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1. INTRODUCTION 

THE PURPOSE of this paper is to give a concrete demonstration of how the connection matrix can 
be used to analyse a l-parameter family of differential equations. In particular we have four 
goals: 

(1) To show how to compute connection matrices. 
(2) To use these matrices to classify the structure of solutions to our set of differential equa- 

tions for various parameter values. 
(3) To prove the existence of local and global bifurcations. 
(4) To demonstrate how to ignore certain bifurcations. 

Strange as it may seem, we want to emphasize the importance of this last goal. Even in seem- 
ingly simple systems it is possible for global bifurcations to occur which are difficult to detect 
or exclude (in our case, global bifurcations which lead to the existence of multiple periodic 
orbits). Nevertheless, one wants to be able to make significant statements about the general 
structure of the flow for all parameter values. Thus it is important to have techniques which are 
able to ignore subtle or difficult to detect phenomenon and still work. 

The set of equations which we have chosen to study arise from a predator-prey model in 
which the prey exhibits group defense, i.e. the more prey the better their chances for protecting 
themselves from the predator. This set of equations has been studied before (see Freedman and 
Wolkowicz [3], Wolkowicz [13], and Mischaikow and Wolkowicz [9]) and we do not claim any 
new results, rather it is our techniques which are novel. To be more specific, the system we con- 
sider is two dimensional and hence phase plane techniques can be employed to obtain the results 
which we shall present herein. This is the approach taken in [13]. Of course, phase plane 
techniques are more difficult, if not impossible, to apply in the case of higher dimensional 
systems. The advantage of our approach is that the connection matrix is dimension independent 
and hence the tehniques we are describing here are in principle applicable to higher dimensional 
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systems. This suggests to us that the connection matrix has the potential to be a powerful tool 
for studying multi-dimensional systems. 

Because our example is planer, it is easy to visualize the dynamics which occur for the various 
parameter values. On the other hand, our approach is almost completely algebraic and hence 
it is easy to confuse what is intuitively clear with what we intend to prove. In fact the purpose 
of [9J is to demonstrate the relationship between the geometric properties of the dynamics in the 
phase plane and the algebraic quantities in our analysis. In this presentation we want to 
emphasize the power of the connection matrix techniques and, hence, we have been careful to 
avoid using the phase plane to obtain our results, though in some instances this would simplify 
our arguments. 

Obviously one can not study differential equations from a purely algebraic point of view. At 
some point analytic arguments need to be introduced. In this paper we begin with such argu- 
ments, in particular we shall use 3 results of [ 131: 

(1) the set of bounded solutions is always compact; 
(2) the structure of the bounded solutions when the parameter value is sufficiently large; and 
(3) the eigenvalues of the linearized equations at critical points. 

This is almost all the analysis we need and it is presented in Sections 2 and 3. To be more 
precise, in Section 2 we describe the l-parameter family of equations which we shall study and 
the structure of the bounded solutions for large parameter values (theorem 2.1). In Section 3, 
in addition to giving a short introduction to Morse decompositions and connection matrices, we 
translate the above mentioned results of [13] into our terminology. As we shall see, to each 
Morse decomposition there corresponds a partial order and this partial order is crucial to the 
definition of a connection matrix. Thus the first computations we do are in Section 4 where we 
determine all the possible partial orders. Two points are worth mentioning; (i) we obtain our 
results from the information in Sections 2 and 3, and (ii) this is just a collection of possible 
urderiugs, we Jo IIUL lrquilc Aat aii Lime orderings be 1eaiizcci. Given the possibie parriai 
orderings, in Section 5 we compute the possible connection matrices. Again, at this stage we do 
not claim to have proven any existence results. Finally, in Section 6 we obtain the existence 
results, not only for the connection matrices (which imply certain “stable” dynamical struc- 
tures) but also for the occurrence of bifurcations both local and global in nature. In addition 
we are able to give the order in which these bifurcations and connection matrices must occur. 
This information is summed up in a bifurcation graph (Fig. I) which is obtained by comparing 
the connection matrices obtained in Section 5 and the knowledge of the connection matrix for 
large parameter values. 

To summarize, we feel that our techniques are important because they are dimension 
independent and because they allow one to study parameterized families of differential equa- 
tions given in some sense minima1 information, such as the compactness of the set of bounded 
orbits and the eigenvalues of the linearized equations at critical points, information which is in 
principle obtainable even in more complicated higher dimensional systems. 

2. THE EQUATIONS AND THEIR BASIC PROPERTIES 

For a derivation of the following equations and an explanation of their biological relevance 
the reader is referred to [3, 9, 131. We shall consider the following l-parameter family of 
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ordinary differential equations. 

x’ = xgtx K) - YPW = P(XW(x, K) - Y> 
’ = d/dr 

Y’ = Y(-s + 4(x)) 
(2.1) 

where x, y L 0, s > 0 is a constant, and K > 0, a constant, is the parameter value. x(t) and y(t) 
denote the density of prey and predator populations, respectively. In addition to the assump- 
tions that follow we shall assume that the functions g, p and q are continuously differentiable. 

The function g(x, K) represents the growth rate of the prey in the absence of predation and 
for x > 0 has the following properties: 

g(K K) = 0, g(0, K) > 0, g&, K) > 0, gx&, K) > 0, g,(x, K) < 0, jm_g(O, K) 

is finite, and tmr g,(x, K) = 0. 

p(x) is the predator response function and is assumed to satisfy: 

p(0) = 0, p’(O), p”(0) < 0, and p(x) > 0 for all x > 0. 

In order to model the behavior of group defense we assume that there exists h* such that 

A final technical assumption is that 

p(x) - xp’(x) for all x > 0. 

The rate of conversion of prey to predator is described by q(x). In particular, 

q(0) = 0, q(x) > 0 for x > 0, q(h*) > s, q’(x) > 0 for 0~ x < h*, and q’(x) c 0 
forx> h*. 

The assumption that q(h*) > s implies the existence of 1 < h* such that q(A) = s. We shall 
also assume that there exists a p > h* such that q(p) = s. It is easy to check that this forces the 
predator isoclines to be the vertical lines x = I and x = p. The prey isocline is given by 
0x9 K) = x&x, WP(X). 

There are at most four critical points of (2.1) lying in the first quadrant. The first two, 
M(0) = (0,O) and M(K) = (K, 0) always lie on the coordinate axis. The other two, 
M(A) = (A, F(I, K)) and Mb, FQL, K)) exist inside the first quadrant if and only if A < K and 
p < K, respectively. If ,l = K (or p = K) then M(I) = M(K) (or Mb) = M(K)). 

It is easy to see that the x-axis, y-axis and hence the interior of the first quadrant are all 
invariant under (2.1). Of course this is the biologically relevant set of initial conditions. 
However, for our analysis it proves useful to make the following assumptions on the flow 
outside of the first quadrant. 

If K < A < p then M(1) is a saddle point, M(p) is an attractor and the set of connections (see 
definition 3.1) C(M@), M(K)) and C(M@), M(p)) consist of unique orbits. Furthermore, these 
are the only bounded solutions outside of the closure of the first quadrant and they lie above 
the line y = -L for some L > 0. 

If I c K < p, then M(D) is an attractor and C(M(K), M(L)) consists of a unique orbit. Again 
this describes all the bounded solutions outside the first quadrant. We assume these bounded 
solutions all lie above the line y = -L. 

We shall need the following result. 
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THEOREM 2.1 (Wolkowicz [13]). Assume that for some K’ > 0, F has a local maximum 
(x0, F(x,, K’)). There exists K* > p such that if K > K*, then all solutions of (2.1) with positive 
initial conditions converge to M(K) except those originating on the stable manifold of M(D) or 
at the point M(A). 

3. CONNECTION MATRICES 

We shall begin this section with the definitions of some basic ideas that are related to the con- 
nection matrix. For a more complete discussion of the Conley index the reader is referred to [I, 
11, 121. For more details concerning the connection matrix and its properties see [2, 8, lo]. 
After this curt introduction we shall then return to the equations described in the previous 
section and state the results we need in order to compute connection matrices. The proofs of 
some of these results can be found in [3, 9, 131. 

Throughout this paper S will always denote an isolated invariant set and h(S), the Conley 
index of S. 

Definition 3.1. Given two isolated invariant sets, S and S’, the set of connections from S to S’ 
is denoted by C(S, S’) = lx ] o(x) C S’ and o*(x) c S] where o(x) and o*(x) denote the omega 
and alpha limit sets of x, respectively. 

A partially ordered sef, (P, >), consist of a finite set P along with a strict partial order rela- 
tion, > , which satisfies: 

(i) i > i never holds for i E P, and 
(ii) if i > j and j > k, then i > k for all i, j, k E P. 

An interval in (P, >) is a subset, Z c P, such that given i,j E I, if i < k < j then k E I. The set 
of intervals in (P, >) is denoted by O(P, >) or just I( >) if the set P is fixed. An attracting inter- 
val, Z E II( >), satisfies the additional condition that if i E Z and i > j. thenj E I. A(>) denotes 
the set of attracting intervals. 

A Morse decomposition of S, denoted by M(S) = (M(r) 1 i E (P, >)I, is a collection of 
mutually disjoint isolated invariant subsets of S, indexed by (P, >), such that given x f S, then 
either x E M(o for some i, or there exists i,j E P such that i > j and x E C(M(i), M(Z)). The 
invariant sets, M(i), are called Morse sets. 

Let Z E O/( >), then one can define a new isolated invariant set 

M(Z) = (U M(i)) u ( u C&Q), M(0)). 
iSI j,ieI 

If Z E A then M(Z) is an attractor. Since M(Z) is an isolated invariant set h(M(2)) is defined. Let 
H,(Z) r H,(h(M(Z)); Z,), the singular homology of the pointed space &V(Z)). In particular, 
given i E P, H,(r] = Zf,(h(M(i)); Z,). If A: i$)PH(g + ipPH(l) is linear, then A can be written 

as a matrix of maps (A(i,J)) where A(i,J : H(i) -+ H(j). Let A(Z) = (A(i,Z))i.jEI. 

Definifion 3.2. A is called a connection matrix for M(S) if the following four properties are 
satisfied: 

(i) If i 2 j then A(i,Z) = 0. (strict upper triangularity) 

(ii) A(iJW~(O C %.I(~J (degree -I map) 

(iii) A - A = 0. 
(iv) H(Z) = kernel A(Z)/image A(Z) for every interval I. (rank condition) 
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THEOREM 3.3 (Franzosa [2]). Given a Morse decomposition there exists at least one connection 
matrix, 

Notice that the partial order, > , plays an important role in the definition of a connection 
matrix. Therefore, given a fixed set P with two different partial orderings one expects to obtain 
different connection matrices. 

One of the most important properties of connection matrices is stated in the following 
theorem. 

THEOREM 3.4 (Franzosa [2]). If (i,j] E I(>) and if A(i,J) # 0, then C(M(r), M(j)) # 0. 

Because we are studying a two dimensional system, any heteroclinic orbit connecting two 
hyperbolic critical points with different index arises as the transverse intersection of the respec- 
tive stable and unstable manifolds. Thus in our setting the following theorem is easy to apply. 
However, it can also be used in higher dimensional systems effectively. (See Hattori and 
Mischaikow [4] .) 

THEOREM 3.5 (McCord [6]). Let IM(S) = (M(l), M(0) 1 1 > 0) be a Morse decomposition con- 
sisting of hyperbolic critical points. Assume 

ifk=n+i 

otherwise. 

Furthermore, let C(M(l), M(0)) consist of exactly q heteroclinic orbits which arise as the 
transverse intersection of the stable and unstable manifolds of M(0) and M(l), respectively. 
Then A(1, 0) = q mod 2. 

Because we are interested in studying a parametrized family of differential equations we need 
to know how connection matrices at different parameter values are related. This is the purpose 
of the following theorem. 

THEOREM 3.6 (Mischaikow [S]). Let S(K) be isolated invariant sets related by continuation for 
all parameter values K > 0. If AK and AK’ are connection matrices for Morse decompositions 
of S(K) and S(K) respectively, then there exists a matrix, T, consisting of degree 0 maps, such 
that A,T + TA,. = 0. 

The matrix T is called a transition matrix and its entries give information about the existence 
of connecting orbits for the parameter values between K and K’. 

We are now ready to relate these ideas to the predator-prey equations discussed in Section 2. 
First, we define S = [bounded solutions to (2.1)). 

PROPOSITION 3.7. N&z(S); Z,) = (0, 0, . . .). 

Proof. That all solutions to (2.1) with initial conditions in the first quadrant are bounded in 
forward time follows from a proof similar to the one given in Hsu [5, lemma 3.11. Since this 
is dependent of K and by our assumptions on the flow outside of the first quadrant, we have 
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that S is bounded for all K. Thus we can compute the index of S by choosing a value of K for 
which S is contained in the first quadrant. As an isolating neighborhood of S we choose 
N = (6, u) I x2 + YZ = R, R sufficiently large] n ((x, _Y) 1 x 2 -E and y 2 -E, E > 0 but small]. 
Given N there exists an index pair, (N, , Pi,,), contained in N. For a more detailed description 
of (N, , N,) see [9]. Notice that for E small, ((-E, y) E N] C No. Furthermore, N, can be chosen 
such that f(x, -E) E N 1 x > -E] Q N,, and N, does not intersect the first quadrant (otherwise 
some orbit would be unbounded in positive time). Computing the homology of N,/NO gives the 
desired result. n 

Obtaining a Morse decomposition of S is slightly more subtle. It is clear that the critical 
points M(K), M(O), M(D), and k!(h) should be Morse sets, however it is possible that there are 
other invariant sets in S. To get around this problem we shall define another invariant set M(n) 
which contains the “rest” of the invariant orbits. 

Definition 3.8. M(n) is defined to be the minimal isolated invariant set in the interior of the first 
quadrant which contains all periodic orbits of S. 

Before we can discuss the properties of M(n) we need the following information about the 
critical points of (2.1). 

PROPOSITION 3.9. 

(a) H*(O)= (O,G,0,0,...) for all K > 0. 

(b) H,(K) = 
(Z, 9 0, 0, * * .I ifK<Jor,ucK 

(0, z,, 09% * * .I iflcKcp 

(c) 

(0, z2 , 0, 0,. . .) ifK<1 

H,(A) = @I, 0, O,...) if 1 < K and F,(,I, K) c 0 

(O,O,Z,,O,...) if A < K and F,(L, K) > 0 

(d) H*o1) - 
G 3 0, 0, - - .I ifK<rl. 

(O,&,O,O,...) ifp c K. 

Proof. The proof follows from linearizing the equations about the various critical points. For 
details of the proof see [3, 131. n 

We now return to the question of describing M(n). Let y be the inner most periodic orbit in 
M(n), if it exists. Then the compact region, r, bounded by y must contain at least one critical 
point. From (2.1) we have three possibilities M(A) E r, Mb) E r, or M(J) U Mb) c lT From 
proposition 3.9, if I@) is in the interior of the first quadrant, then it is a saddle. This excludes 
M(,D) E I- and M(J) U M(D) .C r. Therefore, M(1) E r. Let y* denote the outer most periodic 
orbit in M(n), if it exists. A similar argument shows that if r is the compact region bounded by 
y* then, Mb) $ r. 

PROPOSITION 3.10. If y and y* exist then (M(p) Ip E P = (0, K, A,p, n)) is a set of isolated 
invariant subsets of S and any other closed invariant subsets of S intersects some M(p) 
nontrivially. 
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Proof. An equivalent statement of this proposition is that if (x, _Y) lies on a bounded solution 
to (2.1) then u(x, y) C M(p) and 0*(x, u) C M(p’) for some p, p’ E P. Given our definition of 
M(X) this is equivalent to the Poincare-Bendixon theorem. n 

Remark 3.11. From now on whenever we refer to M(n) we shall assume that y and y* exist. 

The collection [M(p) Ip E P) will be taken to be the collection of Morse sets in our Morse 
decomposition of S. In the next section we shall determine what the appropriate partial orders 
are. However, we first need information about the index of M(n). 

PROPOSITION 3.12. 
(a) If H,(A) = (Z,, 0,O ,... ), then H,(n) = (0, O,..) or (0, Zz, Z,, 0,O ,...) 
(b) If H,(L) = (O,O, i&,0,0 ,... ), then H,(n) = (0,O ,...) or (Z,, Zz, 0,O ,... ). 

Proof. If M(n) = 0 then H,(n) = (0, O,...). So assume M(n) # 0. To compute the index 
of H,(n) we need to construct an isolating neighborhood of M(n). Let N be a compact annulus 
containing M(X) such that the inner ring, R, , is arbitrarily close to M(I) and the outer ring, R, , 
is arbitrarily close to y*. Notice that depending on the flow we can choose R2 such that if 
(x,y) E R,, then either (x,y) - t E Nfor all t > 0 or (x, y) - t @N for all t > 0. Similarly, for R, , 
however, in this case whether R, is an entrance or an exit set is determined by M(J). It is now 
a simple calculation to determine H,(n). n 

PROPOSITION 3.13. If (A, n) is an attracting interval, then H,(%n) - (Z,, 0, 0,. ..). 

Proof. We can define an isolating neighborhood for M(,ln) as follows. Choose R2 as in the 
proof of proposition 3.12. Let N be the compact region bounded by R2. Since W(i,n) is an 
attractor, R2 is an entrance set for N, i.e. the exit set for N is the empty set. Clearly, 
H&v, 0; Z,) = H*(kz f (h,, o,o, . ..). w 

PROPOSITION 3.14. Assume M(X) # @ and ,l > 71, then H,(i.) = (0.0, Zz, 0,O ,... ). 

Proof. M(n) # 0 implies that A E I. This in turn implies that 1. lies in the interior of the first 
quadrant and hence that I c K. However, in the partial order 1. > n and hence MO.) is not an 
attractor. The result now follows from proposition 3.9. n 

4. PARTIAL ORDERS 

Theorem 3.3 states that for every Morse decomposition of S there exists at least one connec- 
tion matrix. However, a Morse decomposition consists not only of a collection of Morse sets, 
but also of a partial ordering for these sets. Thus, before we can consider the question of what 
are the connection matrices associated to (2.1) we need to determine the set of partial orderings. 

From the previous section we know that P = (0, A, p, K, n) can be used as an indexing set for 
a Morse decomposition as long as we realize that in some cases M(n) = 0. Therefore, we must 
determine the admissible partial orders on P as a function of K. 
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PROPOSITION 4.1. The set of admissible partial orderings on P is as follows: 
(a) If K < A < 8, define 

‘1 by 0 > IP, 1 > ,K, A > 1~. 

(b) If A < K < .B, define 

>2 byO>zp.K>2~,K>zn,n>2~ 

>3 byO>3p, K >3~, K >37r,A >371. 

(c) If ,i < fi < K, define 

>4 by 0 >4~,/1>4K,fi >4n, n>4A 

>5 by 0>5p,/1>5K, n >5/1c, n >sA 

>6 byO>sp,p>>K,A >sn,/Iu>sn 

>7 by 0 >~p, ,u >7K, A >-ln, TI >T,U 

where p E P. Furthermore, (0, Kj, (A, 71) E Z( >j) for all j. 

The following lemmas shall prove useful in the proof of this proposition. 

LEMMA 4.2. 0 > p is an admissible ordering for all values of p E P\(O]. Furthermore, 
(0, KJ E 0. 

Proof. M(0) is a saddle with they-axis as its stable manifold, hence C(M(p), M(0)) = 0 for 
all p E P thus we can assume that 0 > p. The unstable manifold of M(0) is the s-axis and 
M(K) is the only invariant set on the x-axis (as long as K # A, p). Thus (0, K) E :. H 

LEMMA 4.3. If K < A < p or L < p < K then p > K is an admissible ordering for all values of 
p E P\fKf. 

Proof. For these parameter values K is an attracting fixed point hence 

C(MK), M(P)) = 0. W 

LEMMA 4.4. If K < p then p > p is an admissible ordering for all values of p E P\l,u]. 

Proof. For these parameter values M(D) is an attracting fixed point. W 

Proof of proposition 4.1. Case (a). From a previous proposition we know that M(n) = 0, 
hence rc need not be related to 0, A, fl, or K. The result now follows from lemmas 4.2,4.3, and 
4.4. 

Case (b). It is easy to check that the stable manifold for M(K) consists of the positive x-axis, 
thus C(M(p), M(K)) = 0 for p E P\(O). In particular, without loss of generality we can 
assume that K > p and K > IT. Combining this with lemma 4.2 gives >Z and >s as the only 
remaining possible partial orders. 

Case (c). Use lemmas 4.2 and 4.3 and write down the remaining possible partial orders. 
That (A, n) E O( >i) follows from the discussion concerning M(n) preceding proposition 

3.10. n 
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5. CONNECTION MATRICES 

We are now in the position to be able to compute all the possible connection matrices of our 
parameterized system of equations. Let A’ denote the connection matrix associated to the Morse 
decomposition M(S) = [M(p) 1 p E (P, > i). 

LEMMA 5.1. If H,(K) = (Z,, 0,O ,... ), then A(0, K) = 1. 

Proof. Apply theorem 3.5. n 

PROPOSITION 5.2. 

f6JW) &W H,(A) H,(O) 

H,(K) 0 0 1 1 

f6d.d 0 

A’ = H,(I) 

( 

0 1 0 

0 0 0 0 

H,(O) 0 0 0 0 1 

Proof. The first thing to notice is that since K < A, M(A) does not lie in the first quadrant and 
hence M(n) = 0. 

By definition A is upper triangular. Furthermore, since connection matrices are degree-l 
maps the only possible nonzero entries are A(i,/) where i = A or 0 andj = K or ,u. By lemma 
5.1 A(0, K) = 1. By our assumptions on the flow outside of the positive orthant, 
A(A, K) = A(A,p) = 1. Finally, since Hk(h(S)) = 0 for all k, the rank of A is 2 and hence, 
A(O,,D) = 0. W 

PROPOSITION 5.3. 

H&4 H&n) H,(K) H,(O) 

Hoot) 

i 

0 0 1 a 

A2 Ho(W 0 0 1 b = 

H,(O) 0 0 0 0 

H,(K) 0 0 0 0 
wherea+b= 1. 

Proof. Notice that In E A( > 2). Therefore, by proposition 3.11 H*(Arr = (Z, , 0, 0,. . .). 
Since A is a degree - 1 upper triangular matrix we only need to examine the A(i,J entries 

where i = K or 0 andj = p or A. A(K,p) = 1 by our assumptions on the flow outside of the 
positive orthant. The other branch of the unstable manifold of K lies inside the positive orthant 
and hence is bounded. In particular it must limit to M(An). Since this is the unique connecting 
orbit between M(K) and M&r), by theorem 3.5 A(K, An) = 1. There is no connecting orbit 
from M(0) to Mb) or M(In), however, they are not adjacent in the partial order hence the 
corresponding entries in the connection matrix are not flow defined. Since H&(S)) = 0 for all 
k, the rank of A is two and hence a + b = 1. W 

COROLLARY 5.4. If >z is an admissible partial ordering, then Z-Z*(n) = 0. 
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Remark. There is no unique connection matrix given the partial order > z . A heuristic explana- 
tion for this fact is that connection matrices continue under perturbation. Since the connection 
from M(0) to M(K) is not transverse one expects that a generic perturbation of our equation 
would lead to either an M(O) to M(U) or an M(O) to M(An) connection appearing. In the first 
case a = 1 and b = 0 and in the second case a = 0 and b = 1. Because the explicit values of a 
and b will not play a role in our latter analysis we shall treat AZ as if it were one matrix rather 
than two. We shall do the same for A3 defined below. 

LEMMA 5.5. If C@!(K), M(n)) consists of a unique orbit and H*(n) = (Z,, Z,, 0,. . .), then 
A(K.71) = 1. 

Proof. Choose an isolating neighborhood, N, for M(n) as in proposition 3.12. Let B be a 
small disk containing M(K), then B is an isolating neighborhood for M(K). Finally, let E c B 
be a transverse section to the connecting orbit from M(K) to M(n). Then N U B U I2 . [0, co) is 
an isolating neighborhood for M(Krc). One can use this to check that H,(Kn) = 0. n 

PROPOSITION 5.6. 

H&4 f&J(n) H,(n) H,(K) H,(O) H,(A) 

a 0 

b 0 

0 1 

0 0 

0 0 

0 0 
wherea + b = 1. 

Proof. We begin by showing that H,(A) = h,. By proposition 3.14 this is equivalent to 
showing that M(n) # 0. So assume that M(n) = 0. Notice that we can now let n > 1, since 
M(n) does not really exist. This puts us back into the partial order >2. So without loss of 
generality we can choose H,(A) = Hz. 

We now leave it to the reader to check that if H,(n) = 0 then one cannot construct a connec- 
tion matrix (the rank condition will fail). Thus by proposition 3.12, H,(n) = (Z,, Z2, 0,. ..). 

A is a degree - 1 upper triangular matrix, therefore, we need only consider the following 
entries: A(n, P), A(K,p), A(K, II), A(0, p), A(0, TC), A@, n) and A(A, K). (A, K) E O(>s) and 
C(M(I.), M(K)) = 0, thus by theorem 3.4 A(I_, K) = 0. The rank of A equals 3, Hence 
A(& n) = 1. Recall that by definition A 0 A = 0. This forces A(n, p) = 0. The same argument 
as in the proof of proposition 5.2 shows that A(K, p) = 1. A(K, n) = 1 by lemma 4.3. Finally, 
the rank condition forces a + b = 1. n 

PROPOSITION 5.7. 

H,(k) f4,bW HA& H,(O) 

0 1 1 

0 1 0 

0 0 0 

0 0 0 i 
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Proof. Since (An) E A( >A), by proposition 3.13, H,(An) = (Z,, 0, O,...). The rest of the 
argument is similar to that of proposition 5.2. n 

PROPOSITION 5.8. 

HoUO 
f&,(4 
H,O1) 

AS = H,(O) 

H,(n) 

Hz(n) 

H,(K) Ho(A) H,@) H,(O) H,(n) H,(n) 

0 0 0 1 * 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

where * denotes an undetermined entry. 

Proof. To determine H*(n) and H,(A) notice that n > ~1 and apply an argument similar to 
that of proposition 5.6. 

Since A is a degree-l upper triangular matrix we need only consider the following entries: 
A(u, K), A& A), A(0, K), A(0, ,I), A(rr, K), A(n, ,I), and A(n,p). The rank of A is 3, hence 
A(n, p) = 1. This and the fact that A 0 A = 0 implies that A@, K) = A@, A) = 0. Proposition 
5.1 implies that A(0, K) = 1. One can check that (0, ,I) E O( >5). Since C(M(O), M(J)) = Qr it 
now follows that A(0, 1) = 0. The rank condition now requires A(n, A) = 1. n 

It is worth noting that a more careful analysis of the flow will uniquely determine the 
unknown entry in A5, however, for our analysis this is not necessary. The point to be made here 
:,- thnt rrr”n.W.t;nn .Wnt-:r.‘.- “9:: be ..MFul evn- r* CllUI .,v . . .._ _..I.. .L...LI.~.CCI c ..3c* . w.1 if :h=y 2;: 30: ~~--~~*~I~~ elm*ec_;-oA *.Ip,.,L~,J U*LC...II.*-... 

PROPOSITION 5.9. 

H,(K) H,(n) H,(n) H,Or) H,(O) H,(A) 

Ho(K) 

i 

0 0 0 1 1 0 

H,(n) 0 0 0 1 0 0 

A’ H&r) 0 0 0 0 0 1 = 

H,@) 0 0 0 0 0 0 

H,(O) 0 0 0 0 0 0 

H,(A) 0 0 0 0 0 0 

Proof. The proof is similar to that of proposition 5.8. n 

PROPOSITION 5.10. 

f&(K) H,W H,(O) W4 

0 1 0 

0 0 1 

0 0 0 

0 0 0 
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Proof. By proposition 3.14, H,(A) = (0, 0, Z,, 0 ,... ). However, TI >7~, also, and hence 
H*(n) = 0. 

The only possible nonzero entries are A(u, K), A(0, K), and A(]., ~0. Lemma 5.1 tells us that 
A(0, K) = 1. The rank condition forces A(,I,p) = 1 and finally, A 0 A = 0 implies that 
A(p,K)=O. H 

6. BIFURCATIONS 

Notice that we have not defined connection matrices for all possible values of K. This is 
because if K = A or K = p then we are at a bifurcation point. In this section we shall use the 
connection matrices we obtained in Section 5 to describe the order in which bifurcations can 
occur and how the structure of the invariant sets must change. Once again, it must be 
emphasized that at this point the matrices in Section 5 are only known to be the possible connec- 
tion matrices. We still have not proved which of them actually occur. However, by the end of 
this section (theorem 6.7) we will be able to give some existence results. 

Because of the structure of the equations which we are studying, there are only certain bifur- 
cations which can occur as K is changed. In particular, M(0) undergoes no bifurcations, M(K) 
and Mb), and M(K) and M(1) can exchange stability. M(J) can undergo a Hopf bifurcation. 
Globally, M,u) may have a homoclinic orbit associated with it. Finally, the periodic orbits 
themselves may be subject to bifurcations (i.e. saddle node, pitchfork, etc.). Given the way we 
have defined M(x) we cannot detect this latter set of bifurcations and so we shall intentionally 
ignore them. This does not mean that we are assuming that they do not occur, but rather that 
our analysis is valid regardless of whether such bifurcations are occurring or not. 

Since we now know all the possible connection matrices for those values of K at which a 
bifurcation is not occurring we shall adopt the following approach. Given A’, we determine 
which of the four elementary bifurcations, A-exchange @I(,?) and M(K) exchange stability), p- 
exchange (M(D) and M(K) exchange stability), Hopf (M(A) undergoes a Hopf bifurcation), or 
homoclinic (Mot) is the critical point on a homoclinic orbit), is possible and then given this 
elementary bifurcation what is the new connection matrix. 

Our results can be most clearly presented if we make the following “generic” assumption. 
Let the set of points at which the elementary bifurcations occur be a discrete set and assume that 
at each bifurcation point only one elementary bifurcation occurs. 

LEMMA 6.1. There exists K such that if K > K* then the connection matrix is A’. 

Proof. From Wolkowicz [13], theorem 3.7 we have that there exists a K* > p such that if 
K > K*, then all solutions of (2.1) with initial conditions in the positive orthant converge to 
M(K) except those originating on the stable manifold of M(D) or at the point M(1). Since 
K* > p the connection matrix must be A’ where i = 4, 5, 6, or 7. By looking at the nonzero 
entries of all these matrices and using theorem 3.4, A’ for i = 4, 5, or 6 is eliminated. Since a 
connection matrix exists it must be A’. n 

We begin with the case where K c A. From propositions 4.1 and 5.2 it is clear that the con- 
nection matrix is A’. Thus if a bifurcation occurs at K’ < ,I then this bifurcation cannot result 
in a change in the connection matrix. This rules out a A or p-exchange since this would result 
in different values for H(A), H(D) or H(K). Similarly, a Hopf bifurcation cannot occur. Finally, 
since we are only interested in the bifurcations that occur in the closure of the first orthant we 
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can eliminate the occurrence of a homoclinic orbit. Therefore, no bifurcation can occur for 
K < A. This means that the first bifurcation occurs at K = I where a A-exchange takes place. 

LEMMA 6.2. AL I l A2. 

Before we prove this lemma a word of explanation may be in order. What is meant by the 
above notation is that passing through a A-exchange bifurcation results in a change of connec- 
tion matrices between A’ and A’. Furthermore, the arrow indicates that as K increases through 
the I-exchange bifurcation point, it is not possible to change from AZ to A’. 

Proof of lemma 6.2. We are given that K < 1 implies that the connection matrix is A’. Also, 
by proposition 4.1 for 1 < K < p the only possible connection matrices are A2 and A’. Given 
that only a L-exchange occurs, checking H,(K) and H,(1) implies the result. n 

We now consider what can happen for the parameter values I < K c p. As was mentioned 
before, the only possible connection matrices are A2 and A3 and again arguing as above this 
excludes the possibility of a I or p-exchange. Since I, is the only critical point in the positive 
orthant a homoclinic orbit is impossible (since we are in the plane the homoclinic orbit would 
have to surround another critical point). This only leaves the possibility of a Hopf bifurcation 
at M(1). Assume then that a Hopf bifurcation takes place at K’ E (A, p). By lemma 6.2 we know 
that if K E (A, K’) then the connection matrix is A’. Thus, for K E (K’,p), we have that 
H,(I) = B2. Therefore the connection matrix is A3 and we have the following lemma. 

LEMMA 6.3. A2 H , A3. 

The fact that the Hopf bifurcation is directed follows from the linear analysis and the 
assumption on p(x). 

LEMMA 6.4. A2 .U , A4 and A3 y , A’. 

Proof. We have already established that for K E (A, p) the only bifurcation that can occur is 
a Hopf bifurcation. Therefore, the p-exchange must occur when K = p. By proposition 4.1 if 
fl c K then the set of possible connection matrices are A’ where i = 4, 5, 6, or 7. The same type 
of argument as that used in lemma 6.2 gives the desired result. n 

We are now in the region P < K. An argument similar to that which lead to lemma 6.3 gives: 

LEMMA 6.5. A4 H , A6 and As H . A’. 

We still need to determine what bifurcation occurs when the connection matrices change 
from A4 or A6 to As or A’. 

LEMMA 6.6. A4 h , As and A’s h l A’. 

Proof. We shall prove the first diagram, noting that the second result follows from a similar 
argument. From theorem 3.6 we know that there exists a transition matrix T satisfying the 



968 K. ~IISCHAIKOW and G. \VOLKOWICZ 

equation A’T + TA* = 0. Since T is a degree 0 map it takes the form 

H,(K) H,(J) H,Cu) H,(O) H,(n) H,(n) 

H,(K)/* * 0 0 0 o\ 

40) 

i 

* * 0 0 0 0 

T=H,w 0 0 a * * 0 H,(O) 0 0 * * * 0 1 
In order for the above mentioned equation to be satisfied, T@, p) = a = 0. Now by 
Mischaikow [7, corollary 4.41 there exists a homoclinic orbit to M(J). n 

We can collect the information of the previous lemmas and form the bifurcation graph asso- 
ciated to this parameterized family of equations as is done in Fig. 1. As can be seen the vertices 
of this graph consist of the connection matrices from Section 5 and the edges are made up of 
the possible bifurcations. Using this information we can obtain the following results. 

Blfurcatm Graph 

Fig. I 

THEOREM 6.7. 
(a) There exists a unique value for which a I-exchange occurs. 
(b) There exists a unique value for which a p-exchange occurs. 
(c) There exists a unique value for which a Hopf bifurcation occurs. 
(d) An odd number of homoclinic bifurcations always occurs. 
(e) For a particular choice of functions p, g, and 4, the connection matrices which are 

realized are determined by the relative values of K for which the Hopf bifurcation occurs. 
(f) For any choice ofp, g, and q, there exist values of K such that A’, A*, and A’ are connec- 

tion matrices. 
(g) For a particular choice of functions p, g, and 4, it is not possible for both A3 and A4 to 

be connection matrices for various parameter values. 
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(h) If for a particular choice of functions p, g, and 4, there exist parameter values KJ and KS 
for which As and A6 are connection matrices, respectively, then KS < K6. 

Proof. Beginning with K small and proceeding to K large we are forced to travel a path 
through the bifurcation graph which begins at A’ and ends at A’ (lemma 6.1). Furthermore, we 
can only travel on the edges in the direction in which the arrows are pointing. n 

1. 

2. 

3. 

4. 
5. 
6. 
7. 

8. 
9. 

10. 
11. 

12. 
13. 
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