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A MATHEMATICAL MODEL OF THE CHEMOSTAT WITH A GENERAL
CLASS OF FUNCTIONS DESCRIBING NUTRIENT UPTAKE*

G. J. BUTLERY AND G. S. K. WOLKOWICZ#

Abstract. A model of the chemostat involving n microorganisms competing for a single essential,
growth-limiting substrate is considered. Instead of assuming the familiar Michaelis-Menten kinetics for
nutrient uptake, a general class of functions is used which includes all monotone increasing uptake
functions, but which also allows uptake functions that describe inhibition by the substrate at high con-
centrations.

The qualitative behaviour of this generalized model is determined analytically. It is shown that the
behaviour depends intimately upon certain parameters. Provided that all the parameters are distinct (which
is a biologically reaonable assumption), at most one competitor survives. The substrate and the surviving
competitor (if one exists), approach limiting values. Thus there is competitive exclusion. However, unlike
the standard model, in certain cases the outcome is initial condition dependent.

1. Introduction. The chemostat is a laboratory apparatus used for the continuous
culture of microorganisms. It can be used to study competition between difterent
populations of microorganisms for a growth-limiting substrate, and has the advantage
that certain of the biological parameters presumed to influence competitive outcome
can be controlled by the experimenter. In this paper we consider a deterministic model
of purely exploitative competition between n populations of microorganisms for a
single, essential, growth-limiting nutrient, in a chemostat with constant input and
wash-out rate. Our purpose is to show that for any “realistic”’ functions describing
nutrient uptake rates for the competing microorganisms, the principle of competitive
exclusion holds. That is to say, at most one population of microorganisms survives.
Furthermore, the system always asymptotically approaches an equilibrium state. Our
results may be regarded as extending those of Hsu, Hubbell and Waltman [16] and a
result of Armstrong and McGehee [3]. The novelty of this work is that in allowing
very general nutrient-uptake functional responses, the competitive outcome becomes,
in some cases, initial condition dependent. This is in contrast to the references cited
above, but has been noted experimentally and by numerical simulation in the case of
nutrient inhibition [1], [25], [30], of which we give a brief discussion later. For a more
detailed account of the chemostat and related experimental results, we refer the reader
to [11], [16], [17], [21], [23], [24], [29].

This paper is organized in the following manner. In § 2 we present the model and
some background remarks. Section 3 contains a stagtement of the main results. However,
for clarity of presentation, the proofs of these results are deferred to § 5. Proofs of the
preliminary results and technical lemmas are given in § 4. We conclude with a discussion
and an application in § 6.
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2. The model. We shall consider the following model of the chemostat:

S'(t)= (8"~ S(1)) D~ _gl *{0p(S(0)

(2.1) xi(t) =x()(-D+p(S8(1)), i€l
S(0)=5,=0, x,(0)=x,>0, i€l

where I={1,-- -, n}.

In these equations, x;(¢) denotes the concentration of the ith population of
microorganisms at time ¢; S(¢) denotes the concentration of substrate at time ¢; p:i(S)
is the function that represents the rate of conversion of nutrient to biomass, i.e. the
per capita growth rate of the ith population as a function of substrate concentration;
Y: is a growth yield constant, and we assume p,;(S)/y; represents the substrate-uptake
function for the ith population; S° denotes the concentration of substrate in the feed
bottle; D denotes the input rate from the feed bottle containing the substrate and the
wash-out rate of substrate, microorganisms and byproducts from the growth chamber.
Thus S°D represents the input rate of substrate concentration.

The system (2.1) describes a chemostat in which n populations of microorganisms
compete exploitatively for a single, essential, growth-limiting substrate. It is assumed
that the substrate is nonreproducing, the input concentration and the dilution rate are
constant, and there is perfect mixing in the growth vessel so that substrate and
microorganisms are removed in proportion to their concentrations. The individual
death rate of any species is considered insignificant compared to the dilution rate, and
it is assumed that growth rates adjust instantaneously to changes in the concentration
of substrate. Furthermore we assume that the substrate-uptake rate is proportional to
the rate of conversion to biomass. To motivate the conditions that we shall place on
the uptake functions p;(S), we give a brief account of the development of the model.

Volterra, in 1928 [28], appears to have been the first to use a mathematical model
to show that under certain conditions, the coexistence of two or more populations
competing for the same limiting resource is impossible. In his model, he assumed a
linear relationship between the amount of substrate present and the specific growth
rate for each of the competing populations; in the context of (2.1) this requires the
functions p;(S) to be linear functions. Monod, in 1942 [21], formulated a model which
featured the dependence of microbial growth rate on the concentration of the limiting
substrate, as a data-fitting curve which later was interpreted in terms of Michaelis-
Menten kinetics. A theoretical derivation of the same model involving a substrate and
a single population is given, for example, in [13]. An extension of this basic model to
several competing populations was given by Taylor and Williams [27]. In these models
there is a saturation effect at higher resource levels; p;(S) takes the form mS/(a;+S),
where m; and q; are positive constants. A complete global analysis of this model was
given by Hsu, Hubbell and Waltman [16] and Hsu [15]. They showed that at most one
of the competing populations survives, the one whose “Michaelis-Menten constant”’
a;, is smallest in comparison with its intrinsic growth rate, and that the dynamical
system has an equilibrium point which is globally stable for solutions with positive
initial conditions. This result was confirmed experimentally by Hansen and Hubbell
[11]. Armstrong and McGehee [3] extended these theoretical results to models with
arbitrary, smooth, monotone increasing uptake functions p;(S). An example of such
functions is given by the Holling type III multiple saturation response of the form
pi(S) =msS?/(b;+ S)(c;+S), see [17].
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A number of authors have pointed out that certain substrates may be growth-
limiting at low concentrations and growth-inhibiting at high concentrations; for
example there is inhibition of Nitrobacter by nitrite and of Nitrosomonas by ammonia
[17]. This results in nonmonotone uptake functions. Andrews [1] and Yang and
Humphrey [30] discuss several specific models of inhibitory kinetics. Bush and Cook
[5] give an analysis of such a model involving one substrate and one population of
microorganisms, using a general inhibition function. Aris and Humphrey [2] give an
analysis of a model of one substrate and two competing microorganisms, using a
specific functional form of inhibitory kinetics proposed by Boon and Laudelout [4],

romn (1412

With inhibitory kinetics, each competing population of microorganisms has a
lower threshold level of substrate below which it cannot grow (irrespective of competi-
tion) and an upper threshold level of substrate above which substrate inhibition prevents
growth.

Guided by this, we make the following assumptions concerning the functions p;
in our model equations (2.1):

(2.2) pi:RT>R";
(2.3) p: is continuously differentiable;
(2.4) p:i(0)=0;

and there exist uniquely defined positive extended real
numbers A; and w,, with A; = u;, such that

pi(S)<D if SE[A;, wil,
2.5) and
pi(S)>D if Se (A, w).

With inhibition kinetics in mind, A; and u; represent the break-even concentrations
of substrate referred to above. But it should be noted that we allow A; and/or u; to
be equal to +co so that our results also apply in the case of any monotone uptake
functions and in particular, in the case of Michaelis-Menten kinetics.

It will be evident from the method of proof that we could consider an even more
general class of functions p;; it is partly for the sake of clarity of our arguments and
partly for the sake of biological reality that we impose conditions (2.2)-(2.5) above.
Again, for the sake of clarity, we make two further assumptions of a generic nature:

(2.6) if A; (or w;) is finite, then pj(A;) # 0( pi(u;) #0);

(2.7) all A, u; (other than those which are infinite) are distinct from each other
and from S°.

Note that in the definition of (2.1), we assume x;,>0 for all i€ I This involves
no loss of generality since if x;o =0 for some i€ I, then x;(¢) =0 for all t=0 and that
population can be eliminated from consideration.

3. Statement of results. From now on (except in Theorem 3.6 where we relax
(2.7)), we assume that the functions p; satisfy (2.2)-(2.7). First we note that (2.1) has
positive, bounded solutions, which is a prerequisite for any reasonable model of the
chemostat.
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THEOREM 3.1. All solutions S(t), x;(t), i€ I, of (2.1) are positive and bounded for
t>0.

The next result concerns competition-independent extinction of a population. It
states that if the conversion rate of the ith organism is less than the dilution rate, for
all nutrient densities below the input concentration, then that organism dies out.

THEOREM 3.2. IfA; = S°(or A; = +0), then lim,_, », x;(t) = 0 for all solutions of (2.1).

Henceforth, we shall assume that the populations are labelled so that

(3.1) AM<A<---<A,<S°=), v+1=j=n,

where 0= » =n. As a consequence of Theorem 3.2, x, through x, are the only com-
petitors that have a chance of surviving. If » =0, the system clearly crashes, i.e. all
populations of microorganisms become extinct and the substrate concentration conver-
ges to S°.

To describe our results on the competitive outcomes of the system (2.1), the
following definitions will be useful.

Let Q=U!_; (A, wi). (If v=0, let Q=(.)

From (2.7) and (3.1) it follows that every connected component of Q is an open
interval of the form (A; u), where 1 =i= k. Evidently, for each j, | =j=, A; and y;
belong to the closure of exactly one and the same component of Q. Note that if (Asy i)
is a component of Q, then for any time 7 for which S(7) € (A; ), the concentration
of at least one population of microorganisms is increasing.

Now we define

(3.2) T={A: A <S% U {g: u, <S%.

It will be convenient to relabel the elements of ' as vy, <y, < - - * <y, Note that k =2v.
The following results show that solutions of (2.1) always have limiting behaviour.
THEOREM 3.3. (a) For any solution of (2.1), lim,, S(t) =7, where v is either S°

or is the endpoint of a component of Q.

(b) A necessary condition for lim,_, ., S(t) = y, where v is the endpoint of a component
of Q, is that y= S°. If lim,_,., S(t) = v, where vy is such an endpoint, then lim,_ x,(t) =
y:(8°—=y) if y=A, or w;, and lim,. x;(t) =0 for all other j.

(c) A necessary condition for lim,.. S(t)=S° is that S°¢ Q. If lim,.. S(t) = S°,
then lim,, x;(t) =0 for all i.

In fact, for almost all solutions of (2.1), lim,,., S(¢) = S° or A, where A, is the left
endpoint of a component of Q. More precisely, we have the following theorem, which
is the main result of this paper:

THEOREM 3.4. Let A denote the set of left endpoints of components of Q, together
with S°, if S°¢ Q. With the exception of a set of initial conditions of Lebesgue measure
zero, all solutions of (2.1) satisfy

(3.3) lim S(t) =1, vyeEA
t—>00

with the corresponding asymptotic behaviour: lim,.« x;(t) = y:(S°—=A;), lim,, X;(¢) =0,
j#i if y=A;; and lim,_,coxj(t)=0,jeIif*y=S°.

Conversely, for each ye A, there is an open, nonempty set of initial conditions
for which the solutions of (2.1) satisfy (3.3).

COROLLARY 3.5. If Q is connected, then for all j =2 lim,_ x;(t) = 0. If, in addition,
S°e Q, then the critical point (A, y,(S°—A,),0, - - -, 0) is globally asymptotically stable
for (2.1).
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Corollary 3.5 applies to all models for which the functions p; are monotonically
increasing (actually only p, need be monotonically increasing), as well as those for
which either the input concentration or the wash-out rate is sufficiently small.

The exceptional set mentioned in the statement of the above theorem consists of
the stable manifolds of the (unstable) critical points (S, x;,* * +, x,,) where S= w,,
X = P(S°— i), x;=0,j # k; and p, is a right endpoint of a component of Q.

In all cases then, at most one competitor survives and the substrate and surviving
competitor approach limiting values. Competitive exclusion therefore applies with the
proviso that the outcome of the competition may be initial condition dependent.

If for the moment, we relax the generic assumption (2.7), i.e. no longer require
that all A; and u;’s be distinct from each other and from S°, coexistence is possible
(at least in a weak sense) as is suggested by the following theorem.

THEOREM 3.6. For any solution of (2.1), lim,.,., S(t) =y where either y=S° or vy
is the endpoint of a component of Q. If y=S°, then lim,. x;(t) =0, j€ I Otherwise
lim, o (¥, p X:(t)/y:) = S°—y where ®={i: \,=1vy or u;=7v}, and lim,., x;(¢)=0 if
neither A; nor y; is equal to vy.

4. Lemmas and proofs of preliminary results.
Proof of Theorem 3.1. Let z(t)=S(t)+Y,_, (x:(t)/y:). From (2.1), we have

4.1) 2'(t)=(8°-z(t))D
from which we obtain
(4.2) 2()=S°(1—e P)+z,e ™

where z, = z(0). It is clear from (2.1) that the positive (S, xi, - - -, X,,) cone is positively
invariant. Thus solutions are positive for all >0 and so, by (4.2), are bounded.

The following corollary is immediate from (4.2).

COROLLARY 4.1. The n-dimensional simplex,

Ef={(S,x1,~~~,x,,): S, X, , X%, 2058+ ) $=S°},
i=1)i

is a global attractor for (2.1).
Proof of Theorem 3.2. Let (S(t), x,(t), - -, x,(t)) be a solution of (2.1). Suppose

that S®= A, <o. From Corollary 4.1 it follows that for each & > 0, there exists T = T(¢)
such that

(4.3) S° ——<S(t)+ Z il )<S°+ t=T(e).

2y; i=1 Y 2y
Since p;(S)—D<0 for 0=S=S°-¢/2y, we have §=max{p(S)—D:0=S=
S°—¢e/2y.}<0. If S(t)=S°—¢/2y; for all sufficiently large ¢, then (4.3) implies that
x;(t)= ¢ for all large t. If S(t)=S°—¢/2y; for all sufficiently large ¢, then we have
xi(t) = 8x;(¢t) for all large ¢, and again we shall have x;(t) = ¢ if ¢ is large enough. If
there is a sequence t, > % with S(t,)=S°—¢&/2y, and

€
=S8'-—, ban <t<trn+1,
2y;
S(1)
£
= SO_ bnr1 <t<lynso



CHEMOSTAT WITH GENERAL UPTAKE FUNCTIONS 143

we have X;(t) = & on [£yp+1, tan+2] and x}(¢) <O 0N (30, trns1), 50 X;(t) = & 0N (L2, Lrns1)s
also. Thus in all cases, we have x;(t)=¢ for all sufficiently large ¢ It follows that
lim, . x;(t) =0.

If A, =0, then p;(S)— D <0 for 0= S <oo. By Theorem 3.1 S(¢) is bounded above
by o, say and so n;=max {p,(S)—D: 0= S=0}<0. Since 0=5(¢)=o0, for all t we
have x!(t) = nx(t), and so lim, x;(¢) =0.

The following lemma describes a condition that guarantees convergence of the
substrate to one of the break-even concentrations. An analogous result was proved in
[16], based on a result of R. Miller [20]. Since the proof of our lemma is similar, we
shall omit it.

LeEMMA 4.2. Let (S(t), x,(t), - - -, x,(t)) be a solution of (2.1). Suppose that for
some i, x;(t) converges monotonely to x¥>0 as t->c. Then lim,,, S(t) exists and is
equal either to X; or to u;.

In the event that S(t) converges to a limit as ¢ - o0, then it must be to S° or to
one of the break-even concentrations, and the population biomasses have appropriate
limiting behaviours. This is the content of the next lemma.

LemMma 4.3. Let (S(1),x,(1),- -, x,(t)) be a solution of (2.1). Suppose that
lim,,S(t)= y. Then

(a) y=S° or is the endpoint of a component of Q.

(b) If y=S° then lim, o x,(t)=0, i€ L

(c) Ify=A, or u, the endpoint of a component of Q, then lim,, o, x;(t) = y:(S°— 1),

lim,,o x(2)=0, j#i.

Proof. (a) From Corollary 4.1, we know that 0< y=S°. Suppose that (a) does
not hold. Then either y € (A;, u;) for some i, or there exists o> 0 such that [y — o, ¥ + €o]
is disjoint from Q (closure of Q).

In the former case, A;<S(t)<p; for t sufficiently large, which implies x; is
monotone increasing. By Lemma 4.2, it follows that lim,. S(#) is equal either to A;
or w; contradicting vy € (A;, ;).

In the latter case, we shall have p;(S(¢))— D <0 for all large ¢, for all i, so all the
x;(t) are eventually monotone decreasing. If they all decrease to zero, then we have
lim,. S(¢) = S° by Corollary 4.1; otherwise we may apply Lemma 4.2 and deduce
that lim,., ., S(t) = A; or u; for some j. But this contradicts [y —&o, ¥+ g0]N Q =. Thus
(a) must hold.

(b) Follows at once from Corollary 4.1.

(c) If y=A, or u; the endpoint of a component of Q, then for all j # i, we have

xj(t) <O for ¢ sufficiently large. If we had lim,.» X; £(1)>0, then lim,, o S(t) = A; or y;
by Lemma 4.2, which is a contradiction. Thus llm,_,oo x;(t)=0 for all j#i That
lim, o x;(t) = :(S°— ) now follows from Corollary 4.1.

Recall that the simplex, # ={(S, X1, * =, X): 8, X1, * =+, X, Z0; S+X7_, %/ y; = 8%
is globally attracting for the system (2.1) (and therefore posmvely invariant). Since
every bounded trajectory is asymptotic to its omega-limit set, it is evident that the
dynamics of (2.1) restricted to & will provide the key to understanding the general
behaviour of (2.1). It will be convenient to introduce the following notation for the
positively invariant subsimplices of :

Fu={(S, x1,**+,x,)€F: x,>0 if and only if he H}

defined for every subset H of I Note then that ¥ =¥, Accordingly we denote the
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system (2.1) restricted to these subsimplices as:

s = (55D~ £ 28 p s,

1

xi()=x(t)(=D+pi(S(1))), i€l

(2.1)3)1_1
S(O)=S()§O, xi(0)=x,-0> O, ie H, x,-0=0, iE H.
So+ ¥ 20— g0
i=1 Yi

We also define Qy = (U e (Ap, 1)) N Q, the analogue of Q with respect to (2.1)g,,.
Note that solutions of (2.1)¢ are positive for all >0 and satisfy,
n : t
(4.4) s+3 D _o s
i=1

The next sequence of lemmas is directed at analysing (2.1)g.

We will be mainly concerned with showing that on the positively invariant linear
manifold &, the concentration of substrate, S(¢), eventually becomes trapped either
outside of Q or inside a component of Q between particular values of I', forcing
monotonic convergence of the concentration of each competitor, x;(¢), and hence
convergence of S(t).

LEMMA 4.4, Let (S(t), x,(t), - - -, x,(t)) be asolution of (2.1)«. Let y be the endpoint
of a component of Q. Suppose there exists =0 with S(7)=+. Then S'(t)>0 orn=1
and S'(7)=0.

Proof. Since vy is the endpoint of a component of Q, xi(7)=0 for some i and
xj(7) <0 for all j# i. The result now follows from (4.4).

The following lemma is an immediate consequence of Lemma 4.4.

LEMMA 4.5. Let (S(t), x,(¢), - - -, x,(t)) be a solution of (2.1)y and let (A, u;) be
a component of Q. Then, for all sufficiently large t, precisely one of the following occurs:

(a) S(t)<A,;, or

(b) i=S(t)=p,, or

(c) S(t)>pw;

At this point we digress by stating and proving a result for the system (2.1). We
do this here, to emphasize that in this special case the proof is fairly straightforward.
However, the result is quite general and natural from a biological viewpoint. It states
that if the competitor with the lowest break-even concentration level A,, also has its
largest break-even concentration level u, (level above which it is inhibited) greater
than the input concentration rate S°, then there is a globally asymptotically stable
critical point. This applies in the case that u, =+0c0 and so it generalizes results of
Hsu, Hubbell and Waltman [16]. More generally, it applies to all models in which the
kinetic growth function p, is monotonically increasing.

THEOREM 4.6. IfA, < S°< u,, then the critical point E, = (A, y,(§°— 1), 0, - -,0)
is globally asymptotically stable for (2.1).

Proof. First we show that the result holds for (2.1)s, where H=1\0 and O is
any index set such that ® = I\{1}. By Lemma 4.4, if there exists 7= 0 suchthat S(7) = A,,
then S’(7) > 0. (In the case that n=1, S'(7) =0 and S(t) = A,.) Therefore, on ¥y, either
S(t)<A, for all t=0 or A,=S(t)=S° for all large t. In the former case all x;(¢)
monotonely decrease. By (4.4), S(¢) must monotonely increase. Since S(t) is bounded
above, it converges and so the result follows by Lemma 4.3(a) and (c). In the latter
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case, x,(t) is bounded above and monotonely increasing. Since this implies that it
must converge to a positive limit, the result follows for (2.1),, by Lemmas 4.2 and
4.3(a) and (c¢).

To show that the result holds for (2.1), it suffices to show that E, belongs to the
omega-limit set, Q, of any solution (S(t), x,(t), - - -, x,(?)) of (2.1), since it is easily
verified that E,, is locally asymptotically stable for (2.1).

First we show that if lim,_. x,(¢) > 0, then E, € (. Suppose lim,_« x,(t)>0. Then
there exists P=(S, &, - -, &) € Q with ¢, > 0. By Corollary 4.1, Pe H, forsome Hc I
with 1€ H, and so by the proof for (2.1)¢, above, E,, belongs to the closure of the
orbit through P and hence belongs to Q).

If we assume lim, ., x,(?) =0, and hence lim,_ ., x,(¢) =0, we derive a contradiction
as follows. Let z(t)=S(t)+Y,_, x(t)/y. By (42), Q<= &, lim, o z(t)= S° and
lim,, o z'(¢) = 0. In this case lim,, ., S(t) = A, (or x,(¢) increases to a positive limit) and
so there exists #, 0 such that for fixed A satisfying A; <A <min (A,, S°), S(t,)=A
and lim,o S'(#%)=0. Now x|(ty)=(—D+p,(S(#)))x,(t,)->0 as k-0, since
limg,e x;(t)=0, and for i=2, xj(t)=cx(t) where c;=—D+pi(S(t))=
—D+maxo=s=;p:(S) <0. Since lim;,, z'(#)=0, it follows that limy.. xi(#)=0
and therefore limy,. X;(t)=0 for i=2. Thus lim;_.. x;(#)=0 for all ie I, which
implies that lim,_. S(t) =S°> X, a contradiction. Theorem 4.6 now follows.

LEMMA 4.7. Let (S(t), x,(t),- - -, x,(t)) be any solution of (2.1)g. Let ycI'. Then
there do not exist t,, t, with 0=1t,<t,, such that

(i) S(t)=S(t,)=y>S(1), fort,<t<t,
and

(i) S'(t,)=0=S'(t,).

Proof. In this proof we adopt the convention that the result of summation over
an empty index set is zero.

Recall that T'={A;: A; <S°}U{y;: u; < S°}, and that the elements of I' have been
relabelled as y, < y,< - * - < v, < 8° The proof will proceed by induction on the index
set {1,2, -, k}.

Let y =7y, =A,, and suppose that (i) and (ii) hold. Since S(t;)= vy, =A,, v, is the
endpoint of a component of Q, and so it follows from Lemma (4.4) that S'(t;)>0,
contradicting (i). Therefore the lemma holds for y=1y;.

Now suppose the lemma is true for y =1, for all m with 1=m=h—1, where
2=h=k Let y=1v, and suppose that (i) and (ii) are satisfied.

Let a; = (pi(y,) — D)/, i€ I Then xi(t;)/y: = axi(t;), j=1,2; i€ I, and so (ii) and
(4.4) imply that
(4.5) - Zl ax;(t) = - '21 ax;(t).

Suppose that y, = A, for some 1= 2 (note this implies n =2). Define J tobe {je I: u; <
A} and L to be {1, - - -, I—1}. Observe that the a; have the following signs:

a;>0, ie L\J,
(4.6)

a;=0, ie(IN\L)UJ

with strict inequality except for i = I Rearranging (4.5) gives

(4.7) =Y a(x(t)-x(t)= ¥ a(x(t)—x(t)).

ie(IN\L)UJ ie(L\J)

By (i), S(t) <A, for t, <t<t, The inductive hypothesis gives S(t) = y,_,, i.e. S(t)=
max (A,_,, max;.; u;), with (by continuity of S(t)) strict inequality in some nonempty
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subinterval U of (t,, t,). Thus for ¢, <t<t,, we have

=0, ie L\J,
(S(t))—D
Pi(S(D) {go, ie(IN\L)UJ
with strict inequality in U, and so
<0, ie L\J,
4.8 i t A t
(4.8) xi(t) x(z){>0, ie(I\L)UJ.

By (4.6) and (4.8), the left-hand side of (4.7) is nonnegative and the right-hand side
is nonpositive, which is possible only if all a; are zero. But only a; is zero and since
n =2 in this case, we have a contradiction.

Now suppose that y,=u, for some L We define K={iel: u,<u}, M=
{ieI: A;> w,}, and rearrange (4.5) to give
(4.9) -2 a(x(t)—x(t)) = ) a;(x;(t;) — x,()).

ieKUM ie IN(KUM)
A similar argument as before gives a contradiction. Thus the induction is complete,
and the lemma is proved.

LemMMA 4.8. Let (S(t), x,(t), - - -, x,(t)) be a solution of (2.1)y4 and let v, ;. be
consecutive elements of T'. Then, for all sufficiently large t, precisely one of the following
occurs:

(a) S(t) < Y, Or

(b) »=S8(t)= 1y, 01

(c) S(t)> v

Proof. If for all t, S(t) €[y, v:+1], then clearly (a) or (¢) must hold. Suppose then
that y, = S(7,) = y,4, for some 7,. If y,= S(¢) =y, for all t= 7, then (b) holds. If
there exists 7,> 7, such that S(7,) <y, then there will exist 7, with 7o= 7, = 7, such
that S(7;) = y,> S(¢) for 7, <t <7, and S'(7,) =0. It follows from Lemma 4.7 that we
must have S(¢) < y,forall t > 7,,1.e. (a) holds. If there exist 7; > 7y such that S(7,) > v,,,
then either S(t) > vy,,, for all t> 7,, in which case (c) holds, or there exists 7,> 7, such
that S(7,) = y,+,, and S’(7,) =0. By Lemma 4.7 again, we must then have S(t) <y,
for all t> 7,. By the preceding argument, we will then have (a) or (b) occurring. This
proves the lemma.

LeMMA 4.9. Let (S(t),x,(t), -, x,(t)) be a solution of (2.1), let (A, ;) be a
component of Q, and suppose that S(t) € [A,, ;] for all sufficiently large t. Then lim, ,,, S(t)
exists and is equal to A; or to ;.

Proof. Let I'y={An: i = A= pi U {pit A = i = ;). Since (A, y;) is a component
of Q, we have A;<S° and so T'; is a nonempty subset of I'. With the labelling used
for I', there exist 7, s such that A; =y, <y, = y, = u; By Lemma 4.8, for each interval
[, ¥1+1], where r=l=s—1, S(t) is either eventually in that interval or eventually
outside it. Since these intervals decompose [A; u;], there is some value of I such that
v = S(t) = .+, for all sufficiently large . If y, = A, say, then v, = u; and so x;(¢) =0
for all sufficiently large t. If y,= pu,, say, then it cannot be that u; < pu, for all g for
which A; =A; < pu,; for otherwise (A, ;) is a component of Q, a contradiction since,
by assumption, (A;, ;) is a component of Q, and y, < w; Thus there exists g such that
M= <pg=Y<Y1=pz = u;, and so x5(¢) =0 for all sufficiently large t. In either
event, therefore, there exists p such that x,(¢)=0 for all sufficiently large t. Since
solutions of (2.1), are bounded, x,(t) converges monotonely to x>0 as t—>00. By
Lemma 4.2, lim,.. S(t) =y (where y=A, or u,).

Now we use Lemma 4.3(a) to deduce that y = A, or u;



CHEMOSTAT WITH GENERAL UPTAKE FUNCTIONS 147

The next lemma describes the asymptotic behaviour of the system (2.1).

LEMMA 4.10. Let (S(t), x,(2), - - -, x,(t)) be a solution of (2.1)g. Then lim,_, ., S(t)
exists and is equal to vy, where v is either S° or is the endpoint of a component of Q. If
y=25° then lim,.« x;(t)=0,je L If y= A, or u,, the endpoint of a component of Q, then
lim, e x;(t) = y:(S°— ), lim,. x;(£) =0, # i.

Proof. By Lemma 4.5, S(t) is either eventually interior or exterior to the closure
of each component of Q. Since Q is the union of its (disjoint) components, either S(t)
is eventually in the closure of some component [A,, u;] or is eventually exterior to Q.
In the first case, Lemma 4.9 gives the result. In the second case, x;(¢) is eventually
decreasing for all i. By (4.4), S(t) is eventually increasing and therefore has a limit as
t->00. Lemma 4.3 now completes the proof.

It is evident that we can replace (2.1)s in Lemma 4.10 by (2.1)4,, where H is any
subset of I, provided we also replace Q by Qy =(U ney (An, wr)) N Q.

5. Proofs of the main results. We introduce the following notation for the critical
points of (2.1):

E,, =(S, x5, ,%): S=A; %=y (S°— A ); 5, =0,1#k,  defined for A, < S°,
E,=(Sx, ;%) S=p; % =y (S°— ) ; x,=0,1#k, defined for u; < S°,
Eso=(S°0,---,0).

We let € denote the set of all critical points of (2.1), i.e.

sg=< U {EM}) u( USQ{EM}) U {Eg}.

Ak<SO <
We will also consider the following subsets of &:
L={E,, : A is a left endpoint of a component of Q}.
R={E,, : u« is a right endpoint of a component of Q}.

%,*_{%\(LURU{ESo}) if $°¢ Q,
~l8\(LUR) if ¢ Q.

In order to prove Theorems 3.3 and 3.4 we first establish the local stability of the
critical points of (2.1). Since this is obtained fairly routinely from standard linearization
procedures, we summarize this result, without proof, in the following lemma.

LEMMA 5.1. All the points in & are hyperbolic critical points (i.e. all the associated
eigenvalues of the linearized system have nonzero real parts). Furthermore,

(i) For the system (2.1), the critical points in L are all asymptotically stable.

(ii) The critical points in R are all unstable, but each has an n-dimensional stable
manifold.

(iii) The critical point (S°,0,- - -, 0) is asymptotically stable iff S°¢ Q. (Note that
S°e 9Q is excluded by the generic condition (2.7).)

(iv) The critical points in the set €* are all unstable. The stable manifold of each
of these points is entirely contained in the boundary of R:*' (which we identify with
(S, xy, -+ +, X,)-space).

The following lemma will be useful. It can be obtained either by the use of
Hartman’s linearization theorem [12] or by the method of isolating blocks [8], and a
proof may be found in Appendix 1 of a paper of Freedman and Waltman [10].

LEMMA 5.2. Let P be an isolated hyperbolic critical point in the omega-limit set
Q(X) of an orbit through X of a dynamical system. Then either V(X )={P}, or there
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exist points P° and P" in Q(X), with P*e W*(P)\{P} and P*e W*(P)\{P}, where
W?*(P) and W*(P) denote the stable and unstable manifold of P respectively.

LEmMA 5.3. (i) No point of the set €* is in the omega-limit set of any solution
of (2.1).

(ii) If a point of the set €\ €* is in the omega-limit set of some solution of (2.1),
then it is the only point in the omega-limit set of that solution.

Proof. Let (S(t), x,(t), - - -, x,(t)) be asolution of (2.1) and let () be its omega-limit
set. Suppose that Pe QN &* Then P is of the form E,,E, or Eg, and $=
{iel: A, <M<} (resp. {iel: \;<u <}, {iel:;<S8°<u;}) is nonempty. By
Lemma 5.1, W*(P) < aR}"". Since the trajectory of (S(t), x,(t), - - -, x,(t)) is contained
in int RY*', Lemma 5.2 yields the existence of a point P* e (W“(P)\{P}) N Q and we
may assume that P“ and the negative semi-orbit through P* are as close to P as we
wish. Let this negative semi-orbit be denoted (S(t), X,(t), - - -, X.(t)), t=0, so that
P*=(8(0), %,(0), - - -, %,(0)). Define # to be {je I: x,(0) # 0}.

If j¢ $ U {I} (if j¢ ¢ in the case that P = Eg), then p;(S(¢))— D <0 for t=0 and
so X;(¢t) is nonincreasing on (—0, 0]. Since X;(¢) >0 as t > —0o, it follows that x;(¢)=0
on (-0, 0] and so x;(0) =0.

On the other hand, there must exist some j € $ with x;(0) > 0, otherwise P* would
belong to W*(P). Hence the trajectory of the solution (S(t), X,(¢), - - -, X,(t)) is in the
relative interior of the subsimplex ¥4 of . Since (Aj u;) N (A, i) # S for all je
F(S°e (A, ;) for all je # in the case that P = Ey), it follows that Qg is connected,
say Qg =(Am, ir). By Lemma 4.10 applied to (2.1),, we have

(5.1) S(t) > A, pas or S°.

(a) Suppose that P=E,,.

We may assume that P* is so close to P that S(t)e( , ;) for all t=0, for all
je #\{I}. We cannot have S(t)> A, for any te (-0, 0], for otherwise there exists
r€(—00, 0] with §'(7)>0 and S(7)e (Aj ;) for all je #, which implies that x;(7)>0,
contradicting §'+Y¥,.4 %;/y;=0. Thus S(t)<A, for all t. Since A, <A;<ur (and
$°> );), we must have S(t)> A, as t>c. By Lemma 4.10 it follows that E, €.

Repeating this argument inductively, we may eventually conclude that E, €(,
where E, € L. By Lemma 5.1, E,, is asymptotically stable for (2.1), so Q={E,},
contradicting E,, € ().

(b) Suppose that P = Ego.

By arguments similar to the above, we find that E, € (), and obtain a contradiction.

(c) Suppose that P=E,,.

An argument similar to that used in (a) shows that S(t)> u, for all ¢ and then
(5.1) implies that lim,, . S(t) =y or S°. Repeating this argument inductively, we
arrive at the conclusion that either E, € () where E, € R or Eso€ (). Suppose that
Esoe Q. If Esoe €*, we are back in case (b) and obtain a contradiction. If Egeg &*, it
is asymptotically stable for (2.1), by Lemma 5.1, so that ) = { Ego}, contradicting E,,, € ).

Suppose that E, € Q, but Q#{E, }. Then (W*(E,)\{E,}) N Q@ # &, by Lemma
5.2. By considering the subsimplex #;,, we find that either E, or Esc€(}, and obtain
a contradiction by the preceding arguments.

This proves the first assertion of the lemma. If Pe ) and Pe L, or P = Ego in the
case that S°¢ Q, then P is asymptotically stable and so } ={P}. If Pe R, then = {P}.
Otherwise we obtain a contradiction as in case (c¢) discussed above. This proves the
second part of the lemma.

Proof of Theorem 3.3. Since & is globally attracting for (2.1), the omega-limit set
Q, of any solution of (2.1) is a union of trajectories lying entirely in ¥, where each
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such trajectory is a solution of (2.1),, for some H < I. By the remark following Lemma
4.10, applied to (2.1), for any H < I, every solution of (2.1)s, converges to a point
in &. Since the omega-limit set is closed, ) must contain a point of &. The result
follows by Lemma 5.3.

Proof of Theorem 3.4. Immediate from Theorem 3.3 and Lemma 5.1.

Corollary 3.5 follows at once from Theorem 3.4.

Theorem 3.6 can be proved using arguments similar to those used to prove
Theorem 3.4.

6. Discussion. We have considered a model of purely exploitative competition
between n populations in a chemostat for a single essential nonreproducing growth-
limiting substrate, which may be inhibiting at high concentrations. Our results predict
that at most one of the competing populations survives, i.e. there is competitive
exclusion. However, the outcome may be initial condition dependent. The global
dynamics of the model are in a sense, trivial, in that all solutions have limiting
asymptotic behaviour. There are a finite number of locally asymptotically stable
equilibria whose domains of attraction partition the (strictly) positive (S, x,, x5, - -, X,)
cone, their boundaries being comprised of the stable manifolds of some of the unstable
equilibria of the system (if all the A; and w; are finite, there are at most 2n + 1 equilibria,
at most n+1 of which are asymptotically stable). These results are not surprising.
According to Fredrickson [9], there is much experimental evidence that “pure and
simple competitors will not coexist indefinitely in a system that is spatially homogeneous
and that is subject to time-invariant external influences”, which is precisely the case
in the biological system we consider.

On the attracting simplex &, we could eliminate S from the model to obtain a
system of interaction between the x;. However, the nonmonotone nature of the functions
p: does not allow this system to satisfy the hypotheses of the competition models
studied by Armstrong and McGehee [3] or by Hirsch [14]. Our results also contrast
with the example given by Nitecki [22] of competition for a single resource, where
competitive exclusion does not hold, and the examples of competition for a single
reproducing resource (prey) in which coexistence occurs for a variety of models with
monotone uptake (predation) responses [6], [7], [18], [19], [26].

Provided that conditions (2.6) and (2.7) hold, our results are easily extended to
models with uptake functions p; that have an arbitrary number of ‘“break-even”
concentrations, instead of the two, (A;, u;) considered in this paper. If these genericity
assumptions are not made, more delicate, but technical, arguments are needed.

We have used the same wash-out rate D for both substrate and microorganism
populations. This is equivalent to assuming that the death rates of the microorganism
populations are negligible compared with the wash-out rate. It would be interesting
to see if similar results hold for different wash-out rates (or death rates), D, Hsu [15]
has carried out the analysis for this situation in the case of Michaelis-Menten kinetics.

To illustrate our results, we consider the following (at least, theoretical) application
to water purification. Here we are motivated by experimental work of Yang and
Humphrey [30]. Suppose that there is one contaminant, say phenol, in the water supply,
and that S°, the input concentration of phenol, is high. Suppose also that certain
microorganisms feed on phenol in such a way that it is growth-limiting at low concentra-
tions, but inhibits growth at high concentration (e.g. Pseudomonas putida and Tricho-
sporon cutaneum). Let A denote an acceptable concentration of phenol in the water
supply and assume A« S°. Suppose that microorganism 1 is harmless and that A, < A
but u,« S°. If the initial concentration of phenol in the water supply is relatively high,
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and microorganism 1 is used alone in an attempt to reduce the phenol level, then it
is likely to wash out of the system and the concentration of phenol would approach
the unacceptable level S°. On the other hand, suppose that microorganism n has
A<, <S8°<pu, If microorganism n is used alone, S(¢) would approach the value
An, which is again unacceptable. However, if we could find microorganisms 2, - - -, n—1,
so that (A, w) intervals overlap in such a way as to form a single component of Q,
containing S°, then we would have lim,.. S(t) =, <A, lim,« x,(t) = y,(S°—A,) and
lim,. x;(¢) =0, j> 1, arriving eventually at a tolerable situation.
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