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ABSTRACT

Our goal is firstly to show that the connection matrix is
a very useful tool for analyzing biological models and
secondly to show that given some fundamental results, to
apply the technique requires only a lknowledge of Dbasic
linear algebra and differential equations theory.
Although the technique is dimension independent, we
illustrate the ideas on a planar model of predator-prey
dynamics. The model we use is very similar to the
classical Gause type model of predator-prey interaction,
but has richer dynamics. The model is of interest in
itself and the results provide strong support for
Rosenzweig’s paradox of enrichment.

1. INTRODUCTION
Our aim is to show that the connection matrix is a very useful

tool for analyzing biological models, perhaps the natural second step
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to follow a standard linear analysis. Because we wish to emphasize the
general ideas involved, how they interrelate, and how they may be used
in applications, we leave the details of the proofs to a later paper
(Mischaikow and Wolkowicz in progress). Out of necessity  the
connection matrix is based upon rather complicated and abstract ideas
from algebraic topology. However, we hope that the reader will observe
that given some fundamental results, to construct and interpret these
matrices requires only a knowledge of basic linear algebra and
differential equations (see for example Hirsch and Smale (1974)).

Although the connection matrix technique is dimension
independent, we choose to illustrate how it can be used on a two
dimensional model of a predator-prey system involving group defense.
Since phase portraits can be drawn this can help the reader to better
relate the type of information one can derive from the matrix to the
dynamics of the model. As well, for a certain parameter range, the
dynamics are almost identical to a very well known model of population
dynamics, the classical Gause type model of predator-prey interaction,
a model with which most biologists are familiar and comfortable.
However, this model has a richer dynamics, including not only a Hopf
bifurcation but also a homoclinic bifurcation, making it a particularly
good model for our purposes. Finally, this model is of interest in
jtself since its dynamics provide strong support for the so-called
paradox of enrichment (see Freedman and Wolkowicz (1986), Gilpin
(1972), May (1972), McAllister (1972), Riebesell (1974), and Rosenzweig
(1971, 1972a, 1972b)). 1In fact, in this model there is a threshold of
enrichment. If this threshold is exceeded by increasing the carrying
capacity of the environment, extinction of the predator results
(asymptotically) for all but a set of initial conditions of measure
Zero. »

In Section 2 we discuss the model and explain its dynamics from a
bifurcation theory point of view. For more details concerning the
model. and the biological implications of the reshlts see Freedman and
Wolkowicz (1986) and Wolkowicz (1988). For proofs of the results using
planar techniques see Wblkowicz (1988).

In Section 3 a brief introduction to the connection matrix is



given beginning with preliminary background material and culminating
with the definition and some basic properties of the connection matrix.
The concepts given in this section are illustrated by means of simple
examples as well as examples related to the model in Section 2.

We begin Section 4 by showing how to actually construct and
interpret a connection matrix for the model described in Section 2. We
then indicate how the connection matrix (as an alternative to the
approach discussed in Section 2) could have been used to study the
predator-prey model. In particular we show how it can be used to prove
the existence of a stable periodic orbit and a homoclinic orbit and how
to trace bifurcations for various parameter values. We conclude this
section with a brief discussion of other applications of these
techniques.

We  emphasize that  the connection matrix is a dimension
independent technique and although we illustrate its use on a two
dimensional system, its primary importance is for the analysis of

models of dimension three or higher.

2.  PREDATOR-PREY MODEL ASSUMING GROUP DEFENSE

By group defense we mean the phenomenon whereby predation is
decreased or even eliminated due to the ability of the prey to defend
or disguise themselves as their numbers increase beyond some threshold.
See Tener (1965) and Holmes and Bethel (1972) for examples of where
this phenomenon is known to occur in nature. v

As in Freedman and Wolkowicz (1986) and Wolkowicz (1988), we
consider the following system of autonomous ordinary differential
equations of generalized Gause-type as a model of predator-prey
interaction with group defense exhibited by the prey.

x = xg(x,K) - yp(x) 2 p(x) (F(x,K) - y)

y = y(-s+q(x)) (1)

x(0) 3 0, ¥(0) 2 0, =4

where x(t) and y(t) denote the density of prey and ©predator
populations, respectively. It is assumed that the functions g, p and q



are continuously differentiable and that s and K are positive

constants. When reference is made to model (1)K, if there is no

ambiguity, the subscript K shall be omitted. Here, g(x,K) represents
the specific growth rate of the prey in the absence of predation.
Logistic growth, g(x,K) = r(l-x/K) is considered a prototype
This leads to the following assumptions on g:
for any K > 0
g(X,K) = 0, g(0,K) > O, gK(O,K) > 0 and éiz g(0,K) is finite (2)

8,,(0,K) 2 0, £ (0,K) ¢ 0 and lim g (0,K) = 0; (3)
Koo

forany K> 0 and x > 0
gK(x,K) > 0, gXK(X,K) > 0, gX(X,K) <0 and.lim gX(X,K) = 0. {4)
Ko
The function p(x) denotes the predator response function and is

assumed to satisfy:

p(0) = 0, p*(0) >0, p"(0) <0, plx) >0 for x> 0. (5)

In order to model group defense, it is assumed as well that there

exists h > 0 such that

p'(x) >0 for 0 ¢ xX h, (6)
and
p'{x) < 0 for h < x. (7)

For technical reasons it is assumed that
P(x) = p(x) = xp'(x) > 0 for all x> 0. - = (8)

In particular, since P'(x) = -xp"(x) and P(0) = 0 it is _suffioient
to assume that p(x) is concave for O < x <‘E (sipce pt(x) < 0 for
x > h, clearly P(x) >0 for x> h ). B

A function of the form p(x) = mx/(ax2 + bx + 1} where m, a, and
b are positive constants satisfies these assumptions and approximates
Holling type II dynamics for small x. - .

The rate of conversion of prey to predator is described by q(x).

In Gause’s model q(x) = cp(x) for some positive constant c. It is



assumed that q(x) has properties similar to p(x). In particular

q(0) = 0, a(x) >0 for x > 0, q(h) > s, (9)
q'(x) >0 for 0 ¢ x < h (10)

and
q'(x) <0 for x> h. (11)

It 1is also assumed that q(h) > s, since otherwise the predator
cannot survive on the prey at any density. This implies that there
exists A < h such that q(a) = s and there may exist u > h such
that q(u) = s.

Other examples of g(x,K), p(x) and g(x) can be found in Boon and
Laudelout (1962), Holling (1965), May (1972), Rosenzweig (1971), and
Yang and Humphrey (1975).

The predator isoclines are the vertical lines x = A and x = pu
(provided u exists). If u > K the asymptotic outcome is the same as
in the classical case. It shall therefore be assumed that up is finite
throughout the remainder of this paper.

The prey isocline is given by the function F(x,K) = xg(x,K)/p(x).
The properties of this function play a key role in the analysis given

in Wolkowicz (1988). In particular, under our assumptions it follows
that ‘

if HM 8 HM(K) is a local maximum of F satisfying

FX(HM,K) = 0, then as K increases, HM shifts to the

(12)
right and is to the right of any fixed u > 0 for all
sufficiently large K, '

and
if Hm 2 H(K) is a local minimum of F satisfying
FX(Hm,A) = 0, then as K increases, Hm shifts to the (13)

left or disappears (i.e. Hm < 0 ) and disappears

for all sufficiently large K.



As a consequence, if we fix ﬁ > 0, there exists K* > 0 such that
for all KX > K*, F has no interior local minimum and any interior
local maximum is to the right of p.

For both biological realism and mathematical convenience we

impose the following restriction on F.

There are at most two values of x ¢ {0,K) where FX(X,K) = 0. (14)

This holds for example, if g(x) = r(l1 - x/K), where r is  a positive

constant and p(x) = mx/(ax2 + bx + 1) where m, a and b are positive
constants.

Finally we observe that there can exist at most one pair (x,K)

0

such that FX(X,K) <0 forall 0<x<K, x#x and FY(E,K) = 0.
This forces F to have an interior local maximum, HM for all K > K.

For technical reasons we shall assume that there never exists such a
pair (x,K) with X = A Or He This would be an extremely rare

coincidence biologically. (This insures that whenever FY(A,K) =0, a

Hopf bifurcation occurs as K passes through %.)

Next we consider some of the properties of the different
invariant sets associated with (1). (The proofs can be found in
Wolkowicz (1988).) First we note that the x-axis, y-axis and hence the
interior of the first quadrant are all invariant under (1). Solutions
for which x{(0) > 0 and y{(0) > 0 are bounded in positive time and given
any € > 0 these solutions satisfy x(t) < K + e for all sufficiently
large t.

There are four possible critical points of (1)K. The first two,
M(O) = (0,0) “and M(X) = (K,0) always lie on the coordinate axes.
The other two, M(A) = (A,F(A,K)) and M(u) = (u,F(u,K)) lie inside
the first quadrant if and only if A < K and u < K, respectively
(otherwise F(A,K) < 0 and F(p,K) ¢ 0, respectively). If A = K
(or u = K) then M(A) (or M(u)) coalesces with M(K).

In order to demonstrate the connection matrix technique, it is
-useful to extend the dynamics of our model to the entire plane. Since

the first quadrant and the coordinate axes are invariant, provided the



extension agrees smoothly with (1), it will have no bearing on the
dynamics in the first quadrant. (We shall also denote the extended
system by (1) since this should not lead to any confusion.) It will
therefore be convenient to make the following assumptions:

If K < A < u then M(A) is a saddle point, M(u) is an attractor
and the set of connections (see Definition 3.2) C(M(A),M(K)) and
C(M{A),M(u)) consist of wunique orbits. Furthermore, these are the
only bounded solutions outside of the closure of the first quadrant and
they lie above the line y = -L for some L > 0.

If A <K <y, then M(u) is an attractor and C{M(K) ,M(A))
consists of a unique orbit. Again this describes all the bounded
solutions outside the closure of the first quadrant. We assume these
bounded solutions all lie above the line y = -L, for some L > 0.

(For the reader who prefers to have a more concrete extension,
define p(x) < 0, q(x) < s and g(x,K) > O " for x < 0, and
g(x,K) < 0 for x > K . Then (1) has the dynamics described.)

The local stability analysis for all the critical points is
summarized in Table 1. If u > K or u = +» then the dynamics are
basically the same as the dynamics of the classical model, that is the
model in which there is no group defense.

Next consider periodic orbits. By observing how solutions must
cross the predator and prey isoclines (see Figufe 1) it follows that
any periodic orbit of our system must surround M(A) and cannot surround
any other critical point. Denote by M(n) the set of bounded orbits of
(1) which surround M(A) and are also bounded away from the set of
critical points {M(K),M(0),M(A),M(u)}. {Note that M(mw) = ¢ is
possible.) In Wolkowicz (1988) it is shown that the slope of the
portion of the prey isocline inside any periodic orbit must change sign
and hence must enclose a local minimum or a local maximum of F. Thus,

by (7) it follows that for all sufficiently large K, (1)K admits no

nontrivial periodic orbits. As well, it is -shown that if K is

sufficiently close to A, (1)K admits no periodic orbits.

As for homoclinic orbits, in Wolkowicz (1988) it was shown that

the only critical point that can be involved in a homoclinic orbit is



M(u) and any homoclinic orbit must surround M(A) and cannot surround
any other critical point. Also, Jjust as for periodic orbits, any
homoclinic orbit must enclose either a local minimum or a local maximum

of F and so (1)K admits no homoclinic orbit for all sufficiently large

K.

An immediate consequence of these facts is:
Theorem 2.1. Assume that for some K > 0, F has a local maximum
(HM,F(HM,K)). There exists K* > # such that if K > K*, then all

solutions of (1), with positive initial conditions converge to M(K)
K

except those originating on the stable manifold of M(u) or at the point
M(A).

Thus the model predicts that too much enrichment always results
in the extinction of the predator unless the prey isocline is monotone
decreasing for all values of the carrying capacity K, in which case the
following holds:

Proposition 2.2. Assume FX(X,K) <0 forall K> u and all 0 < x <

K. Then the stable manifold of M(u) separates the positive quadrant
into two regions. Solutions originating in the inner region all
converge to M(A). Solutions with initial conditions in the outer

region all converge to M(K).

Since the dynamics are more interesting and the model more
realistic biologically, it is assumed that the pfey isocline has a
local maximum for at least one value of i > 0 (and hence for all K >
& by (2)). Otherwise F(x,K) is strictly monotonically decreasing for
all K > 0, M(A) is asymptotically stable, there are no périodic
orbits or homoclinic orbits and if A < u < K the dynamics are similar
to those shown in Figure 3.c, (though M(u) would be lower than M(A)).

Next we consider how the dynamics change as K varies. First note

that M(0) undergoes no bifurcations. .It remains a saddle for all K



with stable manifold along the y-axis and unstable manifold along the
x-axis. For A > K, M(K) is an asymptotically stable critical point.
At A =K, M(A) and M(K) coalesce. As K increases, M(K) loses
stability becoming a saddle, whereas M(A) enters the first quadrant as
an asymptotically stable critical point. We call this bifurcation a
ra-exchange. Similarly, for u = K, M(u) and M(K) coalesce. As K
increases further, M(K) regains its stability and M(u) enters the first
quadrant as a saddle and remains a saddle for all K. We refer to this
bifurcation as a p-exchange.

Since any periodic orbit must surround M(A) and cannot surround
‘any other critical point, M(A) is the only candidate for a Hopf
bifurcation. Since our system is planar, and all solutions are
uniformly asymptotically bounded, though semi-stable periodic orbits
may appear and disappear spontaneously, the only way stable or unstable
period orbits can appear or disappear is either in pairs (one stable
and one unstable), or through a homoclinic bifurcation.

As K increases there is always a Hopf bifurcation about M(A) and
a homoclinic bifurcation involving M{u). The Hopf bifurcation occurs
for the unique value K = ﬁ for which (A,ﬁ) is either a local
maximum or a local minimum of F, the prey isocline. The direction and
stability of the bifurcating periodic orbit is determined by the sign
of the quantity: R

- P(NF_(A,K)Q"(A) .

W= T + p(A)FXXX(A,fi) + 2 pr(MF(A,K).  (15)

If w < 0 the bifurcating periodic orbit is orbitally stable and
exists provided X > ﬁ and |K - ﬁ] sufficiently small. If w > O
then the bifurcating periodic orbit is unstable and exists provided K
< & and |K - §| sufficiently small.

If w> 0 and (A,ﬁ) is a local maximum of the prey isocline
it follows that for some K < ﬁ there is either the spontaneous
appearance of (a semi-stable periodic orbit whiech splits into) a pair
of  stable and unstable periodic orbits or a Hopf bifurcation and a
"homoclinic bifurcation occur simultaneously (because the outermost

periodic orbit must be asymptotically stable). If the Hopf bifurcation



occurs before the u-exchange then only the former scenario is possible.
In Wolkowicz (1988) the homoclinic bifurcation is investigated

by means of a phase plane argument, focusing attention on the stable

s

and unstable manifolds, EM(P) and E;( of M(u). Consider that

M)’
part of ES(N) (Eﬁ(p)) that approaches (leaves) M(y) from (towards)
the left and call it r° (r"). Freedman and Wollowicz (1986) point out
that there are at most three possibilities for rs (see Figure 3). Case
1: In negative time r° leaves the strip 0 < x < u (Figure 3a). Y
must therefore approach (in forward time) M(A) or a periodic orbit
enclosing M(A). Case 2: r° is a homoclinic orbit, that is r° o= r
(Figure 3b). Case 3: TI° remains in the strip 0 ¢ x < u for all time
and if followed as time is reversed either approaches the outermost
periodic orbit surrounding M(A) or M(A) if there are no periodic
orbits. In thié case " approaches M(K) (Figure 3c).

By Theorem 2.1 it follows that Case 3 holds for all sufficiently
large K. As well it can be shown that there always exists some X > 0
such that Case 1 holds. Thus by continuity it follows that Case 2 must
hold for some K as well, and hence there always exists a homoclinic

bifurcation.

3. THE CONNECTION MATRIX

In this section we shall give various definitions and basic
theorems which relate to the connection matrix. We begin with a series
of basic definitions that lead us to the definition of the Conley or
homology index. References for this include Conley (1976), Conley and
Zehnder (1984), Moeckel (preprint), Salamon (1985), and Smoller (1983).

Let (z,t) — z-t denote a flow on R™ where z e B? and t € R.
S is called an invariant set if S‘R = S. A compact invariant set, s,
is said to be an isolated invariant set if there exists a compact
neighborhood, N, of 8 such that S is the maximal invariant set. in N.
In this case N is called an isolating neighborhood of S. Simple
examples of isolated invariant sets include hyperbolic criticai points

and periodic orbits.



Definition 3.1. Given two isolated invariant sets S, and S,, the set

of connections from S, to S, is

C(S,,S.) = (z : w(z) <8, and w(z) S, }, (16)
where
w(z) = N cl(z-[t,»)) and w*(Z) = N cl(z:(-»,~t]) (17)
£20 £30

. X o .
(i.e. w{z) and w (z) are the positive and negative omega limit sets,

respectively, of the trajectory through z).

If we define the index set

P 2 {0,K,A,u,n} (18)

and

1>

U C(M(1),M(J)) (19)
i,j eP

then the set ¥ of all bounded solutions of (1),

s2cu( u Mi)), (20)
ieP

is another example of a compact, isolated invariant set.

Definition 3.2. A pair of compact sets (N,,N;) is an index pair for an

isolated invariant set, S, if N, < N, and

(i) N,\N, is a neighborhood of S and cl(N,\N,) is an
isolating neighborhood of S.

(i1) No 1is positively invariant in N,, i.e. if x e N, t > O
and x-[0,t] € N,, then x-[0,t] < N,.

(iii) N, is an exit set for N,, i.e. if x € N, and
[0,2) € Ny, then there exists t >0 such that
x+[0,t] € N, and x-t € Nj.

See Table 3 for examples of index pairs for several different
isolated invariant sets. The reader who knows no algebraic topology
can skip to Remark 3.5.

Given an index pair (N,,N,), lét N,/N, denote the quotient



space of N, obtained by collapsing N, to a point. Let [N,] denote
the special point in N,/N, obtained from N,.

Definition 3.3. Given an isolated invariant set S with index pair

(N,;,N,), the Conley index of S is the homotopy type of the pointed
topological space (N,/Ng,INy]). We denote the index by A(S) (i.e.
A(S) ~ (N,/Ny, [No1).

Theorem 3.4. (See Conley (1976), Conley and Zehnder (1984), Salamon
(1985) and Smoller (1983).) Given an isolated invariant set S, A(S)

exists, is well defined and any nearby flow will have a nearby isolated

invariant set with the same index.

In general working with the homotopy equivalence classes of
topological spaces is difficult. To simplify matters we shall restrict
our attention to the singular homology vector spaces over 2, (the

integers mod 2) of A(S), that is, H*(A(S),Zz). Then

H, (4(8);2,) £ H*(NI/NO,[NO];Zz) = {Hn(N‘/N°’[N°];22)}n=0,1,2,... (21)
where each Hn(Nl/No,[ND];Zz) is a vector space over Z,. Thus
H*(A(S);Zz) is an infinite collection of vector spaces over 2z,

indexed by the nonnegative integers. To simplify the notation let
H,(A(S)) = H (A(5);2,).

Remark 3.5. The Conley index associates to each isolated invariant seﬁ
a pointed topological space. The homology of this topological space is
an algebraic object called the Conley homology index. An important
question in dynamical systems is: given different isolated invariant
Sets, how are they related by the flow? The connection matrix gives an
algebraic answer to this by giving a relationship between the
homologies that are associated with the invariant sets via the Conley

‘index.



In order to construct connection matrices, one must be able to

compute the Conley homology index

H (&(S)) = ( Hy(A(S)), H,(A(S)),..., ) (22)

of certain isolated invariant sets. The index can be thought of as an
ordered sequence of vector spaces over 2Z, with most of the vector
spaces isomorphic to 0. An important property of the index is that it
is determined by an index pair. Thus, given (N;,Ng), an index pair
for S, the maximal invariant set contained in the interior of N;\No,

we can compute H _(A(S)) without explicitly knowing the structure of
X

S. Propositions 3.7 and 3.8 are examples of this fact. The following
three propositions can be used as rules for computing H*(&(S)). The

indices of most of the isolated invariant sets we need to consider in
model (1) are computed in Table 3.

Proposition 3.6. Let S be a hyperbolic critical point with exactly k

eigenvalues having positive real part. Then

Hn(&(S)) ~ Z, if n = k,
0 otherwise.

Proposition 3.7. Let (N,,N,) be an index pair for S. If Ny, is a

deformation retract of N, (i.e. there is a continuous function
H : N, x [0,1] — N, such that H(x,0) = x and H(x,1) € N, for every
X € N, and H(a,t) = a, for every a € N, and t € [0,11), then

Hn(ﬂ(S)) = 0, n=0,1,2,... .

¥, the set of all bounded solutions of (1) has such an index pair

(see  Table 3) and hence Hn(ﬂ(S)) ~ 0, n = 0,1,2,...

Restricting our attention for the moment to a flow in RZ, we

have the following (see Table 3).



Proposition 3.8. Let (N,,N;) be an index pair for S. Assume N, is

homeomorphic to an annulus, that is {z : 1 < W =z 1 ¢ 2}. Let
No € 9N, .
(i) If Ny = ¢, then Hn(ﬁ(S)) ~ 2z, if n = 0,1
0 otherwise.

(ii) If N, is a non-empty component of aN,, then Hn(&(S)) ~ 0

(iii) If N, = oN,, then Hn(ﬂ(S)) ~ Z, if n=1,2
{ 0 otherwise.

If S 1is an attracting periodic orbit, we'are in case (i) of the
above proposition. That is, if S is an attracting periodic orbit, then
any index pair for S, (N,,Ng) could correspond to a more complicated
S, for example a collection of bounded orbité where the innermost and
outermost orbits are attracting orbits. If S is a semi-stable periodic
orbit we are in case (ii) and if S is a repelling periodic orbit we are
in case (iii).

In order to describe the structure of ¥, we first define Morse
decomposition. For a more detailed discussion of Morse decompositions
and how they relate to connection matrices see Moeckel (preprint) and

Franzosa (1986 and preprint). First we need the following definition.

Definition 3.9. A finite partially ordered set, (P,>) 1is defined by

choosing a set P with a finite number of elements and imposing a

partial order relation, >, which satisfies:

(1) 1 > 1 never holds for i € P

and

(ii) ifi > j and j > k then i > k for all i,j,k € P.

We say that two elements i,j € P are adjacent under > if
there does not exist k € P such that i > k > j or Jj > k > i
" Finally, given (P,>), " an interval is a subset IcP for which

i,jeI and i > k > j implies that k € I.



Definition 3.10. A Morse decomposition of S is a finite collection

A(S) 2 M(i) + i e (P,>) }, of mutually disjoint, compact, invariant
sets 1in S, indexed by P, satisfying; if =z € S then either =z e M(1i)

for some 1 € P or =z e C(M(i),M(j)), where i > j.

The individual sets, M(i), are called Morse sets. Thus a Morse
decomposition of S is'a collection of isolated invariant subsets with
the property that each point not in one of the Morse sets tends to a
single Morse set in forward time and a single Morse set in backward
time. Also, Morse sets are ordered so that points move from sets which
are higher in order to sets which are lower in order.

Morse sets are themselves isolated invariant sets and hence

H*(R(M(i))) is defined. To simplify the notation we shall write
H(i) = H,(A(M(1))) and H (1) =~Hn(&(M(i))) (23)

It is important to recognize that éiven S there may be different
collections (M(i)} which give rise to a Morse decomposition. In fact
there are two fundamental ways in which the Morse decompositions can
differ. The first is that the indexing sets need not have the same
number of elements. Consider the simple example where S consists of
two critical points v and w. Then possible indexing sets are P =
{p} or P = {p,,p,}. In the former case M(p) = S and in the latter
M(p,) = v and M(p,) = w. The second way in which the Morse
decompositions can differ is in the partial order. For example, given
P there are three possible partial orders »>,, >, and >, where p,
>1 P2y Pz 2 P;, and p,; and p, are not related under >,. As will
be seen in Examples 3.11 and 3.12, both of these differences come into
play. '

Any partial order which satisfies Definition 3.9 is called an
admissible partial order. Nevertheless, having a fixed flow and a
collection of Morse sets there is a minimal partial ordering which is

possible. This is called the flow defined partial ordering, XF,

is obtainable by setting 1 >F J 1if and only if there is a sequence of

and



distinct elements of P; J = ke k;, .. Lk = i such that

m
C(M(ke)'M(ke—l)) #¢ forall ¢=1, ... ,m
let I be an interval in P. Define
M(I) 8 UME) U (U C(M(1),M(§)) ) (24)

iel i,j € I
It is easily checked that.M(I) is a compact isolated invariant set.
This provides us with a convenient method of obtaining a different
Morse decomposition, that is combining several Morse sets into one and
hence changing the index set, P. Again, A(M(I)) is defined, so let
H(I) = H*(ﬂ(M(I))).

Example 3.11. In model (1), assume that nHm < A K HM CK < p (see

Figure 2). In this case M(A) is unstable and there are an odd number
of periodic orbits surrounding M(A) (not counting semi-stable

periodic orbits which may also exist). For the collection of Morse

sets M(0), M(A), M(X), M(u) and M(w) with index set P =
{0,A,K,u,n} the flow defined partial order >F is:

0 >F K, K >F sy A >F n, K >F . (25)
Here, 0 and A, A and K, A and y, and y and m are unrelated. We

can obtain a different Morse decomposition for the same dynamics as
follows. Since I = {@,A} is an interval of P, if we define M(maA) 4
M(I) then for the Morse sets M(0), M(wA), M(K), M(y) and the index
set P = {0,nwA,K,u} the flow-defined partial order is

0>, K, Kb p Kd> m. (26)

Example 3.12. In model (1), assume that Hm < AKX HM < p < K (see

Figure 2) and that there exists a unique periodic orbit surrounding
M(A). One can obtain a Morse decomposition by selecting P = {0 A, K,
p, 7w} and the flow defined partial order

0 p Ky pop K Adpm, udpm. (27)



We are now almost ready to introduce the connection matrix. By

® H(i), we mean the infinite sequence of vector spaces
ieP
( @ Hg(i), ® H, (i), ® H,(i), ... ). Let a : ® H{(i) —
ie€eP i € P ieP ieP

® H(i) be a linear map. We can think of A as a matrix of maps
ieP

A [ a(i,J) ]i,j e P where a(i,j) : H(i) — H(Jj). We say that a is a

degree -1 map if a(i,J) Hn(i) < Hn—l(‘j) for all 1i,j € P. Finally,

for an interval I, in P, let a(i,j) denote the submatrix of maps of a

given by a(I) 4 [a(i,g)] . Thus a = a(P).

i,jel

Definition 3.13. Given an isolated invariant set, S, and a Morse

decomposition M(S) = { M(i) : i € (P,>) },

A @& H{i) — ® H(i)
ieP ieP

is a connection matrix if:
(i) 1 ¥ j implies a(i,j) = O,
(ii) & is a degree -1 map,

(iii) a ° A = 0, the zero matrix.

(iv) For every interval I < P, if we define
Ha(I) € Rer a(I) / Im a(I). (28)

then Ha(I) » H(I). (In particular, if H(I) = 0 then
the dimension of Ker a(I) = rank a(I). )

Theorem 3.14. (Franzosa preprint). Given S and 4(S) there always

exists at least one connection matrix.

This result is very useful for showing that certain dynamics are
impossible as we shall see in Section 4. -We shall also see that

connection matrices need not be unique. A trivial but important



property of connection matrices is the following:

Property 3.15. Let i and Jj be adjacent elements of (P,>). If
C(M(i),M(j)) = ¢, then a(i,j) = 0.

The contrapositive is:
Property 3.16. Let i and J be adjacent elements of (P,>). If

a(i,j) # 0, then C(M(i),M(J)) = o.

It is important to note that C{M(i),M{j)) # & does not imply that
a(i,j) # 0. In fact it is often the case that a double connection will

result in a(i,j) = 0. More generally,

Property 3.17. (McCord) . Let S be an isolated invariant set
.onsisting of the hyperbolic critical points, M(i) , i=0,1 and the
connections C(M{1),M{(0)). Assume
Hk(i) ~ r if k=n+ 1,
0 otherwise.

Furthermore, let c(M(1),M(0)) consist of exactly p heteroclinic
orbits where each orbit arises as the transverse intersection of the

stable and unstable manifolds of M(0) and M(1), respectively. Then

a(1,0) : Hh+1(1) — Hn(O)

is given by

A(1,0) = p mod 2.
{(We say that two manifolds M and N in R™ have a transverse intersection
at the point x if TX(M) u TX(N) span TX(Rn) where TX(V) is the

tangent space at x to the manifold V). -

In particular, it follows that



Property 3.18. Given a flow in the plane, let S consist of two

hyperbolic critical points M(i), i = 1,0 where the number of
eigenvalues with positive real part for the linearized flow at M(i) is
k+i. Assume that there is a unique heteroclinic orbit from M(1) to

M(0). Then the connection matrix a(1,0) # 0.

Property 3.19. Let i and j be adjacent in (P,>). Assume that

Hk(i) o~ z, if k=n-1,
{ 0 otherwise;
Hk(j) = 2, if 'k = n,
{ 0 otherwise;
and _
H(ji) ~ O. -

Then a(i,j) # 0.

Property 3.20. Let i > j be adjacent in (P,>). Assume that

Hk(i) ~ { z, if k = n,

0 otherwise;
0 otherwise;
and
Hk(ji) ~ 2, if k = n,
0 otherwise,
Then a(i,j) # 0.
4, CONSTRUCTION AND INTERPRETATION OF CONNECTION MATRICES

We are finally in a position to actually construct a cénnection
matrix. The steps involved in the construction are listed in Table 2.
For our first example let us construct the matrix for the dynamics
considered in Example 3.11, with Morse decompostition for ¥ given by

the index set P = {0,A,K,u,n}, corresponding Morse sets M(0), M(A),



M(K), M(u) and M(w) and flow defined partial order given by (17). We
have already done most of the steps indicated in Table 2 for this
example, in particular steps 1-6. Recall that (see Table 3)

Hn(ﬂ(?)) = Hn(f) ~ 0, n=20,1,2, ... .. (29)
Also the linear analysis is summarized in Table 1.

Next we compute the homology of the index of each of the Morse

sets. By Proposition 3.6,

Hn(p) = z, if n = 0,
0 otherwise;
Hn(O) ~ Z, if n =1,
0 otherwise;
Hn(K) ~ R if n=1,
0 otherwise;
Hn(A) ~ z, if n = 2,
0 otherwise.

Since M(w) 1is either an attracting periodic orbit or an annulus
bounded by two periodic orbits, the innermost attracting from the
inside and the outermost attracting from the outside, one can find an
index pair that is homeomorphic to an annulus, with N, = ¢ (see Table

3). Therefore by Proposition 3.8

Hn(n) = z, if n=0, 1,
0 otherwise.

Finally we are in a position to determine the entries of the

matrix (see a? of Proposion 4.3(iii)). Since,

H(p) @ H(w) @ H(K) @ H(0) @ H(A) (30)

= Ho(u) ® Hy(mw) ® H,(w) ® H,(K) ® H,(0) ® H,(A),

the associated connection matrix a can be treated as a 6 x 6 matrix



(we are ignoring the rows and columns that obviously consist completely
of zeroes). From Definition 3.13(i), we conclude that a is strictly
upper triangular and that the 2 x 2 submatrix a(m,n) = 0. (Recall
that a(i,j) 1is not the ijth entry of the matrix, but rather is a map.

In particular, a(i,j) : H(i)}) — H(j). In fact, if we let Aij

denote the ijth entry of the matrix, then if a(i,j) corresponds to a
1 x1 submatrix of a, it follows that a(i,j) corresponds to the

matrix entry a.. ).

Jji

Since a(A,u) : H,(A) — Ho(u) is not a degree -1 map, a(A,u) =
0 (i.e. the entry under H,(A) and across from H, (u) is 0 ).
Similarly, a(0,K) : H,(0) — H,(K) and so a(0,K) = 0. Since

a(m,u) : Hyo(m) ® Hy(w) — Hy(y), in order for a(m,u) to be a degree
-1 map, the entry under H,(w) and across from Hy(y) must be zero.
Similarly, a(A,m) : H,(A) — Hyo(w) @ H,(w); a(K,nw) : H(K) — Ho(m) @

H,(m); and a(0,nw) : H,(0) — Hy(w) ® H,(w); and so the entries under

H,(A) and across from H,(w); wunder H,(K) and across from H,(=w);
and under H,(0) and across from H,(w) must all be zero. Since
M(A) is a fepellor and M(A) is surrounded by M(w) which is
attracting from the outside, M(A) cannot connect (directly or
indirectly) to M(K) or M(0) (i.e. C(M(A),M(0)) = ¢ and

C(M(A),M(K)) = ¢). Since A is adjacent to 0 and to K in the ordering,
by Property 3.15 a(A,K) = 0 and a(A,0) = 0. Since M(w) and M(u)
are both attracting C(M(w);M(y)) = ¢ and since w is adjacent to y in
the ordering a(m,u) = 0. By Property 3.18 a(K,u) = 1. By Property
3.20 the entry under H,(K) and across from H,(m) is 1. Since

Hn(f) =~ 0 for n=0,1, 2, ... , by Definition 3.13(iv), ker a =

image a. Hence the rank of A must equal 3. Therefore the entry under
H,(A) and across from H,(w) must be nonzero. It then follows by
Definition 3.13(iii) that the entry under_ H,(w) and across from

Ho(u) must be zero. This rank condition also implies that the « and g

under H,(0) must be chosen so that the vectors a and 1 are
) . B 1
linearly independent.



Remark 4.1. Both a=0, g=1 and a=1, g =0 give connection

matrices. A reason for why this nonunigeness is necessary it that the
connection matrix continues under perturbation. Notice that the
connection from M(0) to M(K) is not transverse. Thus, a generic .
bifurcation of (1) will destroy the invariance of the x-axis under the
flow and hence one expects to either have a connection from M(0) to

M(zw) (i.e. a« = 1) or a connection from M(0) to M(A) (i.e. g = 1).

Next we show how we could have used the connection matrix to
prove the existence of an asymptotically stable periodic orbit in the
previous example. (Of course, since this system is planar, this
follows directly form the Poincaré-Bendixsonn Theorem. But that
theorem only applies for planar systems, whereas the connection matrix
technique is dimension independent.) Supppse we only know the flow
along the axes, the local stability of the critical points, the
predator and prey isoclines, and that all solutions are uniformly
asymptotically bounded, and in particular that H(y) = 0. For the
index set P = {0,r,,K} and corresponding‘Morse sets, the flow
defined partial order would be 0 >F K and K >F 4 with A and 0 and

A and K unrelated. We note that .
H(y) ® H(K) @ H(0) ® H(A) =~ H,(u) ® H,(K) ® H,(0) @ H,(A) (31)

Therefore, the associated connection matrix can be treated as a 4 x 4

matrix:

Ho () H,(K) H,(0) H,(1)

Ho(u) [ O 1 - 0
H, (K) 0 0 0 1
H, (0) 0 0 0 0
H,(A) 0 0 0 0

From Definiton 3.13(1) it follows that a is strictly upper triangular.
By Definition 3.13(ii), a(a,u) = 0, and a(0,K) = 0. a(K,pu) = 1 by
Property 3.19. Since M(0)_. is a saddle with stable manifold along the



y-axis, C(M(A),M(0)) = ¢. Since A and 0 are adjacent by Property 3.15
a(r,0) = 0. By Definition 3.13(iv), a{(Ar,K) = 1, since the rank of a

must equal 2 (H(£) =~ 0). But then a°a # 0, contradicting
Definition  3.13(iii). But by Theorem 3.14, to every Morse
decomposition there corresponds at least one connection matrix. Thus

we do not have a valid Morse decomposition. Something must be missing.
In this case the only things that can be missing are periodic orbits.
In fact, since M(A) is a repellor and any periodic orbit must
surround M{A) there must be at least one asymptotically stable
periodic orbit surrounding M(A) (noting that if M(mw) were to consist
only of semi-stable periodic orbits, one could take M(Aw) as a Morse
set and the connection matrix would be identical to the one for which
M(w) = ¢).

The connection matrix can also be used to keep track of almost

all of the different bifurcations for (liK for K € (0,%). The

- spontaneous. birth of semi-stable periodic orbits 1is however not
detected. In order to do this we need to first determine the set of

all possible connection matrices for (1)K for K € (0,0). By Theorem

3.14, for every Morse decompositon, #(¥), of ¥, there exists at least
one connection matrix. The first step then is to determine all the
possible Morsé decompositions of ¥ for the index set P = {0, A, u, K,
w}. In order to do this we must find all the admissible, flow defined

partial orders on P for various values of K.

Proposition 4.2, The set of admissible, flow defined, partial
orderings on P for K € (0,o) follows:

(i) If K < A < u, define
>, by 0> K, A>, K, A> u.

(ii) If A <K < u define _
>, by 0>, K, K>, uy, K>, m m>, A.
>3 by 0> K, K>, u, K>, m, A >, m.



(iii) If A < g < K define _
>, by 0>, K, u>,K, ud>,m o>, A

>s by 0> Ky, >3 K, mwd>; p, m>g5 A,
> by 0> K, > K, A>gm p>;m.
>, by 0>, K, u> K, A>,mwm, w>>, u.

This set of partial orders was obtained by considering the
analytic information described in Section 2 and then writing down all
possible orderings which did not contradict that information. For
example, the invariance of the x-axis allows one to conclude that
C{M(O),M(K)) # ¢ for all K € (0,%) and hence 0 > K for all
admissible, flow defined, partial orders. One also uses obvious facts
to eliminate certain possibilities. For example, if M(i) is an
attractor then i ¥ J for any Jj € P. ‘Another way to eliminate
certain partial orderings is by +trying to construct a connection
matrix. If no matrix is possible the partial order can be eliminated
as inadmissible (as we did in the case where we showed a periodic orbit
must exist).

Having determined the set of admissible orders, one can now
determine the set of connection métrices. Let Aj denote the

connection matrices associated with the partial order »>..

Proposition 4.3. The set of possible connection matrices consists of:

(1) a' = Ho(K) Hy(u) H,(A) H,(0)
H(K) [ 0 0 1 1]
H, () 0 0 1 0
H, () 0 0 0 0
H,(0) 0 0 0 0




(ii)

(iii)

(iv)

A

A

A

Ho(p) Ho(A) H,(K) H,(0)

Hy (u) 0 0 1 a ]

Ho(A) 0 0 1 B

H, (K) 0 0 0 0

H, (0) 0 0 0 0

- where « # B
Ho(p) Ho(m) Hy(w) H (K) H,(0) H,(a)
Hy () 0 0 0 1 a 0
Hy(m) 0 0 0 1 B 0
H, (m) 0 0 0 0 0 1
H, (K) 0 0 0 0 0 0
H,(0) 0 0 0 0 0 0
H,(A) 0 0 0 0 0 0 ]
where o # g
Ho(K) Ho(A) H,(p) H,(0)

Ho(®K) [ 0 0 1 1

Hy(A) 0 0 1 0

H, (1) 0 0 0 0

H, (0) 0 0 0 0

Ho(K) Ho(A) H,(u) H,(0) H,(m) H,(m)

Ho(K) [ O 0 0 1 b3 0
Hy(A) 0 0 0 0 1 0
H, () 0 0 0 0 0 1
H,(0) 0 0 0 0 0 0
H, (mw) 0 0 0. 0 0 0
H,(mw) 0 0 0 0 0 0

¥ is undetermined



(vi) a® = Ho(K) Ho(m) H,(m) H, () H, (0) Hy(
Ho(K) [ O 0 0 1 1 0
H, () 0 0 0 1 0 0
H, (7) 0 0 0 0 0 1
H, (u) 0 0 0 0 0 0
H, (0) 0 0 0 0 0 0
H, (X) 0 0 0 0 0 0 |
(vii) a7 = Hqo(K) H,(u) H,(0) Hp(A)
Ho(K) [ 0 0 1 0 ]
H, (u) 0 0 0 1
H, (0) 0 0 0 0
H,(A) 0 0 0 0

Notice that we have not defined the connection matrices for all
values of K. This is because if K = A or K = u, then we are at a
bifurcation point. Furthermore, each connection matrix, Aj, occurs
for a particular partial order, >j. Thus a change in the connection
matrix implies that a bifurcation has taken place. From the structure
of (1), we know that only certain bifurcations can occur as K changes
value. In particular, M(0) undergoes no bifurcations. M(K) and M(u),
and M(K) and M(A) can only exchange stability. Also, M(A) can
undergo a Hopf bifurcation. On a more global level, a periodic orbit
may become homoclinic to M(u). Finally, the periodic orbit may be
subject to bifurcation, (i.e. saddle node, pitchfork, etc.). We cannot
pick up these bifurcations because of the way we are defining M(=w),
(i.e. we are intentionally ignoring these bifurcations).

Since Proposition 4.3 gives us all the possible connection
matrices for values of K at which a bifurcation is not occuring, we
adopt the following approach. Given Aj, we determine which of the
four basic bifurcations, A-—exchange (M(A) and M(K) exchange
stability), p-exchange (M(y) and M(K) exhangé.étability), Hopf (M(A)
ﬁndergoes a Hopf bifurcation), or homoclinic (M(up) is the critical
point on a homoclinic orbit), is possible and given the basic

bifurcation what is the new.connection matrix. We can codify this



informétion via a bifurcation graph (see Figure 4) where the vertices
are the possible connection matrices and the edges are the possible
bifurcations. See Mischaikow and Wolkowicz for a more detailed
explanation of this approach and an explanation of how the homoclinic
bifurcation can be detected. The edges labelled A and u correspond
to the A and u-exchanges. H denotes Hopf bifurcation and A-stable
and A-unstable indicates the occurence of a stable or unstable
homoclinic orbit. The directed edges indicate how the connection
matrices must change as K increases through the bifurcation point,
(e.g. one cannot go from a” to a® wvia a Hopf bifurcation as K
increases. Notice that the only bifurcation which is not directed is
the homoclinic bifurcation. This implies that we cannot rule out the
possiblility of a series of homoclinic bifurcations with the connection
matrices varying between a® and a® or a® and a7.

What does the bifurcation graph tell» us about the set of
solutions to (1) for various values of K ? By Proposition 4.2(i) it
follows that for K sufficiently small (i.e. K < A) the connection
matrix is a'. By Theorem 2.1 the only possible connection matrix for
K> K* is a?. Thus, as we vary K from below A to above K*, we trace a
path through the bifurcation graph. From this we immediately obtain
the following results:

(1) There exists a unique value of K for which a A—exchange

occurs. '

(2) There exists a unique value of K for which a p-exchange
occurs . |

(3) There exists a unique wvalue of K for which a Hopf
bifurcation occurs.

(4) An odd number of homoclinic bifurcations always occurs.

(5) For a particular choice of functions p, g, and g, the
connection matrices which are realized are determined by
the relative values of K for which _the Hopf bifurcation
occurs.

While these results can be obtained éasily using planar

techniques for our example, for problems involving more than two



variables planar techniques no longer apply. However the connection
matrix technique is dimension independent. In our case, (4) is
obtained as a special case of a more general theorem of Mischaikow
(1985b and 1986), where the primary ingredient involves checking an
algebraic relation determined by a® and a” or a? and a®. Finally
(5) suggests how the bifurcation graph can be used to determine what
structures of the flow can occur for various values of the parameter K,
by knowing at what relative parameter values a particular bifurcation
occurs.

The connection matrix has been used in other applications.
Reineck (1985) obtained classification results for Z2-dimensional
symbiotic, competitive and predator-prey systems. In his situation
there is no obvious parameter, but there is a long discussion of how
the predator-prey systems are related depending upon the predator-prey
. isoclines. -

Mischaikow (1985a) analyzed travelling wave solutions +to n-
dimensional systems of reaction diffusion equations and obtained
corresponding bifurcation graphs with wave speed taken as the
parameter. In this case knowledge about the connection matrices for
large and small wave speeds could be used to obtain existence results
for travelling wave solutions. Also, the set of realizable connection
matrices (and hence dynamics) was shown to be significantly smaller
than the set of algebraically permissible connection matrices.

The connection matrix might also be useful to help determine
whether or not an ecological system is uniformly persistent in the
sense of Butler et al; (1986) i.e. whether there is a éompact attractor
in the interior of the positive cone. One of their hypotheses involves
verifying that solutions on the . boundary of the positive cone are
acyclic. Information about the set of connections could conceivably

help to eliminate the possibility of cycles on the boundary.



Table 1.
Linear Analysis of Critical Points

Critical Parameter Range
Point K<a<ypu ACK<Cu A< u<KkK
M(0) saddle saddle saddle
M(K) attractor saddle attractor
(node) {node)
M(A) saddle repellor repellor FY(A,K) >0
attractor attractor FX(A,K) <0
M(u) attractor attractor saddle
Table 2.

Steps Involved in Constructing a Connection Matrix

1. Determine the set of all bounded solutions for the

dynamics, ¢.

2. Determine an index pair for ¥ (see Definition 3.2 and
Table 3).

3. Compute the homology of the index of ¥, H(¥) (see

Propositions 3.7 and 3.8 and Table 3).
4, Determine the isolated invariant subsets of ¥.

5. Do a local stability analysis of the subsets of ¥.

6. Deﬁermine a convenient flow-defined partial order and
hence Morse decompostion of ¥ ( see Definitions 3.9
and 3.10).

7. Determine the homology of the index of the individual
Morse sets (see Propositions 3.7 and 3.8 and Table 3).

8. Construct the connection matrix wusing the above
information, Definition 3.13 and Properties 3.15.-
3.20.




Table 3
Index Pairs and Homology of the Index
for various
Isolated Invariant Sets in RZ2.

Isolated Invariant Index Pair Homology of the Index
Set S Hh(S)

Critical Point
Attractor

if n = 0,

otherwise.

Critical Point
Repellor

if n=2 ,

otherwise.

Critical Point if n=1
Saddle '
otherwise.
Periodic Orbit = ¢ 2z, if n=0, 1
Attractor
{ 0 otherwise.

Periodic Orbit

= 3N, 2, if n=1, 2
Repellor

0 otherwise.

Periodic Orbit
Semi-stable

0 for all n

0 for all n
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A stable periodic orbit must surround M(A).
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