or 2, it is difficult, in general, to 
provide even a partial analysis of the roots of (3.42). However, if 
m, > Di and mR > Di for i = 1 and 2, then some conclusions can be 
reached. By hypotheses (3.21, (3.4), (3.9, (3.111, and (3.12), it follows 
that B,>O, B, >O, and B,>O. Also, 

B,=xyx; V(S*,R*)A(S*,R*), 

where a(S, R) was given in (3.38), and so by the Routh-Hurwicz 
criterion, a necessary condition for the local asymptotic stability of E* 
is that v(S*, R*) and A@*, R*) have the same sign. 

Suppose that rnsc > D,, mR,, > Di, i = 1 and 2, S, < S,, and (S*, R*) is 
an isolated solution of (3.37a). By Remark 2 following Theorem 3.14, 
a(S*, R*) > 0. If I&S*>1 < I &S*)I, then, since 

(a/aS)g:.(S,R) 
“(‘)= - (a/aR)Fi(S,R)' 

it follows that 

(J/JS>gl(S*>R*) < (a/JS)gz(S*,R*) 
(d/dR)g',(S*,R*) (c?/~R)~'~(S*,R*) 

After rearranging, 

v(s*,R*) =-&,(s*,~*)&qs*,R*) 

-$qs*,~*)-&~(s*,R*) < 0. 

Therefore, B, < 0, and E* is unstable. If l~‘,(S*)l> Iq;(S*X then 

(d/WF’,(S*,R*) > (a/JS)gz(S*,R*) 
(d/dR)g?,(S*,R*) (d/dR)F2(S*,R*)' 

so 

v(s*,R*) =-&s,(s*,~*)&zqs*,~*) 

-$~s*,R*)&B,(s*,R*) >o. 

Since a(S*, R*) > 0, then B, > 0. A similar result holds when 3, < 3,. 
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For example, the hypotheses Theorem 3.15(i) hypo- 
thesis hold. Then E* exists and is unique. If S, < S,, then 

I cp;(s*)l < I cp;(s*)l, so v(S*,R*) < 0 and E* is unstable. Similarly, 

if S,<S,, then I cp@*)l < I dJS*)l, so v(S*,R*) > 0 and, since 

A(S*, R*) < 0, E* is unstable. 
Suppose the hypotheses of Theorem 3.15%) and hypothesis (3.40) 

hold. Then E* exists and is unique. If s, < S,,then_Icp’,(S*)l < Ip;(S*)l, 
so v(S*,R*) > 0 and B, > 0. Similarly, if S, < S,, then ]$i(S*>l < 
I cpb(S*)l, so v(S*, R*) < 0 and B, > 0. 

If 9$S, R) = p,(S) and 9,(S, R) = q,(R) for all S 2 0, and R > 0, 
i = 1,2, then as shown by Leon and Tumpson [17], B, > 0 is a necessary 
and sufficient condition for all roots of (3.42) to have negative real part, 
and hence sufficient for the local asymptotic stability of an interior 
equilibrium. This follows from the fact that, in this case, the characteris- 
tic equation of V,( E*) satisfies all other conditions of the Routh-Hurwicz 
criterion. As in [17], 

Therefore, two species competing for two per$ectly substitutable resources 
will coexist stably at equilibn’um if at that point each competitor removes at 
a higher rate that resource which contributes more to its own rate of growth. 

Finally we study a global property of the model. In the following, let 

THEOREM 3.16 

(i) Assume that gi(l, 1) > Di, i = 1 and 2. Assume also that E, is 
globally asymptotically stable with respect to all solutions initiating in x for 
i = 1 and 2 and that .FI(S,,R,) > D, and cF#,,R,) > D,. Then system 
(3.36) is uniformly persistent with respect to all solutions for which x,(O) > 0 
and x,(O) > 0. 

(ii) Assume that FJl,l) > D,, that E, is as in (8, and that FI(S,, 
R2) > D,. Assume also that no equilibrium of the form E, exists. Then 
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system (3.36) is uniformly persistent with respect to all solutions for which 
x,(O) > 0 and x,(O) > 0. 

Proof (i) Since gJl,l) > Di, i = 1 and 2, by Theorem 3.6, at least 
one Ei exists for each i = 1 and 2. Identify (S, R, x1, x,)-space with Rt, 
and choose X = (S(O), R(O), x,(O), x,(O)) E kt. By Theorem 3.2(i), fin(&) 
is a nonempty, compact, invariant set with respect to (3.36). 

By an argument similar to that given in Theorem 3.8, it follows that 
any point in Ln(X) must satisfy liminf, ~oc S(t) > 0 and liminf, ~Io 
R(t) > 0. Therefore, to show that (3.36) is persistent, it remains to show 
that lim inf f ~ oc x,(t) > 0, i = 1,2. 

Note that E, is globally attracting with respect to all solutions 
initiating in YO. By an argument similar to that used in Theorem 3.8, 

E, @ Ln(X). 
Suppose {E,) E 0(X). Since F@i,R,) > D,, E, is an unstable 

hyperbolic critical point, and therefore dim[M’ (E,)] < 4. Since M+ 
(E,)x~;, dim[M+(E,)]>3. Therefore, M+(E,)=q and hence does 
not intersect I%:. This implies that {E,) # n(x). Therefore, by the 
Butler-McGehee lemma (see Lemma Al of [91), there exists P E 
CM+ (E,)\IE,})n W&> and hence cl B(P) c n(x). But then, as 
t + -00, B(P) either becomes unbounded or leaves the positive cone or 
cl B(P) I{E,,}. In any case, we have a contradiction, and therefore 
{E,} e CN&>. Similarly, {E,} e N&J. 

Suppose (3.36) is not persistent. Then there ezists a point P E 0(x) 
such that P E% for some i E (0,1,2}. Now P E a(&) implies that 
cl @‘(P) c fl(&>. However, if P’ EY, then {E,} E cl H(P), because E, is 
globally attracting with respect to all solutions initiating in the set z, 
implying that {EJ E fin(&), a contradiction. Thus liminf, ho: x,(t) > 0, 
i = 1,2, and so (3.36) is persistent. It now follows from the main result of 
[7] that (3.36) is uniformly persistent. 

(ii) The proof follows from Theorem 3.9(ii) and is similar to the proof 
of (i). n 

Note that uniform persistence of (3.36) implies immediately that 
there is at least one coexistence equilibrium. 

Note also that if m,, > Di, mR > Di, Di = 1 for i = 1 and 2 or if 

*(S, R) = p,(S) and si(S, R) = q,(R) for all S z= 0 and R > 0, i = 1,2 
(regardless of the relative values of ms,, mR,, and Di and with Di not 
necessarily equal to l), then by Theorem 3.9(i) and Theorem 3.1O(ii), 
respectively, Ei is globally asymptotically stable with respect to all 
solutions initiating in {(S, R, x,, x,) E Rt: xi > 0, xj = 0}, where i # j E 
{1,2). Therefore, Theorem 3.16(i) gives necessary and sufficient condi- 
tions for uniform persistence in these cases. 
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4. SUMMARY OF RESULTS AND DISCUSSION 

In this section we summarize the results of our analysis in terms of 
the original unscaled variables, both for model I of Leon and Tumpson 
and for model (3.1). We then compare the dynamics with the dynamics 
of the classical growth and two-species competition models and the 
corresponding models for perfectly complementary resources. For con- 
venience, we retain the notation of Section 3 for the equilibria E,, E,, 
and E*. However, it is to be understood that by the scaling (3.20), the 
S and xi components of the equilibria of (3.1) should be multiplied 
by S” and the R components of the equilibria of (3.1) should be 
multiplied by R”. To facilitate the description of the quantities govern- 
ing the dynamics of (3.1), we assume that the volume V of suspension in 
the growth vessel is 1 cubic unit. In (3.1), D, D,, and D, are divided by 
the actual volume I/. 

4.1. MODEL I OF LEdN AND TUMPSON ADAPTED TO THE 
CHEMOSTAT 

We obtained our most complete results when the amount of each 
resource consumed was assumed to be independent of the concentra- 
tion of the other resource, that is, q(S, R) = p,(S) and 9JS, R) = qi(R), 
for i = 1 and 2. First we considered the one-species growth models [the 
(S, R, xi> subsystems of (3.1), i E (1,211. We showed that for each i E 
{1,2}, xi avoids extinction if and only if %‘&!P, R”) > Dj. In other words, 
if a species cannot consume enough resource to compensate for the rate 
Di at which it is being removed, even if the growth vessel is maintained 
at the input concentrations S” and R” of resources S and R, then that 
species will become extinct. Otherwise, there exists a unique one-species 
survival equilibrium that is globally asymptotically stable. Next we 
considered the two-species competition model in this setting. In Table 
2, we summarize the criteria for existence of the equilibria in the 
nonnegative cone, as well as the criteria that guarantee local asymptotic 
stability of these equilibria. For the two-species competition model, if 
5?‘JS”, R”) < Dj for i = 1 and 2, then E,, the washout equilibrium, is 
globally asymptotically stable. On the other hand, Z&s,, R2) > D, and 
F*(s,, R, ) > D, is necessary and sufficient for solutions of the two- 
species competition model to be uniformly persistent, thus ensuring that 
both species survive in the presence of competition, regardless of the 
(positive) initial concentrations. 

Next, in this setting, we compare the dynamics of growth on perfectly 
complementary resources with the dynamics of growth on perfectly 
substitutable resources. In both cases either the wash out equilibrium is 
globally asymptotically stable and hence the carrying capacity of the 
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TABLE 2 

Summary of Local Stability Analysis of (3.1ja 

Critical 
point 

Existence 
criteria 

Criteria for 
asymptotic stability 

4, Always exists s”,W, R”) < D, / V and 
.f?&Y’, R”) < D, / I’ 

- - 
4 F&Y’, R”) > D, / V ?72;(S,,R,)<D2/f’ 

~52 F2,(So, P) > D, ,’ V ~,(s,, &I < D, / v 

E* (not necessarily (i) %‘@,, ‘p2(s2)) < D, /V’ (ii) holds, and either 

unique) and F22(sI, cp,(s,N < D, / V I cp;Ls*)l > I~;cs*)l 
or if S, < S, 

(ii) glC$, (~~6~)) > D, / V 

and F22(5,, cp,(sl)) > D, /I/ 

or I cp$S*)l < I cp;(S*)l 
if S, > S;. 

“*(S,R) = p,(S) for all R a 0; 9Zt(S, R) = q,(R) for all s > 0. 

environment is zero, or there exists a one-species survival equilibrium 
that is globally asymptotically stable, and the species component of the 
equilibrium gives the carrying capacity of the environment. The major 
difference in the criterion that determines whether the species will 
survive or wash out is precisely as expected. For perfectly complemen- 
tary resources, both resources must be above some threshold (see Table 
3 of Butler and Wolkowicz [5]), whereas for perfectly substitutable 
resources, the threshold (see Theorem 3.10) depends on the combined 
amount of the resources. The classical, or logistic, model due to Verhulst 
predicts that as long as the initial population is positive, the population 
size will approach the carrying capacity of the environment, which must 
be known in advance because it is a parameter in the model that is 
always assumed to be positive. Thus an advantage of both of the 
resource-based growth models over the classical model is that they 
predict the carrying capacity of the environment. 

Using graphical techniques to examine the local stability properties 
of two-species competition for two resources, Tilman [28] conjectured 
that the type of resources for which competition occurs will not lead to 
major, qualitative differences in the ecological patterns that can result from 
competition between two species for two resources. Butler and Wolkowicz 
151, who extended the work of Le6n and Tumpson [17], in the perfectly 
complementary resource case, found that in the case of monotone 
response functions, each of the outcomes of the classical theory for 
two-species competition is possible. We have shown that each of the 
outcomes for perfectly complementary resources is also possible in the 
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perfectly substitutable case. Competition-independent extinction, an 
impossibility in the classical model, can occur in resource-based models. 
Both for perfectly complementary resources and in the classical model, 
coexistence always occurs at a globally asymptotically stable critical 
point. For perfectly substitutable resources in this setting, we were only 
able to show uniform persistence. (Note that uniform persistence of a 
system implies that at least one coexistence equilibrium exists.) In fact, 
multiple interior equilibria are possible, and so coexistence need not 
always occur at a globally asymptotically stable equilibrium. It is even 
possible for the outcome to be initial condition dependent in the sense 
that for certain initial conditions there is coexistence whereas for others 
there is competitive dominance, that is, one population drives the other 
population to extinction. 

4.2. MODEL (3.1) 

While Tilman’s conjecture appears to be true for the most part, there 
seems to a be a wider range of possible dynamics in the perfectly 
substitutable case. What also seems to make a difference is the strategy 
used for consumption-in particular, whether or not the concentration 
of each resource affects the amount of the other resource consumed. 
We extended model I of Leon and Tumpson to incorporate handling 
time in the sense of Holling [12] and hence allow the concentration of 
one resource to act as a competitive inhibitor on the consumption of the 
other resource [see assumptions (3.5)-(3.1511. Here it becomes impor- 
tant to consider the relative values of m, and mR,, the maximal growth 
rates on resource S and R, respectively, and D,, the combined washout 
and specific death rate. When the maximal growth rate of population xi 
on one resource, say resource S, is larger than the maximal growth rate 
of population xi on the other resource, then there is a threshold, SF, for 
resource S. (See Figure 1.) If the concentration of resource S is below 
this threshold, increasing the concentration of either resource is benefi- 
cial to that population. However, once the concentration of resource S 
is above this threshold, so that the maximal growth rate on resource R 
is exceeded by consuming only resource S, increasing resource S is 
beneficial, but the presence of resource R becomes detrimental to that 
population. 

In this setting, we again considered the one-species growth model. As 
in model I of Leon and Tumpson, we found that Z7i’i(S”, R”) > D, is 
necessary and sufficient for this model to be uniformly persistent, 
regardless of the relative values of m,,, mR,, .and Di. If m, a Dj and 
mR 2 D,, so the rate of removal from competition does not exceed the 
maximal growth rate for each resource, then if .Yj(SO, R”) < Di, the 
environment is not rich enough to support population xi, and it is 



COMPETITION FOR SUBSTITUTABLE RESOURCES 177 

driven to extinction. On the other hand, .Yj(SO, R”) > Di is a necessary 
and sufficient condition to ensure that a unique one-species survival 
equilibrium Ei exists. We have only shown that the criteria for the local 
asymptotic stability of E, (see Table 2) apply under the added assump- 
tion that 5Y1’,(S0, R”) G 2 D. However, if the intrinsic death rate is assumed 
to be insignificant compared to the dilution rate (Di = D>, then Ei is 
globally asymptotically stable with respect to the interior of (S, R, xi)- 
space. 

The growth model exhibits more unusual dynamics when m,, < Di < 
mR or mR < Di cm,,. If, in addition, FC;(S”, R”) < Di, there may or 
may not exist a one-species survival equilibrium, and if one exists it 
need not be unique. In fact, we provide an example (see Remark 3 
following Theorem 3.7) in which mR, < Di < m,,, and LFi7i(So, R”) < Di 
so the washout equilibrium is locally asymptotically stable. By treating 
the ratio of the growth yield constants, &/rli, as a bifurcation parame- 
ter while fixing all of the other parameters in the model, one can obtain 
either zero, one, or two one-species survival equilibria. In this example, 
for at least one one-species survival equilibrium to exist, 5, /nj must be -- 
sufficiently large. To see this, consider all concentrations S, R of -- 
resources S and R satisfying FJS, R) = D,. Since the concentration 5 
of resource S is above the threshold SF, resource R is detrimental. One 
would expect that the faster resource R is depleted the better. If the 
ratio &/ni is too small, then 

(R” -@D/Y > (L’Q%(~,R) 
-- > 

(SO-s)D/V (l/&)$(&R) 
(4.1) 

and so the ratio of the net supply rate of resource R to that of resource 
S exceeds the ratio of the consumption rate of resource R to that of 
resource S. As species x, cannot deplete resource R quickly enough, 
no one-species survival equilibrium exists. In this example, if at least 
one one-species equilibrium exists, then at least one of them is locally 
asymptotically stable, and so whether the species survives or washes out 
depends on the initial conditions. Multiple one-species survival equilib- 
ria and initial condition dependent survival is not possible in any of the 
other growth models discussed in this paper. 

We then considered the two-species competition model. If, for each 
species, either (both breakeven concentrations A, and k, are finite and 
ZYi(S”, R”) < Di) or (Ai = 00 and pi > R”) or (hi 2 S” and pi = m), then 
E,, the washout equilibrium, is globally asymptotically stable; that is, 
both species become extinct. On the other hand, we found that if E, 
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and E, are globally asymptotically stable in their respective three-di- 
mensional subsystems, then a necessary and sufficient condition for the 
two-species competition model to be uniformly persistent is that 
%‘,(!?,,R,) > D, and gZ(T1,R1) > D,. We examined the existence and 
stability of coexistence equilibria under the assumption that m, 2 Di 
and mR > Dj for i = 1 and 2. The results in this case are summarized in 
Table 2: [Note that the condition for the local asymptotic stability of E* 
only ensures that the constant term in the characteristic equation of the 
variational matrix of (3.1) evaluated at E* is positive.] We first showed 
that if a coexistence equilibrium exists, then E, and E, exist and are 
unique. We then characterized those resource concentrations that yield 
coexistence equilibria. Using this characterization, we proved that if E, 
and E, exist and either both repel into or both attract from the interior, 
then at least one coexistence equilibrium exists. We also showed that 
g,(S,R) and .YZ(S, R) can be chosen so that these conditions on the 
stability of E, and E, yield precisely one coexistence equilibrium. In 
particular, when the subsistence curves are linear, as in Waltman et al. 
1311, we found that if both E, and E, attract from the interior, then E* 
is unique and unstable, and if both E, and E, repel into the interior, 
then E* is unique and the condition for the local asymptotic stability of 
E*, given in Table 2, is satisfied. Also, if E, and E, exist and one 
attracts and the other repels with respect to the interior, no coexistence 
equilibrium exists. However, if the subsistence curves are nonlinear, 
multiple coexistence equilibria are possible, and, as in model I of Leon 
and Tumpson, the outcome of competition may depend on the initial 
conditions. 

As in the growth model, the competition model exhibits more unusual 
dynamics when m, < Di < mR or mR < Di < m, for at least one i. We 
provided an examile (see the ‘remark’ following Theorem 3.12) exhibit- 
ing the following characteristics. For population x1, mR < D, < msl, 
and the ratio ,$i /vi is small enough that (4.1) holds. Therefore, in the 

absence of population x2, the washout equilibrium E, is globally 
attracting and population x1 dies out. On the other hand, for popula- 
tion x2, ms2 > D, and m > D,. Since Z?JS’, R”) > D,, E, is unsta- 
ble, and there exists a u&ue one-species survival equilibrium of the 
form E, that is locally asymptotically stable with respect to (S, R, x2)- 
space. At the resource concentrations of E,, g?,<$, R2) > D,, and so E, 
is unstable with respect to (S, R, x1, x,)-space. Also, A, < A,, and so 
population x1 would outcompete population x2, driving it to extinction 
if no resource R were available. Under these conditions, the subsis- 
tence curves intersect uniquely. To ensure that the corresponding 
solution of (3.37b) satisfies XT > 0 and xz > 0, so that a unique coexis- 
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tence equilibrium E* exists, the ratio t2 /v2 was chosen to satisfy 

(W+%(S*,R*) > (R”-R*)D/V 
(l&)P&s*,R*) (S” -S*)zI/V. 

Thus, population x2 depletes resource R quickly enough that popula- 
tions x, and x2 coexist, even though population x1 cannot survive in 
the absence of competitor population x2. Thus, in some circumstances 
it seems that a population can be better off with a competitor than 
without one. 
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