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PERSISTENCE IN PLANKTON MODELS
WITH DELAYED NUTRIENT RECYCLING

SHIGUI RUAN AND GAIL S.K. WOLKOWICZ

ABSTRACT. A plankton-nutrient interaction model with
delayed nutrient recycling is considered. The system consists
of three components, autotrophic phytoplankton, herbivorous
zooplankton and dissolved limiting nutrient. Distributed de-
lays are used to describe the contribution of phytoplankton
and zooplankton that died in the past to the nutrient recy-
cled at the present time. Persistence criteria are derived for
the model by using Liapunov-like functionals.

1. Introduction. The effect of nutrient recycling on ecosystem
stability has been extensively studied for closed systems. Usually,
nutrient recycling is considered as an instantaneous term, thus the
time required to regenerate nutrient from dead biomass by bacterial
decomposition is neglected. In a natural system, such a delay always
presents and increases as temperature decreases (Whittaker [28]).

Beretta, Bischi and Solimano [1] considered an open system with a
single species feeding on a limiting nutrient which is partially recycled
after the death of the organisms. They inserted a distributed delay in
. the recycling term in order to study its effect on the stability of the
positive equilibrium. In [2], Bischi studied the effects of the time delay
involved in nutrient recycling on resilience, that is, the rate at which a
system returns to a stable steady state following a perturbation. Bischi
showed that when a system is characterized by oscillatory behavior, an
increase in the distributed time delay can have a stabilizing effect. This
is a counterintuitive result, because in general it has been found that the
introduction of time delays is a destabilizing process, in the sense that
increasing the time delay could cause a stable equilibrium to become
unstable and/or cause the populations to fluctuate (see Cushing [8],
Gopalsamy [12], Kuang [21], and MacDonald [23]). Freedman and Xu
[11] extended the single species model in [1] to a competition model
of chemostat-type with delayed nutrient recycling. They developed
persistence and extinction criteria for the competing populations.
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Persistence was studied for general dynamical systems by Butler,
Freedman and Waltman (5], Butler and Waltman [6], and was devel-
oped to infinite dimensional systems by Hale and Waltman [17]. The
concept of persistence has played an important role in mathematical
ecology. Biologically, when a system of interacting species is persistent
in a suitable sense, it means that all the species survive in the long
term. Mathematically, persistence of a system means that strictly pos-
itive solutions do not have any w limit points on the boundary of the
nonnegative one. For more details and references on persistence and
its applications in ecology, we refer to a survey paper by Hutson and
Schmitt [19].

Recently, persistence in delayed ecological systems has been investi-
gated by many authors. Freedman and Wu [10] discussed persistence
of single species dispersal models with stage structure. By constructing
suitable persistence functionals, Wang and Ma [27] obtained uniform
persistence conditions for Lotka-Volterra predator-prey systems with
a finite number of discrete delays. Their results suggested that de-
lays are “harmless” for uniform persistence. By utilizing Liapunov-like
functions, Freedman and Ruan [9] established some persistence criteria
for functional differential equations with finite delay. See also Cao and
Gard [7], Kuang and Tang [22], Ruan [26] and references cited therein.

In this paper, we consider a plankton-nutrient interaction model with
delayed nutrient recycling. The system consists of autotrophic phy-
toplankton, herbivorous zooplankton and dissolved limiting nutrient.
Distributed delays are used to describe the contribution of phytoplank-
ton and zooplankton that died in the past to the nutrient recycled at
the present time. The model is a system of functional differential equa-
tions with infinite delay. By using Liapunov-like functionals, we derive
persistence criteria for the model.

This paper is organized as follows. The model is described in Section
2. In Section 3, we state some preliminary results about persistence and
functional differential equations with infinite delay. The mathematical
analysis of the model is carried out in Section 4. A discussion is given
in Section 5.

2. The model. The plankton model with delayed nutrient recycling
consists of three interacting components, herbivorous zooplankton (Z),
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autotrophic phytoplankton (P) and dissolved limiting nutrient (N), and
is given by the following equations:

% = D(N® — N) — aPu(N) + (1 — §)cZw(P)

o +m /_ too F(t—s)P(s)ds +¢&; /_ ; G(t - s)Z(s)ds
% = aPu(N) — cZw(P) — (v + D1)P
% = Z[6cw(P) — (e + Dy)l,

where all parameters are positive and are interpreted as follows:

a - maximal nutrient uptake rate for the phytoplankton
— maximal zooplankton ingestion rate
N® — input concentration of the nutrient
D - washout rate of the nutrient

D; - washout rate of the phytoplankton

D; - washout rate of the zooplankton
— phytoplankton mortality rate
€ - zooplankton death rate
71 - nutrient recycle rate after the death of the phytoplankton, y1 <+
€y — nutrient recycle rate after the death of the zooplankton, £; <e
& - fraction of zooplankton nutrient conversion, 0 < § <1

The function u{N) describes the nutrient uptake rate of phytoplank-
ton and satisfies the following general hypotheses (Hale and Somolinos
[16]):

(i) the function is nonnegative, increasing and vanishes when there
is no nutrient;

(ii) there is a saturation effect when the nutrient is very abundant.
That is, we assume that u(N) is a continuous function defined on [0, 00),
and satisfies

du

(2.2) u(0) =0, N> 0 and A}l_x)noo u(N)=1.
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In particular, this kind of function includes the Michaelis-Menten
function (Wroblewski and Richman [30])

(2.3) u(N) = N/(k+ N),

where k is the half-saturation constant or Michaelis-Menten constant.

The function w(P) represents the response function describing herbi-
vore grazing. It is also assumed that w(P) is continuous on [0, 00) and
satisfies

(24) w(0) =0, - > 0.
Usually, Ivlev’s functional response formulation (Ivlev [20])
(2.5) w(P)=1-e*

is used to describe the zooplankton grazing, where A is the rate at which
saturation is achieved with increasing phytoplankton levels (per unit
concentration). Alternatively, Mayzaud and Poulet formulation [24]

(2.6) w(P) = AP(1 - e~>P)

is also used to describe the food-acclimatized herbivore grazing (Wrob-
lewski and Richman [30]).

The delay-kernels F(s) and G(s) are nonnegative bounded functions
defined on [0, 00) and describe the contribution of phytoplankton and
zooplankton that died in the past to the nutrient recycled at time t. We
assume that only fractions of the dead phytoplankton (;) and the dead
zooplankton (e;) are recycled into dissolved nutrient. The presence of
the distributed time delay must not affect the equilibrium values, so
we normalize the kernels such that

@27) /0 T F(s)ds =1, /0 " Gls)ds = 1.

According to MacDonald [23], we define the average time lag as

(2.8) T= /oo sF(s)ds.
0
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In particular, the exponential kernel

a'n.+1
n_ —as
(2.9) TS € , a>0
is usually used (see Cushing [8]), where n is a nonnegative integer and
« is linked to the mean time delay by

_n+l

(2.10) T=—

During consumption, only a fraction of the biomass removed from
the resources compartment, é, § < 1, is assumed to be assimilated by
the consumer. The remainder goes directly to the dissolved nutrient.
Besides the loss related to consumption, a second phytoplankton loss
term, —vyP, represents loss due to extracellular release and senescent
cell autolysis and sinking. The zooplankton dynamics includes growth
as assimilated ingested ration and a loss rate (¢) due to high level
predation, physiological death, etc. The parameters D, D; and D; are
washout rates (or removal rates, diffusive rates) of biotic components
from the system resulting from washout, diffusion, harvesting, burial
in deep sediments, soluble metabolic loss or cell sinking, for example.
Those processes in general do not take place in the same amount of
time, so we suppose that D, D; and D, are different.

System (2.1) with initial conditions
NO=No20, P(s)=¢(s), Z(s)=v(a), -oo<s<0,

where ¢, : (—00,0] — [0,00) are bounded and continuous functions,
possesses unique nonnegative solutions continuously dependent on pa-
rameters and initial data (see Cushing [8] and Gopalsamy [12]).

3. Preliminaries. Let X be a metric space with metric d.
Consider a continuous flow F = (X,R*,n) defined on X, where
m: X x Rt — X is a continuous map such that n(z,0) = z for all
z € X and n(n(z,t),s) =n(z,t+s) forallz € X, t,s € RT = [0, ).
The boundary and interior of a set M C X are denoted by oM
and M, respectively. The w limit set of z € X is defined to be

w(z) = {y € X : there is a sequence {t,} C R* with t, — oo such
that w(z,t,) & y as t — oo},
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[}
Let E be a compact subset of X with F and E nonempty. Suppose
o

that F is positively invariant over E. Then E is also positively
invariant, but the boundary F may not be positively invariant.

Definition 3.1. The flow F is called persistent if, for all z € 133, we
have

htxgg.}f d(n(z,t),0FE) >0

o
and uniformly persistent if there exists €9 > 0 such that for all z € F
we have

1itrr_1)£tolf d(n(z,t),0F) > eo.

Let | - | denote a norm in R"™. Let C, be the space of continuous
functions mapping (—o0,0] into R™ such that
wp 2 _ oo
3<0 g(s)

where g : (—00,0] — [1, 00) is a continuous nonincreasing function such
that

(81) 9(0)=1;
(g2) g(s+u)/g(s) = 1 uniformly on (—00,0] as u — 0~;
(g3) g(s) = o0 as s = —oo0.

Define

__e(s)]
19le =sup 05y

Then (Cy,| - |4) is a Banach space (see Haddock and Terjéki [13]).

If z: (—00,A) & R™, 0 < A < oo, then for any ¢t € [0, A), define
z¢ : (—00,0] =& R™ by z:(s) = z(t +s), s < 0. For agiven t > 0, z; is
the translation of z on (—o0,t] back to (—00,0], and z¢ is merely the
restriction of z to (—o0,0].

Let D be an open subset of Cg. Assume that f : D —+ R™ is
continuous and maps bounded subsets of D into bounded sets in
R™ (i.e., f is completely continuous on D). Consider the following
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functional differential equation with infinite delay:

3.1) % = f(z:), 20

with the initial value condition
3.2) - zg=¢€D.

For the standard existence, uniqueness, continuous dependence and
continuation theory for equation (3.1), we refer to Hale and Kato [15].

Suppose that equation (3.1) can be rewritten as follows:

] 0
(33) =@+ 0@) [ a-szu(s)ds

fort>0,i=1,2,...,n, where f; and g; are locally Lipschitzian and
q=(q1,42, ... ,qn) satisfies the following condition

0
(3.4) / la(~6, $(6))]g(6) dB < oo.

The solution of (3.3) with g = ¢ is denoted by z(¢,#). In terms of
dynamical systems, we have

7, P) =@ -t=z(p) =z(t+s,¢) for —o0<s<0.

Let CJ be the metric space with ¢ € Cy, each component ¢;(s) > 0
for —oo < s < 0. Then C is contained in the nonnegative cone of Cj
and contains the only biologically meaningful elements of C,.

Definition 3.2. Solutions of (3.3) are said to be point dissipative if
there is a constant B; such that, for any ¢ € C;' , there is a constant
T(¢) > 0 such that |z(t,¢)| < By for t > T(¢). Solutions of (3.3) are
said to be bounded dissipative if there is a constant B; > 0 such that,
for any B > 0, there is a constant T > 0 such that |z(¢, ¢)| < B, for
t > T and all ¢ € C} with |¢|, < Bs.
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According to Hale [14], the above definitions of point dissipativity and
bounded dissipativity coincide with the concepts of ultimate bound-
edness and uniformly ultimate boundedness, respectively. Clearly, if
system (3.3) is bounded dissipative, it is point dissipative.

Let E=C}, d(-,-) =|-|g, and denote
BC’;' ={¢€ C’;‘ : $;(0) = 0 for at least one 7,7 = 1,2,... ,n}.

By following the procedure employed in Burton and Hutson [4] or in
Freedman and Ruan [9], we can prove the following uniform persistence
theorem for functional differential equations with infinite delay.

Theorem 3.3. Suppose that
(i) System (3.3) is point dissipative;
(ii) Condition (3.4) holds;
(iii) Cj is positively invariant;
(iv) for each ¢ € C} the solution x(t,¢) of (3.3) ezists on [0,00)
and is continuous in | - |g;
(v) there exists a continuous functional p : C} — R* satisfying
(a) p(u) =0 if and only if u € 8C};
(b) ¥(u) = p(w)/p(u) > 0 for u € w(ACY).
Then system (3.3) is uniformly persistent.

4. Mathematical analysis. By (2.7) it is possible to find a function
g satisfying the conditions (g1)—(g3) in Section 3 such that

4.1) /0 g(8)F(s)ds < o0, /0 g(s)G(s)ds < 0.

- —o0

Let C, be the Banach space of functions in C((—o0, 0], R?) with finite
norm

_ 1o(s)]
(4.2) Olo = om 7o(s)
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and let (Cf,|-|g) denote those ¢ € Cy with |¢|; < 0o and ¢i(s) > 0
for s<0,1=1,2,3.

Given ¢ € C/, we denote the solution of system (2.1) through ¢ by

(43) U(t, ¢) = (N(t’ ¢)’ P(t’ ¢)Z(t, ¢))

Theorem 4.1. Suppose that

(4.9) [_ooo /_:o F(u)duds < oo, /_Ooo /_:o G(u)duds < oo.

Then solutions of (2.1) are point dissipative.

Proof. Define
V(t,U) = N(t) + P(t) + Z(¢)

(4.5) mn /_tw /:: F(—u)P(s) duds
té /_too /ti G(-u)Z(s) duds.

We can see that V > 0 and V — oo when |(N,P,Z)|; & oo. The
derivative of V along the trajectories of system (2.1) is

dV dN dP dZ
o a Tt @

+m /0 " Fs)[P(t) - P(t - 5] ds

+el /0  G)Z(t) - Z(¢ - o)) ds
=D(N°—N)—(y+D,)P - (e +D3)Z

o /0 ” F(s)P(t) ds + &1 /0 ” G(s)2(t) ds

=D(N°-N)-~(y+D1—-m)P-(e+D2—e1)Z
< —=Dy(N + P+ Z - NY,

(4.6)
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where Dy = min{D,y + D; — 11, + D2 — &;}. If there is a constant
C > 0 such that |(N, P, Z)|g > No + C, then (4.6) implies that

dv
— < -CD,.
o S CDqy

Thus, all solutions of (2.1) are bounded dissipative (see Yoshizawa [31]
or Burton [3]), and thus are point dissipative. D

Notice that a boundary equilibrium Ey = (N?,0,0) always exists.
Theorem 4.2. If a < v+ D,, then Ey is asymptotically stable.

Proof. We have that

o < Plau(N) - (7+ Dy)]

<le-(y+DyP<0.
Since there is no invariant set such that P > 0 is constant, we have

lim; o0 P(t) = 0 and hence lim;_,o Z(t) = 0. From the first equation
in system (2.1), it follows that lim; ,oc N(t) = N°. o

Consider the subsystem

dN t
o Zt: = D(N® — N) - aPu(N) + 7 f_ _F(t-9)P(s)ds
e aPu(N) - (v + D1)P.

If the following inequalities
(48) a>v+D

and

(4.9) NO >yl (Lﬁ)
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hold, then system (4.7) has a positive steady state, say (N1, P1), where

'y+D1> D(No—Nl)
—, P
a v+ D; -

(4.10) Ny = u'1<
By Theorem 4.1 of Beretta, Bischi and Solimano [1], if
(4.11) (D + aP1u'(N1))? > 2aPyu/' (N1)(y + D1),

then (N, P1) is locally asymptotically stable. Thus, we have the
following

Theorem 4.3. If (4.8), (4.9) and (4.11) are satisfied, then the
boundary equilibrium E; = (N1, P1,0) is asymptotically stable with
respect to Hiy = {(N, P, Z) € C}|Z = 0}.

Now we are in a position to state and prove our main theorem.

Theorem 4.4. Suppose that F and G satisfy conditions (4.4). If the
inequalities (4.8), (4.9), (4.11),

(4.12) de>e+ Dy
and
(4.13) w(Py) > Héch

hold, where Ny and P, are given by (4.10), then system (2.1) is
uniformly persistent.

Proof. In order to apply Theorem 3.2, we only need to verify condition
(v). For any (N, P,Z) € w(0C}), the w limit set of the boundary of
Cf,if P =0, then Z = 0. From the first equation of (2.1), it follows
thatﬂ(Nt)—N t =+ N%ast — oco. If Z =0, then Theorem 4.3
implies that (7(N, t),7r(P t)) = (N1, P1) as t = oo. Thus, w(3C}) is
the union of Ey = (N°,0,0) and E;, = (Ny, P1,0).
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Now choose p(U) = Uy U3 U3*®, where U = (U1, Uz, Us) = (N, P, Z)
and a3, @z and a3 are positive, undetermined constants. We have

p(U)
) = p(T)
0
=0 [D (U—]\i(y) ) Uz(O)u([yl(g;))+(1—6)cU3(0)——w§Z"E(()())))
0
U (0 / F(s)Uz(s)ds + —— U1(0) /_w G(s)Us(s) ds]

+ o [au(U1 ©) - cUa(O)w—ngz—z(g;)—) iy Dl)]

+ a3[5cw(U2(0)) - (E + Dz)]
By (4.9) and (4.12), ¥ > 0 at Ey. By (4.13), ¥ > 0 at E; So there are

always choices of a;, 02 and a3 to ensure that ¢ > 0. By Theorem 3.2,
system (2.1) is uniformly persistent. o

As an example, we suppose that u(N) is the Michaelis-Menten func-
tion, w(P) is the Ivlev function, and F(s) and G(s) are strong kernels,
i.e., we consider the following model

dTJZ’ — DO - N) - apk NN +(1 - 6)cZ(1 - e~>P)
(4.14) +e /t ﬂ;Tl (t — s)me~ P2 Z(5) ds
=
%’i - apk+ ~ = cZ(1- ) = (v+ Dy)P
%Z_ = Z[5c(1 - eP) - (¢ + Dy)],

where m and n are positive integers, and all other parameters are
positive numbers. Now inequality (4.9) becomes

(y+ D1k

4.15 NO> T 2222
(4.15) a—(y+ D)
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and the boundary equilibrium E; becomes

_(_(v+Dyk  D(N°~(y+Di)k/(a — (v+ D1)))
El - 1 ,Cl
a—(y+D1) Y+Di-m
provided (4.8) and (4.9) hold. By Theorem 4.2 of Beretta, Bischi and

Solimano [1] we know that E, is asymptotically stable with respect to
Hjo. By Theorem 4.4, we have

Theorem 4.5. Suppose (4.8), (4.13) and (4.15) hold. System (4.14)
is uniformly persistent if
AD(N® ~ (v + Dy)k/(a— (v + D1))} = (e+Dy)
y+D1—m dc ’

exp | —

5. Discussion. We have considered a model consisting of nutri-
ent, phytoplankton and zooplankton with delayed nutrient recycling.
Condition have been derived such that the system is uniformly per-
sistent. For the case that the nutrient uptake function u(N) is the
Michaelis-Menten function, the herbivorous grazing function w(P) is
the Ivlev’s functional response formulation, and the delayed kernels
describing nutrient recycling are exponential kernels, the uniform per-
sistence conditions can e summarized as follows:

(5.1) a>~+ Dy,
(5.2) éc > e+ Dy,
D)k
5.3 NO s (y+ Dy ’
(53 a—(y+ D)
and
0 - - —
(5.4) exp [— AD(N® — (v + D1)k/(a = (v + D1)) < de—(e+ Dz).
7 + D]_ -— ’yl 6C

Conditions (5.1) and (5.2) indicate that the growth rates of phyto-
plankton and zooplankton must be greater than their loss rates, respec-
tively. Condition (5.4) can be rewritten as follows:

(v+ D)k +’Y+Dl—’>’1 dc

. NO .
(55) >a—(7+D1) AD n(SC—(E+D2)
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4.5 T T r T r T T T

50 60 70 80 90 100
t-time

FIGURE 1. The model with instantaneous nutrient recycling. u(N) =
N/(k+ N), w(P)=1—e"*P, a=10, k=02, y=0.1, ¢ = 0.1, A = 0.5,
D=0.1, ¢=0.5, §=0.7, D1 =0.2, D2=0.1, N°=5.75, 71 =0.08, £1 =0.05.

Condition (5.1) guarantees that the first term on the righthand side of
(5.5) is positive, and condition (5.2) guarantees that the second term
on the righthand side of (5.5) is positive. Clearly, (5.5) implies (5.3).

The inequality (5.5) demonstrates that the model is nutrient con-
trolled (Hallam [18]). Therefore, if nutrient concentration input is suf-
ficient, then the system is uniformly persistent, that is, all components
can survive in the long term.

If the distributed time delays in the nutrient recycling are neglected,
that is, if we suppose that the nutrient recycling process is instanta-
neous, then system (2.1) reduces to the following ordinary differential
equation model:

(5.6) % = D(N° — N) — aPu(N)

+ (1 = 8)eZw(P) + v1 P(t) + 1 Z(t)
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t-time

FIGURE 2. The model with delayed nutrient recycling. u(N)=N/(k+ N),
w(P)=1—e*P, F(s)=a?se~2*(n=1), G(s)=F3s2e~PF*/2(m =2), a=1.0,
k=02, vy=0.1,e=01, A=05, D=0.1, ¢=05, §=0.7, D1 =02, D2=0.1,
NO®=5.75, y1 =0.08, g1 =0.05, a=0.2, §=0.15.

% = aPu(N) — cZw(P) — (y+ D1)P
%f— = Z[6cw(P) —(e+ D2)]’

which was studied by Ruan [25]. The uniform persistence conditions
obtained in this article coincide with those derived in Ruan [25] for
the ODE model (5.6). This means that the delays in model (2.1) do
not affect the property of persistence. Similar phenomena has been
observed by Burton and Hutson [4], Wang and Ma [27], Freedman and
Ruan [9] and Ruang [26].

Finally, for the functional responses, parameters and initial values
selected, solutions seem to be converging to the asymptotically stable
equilibrium in the interior. Delays seem to slow down the convergence
slightly and transients oscillate slightly more.
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