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BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM
INVOLVING GROUP DEFENCE*

G. S. K. WOLKOWICZ+t

Abstract. A class of ODEs of generalized Gause type modeling predator-prey interaction is considered.
The prey are assumed to exhibit a phenomenon called group defence, that is, predation is decreased or
even eliminated due to the ability of the prey to defend or disguise themselves as their numbers increase.

Using the carrying capacity of the environment as the bifurcation parameter, it is shown that the model
undergoes a sequence of bifurcations that includes a homoclinic bifurcation as well as a Hopf bifurcation.
Conditions (that hold even in the case of no group defence) that ensure a subcritical Hopf bifurcation and
also the spontaneous appearance of a semistable periodic orbit that splits into a pair (one stable and one
unstable) of periodic orbits are given.

Ecological ramifications are considered. Unlike the classical model, sufficient enrichment of the environ-
ment combined with group defence leads to extinction of the predator (deterministically) for almost all
initial conditions, providing strong support for the so-called “paradox of enrichment.”

Key words. Hopf bifurcation, homoclinic bifurcation, semistable periodic orbit, predator-prey system,
group defence

AMS(MOS) subject classifications. 92A15, 92A17, 34C15, 34C35

1. Introduction. In[10], Freedman and Wolkowicz introduce a model of predator-
prey interactions in which the prey exhibit group defence. Group defence is a term
used to describe the phenomenon whereby predation is decreased or even prevented
altogether due to the ability of the prey to better defend or disguise themselves when
their numbers are large. See Tener [26] and Holmes and Bethel [13] for examples
where this phenomenon is known to occur in nature.

The model in [10] differs from the classical generalized Gause-type models of
predator-prey interactions (see Freedman [9]) since in order to model group defence,
the predator response function is no longer restricted to be a monotone increasing
function of prey density. Rather, it increases until some critical density is reached and
then decreases.

Freedman and Wolkowicz interpret the results of their analysis as evidence that
one must heed the warning given by Rosenzweig in [22]:

man must be careful in attempting to enrich ecosystems in order to increase
its food yield. There is a real chance that such activity may result in a decimation
of the food species that are wanted in greater abundance

the so-called paradox of enrichment (see also [10], [11], [18], [19], [21]-[24]). There
is also experimental evidence supporting Rosenzweig’s warning (see Huffaker et al.
[15], Luckinbill [16], and Schaffer and Rosenzweig [25] for example).

In this paper a more complete global analysis of the model introduced in [10] is
given. In [10] it was shown that for sufficient enrichment there is always a set of initial
conditions of positive measure for which extinction of the predator results. This is
strengthened in Theorem 3.7 where it is shown that there is actually a threshold of
enrichment above which extinction of the predator results for all but a set of initial
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conditions of measure zero unless (see Proposition 3.8) the prey isocline is monotone
decreasing for all values of the carrying capacity. In that case there is a separatrix.
For all solutions initiating on one side of the separatrix, extinction of the predator
results. Solutions initiating on the other side of the separatrix converge to an interior
equilibrium. This contrasts with the dynamics of the classical model, where no group
defence is assumed, since in that model the predator would never become extinct if
the model is interpreted solely deterministically.

In [10], a numerical example is given indicating a sequence of bifurcations as the
carrying capacity of the environment is increased. In particular, besides the exchange
of stability between certain critical points, the example given in [10] undergoes a
supercritical Hopf bifurcation as well as a stable homoclinic bifurcation. In this paper,
it is shown that such a sequence of bifurcations, involving a homoclinic orbit for some
critical value of the carrying capacity as well as a Hopf bifurcation, is a prototype and
always occurs (unless the prey isocline is monotonically decreasing for all values of
the carrying capacity). However, the order of the bifurcations need not be the same
as in this example. The homoclinic bifurcation can be unstable rather than stable and
the Hopf bifurcation can be subcritical rather than supercritical. In fact, we also show
that even the classical model (that is, no group defence assumed), can undergo a
subcritical rather than supercritical (as is usually considered) Hopf bifurcation.

The dynamics are reminiscent of the dynamics of the predator-prey system studied
by Conway and Smoller in [6] where they assume the prey to be “asocial.”

This paper is organized as follows. The predator-prey model is described in § 2,
where properties of the isoclines are also derived. Preliminary analytic results appear
in § 3 and the bifurcation analysis appears in § 4 where we describe the possible
sequences of bifurcations and prove that there is always a homoclinic bifurcation
(provided the prey isocline is not monotone decreasing for all values of the carrying
capacity). A discussion of the implications of the results is given in § 5. For completeness
the information obtained from a linear analysis is found in Appendix A and an example
justifying certain assumptions is given in Appendix B.

2. Predator-prey model assuming group defence. As in Freedman and Wolkowicz
[10], we consider the following system of autonomous ordinary differential equations
of generalized Gause-type as a model of predator-prey interaction with group defence
exhibited by the prey:

x=xg(x, K)—yp(x) & p(x)(F(x, K)-y),

(21)K )5=J’(_S+‘I(x)),

.4

Cdt
where x(¢) and y(¢) denote the density of prey and predator populations, respectively.
It is assumed that the functions g, p, and g are continuously differentiable (additional
smoothness assumptions are given below) and that s and K are positive constants.
When reference is made to model (2.1)g, if there is no ambiguity, the subscript K
shall be omitted. Here, g(x, K) represents the specific growth rate of the prey in the
absence of predation. Logistic growth, g(x, K) =r(1—x/K) is considered a prototype.

This leads to the following assumptions on g:

for any K >0
(22a) g(K,K)=0, g(0,K)>0, gx(0,K)=0, Ill_r)rgo £(0, K) is finite,

x(0)=0, y(0)=0,

(22b) 8xk (0> K) = 0’ gx(O, K) = 0> Il(lm gx(O’ K) = 0’
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for any K >0 and x>0

(2'20) 8k (X, K)>Oa 8xk (X, K)>0’ gx(x’ K)<0> Ilim gx(x, K) =0.

The function p(x) denotes the predator response function and is assumed to satisfy:
(2.3) p(0)=0, p'(0)>0, p"(0)<0, p(x)>0 for x>0.
In order to model group defence, it is assumed as well that there exists 4> 0 such that
(2.4) p'(x)>0 for0=x<h and p'(x)<0 for h<x.
For technical reasons it is assumed that
(2.5) P(x)2 p(x)—xp'(x)>0 for all x>0.

In particular, since P’'(x)=—xp"(x) and P(0) =0 it is sufficient to assume that p(x) is
concave for 0< x < h (since p'(x) =0 for x = h, clearly P(x)>0 for x= h).

A function of the form p(x)=mx/(ax>+ bx+1) where m, a, and b are positive
constants satisfies these assumptions and approximates Holling Type II dynamics
(Michaelis-Menten kinetics) for small x.

The rate of conversion of prey to predator is described by g(x). In Gause’s model
q(x) = cp(x) for some positive constant c. It is assumed that g(x) has properties similar
to p(x). In particular

26) q(0)=0, q(x)>0 for x>0, q(h)>s,
’ q(x)>0 for0=x<h, and q'(x)<0 for x> h.

It is also assumed that q(h)> s since otherwise the predator cannot survive on
the prey at any density. This implies that there exists A <h such that g(A)=s and
there may exist u > h such that q(u)=s.

Other examples of g(x, K), p(x), and g(x) can be found in Boon and Laudelout
[3], Holling [12], May [18], Rosenzweig [22], and Yang and Humphrey [27].

The predator isoclines are the vertical lines x=A and x= u (provided u exists).
If u> K or u is infinite the asymptotic outcome is the same as in the classical case.
It will therefore be assumed that u is finite throughout the remainder of this paper.

The prey isocline is given by the function F(x, K) = xg(x, K)/p(x). The properties
of this function play a key role in the analysis. In particular, we show below that under
our assumptions the permissible configurations of the prey isoclines are limited (see
Fig. 1). As well, we show that as the carrying capacity K is increased the interior local
maximum (if one exists) shifts to the right and the interior local minimum (if one
exists) shifts to the left. From this we are able to conclude (see Proposition 2.3) that
for K sufficiently large, the prey isocline is monotone for 0 < x < w. This will be used
in §3 to show that there are no periodic orbits or homoclinic orbits possible for
sufficiently large K.

Define

(2.7) F(0,K)=1lim F(x, K)=g(0, K)/p'(0).

x=>0"
Note that F(0, K)>0 and limg . F(0, K) is finite and positive (see (2.2b) and (2.3)).
The slope of the prey isocline is given by

(2.8) F.(x, K) = (xg«(x, K)p(x)+g(x, K)(p(x) = xp'(x)))/ (p(x))".
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F(x,K) F(x,K)
(a) (b)*
\
+ }
0 H, KK x O-H_ B, K\ x
F(x,K) F(x,K)
\ © \ @
\\ ,
\ /
oS
O=Hy, K\ X 0 I-fm H, K\x

\ P(x,K) \ F(x,K)

(e) ()

0 K\ X 0 M K\x

Fi1G. 1. Permissible configurations of the prey isocline.

Therefore,
(2.9) F.(K, K)=Kg.(K, K)/p(K)<0
and

(2100  F(0,K)= 11:;1 F(x, K) =(28.(0, K)p'(0)—g(0, K)p"(0))/ (2(p'(0))*).

Eliminating the possibility of horizontal tangents of F(x, K) and hence of local
minima and maxima of the prey isocline over certain parameter ranges will prove useful.

LEMMA 2.1. Given any y>0, there exists K*> v such that for any K> K*, if
0<xX=v, F.(X, K)#0.

Proof. Suppose the result is false. Then there exist sequences {x,} and {K,} with
0<x,=1vyand y<K, > as n- cosuchthat F.(x,, K,) =0 for each n. But then by (2.8)

—gx(xna Kn) _p(xn) ‘an'(xn)‘

@11) G Kn) — xop(n)

However, by (2.2) and the fact that 0 <x, = v, it follows that there exist subsequences
(relabel for convenience) such that x, > @ =0, g(x,, K,) > B8 >0 finite, g.(x,, K,,) > 0.
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But then for these subsequences, lim, . (—g.(x,, K,))/g(x,, K,) =0. On the other
hand,
pe)—epl@)
(%) = %P’ (52) apla)
(2.12) lim 28520 P %) _
n>w X, p(X,) —p"(0)
2p'(0)

which is positive by (2.5) and (2.3), contradicting (2.11). Thus no such subsequences
exist and the result follows. 0O
We continue to investigate how changes in K affect F. Since

(2.13) Fi(x, K)=xgx(x, K)/p(x)>0 for x>0,

F is an increasing function of K for each fixed x. F ¢ is also an increasing function
of K for each fixed x> 0 since
(2.14) Frox = (xgex (%, K)p(x) + gk (x, K)(p(x) = xp'(x)))/(p(x))*>0
by (2.2¢) and (2.5).

Remark 2.2. 1t follows immediately that

(a) if Hy 2 Hy(K) is a local maximum of F satisfying F,(H,,, K) =0, then as
K increases, H), shifts to the right and by Lemma 2.1 is to the right of any fixed u >0
for all sufficiently large K, and

(b) if H, 2 H,,(K) is a local minimum of F satisfying F,(H,,, K) =0, then as K
increases, H,, shifts to the left or disappears (i.e., H,, <0) and by Lemma 2.1 disappears
for all sufficiently large K.

As a consequence, we have the following proposition.

PrROPOSITION 2.3. Fix i >0. There exists K*>0 such that for all K > K* F has
no interior local minimum and .any interior local maximum is to the right of a.

For both biological realism and mathematical convenience, for each K >0, we
impose the following restriction on F (see Fig. 1):

(2.15) There are at most two values of x € (0, K) where F.(x, K)=0.

This holds for example, if g(x, K)=r(1—x/K), r a positive constant, and p(x)=
mx/(ax>+bx+1) where m, a, and b are positive constants.
Therefore if F.(0, K)=0, then F has a unique global maximum, say H,; =0 and

F.(x,K)>0 if0<x<H,,,

a>0,

ifa=0

(2.16)
F.(x,K)<0 if x> Hy,
(see Figs. 1(a)-(c)). In this case we assume H,, =0 or H,, = —o0. If, on the other hand,

F,(0, K) <0, there are three possibilities:
(i) F.(x, K)<0 for all x>0. Here we assume H, = H,, <0 or H,,=—o (see

Fig. 1(e)); or
(ii) there exists a unique point of inflection %, such that F,(x, K) <0 for all x>0,
x#x and F,(x, K)=0. Again H,, = H,, <0 or H,,=—o (see Fig. 1(f)); or
(iii) there exists a unique positive local minimum H,, and a unique positive local
maximum H,, satisfying
F.(x,K)<0 if0<x<H,,
(2.17) F.(x,K)>0 if H,<x<H,,,
Fx(x,K)<0 lfHM<x

(see Fig. 1(d)).
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In Appendix B we give an example to show that all the configurations in Fig. 1
are obtainable under our assumptions.

Finally, we observe the following.

Remark 2.4. There can exist at most one pair (%, K) such that F,(x, K) <0 for
all 0<x<K, x#x and F.(% K)=0 (see Fig. 1(f)). This follows from (2.15), since
(2.14) implies that F, (%, K + £) > 0. This forces F to have an interior local maximum,
H,, for all K > K, by Remark 2.2(a). For technical reasons we shall assume that there
never exists such a pair (%, K) with X=A or u. This would be an extremely rare
coincidence biologically. (This insures that whenever F, (A, 12) =0, a Hopf bifurcation
occurs as K passes through K (see §4).)

3. Preliminary analytic results. In this section we consider some of the properties
of the different invariant sets associated with (2.1).

ProposITION 3.1. The x-axis, y-axis and hence the interior of the first quadrant are
all invariant under (2.1)g. For each K, solutions for which x(0)>0 and y(0)>0 are
(uniformly asymptotically) bounded in positive time and given any € >0 these solutions
satisfy x(t) < K + ¢ for all sufficiently large t.

Proof. Provided lim,_,, (g(x))/p(x) is finite, the proof is similar to the proof given
in Hsu [14, Lemma 3.1] (choosing ¢ so that g(x) —cp(x) =0 for all x€[0, K +1]).

If this assumption is omitted, that for each K >0, y(¢) is uniformly asymptotically
bounded can be shown by fixing any solution for which x(7)=K and y(7)>0 for
some 7> 0, and using a phase plane analysis similar to that given in Freedman [9, pp.
78-80]. Since solutions cannot cross each other, all solutions are eventually trapped
inside a region bounded above by this solution. [

There are four possible critical points of (2.1)x. The first two, M (0) = (0, 0) and
M(K)=(K,0) always exist. The other two, M(A)=(A, F(A,K)) and M(u)=
(u, F(u, K)) exist only if A <K and u < K, respectively, (otherwise F(A, K)<0 and
F(u, K) <0, respectively). If A = K (u = K) then M(A) (M (u)) coalesces with M(K).
The stability analysis for these critical points is given in Appendix A and is summarized
in Table 1. A typical phase portrait of (2.1) showing how the vector field crosses the
isoclines is given in Fig. 2. If u > K or u =+0c0 then the dynamics are basically the
same as the dynamics of the classical model in which there is no group defence.

TABLE 1
Linear analysis of critical points.

Parameter range -

Critical point K<A<u A<K<pu A<u<K
M(0) saddle saddle saddle
M(K) attractor saddle attractor
(node) (node)
M(x) * repellor repellor F.(A\, K)>0
attractor attractor F.(A, K)<0
M(u) * * saddle

* This critical point does not exist in this parameter range.

Next consider periodic orbits. The following lemma together with the Poincaré
criterion (see Coppel [7]) will be useful to eliminate the possibility of periodic orbits
for K in a certain parameter range. It will also be used to show that when periodic
orbits do exist they must surround either (H,,, F(H,,, K)) or (Hy;, F(Hy;, K)) on the
prey isocline.
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FIG. 2. Typical vector field of (2.1) for u < K.
LeEmMA 3.2. Let T' be any periodic orbit of (2.1). Then
AL SEF div (%, y) dt =<}; p(x)F.(x, K) dt.
r
Proof.

A:§ div (%, y) dt
r
= i [(xgx(x, K)+g(x, K)—yp'(x))+(—s+q(x))] dt

§ (et (22 )

=3E ["gx(x, K)p(x)+g(x, K>(P<x)—x1"("))+ilnp(x>] dt
] t

p(x) d

=§ p(x)F.(x, K) dt. 0
r

LemMma 3.3. (a) There exists K*> u such that for any K > K*, (2.1)x admits no
nontrivial periodic orbits.

(b) If K is sufficiently close to A, (2.1) x admits no periodic orbits.

Proof. (a) Observing how the vector field crosses the predator and prey isoclines
(see Fig. 2), we note that if a periodic orbit exists it must encircle the critical point
M(A). As well, this is the only critical point it can surround.

By Proposition 2.3 we are able to select K* sufficiently large so that F has no
local minima and the global maximum (if it exists) is to the right of u. Therefore, either

(3.1a) (i) a local maximum exists and F,(x, K)>0 for xe€ (0, u], or
(3.1b) (ii) no local maximum exists and F,(x, K) <0 for x € (0, u].

If (i) holds, Lemma 3.2 implies that A>0 and so the Poincaré criterion implies
that any periodic orbit is unstable. However, M(A) is also unstable in this parameter
range (see Table 1 and Appendix A), a contradiction. In case (ii) the result follows
similarly. :
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(b) The proof is similar to the proof of Proposition 2 in Conway and Smoller
[6]. O . o
Remark 3.4. In an analogous manner one can show that the slope of the portion
of the prey isocline inside any periodic orbit cannot be entirely of the same sign. Thus
any periodic orbit of (2.1)x must surround either the point ( F(H,, K)) or -
(Hwm, F(Hu, K)).

Next consider homoclinic orbits.

LEmMMA 3.5. There exists K*> u such that for any K> K*, (2.1)x admits no
homoclinic orbits.

Proof. First we observe that the only critical point that can be involved in a
homoclinic orbit is M(u) and that any homoclinic orbit must surround M(A). From .
Lemma 3.3 we can choose K* such that for all K > K*, (2.1)x admits no nontrivial
periodic orbits and from Proposition 2.3 either (3.1a) or (3.1b) holds. The trace of the
variational matrix about M(u) (see Appendix A) equals p(u)F,.(u, K). Thus if a
homoclinic orbit exists it must be of the same stability as M (1) (see Chow and Hale
[5, Thm. 3.3, p. 357] or Andronov et al. [2, Thm. 44, p. 304]). But this is impossible
since there are no periodic orbits surrounding M(A). 0O

Remark 3.6. Similarly it follows that any homoclinic orbit of (2.1) must enclose
either a local minimum of F or a local maximum of F.

An immediate and important consequence of what we have shown is the following
theorem.

THEOREM 3.7. Assume that for some K> 0, F has a local maximum at
(Hy, F(Hy,, IZ)). There exists K* > u such that if K > K*, then all solutions of (2.1) ¢
with positive initial conditions converge to M(K) except those originating on the stable
manifold of M () or at the point M(A).

Proof. From Remark 2.2(a) it follows that F has a local maximum for all K > K.
By Lemmas 3.3 and 3.5, (2.1) ¢ admits no periodic orbits or homoclinic orbits and all
solutions are bounded for positive time by Proposition 3.1. M(u) is a saddle and for.
sufficiently large K, Hy, > u and H,, <0 and so F.(A, K)>0 implying that M(X) is
a repellor. The result follows (see Fig. 3). 0O

b4
-
-
TN 7/ k
o/ l
’
[ e
L
\.
s
Y
AN ya
7 <
0 A x
F1G. 3. Typical phase portrait for sufficiently large K. Almost all solutions converge to M(K). - - - stable
manifold of M(u); - - - - - unstable manifold by M(w).

Thus the model predicts that too much enrichment always results in the extinction
of the predator unless the prey isocline is monotone decreasing for all values of the
carrying capacity K.

ProrosiTION 3.8. Assume F,(x, K)<O0 for all K> u and all 0<x < K. Then the
stable manifold of M (u) separates the positive quadrant into two regions. Solutions
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originating in the inner region all converge to M(X). Solutions with initial conditions in
the outer region all converge to M(K) (see Fig. 4).
Proof. This is an immediate consequence of Remarks 3.4 and 3.6. 0

"'4. Bifurcation analysis. In this section the dynamics of (2.1) are investigated as
K is varied. “

Assumption 4.1. Since the dynamics are more interesting and the model more
realistic biologically, it is assumed that the prey isocline has a local maximum for at
least one value of K >0 (and hence for all K>K by Remark 2.2(a)). (Otherwise
F(x, K) is strictly monotonically decreasing for all K >0, M(A) is asymptotically
stable, by Remarks 3.4 and 3.6 there are no periodic orbits or homoclinic orbits, and
if A <u <K, the dynamics are the same as those shown in Fig. 4.)

First note that M (0) undergoes no bifurcations. It remains a saddle for all K with
stable manifold along the y-axis and unstable manifold along the x-axis. For A > K,
M(K) is an asymptotically stable critical point. At A = K, M (A) and M (K) coalesce.
As K increases, M(K) loses stability becoming a saddle, whereas M(A) enters the
first quadrant as an asymptotically stable critical point. We call this bifurcation a
A-exchange. Similarly, for u = K, M(u) and M(K) coalesce. As K increases further,
M (K) regains its stability and M(u) enters the first quadrant as a saddle and remains
a saddle for all K. We refer to this bifurcation as a u-exchange.

Since any periodic orbit must surround M(A) and cannot surround any other
critical point, M(A) is the only candidate for a Hopf bifurcation. Since our system is
planar, and solutions are uniformly asymptotically bounded for each K, though
semi-stable periodic orbits may appear and disappear spontaneously, the only way
stable or unstable periodic orbits can appear or disappear is either in pairs (one stable
and one unstable, see Andronov et al. [2, Chap. 13, pp. 399-401 and p. 432]), or
through a homoclinic or Hopf bifurcation. See also Alexander and Yorke [1].

Under Assumption 4.1 it will be shown that as K increases there is always a Hopf
bifurcation about M(A) and a homoclinic bifurcation involving M (u).

First the Hopf bifurcation is examined. The variational matrix about M(A) is (see
Appendix A):

p(V)F(A, K) —p(A)
(4.1) V(M())) [F(A’K)q,(A) 0]
. /
/
v
\ /
T~ / 7

\
A a7 N ~.
N,
~.
0 A m K ) X
FI1G. 4. Phase portrait of F,(x, K) <0 for all x€ (0, K) (K < ). - - - stable manifold of M(u), E(,.y;
-+ =+ - unstable manifold of M(u); - - - - - - - stable manifold of M(X). Solutions inside the region defined

by E; converge to M(A). Outside the region defined by E,,,, solutions converge to M(K).
Y Emw) ()
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Therefore the characteristic equation is:
(4.2) ¥’ = (V) F(\, K)+F(A, K)g'(1) =0,

with roots:

P(MV)E, K)=V(p(\)E(A, K))>—4F(A, K)g'(\)
2

The roots are therefore purely imaginary if and only if F; (A, K )=0 and are complex
in a neighbourhood of K. Since Re (y(K)) 0, Im (y(K)) #0 and

d xK ()‘a K)

K Rey(K) p(A) 2 >0

by (2. 14), there is a Hopf bifurcation at K = K. That there exists a unique K such that
F,(A, K ) =0 follows from Remarks 2.4 and 2.2. Therefore there is only one value of
K for which there is a Hopf bifurcation. From Remark 2.2 it follows as well that
(A, K ) is either a local minimum or a local maximum of the prey isocline. The direction
and stability of the bifurcating periodic orbit is determined by the sign of the quantity:

- _p(/\)Fxx(/\a K)‘I"(A)
q'(A)

which was determined using the algorithm in Marsden and McKracken [17] and the

symbol manipulation package REDUCE. This generalizes the condition given in

Conway and Smoller [6]. We summarize the details in the following proposition.

PROPOSITION 4.2. If w <0 the bifurcating periodic orbit is orbitally stable and exists
provided K > K and |K - K | suﬁiczently small. If w> 0 then the bifurcating periodic orbit
is unstable and exists provided K < K and |K — K] sufficiently small.

Remark 4.3. If w>0and (A, K )isa local maximum of the prey isocline it follows
(from Lemma 3.3(b)) that for some K < K there is either the spontaneous appearance
of (a semistable periodic orbit which splits into) a pair of stable and unstable periodic
orbits or a Hopf bifurcation and a homoclinic bifurcation occur simultaneously
(because the outermost periodic orbit must be asymptotically stable). If the Hopf
bifurcation occurs before the w-exchange, then only the former scenario is possible.

Next, the homoclinic bifurcation is investigated. This will be done by means of
a phase plane argument, focusing attention on the stable and unstable manifolds,
EMy and Ejy(,.), of M(u). Consider that part of Ejs.)(Eh(.) that approaches
(leaves) M(u) from (towards) the left and call it I'*(I'*). Freedman and Wolkowicz
[10] point out that there are at most three possibilities for I'* (see Fig. 5).

Case 1. In negative time I'* leaves the strip 0= x = u (Fig. 5(a)). I'* must therefore
approach (in forward time) M(A) or a periodic orbit enclosing M(A).

Case 2. T” is a homoclinic orbit, that is I'* =I'* (Fig. 5(b)).

Case 3. I'¥ remains in the strip 0=x < pu for all time and if followed as time is
reversed either approaches the outérmost periodic orbit surrounding M(A) or M(A)
if there are no periodic orbits. In this case I'* approaches M(K) (Fig. 5(c)).

In [10], it is shown numerically that for a specific example as K varies, the model
exhibits the dynamics in each of the three cases described above. It will be shown
analytically that this is true in general (under our assumptions).

Remark 4.4. By Theorem 3.7 (see Fig. 3) it follows that Case 3 holds for all
sufficiently large K. If it can be shown that there always exists some K >0 such that
Case 1 holds, by continuity it follows that Case 2 must hold for some K as well, and
hence there always exists a homoclinic bifurcation. That this is indeed the case is
shown below. To do this we consider all the possible sequences of bifurcations.

y(K) =

(4.3) +P(A) Fee(A, K)+2p' (M) Fie (A, K),
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FIG. 5. Three possibilities for the portion of the stable and unstable manifold of M () to the left of p.

_ Remark 4.5. The bifurcations of model (2.1) as K is increased from 0 <K <A
will be traced. Though the possibility of the spontaneous appearance and disappearance
of periodic orbits surrounding M(A) will be taken into account and the stability
properties of the outermost such periodic orbit taken into consideration, in the analysis
that follows their occurrence will not be recorded.

If 0< K < A, then the first bifurcation to occur as K is increased is a A-exchange.
After a A-exchange there can only be either a u-exchange or a Hopf bifurcation.

If the u-exchange is first, then before the next bifurcation (Hopf or homoclinic)
takes place, M (1) remains asymptotically stable, and if any periodic orbits surround
M(A), the outermost one must be stable from the outside. This follows since solutions
are uniformly asymptotically bounded by Proposition 3.1, and so there can be no
bifurcation of periodic orbits from infinity. Though semistable periodic orbits may
appear and disappear spontaneously, the only way stable or unstable periodic orbits
can appear or disappear is in pairs, one stable and one unstable (see Andronov et al.
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[2, Chap. 13, especially pp. 399-401, 432]) since we have eliminated the possibility of
a Hopf or a homoclinic bifurcation. Therefore the dynamics are descrlbed by Case 1.

If, on the other hand, the Hopf blfurcatlon occurs (at K= K ) before the u-
exchange then for K > K but close to K M(A) is a repellor. The outermost periodic
orbit must still be asymptotically stable (whether the Hopf bifurcation was subcritical
or supercritical and whether it occurred for (A, K) alocal minimum or a local maximum
of the prey isocline). The w-exchange is the only bifurcation that can follow. Again
the dynamics are described by Case 1.

Therefore by Remark 4.4, there is always at least one value of K for which there
is a homoclinic orbit and hence a homoclinic bifurcation. Recall that the stability of
the homoclinic orbit depends on the trace of the variational matrix at M(u),
tr V(M (u)) (see Chow and Hale [5, Thm. 3.3, p. 357] or Andronov et al. [2, Thm. 44,
p. 304]). Since tr V(M (u)) = p(n) F(u, K), the homoclinic orbit is stable if the prey
isocline is strictly decreasing at (u, K) and unstable if it is strictly increasing. This,
together with information concerning the stability of the outermost periodic orbit
surrounding M (A), restricts the possible positions of the predator isoclines relative to
H,, and H,, at which a homoclinic orbit can occur and hence the possible values of
K. Whether or not the homoclinic bifurcation is unique has not been investigated. It
is conceivable that the spontaneous appearance and disappearance of pairs of periodic
orbits could result in a sequence of homoclinic bifurcations.

In the numerical example given in Freedman and Wolkowicz [10], ¥ <0 (see
Remark 2.4), and there is a A-exchange followed by a supercritical Hopf bifurcation
(w<0), at x = Hy,, a u-exchange and finally a stable homoclinic bifurcation. Different
scenarios are clearly possible, for example a A-exchange followed by u-exchange, and
then either the homoclinic bifurcation followed by the Hopf bifurcation or the Hopf
bifurcation followed by the homoclinic bifurcation. Also the Hopf bifurcation may be
subcritical or supercritical and may occur either for x = Hy, or x = H,,,. The homoclinic
bifurcation may lead to a stable or an unstable periodic orbit.

5. Discussion. A class of ODEs modeling predator-prey interaction in which
the prey are allowed to exhibit group defence was analyzed. It was shown that if the
carrying capacity is made sufficiently large by enrichment of the environment, the
model predicts the eventual extinction of the predator. This gives strong support to
Rosenzweig’s warning [22] and suggests that one must proceed with caution ‘when |
trying to tamper with nature since unexpected outcomes could result.

The weakening of the monotonicity assumption on the predator response function
in order to model group defence leads to a model w1th rich dynamics. Taking the
carrying capacity K as the bifurcation parameter, there are several different types of
bifurcations including a homoclinic bifurcation. ,

There are also implications of the results for the classical model (i.e., no .group
defence allowed). In particular, it is shown that the Hopf bifurcation can be either
subcritical or supercritical (see condition (4.3)). It is then easy'to construct a predator-
prey model in which there is a semi-stable periodic orbit for some value of K that
splits into a pair (one stable and one unstable) of periodic orbits as K varies- (see
Remark 4.3). The question of the number of periodic orbits for predator-prey systems
and in particular of uniqueness of the periodic orbit is intriguing and apparently
difficult. Cheng [4] (with minor modifications required) proves uniqueness for a special
case of (2.1)k. He assumes that p and q are modeled by Holling Type II dynamics,
and g by logistic growth. Thus F, the prey isocline is symmetric about its maximum,
H,,. Conway and Smoller [6] extend his proof to other systems for which the prey
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isocline is symmetric about H,,. However, it seems that the structure of the models in
both [4] and [6] play a role since symmetry alone does not imply uniqueness. This
can be seen since symmetry implies F,,,(Hy;, K)=0 and so (4.3) reduces to
w=Falr, ) (=00 L4250
q'(A)

Since F.. (A, K ) <0 at A = H,, it follows that the sign of w depends on p and g and
their derivatives. In particular if g"(A)/q'(A)>2p'(A)/p(A), w> 0, and by Remark 4.3
there are at least two periodic orbits. Since g plays no role in determining F, it is no
problem to find an appropriate g, which of course would have to be convex at A (e.g.,
sigmoidal dynamics would work). Perhaps symmetry and concavity of g at A imply
uniqueness. Of course, symmetry is not necessary for uniqueness.

Appendix A. Linear analysis of (2.1)k. Let E*=(x*, y*) denote any equilibrium
of (2.1). In the case u =+00, the stability analysis is given in Freedman [8], [9]. For
w finite the analysis is described in Freedman and Wolkowicz [10].

For completeness we summarize the stability analysis of the critical points.

The variational matrix about any equilibrium (x*, y*) is:

* * k)4 * ) — ¥ * _ *
V(x*’y*)z[x B 0% K)+g O K)=y"p(e®) - —p(x™) ]
y*q'(x*) —s+q(x*)
M(0) is always a saddle;. M(K) is a saddle if A <K < pu and is a stable node if A > K
or u<K.
If both x*# 0 and y*#0, then
% F * K _ %
V(x*, y*) = [p(x JEGK) = )]'
yiq'(x*) 0
Therefore the characteristic equation is:
Y2 =y (x*) Fe(x*, K)+ y*p(x*)q'(x*) = 0.

If K<A<pu, M(0) and M(K) are the only critical points and M(K) is a global
attractor with respect to the interior of the first quadrant.

If A <K <u then the stability of M(A) depends on the slope of F.(A, K). If
F.(A, K)<0then M()) is asymptotically stable. If Fx (A, K)> 0then M(A) is unstable.
V(M())) has nontrivial, pure imaginary eigenvalues if, and only if, F,(A, K)=0. If
for A fixed and some IZ, F,.(A, I%) =0, then selecting K as the bifurcation parameter,
it can be shown that at K thereisa Hopf bifurcation (either subcritical or supercritical).

If A <u <K, then M(u) is a saddle. The stability of M(A) depends on the sign
of F.(A, K) just as in the previous case and the criteria for the Hopf bifurcation are
also the same as before.

Note that unless A = K, u = K or F,(A, K) =0 all critical points are hyperbolic.

- Appendix B. Example. We include the following example to show that all the
configurations in Fig. 1 are obtainable under our assumptions.
Let p(x) = mx/(ax*+ bx+ 1) where m, a, b are positive constants, and g(x, K) =
r(1—x/K) where r is a positive constant. Then

F(x, K) =ﬁ (K —x)(ax*+bx+1),

F.(x, K)= ;;’k— [(Kb—1)+x(2aK —2b) —3ax?],
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and so
F.(0,K)>0 ifKb>1,
=0 ifKb=1,
<0 ifKb<l1.
Also

F.(x, K)=(r/mK)[2aK —2b—6ax].

To obtain Fig. 1(a) take Kb > 1. To obtain Fig. 1(b) take Kb =1 and aK > b. To obtain
Fig. 1(c) take Kb =1 and aK — b =0. To obtain Fig. 1(d) one requires only that aK > b,
Kb <1, and bK +aK?+ b*/a>3. This is clearly possible since one can choose K and
b so that Kb <1 and then we can take a as large as we need. For Fig. 1(e) let Kb <1
and bK + aK?*+ b?/a <3 and for Fig. 1(f) let Kb <1, aK > b and bK + aK*+b*/a =3.
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