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ABSTRACT

We study the global dynamics of n -species competition in a chemo-
stat with distributed delay describing the time-lag involved in the con-
version of nutrient to viable biomass. The delay phenomenon is mod-
elled by the gamma distribution. The linear chain trick and a fluctuation
lemma are applied to obtain the global limiting behavior of the model.
When each population can survive if it is cultured alone, we prove that
at most one competitor survives. The winner is the population that has
the smallest delayed break-even concentration, provided that the orders
of the delay kernels are large and the mean delays modified to include
the washout rate (which we call the virtual mean delays) are bounded
and close to each other, or the delay kernels modified to include the
washout factor (which we call the virtual delay kernels) are close in L' -
norm. Also, when the virtual mean delays are relatively small, it is
shown that the predictions of the distributed delay model are identical
with the predictions of the corresponding ODEs model without delay.
However, since the delayed break-even concentrations are functions of
the parameters appearing in the delay kernels, if the delays are suffi-
ciently large, the prediction of which competitor survives, given by the
ODEs model, can differ from that given by the delay model.

Short Title: Chemostat Model with Distributed Delay

Keywords and Phrases: Distributed delay, chemostat, competitive
exclusion, global dynamics

AMS subject classification: 34D20, 34K20, 45M10, 92D25



1. Introduction

In this paper, we study the global dynamics of the following model of n -species of
microorganisms competing exploitatively for a single growth limiting nutrient in a well-

stirred chemostat:

7

S'(t) = (S° = S(t))D = > zi(t)pi(S(t)),

(1.1) . =1
2 (t) = —Dz;(t) + / z;(0)p; (S(G))G_D(t_e)ffi(t —6)df, € I(n),

where for any integer m > 1, I(m) = {1,2,...,m}, Ry :=[0,00) and the delay kernels
K; : R4y — R4 take the form

(1.2) Ki(s) =22 cmois e Ry, i€ l(n),

for constants «; > 0 and integers r; > 0. Here S(¢) denotes the concentration of nutri-
ent and z;(¢) denotes the density of the i-th population of microorganisms in the culture
vessel at time ¢. The parameter D > 0 is the dilution (or washout) rate. The concentra-
tion of the input nutrient in the feed vessel is denoted by a postive constant S°. Species
specific death rates are assumed to be insignificant compared to the dilution rate and are
ignored. Each kernel K; in (1.2) represents the distribution of the time delay involved
in the conversion of nutrient to viable cells. Due to the outflow in the chemostat, only
:L'i(e)e_D(t_e) Ki(t — ), not x;(t), of the x;(f) microorganisms that consumed nutrient
t — 6 units previously, survive in the chemostat the ¢ — 6 units of time necessary to
complete the process of converting the nutrient to new cells.

We are interested in the global asymptotic behavior of model (1.1). Throughout, we

assume that each nutrient uptake function p;, ¢ € I(n), satisfies the following assumptions:

(1.3) pi : Ry — R4 is monotone increasing and locally Lipschitz with p;(0) = 0;

(1.4) there exists a positive (possibly extended ) real number \; such that

D y ri+1
pi(S)<D< +a) if S <A,

a5

D y ri+1
zw$>D< +a> if S >\

a5




Motivated by [4, 15], we call \; the delayed break-even concentration of population z;.
Under assumptions (1.3) and (1.4), system (1.1) always has the washout equilibrium Ey
= (89,0,0). Moreover, for each i € I(n) such that \; < S° there is a nonnegative

equilibrium of the form E; = (\;,z7,23,...,2}), where 2} =0 for all k # ¢ and

o ri+1
* ¢ 0 .
(1.5) xi = <D+ai> (57 = Ni).

Note that the presence of the washout (memory) factor e~P(*=% in model (1.1) changes

the equilibrium values for the corresponding ODEs model without delay. Therefore, the
equilibria E;, © € I(n), differ quantitatively from those when delays and washout effects
are ignored.

A model similar to (1.1) but where all delays are discrete (i.e. the delay kernels are all
degenerate Dirac Delta distributions), was recently studied in [27] where it was shown that
under certain sufficient conditions, the discrete delay model exhibits competitive exclusion
and the population that wins the competition is the one with the smallest break-even
concentration. The time delay effect on the qualitative outcome of competition was ex-
plored and it was demonstrated that when the delays are relatively small, the predictions of
the discrete delay model are identical with the predictions given by corresponding models
without time delays, and that introducing large delays in the model may alter the pre-
dicted outcome of competition. More recently, in [28] model (1.1) was considered in the
case where there are only two (n = 2) species engaged in competition. There the global
limiting behavior of the model was completely determined under assumptions (1.3) and
(1.4) and the generic condition Ay # As.

The main purpose of this paper is to investigate the question as to whether and to
what extent the global results of [28] can be extended to the general n -species model (1.1).
By using the linear chain trick technique and a fluctuation lemma, we obtain sufficient
conditions under which at most one population survives in the chemostat. We not only
explore results that are analogues of those for the corresponding discrete delay model
studied in [27], but also obtain new results that apply only to the distributed delay model
(1.1). In the case where each population can survive in the chemostat when it is cultured
alone, it is shown that the model exhibits competitive exclusion. The population that wins

the competition is the one that has the smallest \; value, provided that either the virtual



delay kernels are close in L' -norm, or the orders of the delay kernels are large and the
virtual mean delays are close to each other. Here the virtual delay kernel is a modification
of the delay kernel K; in (1.2) to include the washout factor e=”¢ and the virtual mean
delay is a modification of the mean delay to include the washout rate D. These results are
not restricted to the case where the K;’s are weak (r; = 0) or strong (r; = 1) kernels.

In fact, they can be applied as well to kernels that have arbitrary orders.

We remark that chemostat models incorporating time delay have been studied by
many authors. Models involving distributed delays are considered to be more realistic
than discrete delay models (see [ 5, 6, 9, 12, 19-23]). We refer the reader to [27, 28] for
an extensive literature review on chemostat modeling using time delays. In particular, we
mention the papers [10, 11, 16], that are closely related to model (1.1). For the importance
of including the washout factor over the time delay in chemostat models, we refer the reader
to [18] and the survey paper [20]. It should be noted that the distributed delay model (1.1)
may have more potential to mimic reality, compared to the corresponding ODEs model

without delay, as computer simulations in [28] indicate.

This paper is organized as follows. In Section 2, we give two preliminary results on
positivity and boundedness of solutions of (1.1). In Section 3, we state the main results.
Some technical lemmas are proved in Section 4. Section 5 contains the proofs of the main

results. Finally, we give some concluding remarks in Section 6.

2. Positivity and Boundedness

Throughout, we denote by BC™"! the Banach space of bounded continuous func-
tions mapping from (—o0,0] to R™"!'. From the general theory of integrodifferential
equations (see [2, 24]), we know that for any initial data ¢ = (¢o, d1,...,¢n) € BC’_?"’1 =
{¢p € BC™'; $;(0) > 0,0 <i <n,8 <0}, there exists a unique solution m(¢;t) :=
(S(qb;t),a;l(gb;t), e ,J:n(gb;t)) of (1.1) for all ¢ > 0 such that 7(¢;-) |(—oc,0)= ¢. For con-
venience, we will also use (S(t), z1(t),... ,mn(t)) to denote the solution w(¢;t) with ¢ €
BC’_T'I, if there is no confusion. When we say a solution m(¢;t) or (S(t), z1(t),... ,mn(t))
of (1.1) is positive, we mean that the solution has initial data ¢ € BC’_?"H and each com-

ponent of the solution vector is positive for all ¢t > 0.



In this section, we give two preliminary results on positivity and boundedness of
solutions of (1.1). The proof of the following lemma is similar to the proof of Lemma 2.1
in [28].

Lemma 2.1. For any ¢ € BC'_irf—H with ¢o(0) >0 and ¢;(0) > 0,1 € I(n), the solution
m(¢;t) s positive.

In what follows, we derive a conservation principle for model (1.1). To see this, let
(S(t),xl(t), o ,:L'n(t)) be an arbitrarily fixed positive solution. Using the linear chain

trick technique as in [19], we define

t .
22) wst) = [ a6 (S(0) G, (2 —6) b,
. N
(2.3) Ghai(s) = ZenPrede, e Ry,

for i € I(n) and j =0,1,2,...,r;. A direct verification using (1.2) implies that S(t), z;(¢)
and y; ;j(t), 1 € I(n), 7 € I(r;) satisfy

3

S'(t) = (S~ S(1)D — 3 wi(t)p

(2.4) vi(t) = =Dxi(t) + yir, (t)_
Yio(t) = —(D + i) yio(t) + a;zi(t)pi (S(t)),

)
—(D + i) yi (1) + aiyij-(t).

yg,j(t)

Let

W(t) :SO—S(t)—zn: (Zy;i(t)ﬁ—x(t)) t>0.

=1

It follows from (2.4) that W'(¢) = —DW(t). Therefore

(2.5) S+ ( a + :L'i(t)> = 8%+ p(t), t>0,

where the continuous function p(t) depends on the initial data of the solution (S(t),
z1(t),... ,a;n(t)) and satisfies p(t) — 0 exponentially as t — co. Formula (2.5) therefore
may be viewed as a conservation principle for the distributed delay model (1.1). We note

that similar conservation principles for chemostat models with or without (discrete) delays
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can be found in [4, 10, 15, 26-28]. For more details on the role of conservation principles
in analyzing chemostat models, we refer the reader to the recent monograph [26].
As a direct consequence of the above conservation principle (2.5), we obtain the fol-

lowing boundedness result.
Lemma 2.2. All positive solutions of (1.1) are bounded for t > 0.

Proof. If (S(t),xl(t), e ,xn(t)) is a positive solution of (1.1), then all y; ;(¢) defined

in (2.2) and (2.3) are positive for ¢t > 0. The conclusion now follows from (2.5).

Remark 2.3. From formula (2.5), it can be seen that every positive solution (S(t), z1(1),
. ,a;n(t)) satisfies

limsup S(t) < S°,

t—oo
(2.6) n )
li (1) < S°.
1£§p;x (t) <

In later sections, we will obtain better upper limiting bounds for any positive solution of

model (1.1). But (2.6) will be used in some preliminary estimates.

3. Main Results

By rearranging the equations in (1.1) if necessary, we may assume, without loss of
generality, that Ay < Ay < .-+ < A,. Our results on the global dynamics of (1.1) are

proved under the following generic condition

(3.1) M <A < <A

In all of the theorems stated below, except Theorems 3.1 and 3.2, we always assume that
condition (3.1) is satisfied.

Theorem 3.1. Let w(¢;t) be any given positive solution of (1.1). If N\; > S° for some
i € I(n), then x;(¢;t) = 0 as t — oo.

Theorem 3.1 states that if the delayed break-even concentration A; is larger than
the input nutrient concentration, then population z; dies out whether or not there is

a competitor. This result immediately implies the following global result that describes



outcomes in which all populations are eliminated from the chemostat. Note that this
elimination is not a result of competition, but is due to the fact that the chemostat is an

inadequate environment for any of the populations to survive.

Theorem 3.2. If \; > S% then limi_o 7(p;t) = Eo for every positive solution w(p;t)
of model (1.1).

The case where some of the \;’s are smaller than S° appears to be much more
complicated. In [28], it was shown that any population z; with \; < S° can survive
in the chemostat when it is cultured alone. It is thus of interest to know whether such
populations can coexist in the chemostat when they are cultured together. The following
theorem provides a simple criterion to predict the outcome of such competition. It gives
conditions under which model (1.1) exhibits competitive ezclusion. The population that
wins the competition is the one with the smallest )\; value, that is, population z; survives
in the chemostat, while all other populations die out.

For convenience, we define the index set
(3.2) J={jeI(n); j>2and )\; < S°}.
Theorem 3.3. Assume that A < S° and

(3.3) D (S —2) < S° =\

J€J
Then limi_oo w(p;t) = Eq for every positive solution w(¢;t) of model (1.1).

Condition (3.3) in the above theorem requires that the A; value for population z;, j €
J, should not be too “far away” from the input nutrient concentration S°. If we regard
SY—\j, j € J, as an index measuring the ability of survival of the population z; when it
is cultured alone, condition (3.3) can be thought of as requiring the joint index of survival
of all populations z;, 7 € J, to be less than the index of survival of population . It is
interesting to note that this condition is the same as condition (3.2) of [27] in the discrete
delay case, except that the \; values are defined differently. Thus Theorem 3.3 provides
an analogue of Theorem 3.1 in [27] for the corresponding discrete delay model. On the

other hand, we should also note that condition (3.2) is equivalent to the generic condition
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(3.1) when only two populations are involved in competition. Thus Theorem 3.3 includes
the main results of Theorems 3.3 and 3.4 in [28].

The next result shows that even when condition (3.3) fails, the conclusion of Theorem
3.3 still holds if the delay kernels Kj, j € .J, modified to include the washout factor (a
term that we will make clear now) are close to each other in L'[0, c0) -norm. To be more
precise, let us define, for any real number v > 0 and for any j € .J, the following quantity

(3.4) l(7) = §° 2

IE

where 27 € (0,59) is the unique solution of

Dz Qg A 0 0
(3.5) V-I-T: Dta. pi(S” —z), 0<z<S".
. J

Also, for a continuous function K : R4 — R4 with fooo K(s)ds =1, we set
1 . 0 )
(3.6) "= ) Zl’j pj(SO)/ ‘Q]D(s) — K (s)| ds,
= 0
where .J is the index set defined in (3.2), 7} is the number given by (1.5) and the function
Q]D : R4 — R4 is defined by

D A\ it y '
(3.7) Q]D(s) = < —I_a]) Géﬁj(s), seRy, jeJ

aj
We note that the function Qf) as defined in (3.7) has the property that fooo Q]D(s) ds = 1.
Thus it can be viewed as a kernel that modifies the kernel K; to include the washout
factor e~ P%. We call Q]D(s) the virtual delay kernel corresponding to the (physical) delay
kernel Ij(s).
We can now state the following result.
Theorem 3.4. Assume that \y < S°. Then every positive solution w(¢;t) of (1.1)

satisfies limy_yoo w(P;t) = Eq, provided that there exists a continuous function K : Ry —

R4 with limyoo K(t) =0 and fooo K(s)ds =1 such that Ay < {j(y1) for all j € J.

Remark 3.6. It can be seen from (3.4) and (3.5) that ¢;(y) depends continuously on
~v > 0. Moreover, it is decreasing with ~ and satisfies ¢;(0) = A; and ¢;(cc) = 0 for
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each j € J. Therefore, if 7 is small, then condition A\ < ¢;(v) for all j € J will follow
from the generic assumption (3.1). In particular, if the virtual delay kernels ]D, 7€ J,
are close to each other in L'[0, 00) -norm, by choosing K (u) to be any one of the Q]D(u),
it follows from (3.6) that ~; will be small and the hypotheses of Theorem 3.4 will be
satisfied.

Our final result can be applied when the numbers (r; + 1)/(D + «;), j € J, are
bounded and close to each other for large r;’s. To state the result, we define, for any

integer r > 0 and any real number a > 0,

1 A B,
3.8 = — = 2 Ciltp —p;
( ) 72 D Z (W + \/T—I——l + J|TD TD7]|) )

JeJ

where the index set .J is as before, and for each j € J,

o r;+1 N r+1
D’]_D—I—ozj7 D_D—I—oz’
(3.9) A, = 27p,; C; B _ 27p Cj

\ 27 ’ J \ 27 ’
Cj =z} pi(S°) (pj(SO) + 115 8°p; 1 (S [D + I}leafpj(so)}),

z} is given by (1.5) and p; denotes the (global) Lipschitz constant of p;(S) on the interval
[0, S°]. Note that the number 7p ; is the mean of the virtual delay kernel Q]D(s), and it
modifies the (physical) mean delay 7; of K,(s) to include the washout rate D. In the

sequel, we call 7p ; the virtual mean delay of Q]D(s)

Theorem 3.5. Assume that \y < S°. Then every positive solution w(¢;t) of (1.1)
satisfies limy_yoo w(p;t) = Eq, provided that there exist an o > 0 and an integer r > 0
such that Ay < £j(~y2) for all 5 € J.

Remark 3.7. Again, due to the continuity of ¢;(y) in v > 0 and due to the fact that
0;(0) = Aj > Ay for j > 2, if either the orders r; of the kernels K;, j € J, are large
and the virtual mean delays Tp ; are bounded and close to each other, or if the virtual
mean delays 7p ; are small for fixed orders r; (not necessarily large), by choosing the
pair (r,a) to be any one of (rj,«;), j € J, it can be seen from (3.8) that ~, will be small
and so the hypotheses of Theorem 3.5 will be satisfied.
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Remark 3.8. In the statement of Theorem 3.3, it should be noted that if the index set
J is empty, i.e. \; > S9 for all j > 2, then condition (3.2) is not needed in Theorem
3.3. Similarly, if .J =0, condition A\ < £j(v1) or Ay < £;(y2) is not needed in Theorems
3.4 and 3.5. For convenience, throughout, we adopt the convention that Zf:]- a; =0 if
k<j, and ), .;a; =0 if the index set I is empty. Also, a condition will be thought of

as always being satisfied if it involves an index 1 € I where I is the empty set.

We conclude this section by noting that Theorems 3.4 and 3.5 are new and particular
for the distributed delay model (1.1), iand no similar results seem to be available for the

discrete delay models.

4. Some Technical Lemmas

In this section, we study a related system of ordinary differential equations and prove
several technical lemmas describing some qualitative properties of positive solutions of the
ODEs system. These lemmas will be useful in the proofs of the main theorems stated in
the previous section.

Let N > 1 be a positive integer, w : Ry — R be a continuous function with w(t) — 0
as t — oo, and D, S° «;, ri, i, pi, i € I(N), be the same as in previous sections. We
consider the following Zf\;l(ri + 2) -dimensional system of ordinary differential equations

for u; g, € I(N), ke I(r; +1):

wio(t) = =Duio(t) + i1 (Dpi (S° = D ujolt) +w(t),

J=1

(4.1) wi () = (D + ai) uik(t) + i uik—1(t),
S® = ujo(0) +w(0) > 0.

We will only be interested in solutions of (4.1) for ¢ > 0 that satisfy S° — Zj\le wjo(t) +
w(t) > 0. Such solutions will be denoted by u(t) = (uhk(t)) for + € I(N) and k =
0,1,2,...,r;+1, t > 0. We call such a solution of (4.1) a positive solution if each component
u; k(t) of u(t) is positive for ¢ > 0. By an argument similar to that for Lemma 2.1 in
[28], we can show that every such solution of (4.1) with positive initial data is a positive

solution. It follows easily that every positive solution u(t) of (4.1) is bounded for ¢ > 0.
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Throughout this section, we always assume that the following condition is satisfied:
(4.2) M <A < A3 << Ay < S

In the case that N =1, condition (4.2) is simply A\; < SY.

We begin with the following elementary but useful result.

Lemma 4.1. Let f: R4 — R be a bounded differentiable function.
(1) If limy_oo f(t) emists (finite) and the derivative function f'(t) is uniformly continu-
ous on Ry, then lim; o f'(t) = 0.

(11) If limyyoo f(t) does not exist, then there exist sequences {t,} T oo and {sm} T oo

such that
lim f(t) = limsup f(¢), f'(tm)=0,
m—00 t— 00
. 1 . ) -
lim_f(sm) = liminf f(2), f'(sm) = 0.

We remark that the first part of the lemma is due to Barbalat [1] and it is sometimes
referred to as the Barbdlat lemma in the literature. See [12] for a proof. The second part
is proved in [14] and has been called the fluctuation lemma. This lemma will be useful,
since if u(t) is a positive solution of (4.1), then each component of this solution vector and
its derivative function is a uniformly continuous function on Ry and Lemma 4.1 can be
applied. To see this, note that all of the components of this solution vector are bounded
functions on Ry . Therefore, all of their derivatives are continuous and bounded functions
on Ry, as they are defined by (4.1). By the Mean Value Theorem, all the component
functions are thus Lipschitz continuous and hence uniformly continuous. Note that each
function p;, i € I(N), is uniformly continuous on [0,5°]. It follows from (4.1) that
the derivative of each component of the solution vector is defined as the sum, difference,
product and composition of uniformly continuous functions and hence, is also uniformly
continuous. This lemma has played an important role in the analysis of chemostat models
(see [10, 27, 28]).

We now study the asymptotic behavior of the positive solutions of (4.1). Let u(t) =
(ui7k(t)> be such an arbitrarily fixed solution. We define

a; ) = liminfu; x(t), b x = limsupu; (1),
t—oo0 t—o0
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for 1 € I(N) and k=0,1,2,...,r; +1. As we argued before, a; and b;; are all finite
nonnegative numbers. In the following two lemmas, we give some estimates for «a; ; and

bi,k-

Lemma 4.2. For every 1 € I(N) and k € I(r; + 1),

O"‘k‘<‘<b<< % kb-
D‘|‘Oéi ;.0 > Aok > 04k > D_I_al 1,0

Proof. For any fixed ¢ € I(N) and k € I(r;+1), we apply Lemma 4.1 to find a sequence
{8m} T oo such that

Tr}i_{l’looui’k(sm) = a; , Tr}gl’loou;7k(8m) = 0.

By (4.1), this implies that

lim [—(D + i) uik(sm) + @i Ui g—1(sm)] = 0.

m—ro0
Hence,

(D4 o) air =a; Im u;p—1(sm) > o a; k-1,
m—r00

(87 (87 k
a; k> . Ai f—1 = . a; 0.
1,k — <D—|-Otl> 1,k—1 — (D—I—ozl> t,0

Similarly, we can show that

which leads to

This establishes the lemma.

Lemma 4.3. For each i € I(N), we have b;o < S% — ).

Proof. By Lemma 4.1, there exists a sequence {t,,} T oo such that

Jim wio(tm) =bio, lim ujo(tm) = 0.
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Using (4.1), we obtain
Db;o= lim [D wio(tm) + u;p(tm)]

m—00
N
= lim i1 (tm) Pi (S° = Y ttj0(tm) + w(tm))
(4.3) e j=1

< birit1 pi (S0 — n}i_ljlooui,O(tm))

= bi,r,»+1 Pi(SO - bi,o)-

Note that from Lemma 4.2,
o r;+1
birit1 < : bio-
71+1—<D_|_al> 70

We substitute this into (4.3) to obtain

r;+1
(&H]
(4.4) Dbip <bipo <D n a) Pi<50 - bi@)'

If b;o =0, there is nothing to prove. If b; o # 0, then (4.4) implies that

o ri+1
D < <D—|—lozi> Pi(SO—bi,o)-

By assumption (1.4), we have S% —b;¢ > \;.

This completes the proof.

We now introduce the following new variables
N
vo(t) = wiolt), >0,
=2

(4.5)
B = lim sup vg(t).

t—o0

It is obvious that 0 < 8 < oco. In the sequel, we call a positive solution u(t) of (4.1) a
stack solution if for all k € I(r; +1), uq x(t) < uqo(t) for every t > 0. We study certain

properties of the stack solutions of (4.1) in the next two lemmas.

Lemma 4.4. Let u(t) be a positive stack solution of (4.1). If 3 < S° — Ny, then

aio > 0.

Proof. Inorder to obtain a contradiction, assume that a; o =0, i.e. liminfy o uy o(t) =

0. Define

r1+1 D + oy k—1
z(t) = aq uq 0(t) + Z D < ) uy k(t), t>0.
k=1

aq
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It follows from (4.1) that
(46) Z/(t) = —Qq U17,«1+1(t) [_Z\l — P (SO — uLo(t) — ’Uo(t) + w(t))] 5

where

T‘1+1
M:D<D+O‘1> .

aq
Note that z(¢) > 0 forall ¢t > 0. Since ay o = 0, and since u(¢) is a positive stack solution,
le,for k€ I(r1+1), 0<uyr(t) <uyo(t) forall ¢t > 0, it follows that liminfy o 2(¢) =
0. We can therefore find a sequence {{,,} T oo such that for all m, z/'({,) <0, and as
m — 00, z({m) — 0 and so uy o(&rn) — 0 since 0 < uqo(&m) < #em)

aq

Therefore, from (4.6) it follows that

—ar 141 (Em) [M — p1(S° —u10(Em) — vol(€m) +w(ém))] <0,

which implies that

D_I_a1>7'1+1

aq

p1(5° — 1 o(€m) — v0(€m) +w(ém)) < D (

By assumption (1.4), we obtain

S® —u1,0(€m) = vo(€m) + w(€m) < A
Consequently, for all m,

vo(€m) > 8% = M —ur0(m) + w(ém)-
But then,

B >limsupvg(ém) > lim (8% =N —u10(ém) +w(ém)) = S =\,

m—00 m—00

contradicting 3 < S° — A\;. Therefore, a9 > 0 and the proof is complete.

Lemma 4.5. Let u(t) be a stack solution of (4.1). If

(4.7) D (80— X)) < 8% =y,

=2



16

then a10 >0 and a;p =b;x =0 forall 1>2 and £=0,1,2,...,r; + 1.

Proof. First, we note that Lemma 4.3 and assumption (4.7) imply that

N N
<Y hig Z ) < 8% =\
1=2 1=2

Therefore, by Lemma 4.4, ayo > 0. To show that a;x = b;x = 0 for all + > 2 and
k € I(ri+1), we need only to prove that a;o = b;o = 0 for all ¢ > 2, since the conclusion
will then follow from Lemma 4.2.

Suppose that b; o # 0 for some ¢ > 2. By Lemma 4.1, there is a sequence {t,,} 1T oo
such that

Tim wio(tm) = bio.  Hm wy(t) = 0.

It then follows from (4.1) and Lemma 4.2 that

Db;o= lim [Duio( )—I—ulo(tm ]

m— 00

N
= lm w;p41(t Zu w(t ))

M —r 00
1=1

< bi,rH—l Pz‘(S —ai,o — bi,o)

] r;+1
<bip <D ilai) pi(S% — a0 — big).

This gives

] r;+1
pi(S° — a0 —bip) 2D<Dj—lai> ;

Consequently, by assumption (1.4),
(48) SO —ai1,0 — bl‘70 2 )\Z

On the other hand, we can apply Lemma 4.1 again to obtain a sequence {s;,} T oo such

that

"71:51’100 ul O(Sm) = (],170’ "}gnoo u’l’o(sm) == 0



From (4.1) and Lemma 4.2, we have

Dajg= lim [D u1,0(5m) —|—u’170(3m)]

m— o0

m— o0

N
= Tim urrt1(5m) p1(S” = wr0(sm) = D ujo(sm) +w(sm))
=2

N
> a1,r 41 P1 (50 —ayg— Zb]‘p)

J=2

o ri+1 N
> ayo (D —|—1a1> p1<50—a1,0—Zb]‘70).
=2

Since aj o # 0, it follows that

N ri+1
Pl(SO—al,o—Zb]‘,o)§D<D+a1> .

(8%
i=2 !

Consequently, by assumption (1.4),
N
(49) SO —ai1,0 — Zb]‘p S /\1.
=2
Combining (4.8) and (4.9), and applying Lemma 4.3, we obtain
A=A <) bio< Y (S0-)),
J#L J#L

which contradicts assumption (4.7). Therefore, b;o = 0 for all ¢ > 2. Since 0 < a;9 <
bio, 1t € I(N), we have a;o =b;jo =0 for all 1 > 2.

This completes the proof.

Lemma 4.6. Let v > 0 be a constant satisfying

N D + oy ri+1
(4.10) lim SUPZ ( ) Z> Ui ri+1(t) < v+ B,

where [ is the number defined by (4.5). If 5 > 0, then there exists k € {2,3,...,N}
such that 8 < S° —ay o — (7)), where (p(vy) is defined in (3.4) and (5.5).



18

Proof. Recall that vo(t) is a differentiable function as defined in (4.5). It follows from

(4.1) that vo(t) satisfies the system of differential equations:
ui ot) = =D uo(t) + vt e 11(t)p1 (87 — wio(t) — vo(t) + w(t)),

ull,k(t) = —(D + Ozl)uLk(t) + oy ul’k_l(t), k € I(Tl + 1),
(4.11)
vh(t) = —Duo(t) + Y ttir1 (t)pi (S° — w1 0(t) — vo(t) + w(t)),

1=2
u;7k(t) = —(D + ai) ui7k(t) + «; ui7k_1(t), 1> 2, ke I(Ti + 1).
Let {e4} } 0 be a given positive sequence. Fix any ¢ > 0. By Lemma 4.1 and assumption

(4.10), we have a sequence {t;,,} T oo such that for all m,
lim vo(tm) =03, lim vo( m) =0,

m— 00 m— 00

ZUi,m Sy+B+e, witm)< %q,
1=2

D _I_ o; ri+1
Ui,m = ( > ui,m—}-l(tm)-

where

a5

Then it follows from (4.11) that

D3 = lim [Dvo(tm)‘|‘vtl)(tm)}

m— o0

(4.12) = lim_ Z i rit1 (tm )Pi (SO = w1 0(tm) — v0(tm) + w(tm))

N
< hmsupzuz rit1 (tm)pi (S° —a10 — B+ 24)

m— 00

r;+1
—hmsupz<D+a> pi<50—a1’o—ﬁ—|—€q)U

m—oo T,

ar rkq—l—l
§<7Q> (S —alo—ﬁ—l—a)hmsupZUlm

D—|—Oékq m— 00
ak rkq—l—l
q 0
< (m) pr, (S® —a10—B+e)(v+B+eq),
where k, € {2,3,..., N} is chosen so that for all ¢ € {2,3,..., N},

ak rkq—l—l o
(m) Pk, (S —aio — ﬁ + 5q)

o r;+1
Z( : ) pi(8° —a10—B+¢,).

D+ o
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By choosing a subsequence if necessary, we may assume that lim, ,. kK, = k£ for some

ke {2,3,...,N}. Therefore, letting ¢ — oo in (4.12), we obtain

Ok

D+ oy

rr+1
Dp< ( ) pi(S° —a10 = B) (v + B).

Since 8 > 0, by (3.4) and (3.5), the above inequality yields S° — a1 0 — 8 > lk(y), ie.
B<8%—a10—Lli(y), as desired.

This completes the proof.

Lemma 4.7. Suppose that u(t) is a stack solution of (4.1) and (4.10) holds for some
constant v > 0. If Ay < /{j(v) < SO for all 2 <7 < N, then ar0>0 and a;x =bjx =0
forall 1 >2 and E=0,1,2,...,r; + 1.

Proof. We first show that a; o > 0. By Lemma 4.4, this is clearly true if 3 = 0. In the
case where (3 > 0, we apply Lemma 4.6 to obtain 8 < S% — lx(y) for some k > 2. But
A < L(y) < S0 so Lemma 4.4 again implies that aio > 0.

In view of Lemma 4.2, in order to show that a; = b;x = 0 for all + > 2 and
E=0,1,2,...,r; + 1, we need only prove that 3 = 0. Suppose, to the contrary, that
> 0. Then by Lemma 4.6, there exists k > 2 such that

(4.13) SO — a0 — B> (v).
On the other hand, applying Lemma 4.1, we can find a sequence {s,,} T oo such that

"}i_rfloo u1,0(8m) = a1,0, W}gnoo Ull,o(SM) = 0.

By the first equation of (4.11) and Lemma 4.2, we have

Dayp= lim [D u1.0(Sm) —|—u’170(5m)]

M — 00

= lm g 41(sm) p1(S° — u1,0(sm) — vo(sm) + w(sm))

M — 00 :

> a1,r14+1P1 (SO —ad1,0 — ﬁ)

T‘1+1

«

Z aro <D—|—1a > pi(S% —aio—B).
1

Since a9 > 0, the above inequalities imply

oy r1+1 0
D> p1<5 —Gl,o—ﬁ)-

D—|—Oé1
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Consequently, by assumption (1.4),
(414) SO —ai,0 — 5 § )\1.

By hypothesis, A\ < £j() for allj > 2, and so S® —a; 9 — 3 < lk(7), contradicting
(4.13). Hence =0 and the proof is complete.

Lemma 4.8. If a10>0 and a; 1 =b; 1 =0 for all 1 > 2, k€ I(r; +1), then

k
(4.15) m*:h$20¢_Aﬁ<Di;;>’ k=0,1,2,...,r +1.
Proof. We first note that from the proof of Lemma 4.7, the inequality (4.14) holds if
ajo > 0. Since a; = by = 0 for every ¢ > 2 and k € I(r; + 1), it follows directly
from definition (4.5) that 8 = 0. Hence (4.14) yields SY — a0 < Ay, le. ajp> SO — ).
On the other hand, applying Lemma 4.3, we obtain by o < S — ;. This implies that
a10 =b10=S5"— ). Formula (4.15) now follows immediately from Lemma 4.2.

This completes the proof.

5. Proof of Main Results

This section is devoted to the proof of the main results stated in Section 3. The
proofs of Theorems 3.1 and 3.2 are similar to the analogous theorems in [28] and hence
are omitted. Before we prove Theorems 3.3-3.5, we make some observations. If \; < S°,
then either the set J := {j € I(n); j > 2 and \; < S°} = 0, or there exists N > 2,
such that J = {2,3,...,N}. In what follows, we write N =1 if J =10. Let n(¢;t) =
(S(t), z1(t),... ,a;n(t)) be an arbitrarily fixed positive solution and y; j(t) be defined as
n (2.2) and (2.3). It follows from (2.5) that

ym
5.1 S(t ( 0) £>0,
5.1 =503 (S22 i) 40t 12
for some continuous function p(t) satisfying p(t) — 0 as t — co. Let

(5.2) w(t) = 2:(2:“1 )+m) t>0.

i=N+1 j=0
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Since \; > SY for all + > N 4 1, by Theorem 3.1 and an argument similar to that in
the proof of Theorem 3.1, limy o 2(t) = limy o0 yi;(t) = 0 for all ¢+ > N + 1 and
j=0,1,2,...,r;. Therefore, lim;_ oo w(t) = 0. Substituting (5.1) and (5.2) into (2.4) and
eliminating the first equation, we obtain
3(t) = =D xi(t) + i (1),
(5:3) who(t) = —(D + i) gio(t) + s 2i(t) pi (S = Iy (Dfe L2 +2:(1)) + (1),
vij(t) = =(D+ ai)yij(t) + eiyija(t), i €I(N), je€l(rit]1).

Define

ui,ri-i-l(t) = xi(t)v 1€ I(N)a
(t

(5.4) ui7k(t) :ilfi(t)—l— yi’j‘ ), k=0,1,2,....r; + 1.

By using (5.3), it can be shown that u(t) = (uhk(t)) defined by (5.4) is a positive solution
of the ODEs system (4.1) with w(¢) given by (5.2). Moreover, since w(¢;t) is positive,
y; ;(t) are all positive for ¢t >0, t € I(N) and j=0,1,2,...,r;. So it follows from (5.4)
that wq x(t) < uqo(t) for all & € I(ry +1) and t > 0. Therefore, according to Section
4, u(t) as defined by (5.4) is a stack solution of (4.1). Clearly, assumption (4.2) is also
satisfied.

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. We first note that the condition (3.2) implies that

N

DS =) =) (89— ) < 8%y

i=2 jeT
Applying Lemma 4.5, we obtain a19 > 0 and a; = b;x =0 for all 2 <: < N and
k€ I(r; +1). Furthermore, by Lemma 4.8, we have

k
ay g = bl,k = (50 - /\1) <Dj—1a ) 3
1

forall £ =0,1,2,...,r + 1. Recall that z;(¢) = u; y,+1(t). Therefore,

t—00 D+ oy
lim z;(t) = aj ;41 =0, 2<i<N.

t—o0

T‘1+1
hIIl Cl/’l(t) = CL177-1_|_1 = (SO — /\1) < @ ) s
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On the other hand, since \; > SY for ¢ > N, we can apply Theorem 3.1 to obtain
lim oo 2i(t) = 0 for all N 41 < i < n. Moreover, as in the proof of Theorem 3.2, we
have lim¢ oo y; j(t) =0 forall ¢ > 2, 7 =0,1,2,...,r;. Therefore, it follows from (5.1)

that
. yl,]
ti 510 =" tim (3227 +10)
yz,] ‘
) (Z +ai(0)
:SO N tlifgoul’o(t)
:SO —ai,o
:SO - (SO - /\1) — )\1.
Consequently,

o ri1+1
lim 7(¢;1) = (/\1,(50—/\1)<D_|_1a1> ,0,...,0) = By,

and the proof is complete.

To prove Theorems 3.4 and 3.5, we will need the following two lemmas.

Lemma 5.1. Let Q Ry — Ry and g : R — Ry be continuous functions. If g 1s

bounded and fo s)ds < oo, then
t 0
(5.5) lim sup/ 9(6)Q(t —0)df < lim supg(t)/ Q(s)ds
t—o00 — 00 t—o00 0

Proof. Let A =sup,cpg(t). If A =0, then (5.1) holds trivially. So in what follows, we
assume A > 0. Let £ >0 be given. We choose M = M(e) > 0 such that

/MOOQ< ds<—/ Qs

Then we have

(5.6)
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Let T =T(e) > 0 be such that for all t > T, ¢(t —s) < limsup,_,. g(¢t) + ¢/2 for every
s € [0, M]. Tt then follows from (5.6) that for all ¢+ > T,

[ s

— 0

< /OM <1iﬁsolip9(t) + %) Q(s)ds + %/OOO Q(s) ds
< <lim sup g(t) + g> /Ooo Q(s) ds

t—o0

from which (5.5) follows and the proof is complete.

Lemma 5.2. Let h: R — Ry be a bounded continuous function. Suppose that for every
e >0, there exist positive numbers M(e), L(e), and L such that lim._,o+ L(e) = L and
|h(t2) —h(t1)| < L(e) [tz —t1] for all t1,ty > M(c). Then for any ™ >0 and any integer
r >0,

> C
5.7 I ‘/ h(t — $)Gr(s)ds — h(t — )| < ,
5.1 msup| [ ht = s)Gu(s)ds — hi - 1) < g
where
2 L 41 .7 1
(58) C— T 7 Gr(s) _ o’ S e—a37 a = r -+
Nors r! T

Proof. Let ¢ >0 be given. Find T = T(r,e,7) > max(M(e),7) such that for ¢ > T,

& €
riS d 770
/t G (b) s < 5H

where H = sup,cp h(t). Note that for ¢ > 2T and s € [0,T], we have |h(t—s)—h(t—7)| <
L(g)|s — 7|. Note that [ G,(s)ds = 1. This implies that for all ¢ > 2T,

‘ /Ooo h(t — $)Gr(s)ds — h(t — 1)
< /OOO |h(t —s) — h(t — 7)|Gr(s) ds
< /T |h(t —s) — h(t — 7)|Gr(s)ds + 2H /Oo Gr(s)ds

< L(e) /OOO |s — 7|Gr(s)ds + e.
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Let I = ["|s—7|Gr(s)ds. We rewrite this as

I /OT(T — $)Gh(s) ds + /Too(s —1)Go(s) ds

. (/0—/OO> G.(s)ds - (/0—/Oo> 5G(s) ds.

Applying integration by parts repeatedly, we have

T ) r k
/0 G(s)ds — /T Gr(s)ds =1—2e kg_o %,

T oo r+1 (aT)k
/0 sGr(s)ds —/T sGr(s)ds :T—ZTe_aTZ T

k=0

Hence,
B 2r(ar)™ _ _27(r + 1)r+t o~ (1)

I = =
T (r + 1)
By Stirling’s formula (see [17], Theorem 2, pp. 220), there exists 0 < £, < 1 such that

€

r+1
(r+1) = zw(r+1)<’“+1> T

and so it follows that

2T ___&r
[ =———— ¢ T2(r+1)
\2r(r 4+ 1)
27 C

SV +D) LT

where C' > 0 is the constant given by (5.8). Consequently, for all ¢ > 2T,

‘ / h(t — $)Gy(s) ds — h(t — T)‘ <
0
This immediately leads to (5.7) and completes the proof.

Remark 5.3. The condition on A in the above lemma is satisfied if A is continuously
differentiable and limsup,_,  [h/(¢)] < L. In fact, for every ¢ > 0, we may choose L(e) =

L + ¢, and appeal to the Mean Value Theorem.

We now give the proofs of Theorems 3.4 and 3.5.

Proof of Theorem 3.4. Asin the proof of Theorem 3.3, it suffices to show that a; o > 0
and a;y = by =0 forall 2<:¢< N and k£ =0,1,2,...,r; + 1. Recall that u(t) is a
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stack solution of (4.1). By Lemma 4.7, it is sufficient to show that (4.10) holds for v = 74,
where 71 > 0 is the constant defined in (3.5). To this end, we first note that

D_I_al ri+1 N D—|—O{Z ri+1
S (ZE) = (2E2) s

- Z { (D ;aiyiﬂ zi(t) — /Otui’o(t — 5)K(s) ds}
(5.9) SR
+§/0 wio(t — s)K(s)ds
:éWZ(t) —I—/Otvo(t—s)fx(s)ds,

where wvg(t) is defined as in (4.5) and

Wilt) = (D - ‘”)W wit)- [ Cwolt — $)E(s) ds,

a;

for 1 =2,3,..., N. In what follows, we show that for each 2 <: < N,

1 e 9]
. lim sup W; — ¥ pi(S° P(s) — K(s)|ds,
(5.10) pWit) < 5ol n(s) [ 1QP() - K (o)

t—o0

where z? is given by (1.5) and QP is the virtual delay kernel defined as in (3.8). Indeed,

by using the equations in (5.3) and (5.4), we obtain

W(#) :<D + ai>m+1<_D$ Vb yin )

[ (s 9)4  L) R) ds — wsa 0K 1)
__ D(D;“i)”“w + (21 )”“yl (0

_/0 [~ Dai(t — ) + yin (t — 8)] K (s) ds

(5.11) _/Ot {—Z;’ . (D;—iaf >yw(t_3)_|_2] | Yij— 1(t—3)} K(s)ds
_ /Ot rilt — $)pi(S(t — 8)) K(s) ds — uio(0)K (1)
_ D{(D + aiyiﬂxi(t) - /Ot ( (o9t E yuc(:’ 3)>I (s )ds}

@
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+ (D ;—iai)ri—i-lyi’m (t) _ /Ot ;L'i(t — 8)pi<5(t — S))I{(S) ds
=—DW;(t) + /Ooo zi(t — s)pi(S(t — s)) {(D;_iai>ri+lgg7ai(8) _ K (s)]ds

—u;0(0)K(t) — /too zi(t — s)pi <S(t — 3))]’((3) ds
=—DW;(t) + /OOO zi(t — s)pi (S(t — 3)) [QZD(S) — K(s)] ds
0K () = [t - i (S(e - ) K () ds.

where we have used (2.2) and (2.3) for y; ,;(t). Notice that W;(¢) is bounded. It follows
from (5.11) that W/(¢) is also bounded. This implies that W;(¢) is uniformly continuous.
By using (5.11) again, we see that W/(¢) is uniformly continuous as well. This allows us
to apply Lemma 4.1. So we have a sequence {t,,} 1 oo such that

lim Wi(tm) = limsup W;(¢), lim W/(tn)=0.

m— o0 t— 00 m— 00

On the other hand, by assumption we have lim;, K(t) =0 and

oo

lim z;(t — s)pi (S(t — 5))1{(5) ds

t— o0 t

< Mfi/ K(s)ds =0,
t

where M; = sup_.,g<o |0i(0)pi <¢0(9))| and (¢o, ¢1,...,0N) € BC’_]FV""1 is the initial
data of (S(t), z1(t),... ,J}N(t)>. Therefore, it follows from (5.11) that

limsupW;(t) = lim W;(ty)

:i rnlgnoo OOO zi(tm — S)pi (S(tm — 3)) [QF(S) — K(s)] ds
(5.12) %
_ Jgnoouw(())f{(tm) — "}1_1}100 f z;(t — s)pi (S(t — s))K(s) ds
< plimsup [ it — i (S(— ) 1QP() - K(s)] ds.

Recall that z;(t) = u; r;4+1(t). By (2.6), Lemmas 4.2 and 4.3, we have

r;+1
-
limsupz;(t) < ‘ SO —\i) = zf,
(5.13) t—>oop ()= <D -I-Ozi> ( )

lim sup p; (S(t)) < pi (SO).

t—o0



Applying Lemma 5.1 to (5.12) then gives (5.10).

Therefore, upon using Lemma 5.1 again, we obtain from (5.9) that

t—o00 a;

N ri+1
D i\
hmsupz ( Ta ) ui,rH—l(t)
1=2

t—o0 t—o0

N [e)
< Z lim sup W;(¢) + lim sup/0 vo(t — s)K(s)ds
1=2

1 & o >

— ¥ p; (S° Dis) — K(s)|ds {(s)ds
<52 ein(s) [ 1P - KElds 4 [ KG)
:71+67

where ( = limsup,_, . vo(t) is defined in (4.5). This proves (4.10) for v = ~; and the

conclusion follows.
Finally, we prove Theorem 3.5.

Proof of Theorem 3.5. As before, it suffices to show that (4.10) holds for v = 72,
where 42 > 0 is the constant defined by (3.7). We proceed as in the proof of Theorem 3.4
and arrive at (5.11) with K(s) replaced by Q(s), where

o) = (2 O‘)m als)

o

and GrDﬂ(s) is defined as in (2.3). Let
hi(t) = zi(t)pi (S(1)),

Vilt) = / T hilt - $)(QP(s) - QUs) ds,

for 1 =2,3,...,N. We rewrite each V;(t) as follows

Vi(t) :/OOO hi(t — S)QiD(S) ds — /OOO hi(t — s)Q(s) ds

(5.14) - /OOO hi(t = $)Q7 (s)ds — hi(t — 7p,3)

_ (/OOO hi(t — s)Q(s)ds — h;(t — TD))
+ hi(t —7pi) — hi(t — Tp),
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where 7p; = (ri +1)/(D+ ;) and 7p = (r + 1)/(D + «) are the corresponding virtual
mean delays of QP and Q. Note that by the first equation of (1.1), we have

7

|S"(t)] = |S°D — DS(t) = Y @i(t)pi(S(#))]

=1

< max{S°D,DS(t) + Z zi(t)pi (S(t))}v

where we have used the inequality |a —b| < max{a,b} for all positive real numbers a and
b. Thus by using (2.6), (5.13) and recalling that lim; . z;(¢) =0 forall « > N+ 1, we

obtain

N

(5.15) ligri)solip 1S'(t)] < max{S°D,S°D + Ph?iigp ; zi(t) }

< S°D + PS° = S°%D + P),
where P = max;<i<n pi(S°). Similarly, we can use (1.1), (5.13) and Lemma 5.1 to obtain

lim sup |z (¢)] < limsup maX{ Dz;(t), fioo hi(0)GY . (t —6) d9}
t—o0 T

t—o0
< lim sup maX{ Duz;(t), fioo hi(6)QP (t — ) d9}
t—o0
(5.16) < max{ Dz}, limsup h;(t) }
t—o0
< max{ Dz}, ] pi(S°) }

=z pi(S°), 2<i<N,

Hence, it follows from (5.15) and (5.16) that for any ¢ > 0, there exists M; = M;(e) such
that for all ¢y, to > M,;,

hi(tz) — hi(t)] = |ai(t2) pi(S(t2)) — 2i(t1) pi(S(t1))]
< pi(S(t2))li(t) — wi(t)] + pi zi(t1)|S(t2) — S(t))
< Li(€)|t2 - t1|7
where p; is the global Lipschitz constant of p; on the interval [0,5°], and
Li(e) = o} pi(S°)(pi(S°) + i S°p (5°) (D + P) +¢).

This implies that for all ¢ > M; + max(7p ;, 7p),

|hl(t — TDJ‘) — hl(t — TD)| § Li(€)|TD — TDJ' .
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Recall that A;, B; and C; are the constants defined by (3.8). Since lim. ,o+ L;(¢) = C},

applying Lemma 5.2 to (5.14) gives

lim sup V;(t) <limsup ‘ / QP (s)ds — hi(t — ™D,i)

t—o0 t—o0

t— o0

—I—Iimsup‘/o hi(t—G)Q(s)ds—hi(t—TD)‘

+ limsup |hi(t — 7p i) — hi(t — D)

t—oc0o
27p.; C; 2tp C;

0. i +Ciltp — ™D,
2r(r; + 1) 2r(r + 1)

A; B;

=——=+ —=+Cilt/p — |-
ri+1+ r+1+ ITD — 7D,

Therefore, as in (5.12), we obtain

1/ A B;
1 Wi (t ! Ci il )
im sup (t) < <\/n+1 N + Ciltp — 7, I>

and consequently, by (5.9),

D r;+1
hmsupz ( to ) Ui rit1 (1)
- a;

t—o0

<thsupW +ﬁ/ Q(s

t—o0

N
1 A; B;
<=3 C; ;
D (\/ri‘|‘1 \/7“-|-1+ Io = TD’|>+ﬁ

That is, (4.10) holds for v = ~,. This completes the proof of Theorem 3.5.

6. Concluding Remarks

In this paper, we considered the global dynamics of an exploitative competition model
of n-species in the chemostat. We used distributed delays to model the time lag in the
process of conversion of nutrient to new cells. Analogues of the results given in [27] for
the corresponding discrete delay model are obtained and new results for the distributed
delay model are proved. As well, the results extend the recent work [28] for the two species

competition model to the general n -species case.
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By selecting delay kernels of exponential type (see (1.2)), we obtained sufficient con-
ditions under which the model exhibits competitive exclusion. In particular, we proved
that the population that has the smallest delayed break-even concentration wins the com-
petition, provided that either the virtual delay kernels are close to each other in L' -norm,
or the orders of the delay kernels are large and the virtual mean delays are close to each
other. As noted before, different virtual delay kernels represent the distributions of the
delay involved in the conversion of nutrient by the different species to new cells modified
to include the washout factor. Also, as will be explained in the last paragraph of this con-
cluding section, we know that the case where the order of the virtual delay kernel is large
corresponds to a small stochastic perturbation of the discrete delay case (where the dis-
crete delay is the virtual mean delay). Our results therefore indicate that the competitive
exclusion principle remains true if the distributed delays for the different species (whether
they are large or small) are close to each other in the L' -sense or if the distributed delays
are small perturbations of discrete delays, provided that the size of the discrete delays are
similar for all of the species. Hence, if the delay kernels of the different species are similar
(as might be expected for similar species), then our theorems are likely to apply.

The theorems we proved also imply that when the virtual mean delays are small, the
predictions of the distributed delay model are identical to the predictions of the corre-
sponding ODEs model without delay. To see this, let us assume, for simplicity, that the

growth response functions p; are strictly increasing. Then it follows from (1.4) that

O

Oy TD ¢ D+
(o 8)" )

If the virtual mean delays 7p; are small, then the «;’s are large and so (6.1) implies that

(6.1)

(6.2) A & pi ! (DeTDv’) ~p; (D).

Since pi_1 (D) are the break-even concentrations for the corresponding ODEs model, it
follows from (6.2) that if 7p; are small, then A\; < );, j > 2, implies that p;' (D) <
p]-_1 (D), j > 2. By Theorem 4.6 in [4], the ODEs model predicts that population z; is

the sole survivor. This prediction is identical with the prediction given by the distributed
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delay model (1.1), as indicated by Theorem 3.5 and Remark 3.7. However, we should
note that when the virtual mean delays are relatively large, from (6.1), it is possible that
A1 < A; and it (D) > pj_1 (D) hold simultaneously. By Theorem 3.3, it follows that
the distributed delay model may give predictions on the outcome of competition that are
different from those given by the ODEs model. We refer to [27,28] for more details and
a similar discussion of the effects of time delay on the outcome of competition in the

chemostat.

One of the main findings in this paper is the role played by the so-called virtual delay
kernels and the corresponding virtual mean delays (see Theorems 3.4 and 3.5) for predicting
the global dynamics of model (1.1). To the best of our knowledge, this finding has not been
reported in the literature. Although in [20] MacDonald seemed to have noticed this, he only
gave a very brief discussion on a similar but different observation. We reiterate that the
virtual delay kernels combine two modes of loss of memory of previous events, one occuring
on a time scale (r; + 1)/a; appropriate to the particular mechanism conceived, and the
other occuring on the time scale 1/D due to the outflow in the chemostat. Consequently,
the virtual mean delay simulates the mean delay of this two-mode interaction of loss of
memory. Observe that for any fixed D > 0, the virtual mean delay 7p ; is always smaller
than the (physical) mean delay (r; + 1)/a;, and that they are close if «; is large. This
allows us to conclude that the results in Theorem 3.9 of [27] may be viewed as the limiting
case of Theorem 3.5 of this paper, since the distributed delay model (1.1) approaches the
corresponding discrete delay model when the «;’s go to infinity while the mean delays
7= (r; + 1)/a; are kept fixed (see the Appendix of [28] for a proof). However, when the

«; s are relatively small, the results given in Theorems 3.4 and 3.5 appear to be new.

Finally, we remark that as in [28], we selected a particular class of delay kernels of
the form (1.2) to analyze the global asymptotic behavior of model (1.1), and this selection
allowed us to apply the linear chain trick technique. As discussed in [28], this class of
delay kernels are of unimodal type and are generic in the sense that the linear span of the
functions {e™*,se™* s%e¢7* ...} is dense in L'[0,00). Recently, in [13] the dependence
of the global asymptotic dynamics on the delay kernels was studied and these results

seem to provide some theoretical evidence for selecting delay kernels of unimodal type
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in some integral infinite delay differential equation models (see also [3, 7]). As well, it
has been well-known that integral delay may take into account some stochastic behavior
of species, and very long linear chains of differential equations provide multi-stages of
biological processes with random passage through each and the overall distribution of the
total passage time leads to a gamma distribution (see [21, 25]). This type of gamma
distribution is known as the special Erlangian from renewal theory (see [8]), and the weak
kernel and the Dirac distribution kernel corresponding to the discrete delay case represent
the Erlangian distributions with the order r = 0 and r = oo, respectively. Note that by
the Central Limit Theorem, as r increases, the Erlangian distribution tends to become
more normal around the mean. So, as indicated in [25], it is only necessary to choose a
suitable value for r to obtain a good approximation to many unimodal distributions for
t. From this point of view, in [21], MacDonald also comments that it is important to look
for an overall picture of the dynamics for general order of the delay kernels. We have done
so by committing ourselves to looking for global dynamics as well as allowing an arbitrary
order in the delay kernels. For slightly more general delay kernels, i.e. gamma distribution
kernels with non-integral orders (i.e. r;’s are not integers in K;(s) ), our results may also
be sufficient, as far as (local) numerical solutions are concerned, since as suggested by [8],
solutions for non-integral orders may preferably be obtained by interpolating numerically
between solutions for integral orders, rather than proceeding directly with the theory for
the value of non-integral order r; concerned. However, from the global dynamics point
of view, it i1s important that we investigate the question as to whether or not the global
results we proved in this paper hold for more general delay kernels. We leave this for future

investigation.
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